Syllabus 2023 - 2024

GENERAL INFORMATION

Data of the subject		
Subject name	Arquitectura Big Data	
Subject code	DTC-IMAT-312	
Mainprogram	Grado en Ingeniería Matemática e Inteligencia Artificial	
Involved programs	Grado en Ingeniería Matemática e Inteligencia Artificial [Third year]	
Credits	3,0 ECTS	
Туре	Obligatoria (Grado)	
Department	Department of Telematics and Computer Sciencies	

Teacher Information		
Teacher		
Name	Guillermo Gallego Reina	
Department	Department of Telematics and Computer Sciencies	
EMail	ggallego@icai.comillas.edu	

DESCRIPTION OF THE SUBJECT

Contextualization of the subject

Prerequisites

You must know the programming techniques acquired in previous courses.

Course contents

Contents

- 1. Introduction to Big Data
 - Data governance.
 - Life cycle / Roles.
 - Public data pools.
 - Governance tools.
 - o DataOps.
- 2. Introduction to distributed systems in Big Data environments
 - Networking.
 - Processing Units.
 - Parallelization.
 - o Benchmarking.
 - o Servers.
- 3. Hadoop ecosystem

Syllabus 2023 - 2024

- Hadoop Introduction.
- O Cluster.
- HUE.
- o Cloudera.
- O Docker.
- 4. HDFS Distributed Storage.
 - HDFS introduction.
 - Features.
 - Commands to use.
- 5. Distributed processing
 - YARN.
 - Introduction to Spark.
 - Introduction to MapReduce.
 - o Benchmarking.
- 6. Infrastructures for the deployment of Big Data solutions
 - Introduction to Big Data solutions.
 - o On-premise vs Cloud.
 - Environments:
 - Databricks, Google Colab, ...

EVALUATION AND CRITERIA

Evaluation activities	Evaluation criteria	Weight
Exams: • Intersemester Test. • Final exam.	 Intersemester Test (20%): Comprehension of the concepts in the Introduction of Big Data. Final Exam (50%): The knowledge acquired in relation to Big Data Architecture will be evaluated. 	70 %
Practical sessions:	The attitude, participation and completion of the practices and challenges posed in collaborative and individual sessions.	10 %
Final project	Final project of the subject that the student will deliver at the end of the course. This project will consist of the end-to-end design of a Big Data project following a use case proposed by the student/teacher.	20 %

Grading

The final grade in the ordinary and extraordinary call for the subject will depend on the evaluation of the following activities:

Syllabus 2023 - 2024

Final Grade = 20% Intersemester_Test + 50% Final_Exam + 10% Weekly Practices + 20% Final Project

To pass the subject, students must obtain at least 5 points out of 10 in the final exam of the subject and in the final practice, both in the ordinary and extraordinary calls.

Failure to attend 15% or more of the contact hours for this subject may result in the impossibility of taking the ordinary and extraordinary exams.

BIBLIOGRAPHY AND RESOURCES

Basic References

- 1. The Cloud Data Lake: A Guide to Building Robust Cloud Data Architecture
- 2. The Enterprise Big Data Lake: Delivering the Promise of Big Data and Data Science
- 3. DAMA-DMBOK: Data Management Body of Knowledge: 2nd Edition
- 4. Ramcharan Kakarla, Sundar Krishnan, Sridhar Alla Applied Data Science Using PySpark_ Learn the End-to-End Predictive Model-Building Cycle (2021, Apress)

In compliance with current regulations on the **protection of personal data**, we would like to inform you that you may consult the aspects related to privacy and data <u>that you have accepted on your registration form</u> by entering this website and clicking on "download"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792