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Abstract

Background and Objective: Measuring the thickness of cortical bone tissue
helps diagnose bone diseases or monitor the progress of different treatments.
This type of measurement can be performed visually from CT images by a
radiologist or by semi-automatic algorithms from Houndsfield values. This
article proposes a mechanism capable of measuring thickness over the entire
bone surface, aligning and orienting all the images in the same direction to
have comparable references and reduce human intervention to a minimum.
The objective is to batch process large numbers of patients’ CT images ob-
taining thicknesses profiles of their cortical tissue to be used in many appli-
cations.

Methods: Classical morphological and Deep Learning segmentation is
used to extract the area of interest, filtering and interpolation to clean the
bones and contour detection and Signed Distance Functions to measure the
cortical Thickness. The alignment of the set of bones is achieved by detecting
their longitudinal direction, and the orientation is performed by computing
their principal component of the center of mass slice.

Results: The method processed in an unattended manner 67% of the
patients in the first run and 100% in the second run. The difference in
the thickness values between the values provided by the algorithm and the
measures done by a radiologist was, on average, 0.25 millimetres with a
standard deviation of 0.2.

Conclusions: Measuring the cortical thickness of a bone would allow us
to prepare accurate traumatological surgeries or study their structural prop-

Preprint submitted to Computers in Biology and Medicine February 22, 2024



erties. Obtaining thickness profiles of an extensive set of patients opens the
way for numerous studies to be carried out to find patterns between bone
thickness and the patients’ medical, social or demographic variables.

Keywords: Segmentation, Cortical Thickness, Thickness Measurement,
Houndsfield Units

1. Introduction

Since 1972 when Godfrey Hounsfield developed the first commercial use
for Computed Tomography (CT) [1] until today, this diagnostic technique
has experimented a big transformation. Today it is a versatile tool that
allows radiologists to get 3D images of whatever part of the body.

This experimental and noninvasive method has become a popular tool
in several areas, such as direct diagnostics, surgery planning or follow-up
studies, among others. In particular, the use of CAT (Computerized Axial
Tomography) to characterize the tisular/organ level [2] is now considered a
standard procedure for measuring human body compartments [3].

CT [4] lets researchers work into specific bone areas to identify and quan-
tify several traits and necessary parameters, whether direct clinical uses [5]
or mechanical properties for latest clinical uses [6]. Regarding clinical ones,
knowledge of bone mineral density (BMD) is highly relevant [7] to prevent-
ing fracture risk in patients. Another application might be, for instance, the
learning of osteoporosis pathophysiology [8] or to strive our knowledge about
the effectiveness of restoring surgeries [9].

On the other hand, given the current use of numeric analysis aided by
Finite Element Software [10], a significant place is spotted by geometrical
and mechanical properties [11, 12] of different layers in cross-sectional areas
[13], cortical thickness [14, 15] or modulus of elasticity [16].

Different methods have been developed to estimate cortical thickness from
CAT images. For example, in 2010, Treece et al. [17] introduced a mathe-
matical method to compute unbiased estimations of the cortical thickness in
femur bones. Museyko et al. [18] developed an accurate and robust method
based on the hypothesis of uniform cortical bone density and the deconvolu-
tion of 1D profiles. Du et al. [19] used global-local thresholding of Hounsfield
Units (HU) to estimate the cortical layer in femur and tibia bones. Treece
et al., [20] used the Cortical Bone Mapping technique for measuring several
properties (as thickness or density) of cortical and trabecular layers, and
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Humbert et al. [21] set a relation between thickness and density. They val-
idated, using micro-CT scans of a cadaver proximal femur, an estimation of
the cortical thickness in CAT from the relation between thickness and den-
sity. All these proposals require high human interaction or specific-purpose
software. New developments have been made using open programming lan-
guages. In this context, Jørgensen et al. [22], or Hendriksen et al. [23]
developed an open-source Python framework for tomographic images and
Rosa [24] opened a code to visualize DICOM-CT files using VTK library.
Those codes can be used not alone for visualising bones but also for blood
and pulmonary tissue. Using their own-self code allows researchers to de-
velop tools of massive analysis with little human intervention. For instance,
thanks to artificial intelligence techniques, Kim et al.[25] measure cortical
thickness automatically. They train a Convolutional Neural Network (CNN)
with 12800 CAT images and use it in a segmentation process. CNNs are
popular in the automatic segmentation of CAT images and are used by a lot
of researchers ([26],[27],[28] or [29] among many). Recently Deng et al. [30]
used them to extract the periosteal and endosteal contours of the proximal fe-
mur to differentiate cortical from the trabecular bone. Therefore, the current
use of deep learning and free code languages to process DICOM-CT images
has turned out to be very adaptable and helpful in identifying thresholds
graphically between distinct bone layers. Training Deep Learning models
suffer from two main drawbacks. The first one is the enormous amount of
labelled data required for proper model training. The second is the hardware
needed to train in a reasonable time, based on the expensive and recently
scarce GPUs (Graphics Processing Units). For instance, the model trained
by Kim et al.[25] needed thousands of images from 25 subjects segmented
manually by radiologists. In addition, the models trained with images from
a particular region only apply to that region. The approach developed in
this paper provides a combination of different techniques proposed in the
state of the art (see section 2) with some original processing that allows
batch computation of cortical thickness in long bones with minimal human
intervention. Segmentation and cortical thickness are evaluated with compu-
tational inexpensive techniques that result in sufficiently accurate thickness
results, mainly when there is no labelled dataset to train Neural Network
algorithms.
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2. Materials and Methods

The mechanism described in this section automates the thickness mea-
suring in a database of CAT images from tibiae. This approach minimizes
human intervention and reduces the number of hyper-parameters. Like most
techniques involving image processing, this algorithm has a heuristic be-
haviour that might result in a percentage of patients requiring manual ad-
justment. However, the proposed algorithm should succeed in most of them,
simplifying data analysis tasks in large patients datasets. Figure 1 sketches
the process. A reference patient dataset is chosen as the orientation and
aligning reference. The remaining datasets will be processed to match those
references and provide equivalent thickness measurements.

The next subsections cover the steps from the file reading to the thickness
representations.

Figure 1: Diagram of the process

2.1. Reading DICOM and Computing Hounsfield Units

Converting raw DICOM values into HU requires a standard linear trans-
formation. The Intercept and the Slope can be obtained from the DICOM
files metadata.
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The images shown in Figure 2 display the images converted to HU units
from 767 slices CAT scan and 768x768 pixels per slice. The resolution of
this scan is 0.5mm per slice and 0.255mm in both the X and Y axis. Those
dimensions correspond to a tibia of approximately 383.5mm.

Figure 2: Tibia and fibula CAT slices

2.2. Re-sampling
The main purpose of a systematic mechanism is to automate the mea-

suring process to a collection of CAT images from different patients. Those
datasets may come from the same scanner with different parametrization or
even different machines. To get comparable 3D models, the slice spacing
(spacing in the Z axis) and the distance between the pixels of each slice
(spacing in the X and Y axis) must be standardized. Larger spacing results
in better computation times but worse resolutions. For the sample TAC im-
age shown in Figure 2, a (1mm,1mm,1mm) re-sampling results in 384 slices
of 196x196 pixels, while a (0.5mm,0.25mm,0.25m) re-sampling preserves the
original size of 767 slices of 768x768 pixels. Figure 3 shows the difference in
resolution between a (0.5,0.25,0.25) spacing and a (1,1,1) spacing before any
processing.
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(a) Sampled to (1mm,1mm,1mm) spacing (b) Sampled to (0.5mm,0.25mm,0.25mm) spacing

Figure 3: Comparison between sampling

2.3. Segmentation

Segmentation allows separating the organs and removing additional ele-
ments that are not the object of the study (a stretcher, a splint, a cast,...).
Computationally, automated segmentation can be accomplished using mor-
phological operators or neural networks. Recent advances in Neural Networks
have proven their effectiveness in segmentation ([31], [32], [33], [34], [35], [36],
[37]), particularly UNets ([38],[39],[40], [41], ). The main drawback is the
need for a huge training set to teach the network to separate a particular
organ. The lack of sufficient data on labelled tibiae posed an insurmount-
able problem for training one of these networks. A custom UNet was trained
using a labelled human torsos data set and applied to tibiae images. This
dataset was augmented by re-scaling, rotating, flipping, and blurring from
the original 2598 images to the final 23382 images. Unfortunately, the results
were not sufficiently accurate. Figure 4 shows the results of segmenting the
tibiae dataset with this network.

Morphological operators’ segmentation does not require training but is a
less generalizable mechanism.

The segmentation mechanism used in this study is detailed in Algorithm
1 and is inspired by other approaches from the literature [referencias]. There
is only one parameter to be set in Algorithm 1, and it is the threshold to be
applied in the Bounding Box Detection. Depending on its value, it’s possible
to extract isolated bones or the whole leg. 5 shows the bounding box selected
depending on this threshold. This segmentation also relies on morphological
operations like erosion and dilation, whose kernel’s size is adjusted automat-
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Figure 4: Torsos Trained UNet Segmentation of Tibiae

ically depending on the resolution of the images and the metadata of the
DICOM files.

(a) Threshold set to 50 (b) Threshold set to 210

Figure 5: Effect of Thresholding Parameter in Bounding Box Selection

After the first seven steps of Algorithm 1, a first approach of the mask is
generated. This mask is based on connected regions that should match the
whole leg or the bones sections (tibia and fibula), depending on the purpose of
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the segmentation. Those regions are labelled in step 8. This labelling allows
the extraction of the tibia, the fibula or both. However, some intelligence
needs to be applied because many connected regions might appear depending
on the artefacts that survived the erosion operators. However, with high
probability, selecting the larger regions (step 9) should allow overcoming this
issue. Eventually, stronger dilation and erosion are used to fill holes on the
masks (step 10 and 11) just before selecting the label of the connected region
to extract (step 12).

Algorithm 1 Morphological Segmenter

1: Standardize values
2: Bounding Box Detection ▷ based on a thresholded image
3: KMean inside the Bounding Box ▷ find 2 clusters
4: Threshold image ▷ based on the mean value of two centroids
5: Small erosion ▷ to remove artifacts
6: Average dilation ▷ to remove holes
7: Average erosion ▷ to restore original size
8: Label connected regions
9: Keep larger regions ▷ to avoid artifacts

10: Large dilation ▷ to remove big holes inside the bone
11: Large erosion ▷ to restore original size
12: Extract Label ▷ to extract tibia, fibula or the whole leg

Figure 6 and Figure 7 show the masks computed for 25 equally distributed
slices segmenting the tibia and the leg, respectively. It can be seen from those
figures that segmenting larger elements is more robust than extracting iso-
lated bones. This segmentation mechanism does not perform well on complex
bone structures like the instep or the head of the tibia. The heuristic nature
of this algorithm may produce empty masks that will generate gaps in the
3D model. This issue can be fixed with interpolation if the gap is not too
large. Other slices have more serious problems, like the mask from slice 323
in Figure 6. This mask has created a hole inside the tibia that will be in-
terpreted as a region with zero HU values once this mask is applied to the
image. This region will be mistaken for trabecular tissue when the algorithm
filter out other than cortical HU values. This is the main reason why leg
segmentation is preferred to tibia segmentation. Tibia will still be able to be
separated in a later step.
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Figure 6: Tibia Segmenation

2.4. Interpolation

The heuristic behaviour of the tibial or leg segmentation may produce
empty masks resulting in blank slices. If the gap is not too important, it can
be fixed with two post-processing:

• Smart Bounding Box Selection. This step detects if the bounding box
is too small. This is easy to generalize if the pixel spacing from DICOM
metadata is known. Let’s say that images are low resolution with 1mm
per pixel. Knowing the size of a regular tibia, any mask slice should
have an area larger than one square centimetre. That would match
with a bounding box of 10x10 pixels. If the generated bounding box
is smaller than this area, then the hyper-parameter of the Bounding
Box selection algorithm is decreased automatically, and the algorithm
is rerun until the area of the Bounding Box generated results larger
than one squared centimetre. This algorithm can also be run against
other resolutions without human intervention because the minimum
area is easily calculated. For instance, if the images have 0.25mm per
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Figure 7: Leg Segmenation

pixel, the area that would match one square centimetre will be 100x100
pixels.

• Interpolation. If, after adjusting the Bounding Box to produce realistic
masks, they are still missed, and if the gap is not too important, it can
be regenerated through any interpolation mechanism.

Figures 8a and 8a show the difference between applying or not this two-
step post-processing.

2.5. HU filtering and Smoothing

Once the mask is computed, it can be applied to the original images.
The masked images are then passed through a series of filters enumerated in
Algorithm 2

Figure 9a and Figure 9b show the effect of this filtering and processing.

2.6. Aligning and Orienting 3D Models

As stated before, the main purpose of a systematic mechanism is au-
tomation. CAT images are not always captured under the same conditions
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(a) Without Smart Bounding Box and In-
terpolation

(b) With Smart Bounding Box and Inter-
polation

Figure 8: Effect of the Smart Bounding Box Selection and Interpolation

Algorithm 2 Pre-processing of masked images

1: HU filtering ▷ Based on a minimum HU and a maximum HU
2: Image Binarization ▷ Selected HU are assigned value 255 and 0

otherwise
3: Gaussian Smoother
4: Marching Cubes Mesh Generator ▷ To generate the mesh
5: Windowed Sinc Function Interpolation Kernel ▷ To relax the mesh

or in the same patients’ positions. Even if the technician does his best to
recreate the scanning condition, natural rotations of the articulations result
in miss-aligned or miss-oriented tibiae.

Those problems are addressed separately.

2.6.1. Aligning

Aligning tibiae means aligning their axial axis in the same direction. In-
tuitively this means placing all the tibiae in parallel. Obtaining a represen-
tative direction of a 3D mesh is not straightforward. Some algorithms rotate
objects in the tree dimensions and compute different distances between the
mesh’s original vertex and the rotated replica’s vertex. This implies tons of
computations. The approach followed for aligning tibiae is a simplification
that works with long bones. The idea is quite simple. The first step is to
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(a) Without HU filter and smoothing (b) With HU filter and smoothing

Figure 9: Effect of HU filtering and smoothing in the mesh

simplify the shape of the bones using bounding boxes (Figure 10b). The sec-
ond step is to obtain the normal of one of the small sides. This normal can
be used as a representative direction of each bone. The angle between the
representative directions of two tibiae can be calculated and used to rotate
one with respect to another. For this method to work correctly, the same side
of the bounding box must be selected in both tibiae. This can be detected
if the angle between the two normals is abnormally large. If this is the case,
it means that the angle has been computed using opposite normals and can
be fixed by changing the sign of one of the vectors. This mechanism limits
the aligning capabilities of this algorithm to tibiae with less than 90 degrees
between their main axes, which does not occur frequently.

Figure 10 shows the original tibiae of two patients (Figure 10a) and their
bounding box simplification (Figure 10b) and the result after the correction
(Figure 10c).

2.6.2. Orienting

Correcting the orientation of the tibiae means rotating them around their
axial axis to get all the tibia crests pointing in the same direction. The al-
gorithm proposed is also very simple. The centre of the mass slice is used
as a reference, and a significant direction is obtained using a maximum vari-
ance projection mechanism like Principal Component Analysis (PCA). This
direction is intended to represent the orientation of the tibia. If the same
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(a) Tibia 1 and tibia 2 (b) Bounding boxes 1 and 2 (c) Tibia 2 corrected

Figure 10: Aligning algorithm on Tibiae 1 and 2

process is reproduced for all patients’ tibiae, one reference direction could be
defined and rotate all tibiae according to it. Figure 11 shows the representa-
tive directions for two patients’ tibiae. Between the vector defined in Figure
11a and the vector defined in Figure 11b, 66.4 degrees have been measured.
Figure 12 shows the effect of applying the correction to one patient’s tibia.

For this method to work correctly, the maximum variance direction com-
puted as the main eigenvector must be pointing towards the same tibia region.
It might happen that PCA properly detects the main eigenvector but point-
ing towards the opposite direction. Figure 13 depicts this scenario. That
could result in rotations larger than 90 degrees. If the tibiae are scanned
equally with the patient lying upwards and belonging to the same side of
the body, such rotations should not be possible. If a large rotation angle is
detected, then changing the sign of the vector components should provide
the right rotation angle.

This mechanism could be applied to orient any long bones, however, its
efficacy depends on the efficacy of PCA to detect the same direction. Maxi-
mum variance direction is more stable in a tibia axial section due to its less
symmetrical aspect. However, an axial section of a femur is less irregular
making the orientation algorithm less stable than when applied to tibiae.
This can be verified in the Results section.

2.7. Measuring Cortical Thickness

Measuring cortical thickness is the key part of this paper. The algorithm
relies on four steps: (i) extracting the external contour of tibiae, (ii) applying
a skeletonize morphological operator to the binarized slice of the 3D model
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(a) Center of Mass Slice of Patient 1

(b) Center of Mass Slice of Patient 1

Figure 11: Representative Directions of Two Slices for Two Patients

(a) Patient 1 (b) Patient 2 (c) Patient 2 Corrected

Figure 12: Patient 2 Tibia Corrected to Fit Patient 1 Orientation
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(a) Maximum variance direction 1 (b) Maximum variance direction 2

Figure 13: Two possible maximum variance directions

reducing the cortical tissue to a one-pixel representation without breaking
connectivity ([42], [43]), (iii) computing the Signed Distance Function (SDF)
of the external contour, and (iv) evaluating this function in the skeleton. The
resulting values must be doubled because the skeleton is supposed to be the
inner region of the cortical tissue. Algorithm 3 summarizes the steps, and
Figure 14 shows the output image after each step. Figure 14d displays with
colours the evaluation of SDF in the skeleton multiplied by two. Warmer
colour means thicker cortical tissue, and colder colours mean thinner. The
values of the thickness are expressed in pixels. The translation to mm is
trivial, considering the sampling applied to the image. The images displayed
in this document are computed at the highest resolution, that is, 0.25mm on
both axis X and Y. Thus, distances measured in pixels must be divided by 4
to obtain thickness in millimetres.

Algorithm 3 Cortical Thickness Measuring Algorithm

1: for each slice do
2: Generate contours
3: Extract external contour ▷ this step allows to separate bones
4: Compute SDF of the external contour
5: Compute skeleton
6: Evaluate SDF in skeleton
7: Multiply per 2
8: end for
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(a) Binarized slice (b) Signed Distance Function

(c) Contour and skeleton (d) Thickness of cortical tissue

Figure 14: The average and standard deviation of critical parameters

2.8. Thickness Representations

Depending on the purpose, the thickness can be represented differently.
Thickness information of a regular tibia serialized may take 200MB of data,
at high resolution, the size may increase to around 2GB per tibia. This
amount of data might be excessive for different applications. Recreating a
3D-printed bone requires full resolution, but training a multivariate regressor
to predict the appearance of structural problems or to perform a statistical
study about tibia cortical thickness requires much fewer data.

The incoming sections propose three alternatives to display the thickness
values.

2.8.1. Computing Profiles

A tibia profile is a 1D representation of cortical thickness taken from a
cut at a certain height. A good approximation of tibial morphology would
be taking a few tens of those cuts. This consumes lower memory, and any
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later processing will be considerably faster. Taking 20 cuts reduces the size
of thickness information from 200MB to less than 5MB. Figure 15 shows an
example of those cuts, and Figure 16 shows the associated thickness profiles.
Note that the X values from all profiles in Figure 16 may differ. The X-
axis represents the perimeter of the tibia slice corresponding to each profile.
Depending on the diameter of the tibia at that height, the perimeter will be
larger or smaller. That will result in more or fewer X values (measured in
pixels).

To make this computation systematic, the initial cut will be taken in the
centre of mass of the tibiae. Then, upper and lower cuts are taken equally
spaced so that the same profile number matches the same areas regardless of
the patient’s tibia.

Figure 15: Cuts for profiling

2.8.2. Unwrapping Cortical Tissue

Another possibility to represent cortical thickness is to unroll the cortical
tissue as if it were a carpet. Figure 17 shows the resulting surface. This trick
of flattening a tibia allows us to apply all the theories of CNNs to detect
irregularities in cortical tissues.

2.8.3. Coloring 3d Model

The last of the thickness representations is colouring the 3D model. This
is probably the less practical from the point of view of data analysis, but it is
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Figure 16: Profiles for the selected cuts. Thickness in millimetres

Figure 17: Unwrapped thickness surface of a tibia

the most intuitive from the human point of view. This type of visualization
could assist in detecting weaknesses in the patient’s tibia or prepare a surgical
intervention. Figure 18 shows the 3D model coloured with the thickness
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values.

Figure 18: 3D Model colored using thickness values

3. Results

The code developed in this research [44] has been tested against 15
long bones (tibiae and femora) and has successfully processed 10 out of 15
(67%) without human intervention. The 5 remaining bones required an-
other parametrization, meaning all bones were processed in two iterations of
the algorithm. Four of the five bones that required a new parametrization
came from a different CAT device. Thus, accessing the scanner configuration
might help to optimize the algorithm. Figure 19 shows the results after a sin-
gle execution of the measuring mechanisms. The processed tibiae and femora
measured in the first execution are displayed with the colours proportional to
their cortical thickness. The bones that required a second run are displayed
in a neutral colour showing the output of the first execution. After each run
of the algorithm, the code leaves a log file where it can be easily reviewed
which bones have been properly measured. These traces allow preparing a
second run of the algorithm with a different parametrization to be executed
only on the patient’s TC that failed the first execution. As stated in the Ori-
enting Section, Figure 19 shows worse orientation effectiveness on femorae
than in tibiae for the reasons set out before.
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(a) Femur (b) Femur (c) Femur

(d) Femur (e) Femur (f) Femur

(g) Femur (h) Femur (i) Tibia

(j) Tibia (k) Tibia (l) Tibia

(m) Tibia (n) Tibia (o) Tibia

Figure 19: 3D rendered of 15 patients
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To evaluate the precision of the measuring method, a slice extracted from
the centre of mass of ten tibia and femora are measured manually by radi-
ologists on the original DICOM image and automatically through the mech-
anism described in section 2.7. Figure 20 shows the results. Note that no
aligning and orientation has been applied to the bones to evaluate the al-
gorithm’s precision so that the radiologist can measure the thickness in the
original TAC slices. Aligning and orienting it’s helpful to provide equiva-
lent thickness profiles for different patients but does not affect the thickness
measurements.

Measure 0 Measure 1 Measure 2 Measure 3
Algorithm Manual Difference Algorithm Manual Difference Algorithm Manual Difference Algorithm Manual Difference

[mm] [mm] [%] [mm] [mm] [%] [mm] [mm] [%] [mm] [mm] [%]

leg7 12.7 12.68 0.16 4.4 4.47 -1.57 7.5 7.44 0.81 6.8 6.42 5.92
leg9 12.1 12.05 0.41 4.1 4.71 -12.95 5.3 5.48 -3.28 6.2 6.50 -4.62
leg10 13.3 12.55 5.98 4.8 5.14 -6.61 5.7 6.02 -5.32 5.9 5.78 2.08
leg9 2 3.8 4.00 -5.00 7.4 7.21 2.64 4.8 4.89 -1.84 6.8 7.26 -6.34
leg1 5.3 5.43 -2.39 3.3 3.31 -0.30 6.2 6.52 -4.91 4.8 4.59 4.58
femur7 7.6 7.95 -4.40 11.9 11.95 -0.42 12.4 11.90 4.20 9.1 9.04 0.66
femur1izq 10.2 9.38 8.74 8.6 8.64 -0.46 11.5 11.36 1.23 12.9 12.59 2.46
femur1der 9.6 9.33 2.89 11.9 12.15 -2.06 11.5 11.26 2.13 8.1 8.59 -5.70
femur9 4.8 5.14 -6.61 6.7 6.72 -0.30 11.5 11.31 1.68 5.3 5.73 -7.50
femur10 4.8 4.84 -0.83 9.0 8.99 0.11 8.4 8.74 -3.89 6.7 7.21 -7.07

Table 1: Thickness measures from Algortihm and Radiologist

Figure 21 and Table 1 show the discrepancies between the thickness mea-
sured by the radiologist and the values provided by the algorithm resulting
in an average accuracy of 3.5% with a standard deviation of 2.8% (0.25
millimetres of average accuracy and 0.20 of standard deviation). Figure 21
shows a light trend to overestimate the measures than those provided by the
radiologist.

4. Discussion and Conclusions

The main purpose of this project is to achieve an algorithm that allows
measuring the cortical thickness in long bones to be processed in batch mode
with the highest success rate possible and minimal human intervention. This
information can be used for statistical analysis to find patterns between the
patient’s features and their cortical thickness, to prepare surgeons for trauma-
tological interventions, to implement an automated bone quality surveillance
mechanism, or to generate artificial geometries for Finite Element Analysis
and CAD systems.
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We have applied classical image segmentation and thickness measure-
ments based on filtering and morphological operators and proposed some
original methods to perform batch processing of a TC database. The ac-
curacy of the thickness measures has been evaluated against the raw Dicom
images detecting underestimation of the measurements in the thicker sections
of the bones. A better evaluation must be done by slicing one of these bones
and measuring the actual thickness. More generalizable algorithms could
be achieved using Deep Neural Networks. However, the main drawback of
those algorithms is the massive amount of labelled data required for proper
training. We have obtained 67% success rates on 15 patients without a Deep
Learning database. More tests in larger datasets need to be performed to
guarantee the success rate obtained in our study.
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Figure 20: Cortical thickness at the Center of Mass in millimetres
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Figure 21: Distribution of discrepancies between manual and automated thickness mea-
sures
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