
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340050834

Improving Robustness in Q-Matrix Validation Using an Iterative and Dynamic

Procedure

Article  in  Applied Psychological Measurement · March 2020

DOI: 10.1177/0146621620909904

CITATIONS

6
READS

262

4 authors:

Some of the authors of this publication are also working on these related projects:

Digital Literacy Assessment and Digital Citizenship View project

Q-matrix empirical validation procedures View project

Pablo Nájera

Universidad Pontificia Comillas

17 PUBLICATIONS   93 CITATIONS   

SEE PROFILE

Miguel A. Sorrel

Universidad Autónoma de Madrid

55 PUBLICATIONS   705 CITATIONS   

SEE PROFILE

Jimmy de la Torre

The University of Hong Kong

105 PUBLICATIONS   4,675 CITATIONS   

SEE PROFILE

Francisco J Abad

Universidad Autónoma de Madrid

141 PUBLICATIONS   4,073 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Miguel A. Sorrel on 23 March 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/340050834_Improving_Robustness_in_Q-Matrix_Validation_Using_an_Iterative_and_Dynamic_Procedure?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/340050834_Improving_Robustness_in_Q-Matrix_Validation_Using_an_Iterative_and_Dynamic_Procedure?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Digital-Literacy-Assessment-and-Digital-Citizenship?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Q-matrix-empirical-validation-procedures?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pablo-Najera-2?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pablo-Najera-2?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-Pontificia-Comillas?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pablo-Najera-2?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miguel-Sorrel?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miguel-Sorrel?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Autonoma_de_Madrid?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miguel-Sorrel?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jimmy-Torre?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jimmy-Torre?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The-University-of-Hong-Kong?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jimmy-Torre?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco-Abad?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco-Abad?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Autonoma_de_Madrid?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco-Abad?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Miguel-Sorrel?enrichId=rgreq-3b08c160860a57d996f60050d270e904-XXX&enrichSource=Y292ZXJQYWdlOzM0MDA1MDgzNDtBUzo4NzIxNjk5MzY1NDM3NDVAMTU4NDk1MjkyNTg2MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Running head: IMPROVING ROBUSTNESS IN Q-MATRIX VALIDATION 

This article should be cited as:  1 

Nájera, P., Sorrel, M.A., de la Torre, J., & Abad, F. J. (in press). Improving robustness in Q-2 

matrix validation using an iterative and dynamic procedure. Applied Psychological 3 

Measurement. doi:10.1177/0146621620909904 4 

 5 

Improving Robustness in Q-Matrix Validation using an Iterative and Dynamic Procedure  6 

 7 

Pablo Nájeraa, Miguel A. Sorrela, Jimmy de la Torreb, & Francisco José Abada 8 

a: Autonomous University of Madrid; b: The University of Hong Kong 9 

 10 

 11 

Author Note 12 

Pablo Nájera, Miguel A. Sorrel, and Francisco José Abad, Department of Social 13 

Psychology and Methodology, Autonomous University of Madrid, Spain. Jimmy de la Torre, 14 

Faculty of Education, The University of Hong Kong, Hong Kong. 15 

  This research was partially supported by Grant PSI2017-85022-P (Ministerio de 16 

Ciencia, Innovación y Universidades, Spain). 17 

The author(s) declared no potential conflicts of interest with respect to the research, 18 

authorship, and/or publication of this article. 19 

Correspondence concerning this article should be addressed to Miguel A. Sorrel, 20 

Department of Social Psychology and Methodology, Autonomous University of Madrid, 21 

Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain, e-mail: miguel.sorrel@uam.es. 22 

 23 

  24 

https://doi.org/10.1177%2F0146621620909904
mailto:miguel.sorrel@uam.es


IMPROVING ROBUSTNESS IN Q-MATRIX VALIDATION  

2 

 

Improving robustness in Q-matrix validation using an iterative and dynamic procedure 25 

Abstract 26 

In the context of cognitive diagnosis models, a Q-matrix reflects the correspondence between 27 

attributes and items. The Q-matrix construction process is typically subjective in nature, 28 

which may lead to misspecifications. All this can negatively affect the attribute classification 29 

accuracy. In response, several methods of empirical Q-matrix validation have been developed. 30 

The general discrimination index (GDI) method has some relevant advantages, such as the 31 

possibility of being applied to several CDMs. However, the estimation of the GDI relies on 32 

the estimation of the latent groups sizes and success probabilities, which is made with the 33 

original (possibly misspecified) Q-matrix. This can be a problem, especially in those 34 

situations in which there is a great uncertainty about the Q-matrix specification. To address 35 

this, the present study investigates the iterative application of the GDI method where only one 36 

item is modified at each step of the iterative procedure, and the required cutoff is updated 37 

considering the new parameter estimates. A simulation study was conducted to test the 38 

performance of the new procedure. Results showed that the performance of the GDI method 39 

improved when the application was iterative at the item level and an appropriate cutoff point 40 

was used. This was most noticeable when the original Q-matrix misspecification rate was 41 

high, where the proposed procedure performed better 96.5% of the times. The results are 42 

illustrated using Tatsuoka's fraction-subtraction dataset. 43 

Key words: CDM, G-DINA, Q-matrix, validation, GDI. 44 

  45 
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Improving robustness in Q-matrix validation using an iterative and dynamic procedure 46 

 In the context of cognitive diagnosis assessment, cognitive diagnosis models (CDMs) 47 

are latent class multidimensional statistical models that classify examinees as masters or non-48 

masters of different skills. Those skills are often referred to as attributes. Several CDMs have 49 

been developed in the last years, which can be categorized as either reduced or general 50 

models. The reduced models are the most specific ones; they provide low generalization but 51 

high parsimony. The deterministic input noise and gate (DINA; Haertel, 1984; Junker & 52 

Sijtsima, 2001), the deterministic input noise or gate (DINO; Templin & Henson, 2006), and 53 

the noisy input, deterministic output and gate (NIDA; Maris, 1999; Junker & Sijtsima, 2001) 54 

are some of the most widely known reduced models. Reduced models are usually preferred 55 

because of the less number of parameter estimates and ease of interpretation. However, they 56 

make strong assumptions about the data and model fit is therefore compromised. Reduced 57 

models are nested in the general models, which allow for greater flexibility, but with more 58 

demanding requirements (e.g., larger sample sizes). The general diagnosis model (GDM; von 59 

Davier, 2005) and the generalized DINA model (G-DINA; de la Torre, 2011) are two 60 

examples of general models. These models are preferred when there is not enough evidence to 61 

assume a specific response process underlying the item responses. 62 

The estimation of a CDM typically requires two inputs: the item responses of the 63 

examinees and a Q-matrix (Tatsuoka, 1983). The Q-matrix is a J (number of items) × K 64 

(number of attributes) matrix that reflects which attributes are measured by each item. Thus, 65 

each item will have a q-vector (qj), in which each q-entry (qjk) will adopt a value of 1 or 0 66 

denoting if attribute k is relevant for correctly answering item j or not, respectively. 67 

 The original Q-matrix construction process should have a theoretical foundation, and 68 

thus it is usually performed after a literature review, by analyzing examinees’ reports, or by 69 

domain experts. These processes are subjective in nature and can lead to some 70 
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misspecifications in the Q-matrix. These Q-matrix misspecifications negatively affect the 71 

estimation of the model parameters and the accuracy of the attribute profile classification 72 

(Gao, Miller & Liu, 2017; Rupp & Templin, 2008). For this reason, in the last years, several 73 

empirically-based methods of Q-matrix validation have been developed with the aim of 74 

detecting and correcting misspecified entries in a Q-matrix. 75 

The present paper will focus on the general discrimination index (GDI) method, also 76 

known as the general method of Q-matrix validation, developed for the G-DINA framework 77 

by de la Torre and Chiu (2016). The structure of the paper will be the following. First, the G-78 

DINA model will be briefly introduced, followed by a description of the GDI method and its 79 

advantages and limitations. Second, an item-level iterative procedure for the GDI method is 80 

proposed and described. Third, the performance of the iterative procedure is compared to that 81 

of the GDI method by means of Monte Carlo simulation. Fourth, a real data illustration is 82 

conducted. Finally, a discussion of the results is provided, as well as future research insights 83 

and comments on the advantages and limitations of the proposed procedure. 84 

Review of the G-DINA model 85 

 The G-DINA model (de la Torre, 2011) is a general, saturated CDM that subsumes 86 

most of the reduced models (e.g., DINA, DINO, A-CDM). In its original formulation, the 87 

probability of success can be decomposed into the sum of the effects due to the presence of 88 

specific attributes and their interactions: 89 

𝑃(𝜶𝑙𝑗
∗ ) = 𝛿𝑗0 + ∑ 𝛿𝑗𝑘𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

+ ∑ ∑ 𝛿𝑗𝑘𝑘′𝛼𝑙𝑘𝛼𝑙𝑘′  … + 𝛿12…𝐾𝑗
∗ ∏ 𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

,

𝐾𝑗
∗−1

𝑘=1

𝐾𝑗
∗

𝑘′=𝑘+1

 

 

(1) 

where 𝜶𝑙𝑗
∗  is the reduced attribute vector whose elements are relevant for solving the item j; 90 

𝛿𝑗0 is the intercept of item j; 𝛿𝑗𝑘 is the main effect due to 𝛼𝑘; 𝛿𝑗𝑘𝑘′ is the interaction effect due 91 

to 𝛼𝑘 and 𝛼𝑘′; and 𝛿12…𝐾𝑗
∗ is the interaction effect due to 𝛼1, … , 𝛼𝐾𝑗

∗, where 𝐾𝑗
∗ is the number 92 

of attributes specified for item j. 93 
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The GDI method of empirical Q-matrix validation 94 

The GDI method of empirical Q-matrix validation (de la Torre & Chiu, 2016) is a 95 

generalization of the δ-method (de la Torre, 2008) that was developed for the DINA model. 96 

The GDI method has been shown to perform well under both reduced and general CDMs at 97 

detecting and modifying misspecifications in the Q-matrix. Apart from its great flexibility and 98 

generalization, this method is included in the GDINA package (Ma & de la Torre, 2018) of the 99 

R software (R Core Team, 2018) with a low computational cost. This makes it one of the 100 

most accessible and easily applicable methods. 101 

 This validation method relies on the general discrimination index (GDI; usually 102 

represented as 𝜍𝑗
2), which is the variance of the probabilities of success of the different latent 103 

groups that are possible for an item weighted by the posterior distribution of those groups: 104 

𝜍𝑗
2 = ∑ 𝜔(𝜶𝑙𝑗

∗ )[𝑃(𝜶𝑙𝑗
∗ ) − �̅�(𝜶𝑙𝑗

∗ )]
2

2
𝐾𝑗

∗

𝑙=1

 

 

(2) 

where 2𝐾𝑗
∗

 is the number of possible latent groups for item j, 𝜔(𝜶𝑙𝑗
∗ ) is the posterior 105 

probability of examinees in group 𝜶𝑙𝑗
∗ , 𝑃(𝜶𝑙𝑗

∗ ) is the probability of success for examinees in 106 

this group, and �̅�(𝜶𝑙𝑗
∗ ) is the weighted mean probability of success across all the 2𝐾𝑗

∗

 possible 107 

latent groups for item j. 108 

 The method is based on the rationale that the correctly specified q-vector will lead to 109 

the highest possible item discrimination value; that is, the correct q-vector for an item will be 110 

the one that maximizes 𝜍𝑗
2. When comparing nested q-vectors, the specification of more 111 

attributes in the q-vector will lead to a higher 𝜍𝑗
2, and thus a criterion needs to be included so 112 

that the suggested q-vector for all items is not the one containing all the attributes (𝜍
𝐪𝑗

1:𝐾
2 ). De 113 

la Torre and Chiu (2016) defined the proportion of variance accounted for (PVAF), which is 114 

computed as PVAF𝑗𝑐 = 𝜍𝒒𝒋
𝒄

2 /𝜍
𝐪𝑗

1:𝐾
2 , where c reflects each of the 2𝐾∗

− 1 possible q-vectors 115 
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(note that the zero q-vector, with no attributes specified, is not plausible). The inclusion of 116 

spurious attributes is prevented by determining a cutoff point (ϵ, also referred as EPS for 117 

epsilon), so the suggested q-vector would be the simplest one (i.e., the one with less attributes 118 

specified) among those that fulfill PVAF > EPS. 119 

 Despite the good performance of the validation method, the original study was not 120 

without limitations, as de la Torre and Chiu (2016) noted. For instance, the authors did not 121 

justify the election criterion for the value of the EPS, which was set to 0.95. This aspect of the 122 

method was examined by Nájera, Sorrel, and Abad (2019), who found that the GDI method 123 

showed a good performance under a wide set of conditions, given that an optimal EPS for 124 

each specific condition was used. Specifically, they provided a predictive formula for the 125 

optimal EPS as a function of the average item quality (IQ), the sample size (N), and the 126 

number of items (J): 127 

𝐸𝑃𝑆 = inv. logit(−0.405 + 2.867 · 𝐼𝑄 + 4.840 · 10−4 · 𝑁 − 3.316 · 10−3 · 𝐽) , (3) 

where inv.logit(·) represents the inverse function of the logit function, computed as 128 

exp(x)/(1 + exp(x)). IQ is computed as the average item quality (𝐼𝑄 =
1

𝐽
∑ 𝐼𝑄𝑗

𝐽
𝑗=1 ), where 129 

IQj is the difference in the probability of success between the latent group that possesses all 130 

the relevant attributes specified in item j, 𝑃𝑗(𝟏), and the one with none of them, 𝑃𝑗(𝟎). 131 

 There is another aspect of the GDI method that deserves specific attention. When 132 

computing 𝜍𝑗
2, the method assumes that the Q-matrix is correctly specified: 𝜍𝑗

2 relies on the 133 

estimation of the latent group sizes and their success probabilities, which are estimated using 134 

the provisional (misspecified) Q-matrix. As the authors point out, “it would be difficult, if not 135 

impossible, for the same experts to correctly specify all the entries of the Q-matrix, 136 

particularly when the test is long. Consequently, (b) [this assumption] is expected to always 137 

be violated” (de la Torre & Chiu, 2016, p. 258). The authors state that the violation of the 138 
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assumption “does not automatically invalidate the viability of the proposed method. […] the 139 

proposed method appears to be robust when the misspecifications in the Q-matrix is 140 

controlled at a reasonable rate, which justifies the usefulness of the method in practice” (de la 141 

Torre & Chiu, 2016, p. 258). According to the favorable results found by them with 5% of 142 

misspecifications, and with 10% of misspecifications by Nájera et al. (2019), the method 143 

seems indeed to be robust when the misspecification rate is low.  144 

However, relying on the experts to make few mistakes while specifying the Q-matrix 145 

is another assumption that may not always be realistic or, at least, will remain uncertain. It is 146 

reasonable to think that different knowledge domains may vary in terms of Q-matrix 147 

specification difficulty. For instance, the Q-matrix of a scholastic exam of mathematical 148 

operations seems easier to specify (e.g., “8 + 3 × 2”, would be easily detected as measuring, 149 

for example, “sum” and “multiplication”, but not “subtraction” or “division”) than the Q-150 

matrix of a reading comprehension test, a clinical diagnostic test, or a test assessing students’ 151 

competencies (e.g., Sorrel et al. [2016] reported lower inter-rater reliability for more abstract 152 

attributes like “Study attitudes” compared to attributes easier to objectivize like “Helping 153 

others”). In fact, the Q-matrix of the popular fraction subtraction data set (Tatsuoka, 1990), 154 

which does not belong to a particularly ambiguous knowledge domain, is still controversial 155 

(Kang, Yang, & Zeng, 2019). Thus, the degree of uncertainty involved in the process could 156 

reasonably be higher than what has been assumed, especially when the response processes of 157 

the knowledge domain are somehow subjectively defined. Some authors have taken this point 158 

under consideration, and have used in their simulation studies misspecification rates up to 159 

40% (e.g., Wang et al., 2018). In light of the above, it is expected that the GDI method 160 

performance will be compromised if the misspecification rate is reasonably high, since the 161 

noise entered by the large number of misspecified q-entries can disrupt the calculation of 𝜍𝑗
2. 162 

Iterative Q-matrix validation methods 163 
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One way of mitigating the pernicious effects that the violation of the true Q-matrix 164 

assumption may provoke is to apply the validation method with an iterative procedure. Some 165 

validation methods follow this rationale. The iterative modified sequential search algorithm 166 

(IMSSA; Terzi & de la Torre, 2018a) and the iterative general discrimination index method 167 

(iGDI; Terzi, 2017; Terzi & de la Torre, 2018b) are two validation methods in which all 168 

proposed q-vector modifications are introduced in the Q-matrix in each iteration. In this 169 

sense, they can be referred to as test-level iterative methods. On the other hand, the Q-matrix 170 

refinement method (QRM; Chiu, 2013) and the data-driven approach proposed by Liu, Xu, 171 

and Ying (2012) update the Q-matrix after each q-vector modification; that is, they modify 172 

only one item in each iteration. Thus, they can be referred to as an item-level iterative method. 173 

Even though test-level iterative methods can improve the performance of non-iterative 174 

methods, it may be more precise to apply the iterative procedure at the item level. At the test-175 

level iteration, the first step will introduce several modifications based on the original and 176 

presumably misspecified Q-matrix, and thus the probability of introducing wrong 177 

modifications will be high. At the item-level, only the first item will be modified based on the 178 

information of the original Q-matrix, while the rest of the items will be modified based on 179 

progressively better specified Q-matrices. In the context of the GDI method, this will result in 180 

a better recovery of 𝜍𝑗
2 and a more precisely predicted EPS as the iterations take place. 181 

 In light of the above, an optimal method should take into consideration the following 182 

desired characteristics: first, it should be conducted iteratively; second, the iterations should 183 

be applied at the item level; third, if a cutoff point is required, it should be selected by 184 

empirical means and updated within each iteration; fourth, it should be applicable to both 185 

reduced and general models. Based on this, it is expected that an item-level iterative 186 

procedure based on the GDI method, applied with an optimal EPS that gets updated after each 187 
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iteration, will lead to promising results. The steps of the iterative procedure algorithm 188 

evaluated in this paper are the following: 189 

Step 1: Estimate the CDM according to the item responses and the provisional Q-190 

matrix (Q). 191 

Step 2: Select the EPS value. 192 

Step 3: Compute all items’ 𝜍𝑗
2 (and PVAF) for each possible q-vector specification and 193 

define, for each item, the set of appropriate q-vector(s), which fulfill(s) PVAF > EPS. 194 

Step 4: Select, for each item, the simplest element(s) among all the appropriate q-195 

vectors. 196 

4.1: If there is only one element, then it is defined as the suggested q-vector. 197 

4.2: If there are more than one element, the one with the highest PVAF is defined 198 

as the suggested q-vector. 199 

Step 5: Define, for each item, PVAF𝑗
0 as the PVAF of the provisional q-vector 200 

specified in Q, and PVAF𝑗
∗ as the PVAF of the suggested q-vector. 201 

Step 6: Calculate all items’ ∆PVAF𝑗, defined as ∆PVAF𝑗 = |PVAF𝑗
∗ − PVAF𝑗

0|. 202 

Step 7: Define the hit item as the item with the highest ∆PVAF𝑗. 203 

Step 8: Update Q by changing the provisional q-vector by the suggested q-vector of 204 

the hit item. 205 

Step 9: Iterate over Steps 1 to 8 until ∑ ∆PVAF𝑗
𝐽
𝑗=1 = 0.  206 

Step 2 and Steps 6 and 7 are of special relevance for the iterative procedure. Step 2 207 

dictates which q-vectors are going to become appropriate q-vectors in Step 3 and, 208 

consequently, which q-vector is going to become the suggested q-vector in Step 4. If the EPS 209 

value is improperly chosen, the suggested q-vectors will be more likely to be incorrect. Thus, 210 

each iteration will probably increase the distance between the provisional Q-matrix and the 211 

true Q-matrix in a sort of “snowball” effect (i.e., errors will lead to more errors), and the 𝜍𝑗
2 212 

will be worse specified. Hence, it is very important that the EPS election criterion is not 213 

arbitrary. The predictive formula provided by Nájera et al. (2019; see Equation 3) showed a 214 

good performance under a wide range of conditions. Furthermore, it can be easily 215 
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implemented in the iterative procedure and entails an additional benefit: as the prediction 216 

formula considers the average item quality (IQ), which is computed after the model is 217 

estimated, the EPS in Step 2 can be updated after each iteration. Step 7 is also very important, 218 

because the election of the hit item can be neither be at random. Especially in the first 219 

iterations, in which the Q-matrix will presumably still have several misspecifications, the 𝜍𝑗
2 220 

is going to be calculated with some error. Steps 6 and 7 are used to select, for each iteration, 221 

the q-vector that is more likely to be misspecified. These steps should optimize the 222 

performance of the iterative procedure by increasing the probabilities of properly modifying a 223 

q-vector in each iteration. The iterations would stop when all the provisional q-vectors and 224 

suggested q-vectors are equal. 225 

Simulation study 226 

 A simulation study was conducted to test if the proposed iterative procedure for the 227 

GDI method provides better results than the standard (non-iterative) procedure. Two 228 

hypotheses were stated: a) the iterative procedure will show a better performance than the 229 

standard procedure, especially when the misspecification rate is high, b) this will be true as 230 

long as the EPS value is properly chosen, based on the predictive formula. The performance 231 

of the iterative procedure based on an inappropriate EPS value is expected to be worse than 232 

that of the standard procedure, due to the “snowball” effect previously described. 233 

Method 234 

 Design. The examinees’ responses were simulated under the G-DINA model. The 235 

number of attributes was fixed at 𝐾 = 5, and the underlying distribution of examinees’ 236 

attribute patterns was uniform. The number of examinees was fixed at 𝑁 = 1000, the average 237 

item quality at 𝐼𝑄 = 0.6, and the number of items at 𝐽 = 30. Those values are considered to 238 

be medium levels of each factor in applied contexts (Nájera et al., 2019). Table 1 shows the 239 

Q-matrix used to simulate the examinees’ responses (Qtrue). The Q-matrix was used in the 240 
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paper of de la Torre and Chiu (2016). It contains the same number of one-, two- and three-241 

attribute items, and each attribute is measured by the same number of items. Its structure 242 

satisfies the required conditions to be a complete (Köhn & Chiu, 2017, 2018) and identifiable 243 

(Gu & Xu, in press a, in press b) Q-matrix. Three variables were studied: the proportion of 244 

misspecified q-entries or misspecification rate (MR = 0.1, 0.2, 0.3, 0.4), the application 245 

procedure for the GDI method (iterative, standard), and the EPS value (predicted EPS, 0.95). 246 

Thus, a total of 16 conditions resulted after combining the different factor levels (4 247 

misspecification rates × 2 GDI application procedures × 2 EPS values). 248 

Table 1 249 

Q-Matrix for the Simulated Data 250 

Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5 

1 1 0 0 0 0 16 0 1 0 1 0 

2 0 1 0 0 0 17 0 1 0 0 1 

3 0 0 1 0 0 18 0 0 1 1 0 

4 0 0 0 1 0 19 0 0 1 0 1 

5 0 0 0 0 1 20 0 0 0 1 1 

6 1 0 0 0 0 21 1 1 1 0 0 

7 0 1 0 0 0 22 1 1 0 1 0 

8 0 0 1 0 0 23 1 1 0 0 1 

9 0 0 0 1 0 24 1 0 1 1 0 

10 0 0 0 0 1 25 1 0 1 0 1 

11 1 1 0 0 0 26 1 0 0 1 1 

12 1 0 1 0 0 27 0 1 1 1 0 

13 1 0 0 1 0 28 0 1 1 0 1 

14 1 0 0 0 1 29 0 1 0 1 1 

15 0 1 1 0 0 30 0 0 1 1 1 

Data generation. The probabilities of success of the latent groups with all the relevant 251 

attributes, 𝑃𝑗(𝟏), and the probabilities of success of the latent groups with none of them, 252 

𝑃𝑗(𝟎), were manipulated to generate the item’s quality (IQj). Specifically, 𝑃𝑗(𝟏) =253 

𝑈(0.7, 0.9) and 𝑃𝑗(𝟎) = 𝑈(0.1, 0.3), which results in average values of �̅�(𝟏) ≅ 0.8 and 254 

�̅�(𝟎) ≅ 0.2, giving an average item quality of 𝐼𝑄 = �̅�(𝟏) − �̅�(𝟎) ≅ 0.6. For the other latent 255 

groups (those with some of the relevant attributes), the probabilities of success were simulated 256 

so that they increased as the number of mastered attributes grew (i.e., monotonicity 257 
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constraint). Thus, a latent group that masters more attributes than other will always have 258 

higher probabilities of success. 259 

Misspecifications in the Q-matrix were introduced randomly with two constraints: 260 

first, all items measured at least one attribute, and second, the first five items were not 261 

modified. This latter constraint ensured the completeness of the Q-matrix, by assuring that 262 

each attribute had, at least, one single-attribute item measuring it (Köhn & Chiu, 2017, 2018). 263 

A total of 200 data sets were generated for each of the conditions. For each data set, 264 

the IQj were generated according to the aforementioned uniform distribution, and a different 265 

misspecified Q-matrix (Qmiss) was produced. All simulations and CDM analyses were 266 

performed in R software, using the GDINA package. 267 

Dependent variables. Two different types of dependent variables were used to assess 268 

the performance of the validation method. First, the Q-matrix recovery rate (QRR) was used 269 

to measure the quality of the Q-matrix specification recovery. It reflects the number of q-270 

entries that the method correctly specifies divided by the total number of q-entries (J × K). 271 

Second, the proportion of correctly classified attributes (PCA) and the proportion of correctly 272 

classified vectors (PCV) were used to reflect the accuracy of attribute profile classification 273 

(Ma & de la Torre, 2018). The PCA measures the proportion of entries (i.e., attributes) 274 

correctly classified in the N × K matrix of attribute profile classification, while the PCV 275 

reflects the proportion of examinees’ attribute profiles that are completely correctly classified 276 

(i.e., correctly classified rows in the N × K matrix of attribute classifications). Please note that 277 

the PCV is a stricter measure than the PCA, and will usually obtain lower values. These 278 

accuracy measures are of high relevance, since they provide information about the impact of 279 

the Q-matrix specification quality in the final output of a CDM. 280 

When applying a Q-matrix validation method, the suggested Q-matrix might show 281 

some attributes positions (i.e., columns) interchanged. The possibility of having interchanged 282 
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attributes increases as the misspecification rate is higher. Thus, for each replica, the suggested 283 

Q-matrix was compared with Qtrue by checking the similarity between both matrices’ 284 

columns. Specifically, the mean absolute difference between the columns was conducted, and 285 

the suggested Q-matrix’s attribute columns were presented in the order that minimized the 286 

difference with the corresponding Qtrue attribute columns. This process is akin to a domain 287 

expert labelling the factors when interpreting a factor analysis, where the order of the factors 288 

is arbitrary. In the present case, the domain expert will evaluate whether the attributes are 289 

correctly labelled. 290 

Results 291 

 Before describing the main results, a brief comment about the iterative process (when 292 

using the predicted EPS) is provided. No convergence problems were registered during the 293 

simulation study. Table 2 shows the average number of iterations and number of items 294 

modified (with one or more modifications in their q-vector) for each misspecification rate 295 

condition. As expected, both measures increased as the misspecification rate did. It is 296 

important to note that the number of iterations is usually higher than the number of items 297 

modified, given that one item can be modified several times during the iteration procedure. 298 

One item can be more properly modified at a later moment of the procedure, when the rest of 299 

the Q-matrix is better specified. On the other hand, information about the average IQ and EPS 300 

is given in Table 3. As expected, the initial IQ (i.e., the one estimated with the misspecified 301 

Q-matrix) rapidly decreased as the misspecification rate increased. However, after the 302 

iterative procedure was completed, the final IQ was adequately recovered, even for the most 303 

unfavorable condition (i.e., MR = 0.4). This had an impact on the predicted EPS, which also 304 

showed an increase from the original misspecified Q-matrix to the final validated Q-matrix. 305 

In the following results, the performance of the standard and iterative procedures, as 306 

well as their interaction with the predicted EPS and the EPS of 0.95, will be described. Tables 307 
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4, 5, and 6 show the results for the different dependent variables and conditions of the 308 

simulation study in conjunction with the results obtained with the true Q-matrix and the 309 

misspecified Q-matrices, which serve as upper and lower baselines, respectively. The type of 310 

misspecification error (under- or over-specification) is disaggregated in Table 4. Plots for the 311 

distribution of the dependent variables across the 200 replicates per misspecification rate 312 

condition are provided in the Online Appendix. The different tables presented here include the 313 

median of the 200 replicates due to the existence of asymmetry in the results distributions. 314 

Results regarding the QRR, the PCA, and the PCV were consistent and showed similar 315 

patterns. Thus, unless otherwise indicated, results for the three measures are described 316 

together. 317 

Table 2 318 

Average Number of Iterations and of Modified Items 319 

 Number of iterations Number of items modified* 

MR Mean SD Min Max Mean SD Min Max 

0.1 16.9 2.4 10 24 14.6 2.1 9 20 

0.2 23.2 2.8 17 31 19.4 1.9 14 23 

0.3 29.4 5.0 20 53 22.4 1.8 18 27 

0.4 35.3 5.3 26 62 24.2 1.6 19 28 

Note. * = with one or more modifications in their q-vector. MR = misspecification rate. This 320 
information refers to the iterative procedure in conjunction with the predicted EPS. 321 

Table 3 322 
Average Item Quality (IQ) and Used EPS 323 

 IQ EPS 

MR Initial Final Initial Final 

0.1 0.545 0.574 0.824 0.836 

0.2 0.481 0.567 0.795 0.833 

0.3 0.421 0.549 0.765 0.825 

0.4 0.369 0.531 0.738 0.817 

Note. MR = misspecification rate. Initial IQ and EPS values are obtained with the original 324 
misspecified Q-matrix. Final IQ and EPS values are obtained with the validated Q-matrix 325 
after the iterative procedure (using the predicted EPS) is completed. Items were simulated 326 

with an IQ of 0.60. 327 

As can be seen from Tables 4 to 6, the iterative implementation used in conjunction 328 

with the predicted EPS always led to the best results. The Q-matrix recovery was very close 329 

to one when the initial misspecification rate was low (QRR = 0.940), and was still high even 330 
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when the initial misspecification rate was high (QRR = 0.893). This procedure achieved the 331 

highest QRR among the four presented procedures in most of the replicates, especially as the 332 

misspecification rate increased. Thus, the iterative-predicted EPS implementation obtained the 333 

highest QRR 62% of the times (MR = 0.1), 85.5% (MR = 0.2), 93.5% (MR = 0.3), and 96.5% 334 

(MR = 0.4). It is important to note that, in those replicas in which it did not obtained the 335 

highest QRR, it still obtained a QRR close to the highest, with a maximum loss of 0.07 336 

through all misspecification rates. On the other hand, it obtained a QRR up to 0.32 higher 337 

than the next best procedure, which reflects the better overall Q-matrix recovery shown in 338 

Table 4. According to the GDI method rationale, a higher EPS tends to suggest more complex 339 

q-vectors (i.e., with more attributes specified), and vice versa; thus, in Table 4 it can be seen 340 

that the EPS of 0.95 produced more over-specification errors, while the predicted EPS 341 

produced more under-specifications. The accuracy measures obtained with the iterative-342 

predicted EPS procedure were generally close to the upper limit regardless of the 343 

misspecification rate. This was especially true for PCA. The misspecification rate affected 344 

more severely the rest of the procedures. For example, the range of the median PCA values 345 

reported in Table 5 for the standard and iterative implementations used in conjunction with 346 

the predicted EPS were 0.085 and 0.012, respectively. 347 

Table 4 348 

Medians for the Q-Matrix Recovery Rate (QRR) Results 349 

 Predicted EPS EPS = 0.95 

MR Qtrue Qmiss std ite std ite 

0.1 1 
0.900 

(6, 9) 
0.940 
(8, 1) 

0.940 
(8, 0) 

0.887 

(1, 16) 

0.833 

(1, 24) 

0.2 1 
0.800 

(13, 17) 

0.907 

(11, 3) 
0.933 
(9, 1) 

0.827 

(2, 24.5) 

0.780 

(1, 32.5) 

0.3 1 
0.700 

(19, 26) 

0.817 

(17, 11) 
0.913 
(11, 2) 

0.720 

(6, 36) 

0.687 

(1, 46) 

0.4 1 
0.600 

(26, 34) 

0.740 

(21, 18) 
0.893 

(13, 3) 

0.627 

(8.5, 47) 

0.610 

(0.5, 58) 

Note. MR = misspecification rate; Qtrue = true Q-matrix; Qmiss = misspecified Q-matrix; std = 350 
standard procedure; ite = iterative procedure. A grayscale has been used for interpretation 351 
purposes. Highest QRRs among the validation methods for each MR are shown in bold. 352 



IMPROVING ROBUSTNESS IN Q-MATRIX VALIDATION  

16 

 

Median values for the number of under- and over-specified q-entries, respectively, are shown 353 

in brackets. Q-matrices are formed by 150 q-entries. 354 

Table 5 355 

Medians for the Proportion of Correctly Classified Attributes (PCA) Results 356 

   Predicted EPS EPS = 0.95 

MR Qtrue Qmiss std ite std ite 

0.1 0.910 0.895 0.907 0.907 0.900 0.894 

0.2 0.911 0.867 0.901 0.906 0.894 0.889 

0.3 0.911 0.813 0.862 0.903 0.868 0.880 

0.4 0.910 0.764 0.822 0.895 0.807 0.864 

Note. MR = misspecification rate; Qtrue = true Q-matrix; Qmiss = misspecified Q-matrix; std = 357 
standard procedure; ite = iterative procedure. A grayscale has been used for interpretation 358 

purposes. Highest PCAs among the validation methods for each MR are shown in bold. 359 

Table 6 360 
Medians for the Proportion of Correctly Classified Vectors (PCV) Results 361 

   Predicted EPS EPS = 0.95 

MR Qtrue Qmiss std ite std ite 

0.1 0.637 0.583 0.625 0.625 0.603 0.581 

0.2 0.642 0.484 0.604 0.623 0.586 0.560 

0.3 0.643 0.325 0.457 0.613 0.492 0.531 

0.4 0.639 0.227 0.337 0.579 0.335 0.483 

Note. MR = misspecification rate; Qtrue = true Q-matrix; Qmiss = misspecified Q-matrix; std = 362 
standard procedure; ite = iterative procedure. A grayscale has been used for interpretation 363 
purposes. Highest PCVs among the validation methods for each MR are shown in bold. 364 

 The following comments can be made regarding the manipulated factors. First, as it 365 

was expected, for both application procedures (standard vs. iterative) and EPS values 366 

(predicted EPS vs. EPS = 0.95), results were worse as the misspecification rate increased. 367 

Second, for both the standard and iterative procedures, and in line with the conclusions of 368 

Nájera et al. (2019), the predicted EPS provided better results than the EPS of 0.95. Third, 369 

regarding the interaction between the application procedure and the EPS value, the iterative 370 

procedure showed a better performance than the standard procedure only when the predicted 371 

EPS was used. Results were very similar for both procedures when the misspecification rate 372 

was low (MR = 0.1), but, as the misspecification rate was higher, the differences between both 373 

procedures substantially increased favoring the iterative procedure. On the contrary, when the 374 

EPS of 0.95 was used, the QRR of the iterative procedure was lower for all misspecification 375 

rates. As previously stated, these results were expected, since an inappropriate EPS increases 376 
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the probability of selecting an incorrect suggested q-vector, enlarging the distance between 377 

the provisional Q-matrix and the true Q-matrix, disrupting the calculation of 𝜍𝑗
2. However, 378 

regarding the PCA and the PCV, the iterative procedure, in conjunction with the EPS of 0.95, 379 

showed slightly worse results when the misspecification rate was low (MR = 0.1 or 0.2), but 380 

outperformed the standard procedure when the misspecification rate was high (MR = 0.3 or 381 

0.4). All this reflects the fact that both an iterative procedure and a dynamic optimal EPS 382 

value are required in order to achieve optimal results. 383 

Real Data Example 384 

Data and Analysis 385 

 In order to facilitate a direct comparison between the proposed procedure and the 386 

original GDI method, we used the same dataset as de la Torre and Chiu (2016). It consists of 387 

536 examinees’ responses to 11 fraction-subtraction items (Tatsuoka, 1990) measuring four 388 

attributes (see strategy b in Mislevy, 1996): (1) performing basic fraction-subtraction 389 

operation, (2) simplifying/reducing, (3) separating whole number from fraction, and (4) 390 

borrowing one from whole number to a fraction. Table 7 shows the initial Q-matrix for these 391 

data, which is the same as the one used by de la Torre and Chiu (2016). A higher-order G-392 

DINA model (de la Torre & Douglas, 2004) was used to fit the data. 393 

Results 394 

Table 7 shows the Q-matrix suggested by the iterative procedure. Six q-entries 395 

modifications were proposed, all of them switching from 1 to 0, and all of them involving 396 

attribute 2, with the exception of attribute 1 in Item 1. These results are somewhat congruent 397 

with those found by de la Torre and Chiu (2016), who reported three modifications in 398 

attribute 2 (Items 4, 5, and 11). According to the results found in the simulation results, the 399 

iterative procedure suggested a less complex Q-matrix (i.e., less attributes specified) than the 400 

original GDI method (see Table 4). 401 
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Regarding the original Q-matrix, attribute 2 (simplifying/ reducing) seems to have 402 

theoretical relevance to solve the modified items. However, it is important to note that it 403 

shows a great collinearity with attributes 3 and 4; that is, almost every time attribute 2 is 404 

required, attributes 3 and 4 are also required. The only time that attribute 2 appears without 405 

attributes 3 or 4 is in Item 6, which is the only one that retains attribute 2 in the suggested Q-406 

matrix. Thus, even though this attribute makes theoretical sense and seems to be correctly 407 

specified in the original Q-matrix, it cannot be properly separated from other attributes. Since 408 

it cannot provide any additional value, it becomes an irrelevant attribute and almost 409 

disappeared in the suggested Q-matrix. 410 

Table 7 411 

Original and suggested Q-matrices for the fraction-subtraction data 412 

Item 

Original Q-matrix  Suggested Q-matrix 

α1 α2 α3 α4  α1 α2 α3 α4 

1 
3

1

2
− 2

3

2
 

1 1 1 1  0* 0* 1 1 

2 6

7
−

4

7
 

1 0 0 0  1 0 0 0 

3 
3

7

8
− 2 

1 0 1 0  1 0 1 0 

4 
4

4

12
− 2

7

12
 

1 1 1 1  1 0* 1 1 

5 
4

1

3
− 2

4

3
 

1 1 1 1  1 0* 1 1 

6 11

8
−

1

8
 

1 1 0 0  1 1 0 0 

7 
3

4

5
− 3

2

5
 

1 0 1 0  1 0 1 0 

8 
4

5

7
− 1

4

7
 

1 0 1 0  1 0 1 0 

9 
7

3

5
−

4

5
 

1 0 1 1  1 0 1 1 

10 
4

1

10
− 2

8

10
 

1 1 1 1  1 0* 1 1 

11 
4

1

3
− 1

5

3
 

1 1 1 1  1 0* 1 1 

Note. Q-entries modifications are highlighted with an asterisk. 413 

Regarding Item 1, the first attribute is also removed in the suggested Q-matrix. This 414 

item can be correctly solved by following different strategies: 415 

(a) 3
1

2
− 2

3

2
=

7

2
−

7

2
= 0 (attributes 1 and 4);  416 
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 (b) 3
1

2
− 2

3

2
= 2

3

2
− 2

3

2
= 0 (attributes 1, 3, and 4).  417 

A mesaplot (Ma & de la Torre, 2018), which shows the PVAF related to each possible 418 

q-vector specification, for Item 1 is presented in Figure 1. Four q-vectors (0011, 0111, 1011, 419 

1111) clearly show a higher PVAF than the rest. Since their PVAF is higher than the EPS 420 

(0.903), they form the set of appropriate q-vectors. The q-vector of 0011 is chosen as the 421 

suggested q-vector because it is the simplest one. This attribute specification is related to 422 

strategy (b), although attribute 1 is missing. A possible explanation to this could be that the 423 

subtraction required in Item 1 may be a very easy operation that almost every examinee can 424 

solve, since it involves two identical elements. As a consequence, attribute 1 would no longer 425 

provide additional information. Nevertheless, these are modification suggestions, and domain 426 

experts can seek among the appropriate q-vector in order to find the most suitable 427 

specification. The last decision about the Q-matrix specification should rely on the judgment 428 

of domain experts (de la Torre & Chiu, 2016). 429 

 430 
Figure 1. Mesaplot for Item 1 of Tatsuoka’s fraction-subtraction dataset included in Table 7. 431 

The black dot represents the original q-vector specification (1111). The PVAF represents the 432 

ratio of the GDI associated to a q-vector to the highest possible GDI that is obtained when all 433 

the attributes are specified. 434 
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Discussion 435 

CDMs rely on a correctly specified Q-matrix to provide an accurate classification of 436 

examinees’ attribute profiles. Domain experts are expected to specify the Q-matrix along with 437 

a theoretical background, but they may commit some errors while doing so, especially when 438 

the knowledge domain is particularly complex and ambiguous (e.g., mental pathologies, 439 

reading comprehension, students’ competencies). In this context, among the many Q-matrix 440 

validation methods that have been developed in the last few years, de la Torre and Chiu 441 

(2016) proposed the GDI method, which has some important advantages, such as its great 442 

flexibility to be used with several reduced or general CDMs, its good performance at 443 

modifying incorrectly specified q-vectors, and its low computational cost (Ma & de la Torre, 444 

2018). Despite its benefits, the GDI method relies on the original Q-matrix, which may not be 445 

correctly specified in most applied contexts. Although the method seemed robust to the 446 

violation of this assumption when the Q-matrix misspecification rate was low, it is expected 447 

to show a poorer performance when validating Q-matrices with more misspecifications. 448 

The present paper evaluated an item-level iterative with dynamic EPS implementation 449 

for the GDI method (this approach can be referred to as “ILD-GDI”). Considering past 450 

research (e.g., Chiu, 2013; Liu et al., 2012; Nájera et al., 2019; Terzi & de la Torre, 2018ab), 451 

we hypothesized that this implementation would lead to better results compared to the 452 

existing procedures, especially when the misspecification rate is high. A simulation study was 453 

conducted to test this hypothesis. Results showed that the new implementation did provide 454 

better results. The gain obtained increased as the misspecification rate was higher. 455 

The iterative procedure was hypothesized to have a poorer performance than the 456 

standard procedure when used in conjunction with an inappropriate EPS. However, even 457 

though the iterative-0.95 EPS (ite95) obtained a lower QRR than the standard-0.95 EPS 458 

(std95), it provided better attribute profile classification results when the misspecification rate 459 
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was high (MR = 0.3 or 0.4). A tentative explanation of this result could be related to the type 460 

of misspecification error. Some prior studies in the field (e.g., Gao, Miller, & Liu, 2017; Choi, 461 

Templin, Cohen, & Atwood as cited in Kunina-Habenicht, Rupp, & Wilhelm, 2012) have 462 

found that under-specifications have a greater impact in attribute profiles classification than 463 

over-specifications. This effect is logically expected, since removing a parameter with a 464 

substantive effect from a model might dramatically disrupt the probabilities of success of the 465 

affected item; on the other hand, a spurious parameter added to the model may obtain a 466 

marginal effect estimate, mitigating its impact (as long as the sample size is big enough to 467 

produce stable parameter estimates).  468 

This effect can explain the aforementioned results regarding ite95 and std95. Table 4 469 

shows the information regarding the Q-matrix recovery, disaggregated by specification error 470 

type. On one hand, when MR = 0.1 or 0.2, std95’s QRR was higher than ite95’s. Std95’s PCA 471 

and PCV were also higher than ite95’s. However, PCA differences were not as big as QRR 472 

differences, since the higher amount of misspecifications in ite95 were mainly over-473 

specifications, and both procedures had a similar number of under-specifications. On the other 474 

hand, when MR = 0.3 or 0.4, std95’s QRR was still higher than ite95’s. However, ite95’s PCA 475 

and PCV were higher than std95’s. Here, the QRR differences between both procedures were 476 

smaller than those obtained with MR = 0.1 or 0.2. In addition, the higher amount of 477 

misspecifications in ite95 were mainly over-specifications, while std95 obtained more under-478 

specifications. As previously stated, the latter might provoke a bigger disruption in the 479 

posterior probabilities estimates, causing a worse attribute classification.  480 

The explanation given above is certainly conditioned by the total number of 481 

misspecifications. Under-specifications may have a bigger impact than over-specifications as 482 

long as the total number of misspecifications remains at a similar range. The validation 483 

procedure proposed in the present work (iterative in conjunction with the predicted EPS) 484 
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showed a higher number of under-specifications than std95 and ite95; however, it showed a 485 

much better performance in terms of Q-matrix specification recovery, which resulted in a 486 

higher classification accuracy. It is important to note that other factors may have a relevant 487 

role in modulating the relation between Q-matrix specification and attribute classification, 488 

such as the number of different q-vectors represented in the Q-matrix (Rupp & Templin, 489 

2008) and the identifiability of the Q-matrix (Gu & Xu, in press a, in press b). 490 

 Finally, a reviewer proposed examining whether the proposed procedure performs also 491 

well when the underlying attribute’s distribution is non-uniform. The performance of the 492 

procedures under a multivariate normal distribution (𝜌 = 0.25; see Xu & Shang, 2018) and a 493 

higher-order distribution (𝜆0 = (−1, −0.5, 0, 0.5, 1), 𝜆1𝑘 = 1.5; see de la Torre & Chiu, 2016) 494 

are provided in the Online Appendix. It was observed that the pattern of results was very 495 

similar to the ones obtained with the uniform distribution. Thus, the interpretation of the 496 

findings do not differ according to the underlying attribute distribution, and the proposed 497 

procedure still showed the best Q-matrix recovery and classification accuracy. 498 

In conclusion, the ILD-GDI method proposed in this paper outperformed the original 499 

method developed by de la Torre and Chiu (2016), as well as the method with the optimized 500 

EPS value election (Nájera et al., 2019). The proposed procedure showed good performance 501 

at detecting and modifying the Q-matrix even with a high misspecification rate (QRR ≥ 502 

0.893) and also at classifying attribute profiles (PCA ≥ 0.895; PCAQtrue ≈ 0.910), being the 503 

only procedure that achieved a PCV higher than 0.5 under the worse misspecification rate 504 

scenario (PCV ≥ 0.579; PCVQtrue ≈ 0.640). The iterative procedure’s computation time was 505 

short. On a laptop computer with four 2.2-GHz processors and 7 GB of RAM memory, the 506 

average replica computation time under the worst condition (MR = 0.4) was 111 seconds. 507 

The performance of the ILD-GDI method was also illustrated with Tatsuoka’s 508 

fraction-subtraction data. De la Torre and Chiu (2016) found that the standard GDI method 509 
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with an EPS of 0.95 proposed three modifications. These modifications were congruent with 510 

the ones suggested by the ILD-GDI method. The suggestions of the ILD-GDI should be 511 

considered rather than the GDI method’s ones, since it provides a better recovery of the Q-512 

matrix, as shown in the simulation study. However, two consideration should be noticed. 513 

First, even though Q-matrix validation methods are helpful in the search for the best possible 514 

specified Q-matrix, some misspecifications may remain after their application. Second, 515 

attribute positions in the Q-matrix are arbitrary just as factors are in a factor analysis; thus, 516 

when two attributes (i.e., Q-matrix columns) have a similar specification through the items 517 

and / or the number of misspecifications in the original Q-matrix is high, there exists the 518 

possibility that the suggested Q-matrix shows interchanged positions for these attributes with 519 

respect to the original Q-matrix. These considerations emphasize the role of domain experts in 520 

the review of the validated Q-matrix. They should reject those suggested modifications that 521 

lack a theoretical interpretation and check that the attributes maintain their original meaning. 522 

Also, if they consider that several strategies can be followed to answer the items, multiple-523 

strategy models may be of help (e.g., de la Torre & Douglas, 2008; Ma & Guo, 2019). These 524 

considerations may provide the most useful Q-matrix specification, since a tradeoff between 525 

theoretical interpretation and data fit can be more easily achieved. 526 

 Further research is needed to extend the applicability of the ILD-GDI method. Even 527 

though the performance of the GDI method was deeply studied under a wide range of 528 

conditions by Nájera et al. (2019), the performance of the ILD-GDI method has only been 529 

tested under a limited set of conditions. Further research would help to know whether it is 530 

robust when the conditions are less favorable (e.g., small sample size, short test length, low 531 

item quality). In this sense, other factors can be added to the study design, such as the number 532 

of attributes or the underlying CDM (e.g., DINA). 533 
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Furthermore, it would be interesting to study whether the inclusion of model fit indices 534 

to the iterative procedure could improve its performance. For instance, Kang et al. (2019) 535 

used the item-level version of the RMSEA, which provided good results under the DINA 536 

model. For the general CDMs framework, the Akaike’s information criterion (AIC; Akaike, 537 

1974) and the Bayesian information criterion (BIC; Schwarzer, 1976), which have been 538 

previously used as fit indices in CDMs (e.g., Chen, de la Torre, & Zhang, 2013), could be 539 

good candidates at selecting the suggested q-vector. One important drawback of this approach 540 

would be the dramatic computational cost increment, since one additional model should be 541 

estimated for each q-vector for each hit item. In this vein, the Wald test for model comparison 542 

has also been recently used for Q-matrix validation under the sequential G-DINA model (Ma 543 

& de la Torre, 2019). 544 

Final remarks 545 

 The authors want to emphasize that empirical validation methods suggest 546 

modifications, and cannot derive a true Q-matrix in empirical settings. The suggested Q-547 

matrix represents a model with empirical support. The purpose of Q-matrix validation should 548 

not be to replace experts from the Q-matrix specification process, but to “provide 549 

supplemental information for improving model-data fit, and consequently, increasing the 550 

validity of inference from cognitive diagnosis assessments” (de la Torre & Chiu, 2016, p. 551 

268). Especially in those contexts in which there is a certain degree of uncertainty involving 552 

the Q-matrix, modification suggestions may help to understand which cognitive processes are 553 

involved in responding each item. Also, as has been shown in the real data illustration, 554 

validation methods can help detecting problems regarding the structure of the Q-matrix (e.g., 555 

attributes collinearity). Thus, we recommend applying three steps during the Q-matrix 556 

specification process. First, construct the original Q-matrix with the help of domain experts. 557 

In this step, the Delphi methodology can be of great help, facilitating the debate and 558 
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subsequent agreement between the judges (see Sorrel et al., 2016). It is also useful to track the 559 

degree of uncertainty involved in each q-entry during the process. Second, apply an empirical 560 

Q-matrix validation method, in order to detect any possible misspecifications made in the first 561 

step. Third, gather again the panel of experts to debate the theoretical viability of the 562 

suggested modifications and the meaning of the attributes after the process is completed. The 563 

degree of uncertainty involving each q-entry recorded in the first step can be of help at this 564 

point; a q-entry in which all experts showed a total agreement should probably not be 565 

modified even though the validation method suggests the opposite. In conclusion, the authors 566 

are of the opinion that the theory should be the main guide in the Q-matrix specification 567 

process. Empirical validation methods’ role should be to support the domain experts’ 568 

judgements. 569 
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