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Abstract 

The nonparametric classification (NPC) method has been proven to be a suitable procedure for 

cognitive diagnostic assessments at a classroom level. However, its nonparametric nature 

impedes the obtention of a model likelihood, hindering the exploration of crucial psychometric 

aspects such as model fit or reliability. Reporting the reliability and validity of scores is 

imperative in any applied context. The present study proposes the restricted DINA (R-DINA) 

model, a parametric cognitive diagnosis model based on the NPC method that provides the same 

attribute profile classifications as the nonparametric method while allowing to derive a model 

likelihood and, subsequently, to compute fit and reliability indices. The suitability of the new 

proposal is examined by means of an exhaustive simulation study and a real data illustration. The 

results show that the R-DINA model properly recovers the posterior probabilities of attribute 

mastery, thus becoming a suitable alternative for comprehensive small-scale diagnostic 

assessments. 

Keywords: cognitive diagnosis, nonparametric classification, DINA model, classification 

accuracy, relative fit.  
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The Restricted DINA Model: A Comprehensive Cognitive Diagnostic Model  

for Classroom-Level Assessments 

Cognitive diagnostic assessments (CDAs) have received increasing attention in 

educational research and practice due to the detailed information they provide regarding 

students’ mastery or non-mastery of a series of attributes, be it skills, cognitive processes, or 

competences. In contrast with the more traditional summative assessment, which rank-orders 

students based on a single continuous score, CDAs are particularly useful in school settings, 

where teachers can use the diagnostic information to better guide remedial instruction (de la 

Torre & Minchen, 2014; Paulsen & Svetina, 2021). 

CDAs rely on cognitive diagnostic models (CDMs) to estimate the students’ attribute 

mastery profile. CDMs are restricted latent class models, that is, multidimensional models in 

which the latent variables (i.e., attributes) are discrete, usually dichotomous. One of the main 

inputs of these models is the so-called Q-matrix (Tatsuoka, 1983), a binary specification matrix 

of dimensions J items × K attributes in which each q-entry takes a value of 𝑞𝑗𝑘 = 1 or 0 

depending on whether item j measures attribute k or not, respectively. 

As a family of statistical models, CDMs can be organized based on different criteria. 

Firstly, it can be distinguished between parametric and nonparametric CDMs. The former are 

stochastic models that, under some specific assumptions, provide consistent estimates of both 

item and person parameters via marginalized maximum likelihood estimation (e.g., de la Torre, 

2009; de la Torre, 2011) or Markov chain Monte Carlo algorithms (e.g., C.-W. Liu et al., 2020; 

Xu et al., 2020). On the other hand, nonparametric CDMs are deterministic methods that classify 

students without relying on model parameter estimation. Instead, as will be explained below, 

classifications are done by comparing observed response patterns with ideal response patterns. 
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Thus, these likelihood-free procedures are usually more parsimonious and computationally 

efficient (Chiu & Douglas, 2013). Both parametric and nonparametric attribute profile estimators 

are related: previous work indicates that the likelihood of parametric models is maximized when 

discrepancies between observed and ideal patterns are minimized (Chiu et al., 2018). 

Secondly, CDMs can be divided into reduced and general models. The defining feature of 

reduced models is that they entail a specific item response process. For instance, conjunctive 

models imply that an examinee must master all the attributes involved in an item to correctly 

answer it. A widely-used parametric conjunctive CDM is the deterministic input, noisy “and” 

gate (DINA) model (Junker & Sijtsma, 2001), whose item response function is expressed as 

𝑃𝑗(𝜶𝑙) = 𝑔𝑗
1−𝜂𝑙𝑗

(𝑐)

(1 − 𝑠𝑗)
𝜂𝑙𝑗

(𝑐)

, (1) 

where 

𝜂𝑙𝑗
(𝑐)

= ∏ 𝛼𝑙𝑘

𝑞𝑗𝑘

𝐾

𝑘=1

(2) 

is the conjunctive ideal response, 𝛼𝑙𝑘 is attribute k for latent class l, 𝑞𝑗𝑘 is the q-entry concerning 

item j and attribute k, 𝑔𝑗 is the guessing parameter (i.e., probability of correctly answering item j 

when 𝜂𝑙𝑗
(𝑐)

 = 0), and 𝑠𝑗 is the slip parameter (i.e., probability of incorrectly answering item j when 

𝜂𝑙𝑗
(𝑐)

 = 1). Thus, the conjunctive ideal response, 𝜂𝑙𝑗
(𝑐)

, will take a value of 1 or 0 depending on 

whether latent class l masters all the required attributes or not, respectively. On the opposite side, 

disjunctive models imply that it is enough to master only one of the required attributes to 

correctly answer the item. The deterministic input, noisy “or” gate (DINO) model (Templin & 

Henson, 2006) is a popular disjunctive parametric CDM. The item response function of the 

DINO model is the same as the one in Equation 1, with the important difference that the ideal 

response patterns are disjunctive: 
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𝜂𝑙𝑗
(𝑑)

= 1 − ∏(1 − 𝛼𝑙𝑘)𝑞𝑗𝑘

𝐾

𝑘=1

, (3) 

which takes a value of 1 or 0 depending on whether latent class l masters at least one of the 

required attributes or nor, respectively. Beyond parametric models, the nonparametric 

classification (NPC) method (Chiu & Douglas, 2013) can accommodate either conjunctive or 

disjunctive responses. 

General models, by contrast, are not restricted to a specific response process. They are 

saturated models in the sense that a different probability of success is estimated for each latent 

class. The general diagnostic model (GDM; von Davier, 2008), the log-linear CDM (Henson et 

al., 2009), and the generalized DINA (G-DINA) model (de la Torre, 2011) are examples of 

parametric general models. In the latter, the probability of correctly answering item j is modelled 

as the sum of all main and interaction effects involving the required attributes: 

𝑃𝑗(𝜶𝑙) = 𝛿𝑗0 + ∑ 𝛿𝑗𝑘𝛼𝑙𝑘

𝐾𝑗

𝑘=1

+ ∑ ∑ 𝛿𝑗𝑘𝑘′𝛼𝑙𝑘𝛼𝑙𝑘′

𝐾𝑗−1

𝑘=1

𝐾𝑗

𝑘′=1

+ 𝛿𝑗12…𝐾𝑗
∏ 𝛼𝑙𝑘

𝐾𝑗

𝑘=1

, (4) 

where 𝜶𝑙 is the attribute profile of latent class l, 𝐾𝑗 is the number of attributes involved in item j, 

𝛿𝑗0 is the intercept for item j, 𝛿𝑗𝑘 is the main effect due to 𝛼𝑘, 𝛿𝑗𝑘𝑘′ is the interaction effect due to 

𝛼𝑘 and 𝛼𝑘′, and 𝛿𝑗12…𝐾𝑗
 is the interaction effect due to 𝛼1, 𝛼2, …, 𝛼𝐾𝑗

. It should be noted that 

most reduced CDMs are subsumed in the general models. For instance, the DINA model can be 

easily derived by removing all the effects in Equation 4 except for the intercept (𝛿𝑗0) and the 

highest-order interaction (𝛿𝑗12…𝐾𝑗
; de la Torre, 2011). The G-DINA model has a non-parametric 

counterpart: the general NPC (GNPC) method (Chiu et al., 2018), which extends the NPC 

method by combining both the conjunctive and disjunctive response processes, thus 

accommodating more complex data generation processes. 
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 Selecting one CDM among the different possibilities (e.g., reduced or general, parametric 

or nonparametric) for a particular application might seem a difficult task. Accordingly, a number 

of studies have been recently conducted with the aim of shedding some light on this question 

(Chiu et al., 2018; C. Ma et al., 2022; W. Ma & Jiang, 2021; Oka & Okada, 2021; Paulsen & 

Svetina, 2021; Sen & Cohen, 2021; Sorrel et al., 2021). As it would be expected in any kind of 

statistical model, these studies consistently found that the greater the complexity of the CDM, the 

more challenging the estimation process. Generally, parametric CDMs demand large samples (N 

> 500) and high-quality items (i.e., with power to discriminate between latent classes) to obtain 

accurate parameter estimates (C. Ma et al., 2022; W. Ma & Jiang, 2021; Oka & Okada, 2021; 

Sen & Cohen, 2021; Sorrel et al., 2021). This is especially true for general models, which, in 

addition, are greatly impacted by the complexity of the Q-matrix (i.e., the number of attributes 

being measured by the items), since the number of item parameters exponentially increases as 

the Q-matrix becomes more complex (Sorrel et al., 2021). In this line, fitting a general CDM to 

data generated by a reduced model is suboptimal in terms of parsimony: it might lead to less 

accurate item parameter estimates and attribute profile classifications compared to fitting the 

correct reduced model (Sorrel et al., 2021). On another note, even though small sample sizes 

usually lead to a large item parameter estimation bias, some studies have found that the impact 

on the attribute profile classification accuracy is not as relevant (C. Ma et al., 2022; Paulsen & 

Svetina, 2021; Sen & Cohen, 2021). This might be explained by the fact that, even though item 

parameter estimates might be biased, the correct attribute profile will lead to the maximum 

likelihood as long as the estimates point in the right direction (e.g., an estimated probability of 

success higher than 0.5 for an examinee that masters the required attributes; C. Ma et al., 2022; 

S. Wang & Douglas, 2015). 



CDM FOR CLASSROOM-LEVEL ASSESSMENTS 

7 

 

 The likelihood-free nature of nonparametric CDMs makes them remarkably robust to 

those conditions that hinder parameter estimation: small sample sizes, low-quality items, and 

complex Q-matrices. In these situations, both the NPC and the GNPC method outperform their 

parametric counterparts (i.e., DINA/DINO, G-DINA) in terms of classification accuracy (Chiu et 

al., 2018; C. Ma et al., 2022; Oka & Okada, 2021). These results highlight the suitability of 

nonparametric CDMs for classroom-level educational assessments, where non-ideal conditions 

are expected (e.g., very small sample size). However, nonparametric methods suffer from a 

nontrivial drawback: because they do not contemplate the computation of likelihoods, it is not 

possible to derive fit indices nor classification accuracy measures from them. Thus, the 

application of nonparametric CDMs in real settings cannot fulfil the conventional and 

fundamental psychometric criteria that concerns the interpretation and reporting of test scores 

(American Educational Research Association [AERA] et al., 2014). 

 In light of the above, practitioners that want to implement CDAs in classroom-level 

settings must commit, as of today, to either of two suboptimal approaches: (a) fitting a 

parametric CDM to their data, fully aware that the challenging conditions (e.g., N < 50) will 

likely lead to biased parameter estimates, or (b) applying a nonparametric CDM to their data and 

faithfully believe that the interpretation of the scores (e.g., reliability, fit) is valid. To address this 

issue, the present paper proposes the restricted DINA (R-DINA) model, a parametric CDM 

based on the NPC method that, while retaining its accurate attribute profile classifications and 

desirable properties (i.e., parsimony, robustness to challenging conditions), allows for the 

computation of likelihoods and, subsequently, of posterior probabilities, fit indices, and 

classification accuracy measures. 
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The remaining of the paper is laid out as follows. First, the NPC method is described. 

Second, the relationship between the likelihood, posterior probabilities, fit indices, and 

classification accuracy measures is discussed. Third, the rationale and definition of the R-DINA 

model is presented. Fourth, the performance of the R-DINA model is systematically evaluated by 

means of an exhaustive simulation study. Fifth, two real datasets are used to illustrate the 

proposed procedure. Finally, practical implications, limitations, and future research lines are 

discussed. 

The Nonparametric Classification Method 

 The NPC method was developed by Chiu and Douglas (2013) as a parsimonious and 

computationally efficient cognitive diagnostic procedure that could obtain accurate 

classifications without relying on item parameter estimation. The rationale of the NPC method 

consists in comparing an examinee’s observed response pattern (𝒚𝑖) with the ideal response 

patterns from all possible latent classes (𝜼𝑙). As explained above, these ideal responses can be 

either conjunctive (𝜼𝑙
(𝑐)

; see Equation 2) or disjunctive (𝜼𝑙
(𝑑)

; see Equation 3), and it is the 

researcher’s labor to predetermine which response process is more appropriate for their data. 

Note that the calculation of the ideal response pattern for all latent classes is straightforward 

based on a selected response process (i.e., conjunctive or disjunctive) and a given Q-matrix. 

Then, the distance between the ideal response patterns and the observed response patterns is 

computed. The simplest distance measure is the Hamming distance, which refers to the number 

of discrepancies between both response vectors: 

𝑑ℎ(𝒚𝑖, 𝜼𝑙) = ∑|𝑦𝑖𝑗 − 𝜂𝑙𝑗|

𝐽

𝑗=1

, (5) 
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where 𝜂𝑙𝑗 can be either 𝜂𝑙𝑗
(𝑐)

 or 𝜂𝑙𝑗
(𝑑)

. Based on this information, the NPC’s attribute profile 

estimate for examinee i is the one that minimizes the Hamming distance: 

𝜶̂𝑖 = arg min
𝑙

𝑑ℎ(𝒚𝑖, 𝜼𝑙) . (6) 

S. Wang and Douglas (2015) showed that Equation 6 is a consistent estimator as test 

length goes to infinity (𝐽 → ∞) under the assumptions of conditional independence, item 

discriminatory power (i.e., 𝑔𝑗 < 0.5 and 𝑠𝑗 < 0.5), and Q-matrix completeness. A Q-matrix is 

complete when the ideal responses of all attribute profiles are distinct; introducing an identity 

matrix in the Q-matrix (i.e., there is at least one item measuring each attribute in isolation) is a 

sufficient condition for its completeness (Chiu et al., 2009). It should be noted that the NPC 

procedure is independent from the sample size, since it does not rely on any parameter estimate. 

Also, it is important to note that, even though the NPC method’s estimator is consistent 

whenever 𝑔𝑗 < 0.5, 𝑠𝑗 < 0.5 and 𝐽 → ∞ (S. Wang & Douglas, 2015), it adopts 𝑔𝑗 = 𝑠𝑗  ∀ 𝑗, that 

is, the method operates as if there were the same probability of guessing and slipping all items. 

The reason for this is embedded in the rationale of the Hamming distances, which count the 

number of discrepancies between the observed and ideal responses, giving the same weight to 

both types of discrepancies (i.e., 𝑦𝑖𝑗 = 1 and 𝜂𝑙𝑗 = 0; 𝑦𝑖𝑗 = 0 and 𝜂𝑙𝑗 = 1) and to all items, 

regardless of their difficulty or discrimination. Despite this, the NPC method has shown a 

satisfactory robustness to challenging conditions such as 20% of misspecified q-entries, 

dissimilar guessing, and slip parameters generated from a 𝑈(0, 0.5), or even data generated from 

the G-DINA model (Chiu et al., 2018; Chiu & Douglas, 2013). The importance of 𝑔𝑗 = 𝑠𝑗  ∀ 𝑗 

being truthful will decrease as 𝐽 → ∞, where the NPC method’s estimator will be consistent 

under the softer condition of 𝑔𝑗 < 0.5 and 𝑠𝑗 < 0.5. 
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Relative Fit and Estimated Classification Accuracy 

 In parametric CDMs, different fit and classification accuracy indices can be derived from 

the likelihoods and posterior probabilities. Namely, the likelihood of observing a response 

pattern 𝒚𝑖 given attribute profile 𝜶𝑙 is computed as 

ℒ(𝒚𝑖|𝜶𝑙) = ∏ 𝑃𝑗(𝜶𝑙)
𝑦𝑖𝑗[1 − 𝑃𝑗(𝜶𝑙)]

1−𝑦𝑖𝑗

𝐽

𝑗=1

, (7) 

and the likelihood of the model is then obtained as 

ℒ = ∑ ∑ 𝐿(𝒚𝑖|𝜶𝑙)

𝐿

𝑙=1

𝑁

𝑖=1

𝑝(𝜶𝑙), (8) 

where N is the sample size, L is the total number of possible latent classes, and 𝑝(𝜶𝑙) is the prior 

distribution of attribute profiles. Note that, since we are focusing on dichotomous attributes in 

the current paper, 𝐿 = 2𝐾. From here, several well-known relative fit indices can be computed, 

such as the Akaike information criterion (AIC; Akaike, 1974), Bayesian information criterion 

(BIC; Schwarz, 1978), consistent AIC (CAIC; Bozdogan, 1987), or sample size-adjusted BIC 

(SABIC; Sclove, 1987): 

𝐴𝐼𝐶 = −2 ln ℒ + 2𝑝, (9) 

𝐵𝐼𝐶 = −2 ln ℒ + 𝑝 ln 𝑁 , (10) 

𝐶𝐴𝐼𝐶 = −2 ln ℒ + 𝑝[1 + ln 𝑁], (11) 

and 

𝑆𝐴𝐵𝐼𝐶 = −2 ln ℒ + 𝑝 ln[(𝑁 + 2)/24] , (12) 

where p is the number of model parameters. In the CDM context, the AIC, BIC, and CAIC 

indices have been shown to adequately perform at selecting the generating model under the 

presence of response process or Q-matrix misspecifications (Chen et al., 2013; Gao et al., 2021). 
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 The posterior probability of examinee i belonging to latent class l can be derived from the 

likelihood: 

𝑃(𝜶𝑙|𝒚𝑖) =
ℒ(𝒚𝑖|𝜶𝑙)𝑝(𝜶𝑙)

∑ ℒ(𝒚𝑖|𝜶𝑙)𝑝(𝜶𝑙)𝐿
𝑙=1

. (13) 

Marginal probabilities of mastering each of the attributes independently can be obtained from the 

posterior probabilities: 

𝑃(𝛼𝑘|𝒚𝑖) = ∑ 𝑃(𝜶𝑙|𝒚𝑖)𝛼𝑙𝑘

𝐿

𝑙=1

. (14) 

 In parametric CDM, attribute profile estimates are usually made either by using the 

maximum a posteriori (MAP) estimation, which corresponds to the attribute profile with the 

maximum posterior probability, or by the expected a posterior (EAP) estimation, which consists 

in dichotomizing the marginal probabilities (usually with a .50 cutoff). Moreover, since posterior 

probabilities are a measure of certainty about attribute profile classifications, they are often used 

for the computation of many reliability indices. The interested reader is referred to Johnson and 

Sinharay (2018, 2020) for a comprehensive review of different classification accuracy and 

consistency measures in the CDM framework. One common classification accuracy measure is 

the 𝜏 index (W. Wang et al., 2015), which is an estimation of the proportion of attribute profiles 

that are correctly classified: 

𝜏 =
∑ ∑ 𝑃(𝜶𝑙|𝒚𝑖)

𝐿
𝑙=1

𝑁
𝑖=1 𝐼(𝜶̂𝑖 = 𝜶𝑙)

𝑁
, (15) 

where 𝐼(·) is the indicator function. It follows from this equation that an accurate estimate of the 

classification accuracy depends on an accurate estimate of the posterior probabilities. This, in 

turn, depends on the calculation of the likelihoods, which are based on the item parameter 

estimates. Thus, the 𝜏 index (as well as any other reliability measure based on posterior 
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probabilities) is expected to obtain biased classification accuracy estimations under those 

conditions that hinder item parameter estimation (e.g., small sample sizes, low-quality items, 

complex Q-matrices). For instance, a scarce number of examinees in certain latent classes, which 

is likely to occur under these challenging scenarios, might lead to extreme probability of success 

estimations (i.e., close to 0 or 1; Chiu et al., 2018; W. Ma & Jiang, 2021). These will lead to very 

sharped posterior probabilities, thus resulting in a false sensation of certainty as indicated by an 

overestimated 𝜏 index (Kreitchmann et al., 2022). 

The restricted DINA model 

 In the present paper we propose the restricted DINA (R-DINA) model, a parametric 

CDM based on the NPC method that allows to derive the model likelihood from the 

nonparametric classifications and, consequently, to compute relative fit indices and classification 

accuracy measures. As will be shown below, the R-DINA establishes a bridge between 

parametric (i.e., DINA model) and nonparametric (i.e., NPC method) cognitive diagnosis by 

holding the following properties: (a) it is aligned with the rationale of the NPC method, (b) it 

provides the same exact attribute profile classifications as the NPC method, and (c) it allows to 

derive the model likelihoods and posterior probabilities from such classifications. 

 Namely, the R-DINA model is built upon the same rationale of the Hamming distances 

which, as stated above, operates giving the same weight to all discrepancies between the 

observed and ideal responses, regardless of the type of mistake (guess or slip) and the items’ 

discrimination. Following this, we reformulate those equally weighted discrepancies into a single 

parameter 𝜑 that represents the probability of providing an observed response (i.e., 𝑦𝑙𝑗) different 

from the ideal one (i.e., 𝜂𝑙𝑗). Making a connection with the DINA model, this parameter can be 
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understood as 𝜑 = 𝑔𝑗 = 𝑠𝑗  ∀ 𝑗. Similar to Equation 1, the item response function for the R-

DINA model is defined as 

𝑃𝑗(𝜶𝑙) = 𝜑1−𝜂𝑙𝑗(1 − 𝜑)𝜂𝑙𝑗 , (16) 

where 𝜂𝑙𝑗 is the ideal response for latent class l in item j. Note that the ideal response can be 

either conjunctive (𝜂𝑖𝑗
(𝑐)

; see Equation 2) or disjunctive (𝜂𝑖𝑗
(𝑑)

; see Equation 3). Thus, the R-DINA 

terminology is reserved to the conjunctive case, while the restricted DINO (R-DINO) model can 

be used to refer to the disjunctive one. Even though we refer to the R-DINA model throughout 

the manuscript for the sake of simplicity, all explanations regarding the R-DINA model are 

extensible to the R-DINO model given the duality between the DINA and DINO models (Köhn 

& Chiu, 2016). From here, likelihoods can be computed as in 

ℒ(𝒚𝑖|𝜶𝑙) = ∏[𝜑1−𝜂𝑙𝑗(1 − 𝜑)𝜂𝑙𝑗]𝑦𝑖𝑗{1 − [𝜑1−𝜂𝑙𝑗(1 − 𝜑)𝜂𝑙𝑗]}1−𝑦𝑖𝑗

𝐽

𝑗=1

. (17) 

Since both the observed and ideal responses are dichotomous, it is straightforward to 

derive from Equation 17 that the term inside the product will be equal to 1 − 𝜑 whenever 𝜂𝑙𝑗 =

𝑦𝑖𝑗, and equal to 𝜑 whenever 𝜂𝑙𝑗 ≠ 𝑦𝑖𝑗. Recalling that the Hamming distance, 𝑑ℎ(𝒚𝑖, 𝜼𝑙), counts 

the number of discrepancies between the observed and ideal responses (i.e., 𝜂𝑙𝑗 ≠ 𝑦𝑖𝑗) 

throughout a test of length J, the number of agreements is equal to 𝐽 − 𝑑ℎ(𝒚𝑖, 𝜼𝑙). And, because 

all discrepancies (or agreements) lead to the same probability of success for all items, Equation 

17 can be reformulated as 

ℒ(𝒚𝑖|𝜶𝑙) = 𝜑𝑑ℎ(𝒚𝑖,𝜼𝑙)(1 − 𝜑)𝐽−𝑑ℎ(𝒚𝑖,𝜼𝑙). (18) 

Thus, by means of the model parameter 𝜑, a correspondence between the parametric likelihood 

and the NPC’s Hamming distances is established. From here, the computation of posterior 

probabilities, relative fit indices, and classification accuracy measures is straightforward. The 𝜑 
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parameter can be estimated via marginalized maximum likelihood using the expectation-

maximization algorithm. Namely, following the notation of de la Torre (2009), the estimator of 

𝜑 in the M-step is 

𝜑̂ =
∑ [𝑅𝑗

(0)
+ 𝐼𝑗

(1)
− 𝑅𝑗

(1)
] 𝐽

𝑗=1

∑ [𝐼𝑗
(0)

+ 𝐼𝑗
(1)

]𝐽
𝑗=1

, (19) 

where 𝐼𝑗
(0)

 denotes the expected number of examinees with 𝜂𝑙𝑗 = 0, 𝑅𝑗
(0)

 is the expected number 

of correct responses among 𝐼𝑗
(0)

, and 𝐼𝑗
(1)

 and 𝑅𝑗
(1)

 have an equivalent interpretation but for those 

examinees with 𝜂𝑙𝑗 = 1. However, taking advantage of the simplicity of Equation 18, where 𝜑 is 

the only unknown quantity, a numerical method can be used to estimate the 𝜑 parameter much 

faster. In the present paper we use the Brent’s method (Brent, 2002) to estimate 𝜑̂. 

 A few additional considerations should be noted regarding the relationship between the 

R-DINA model and the NPC method. First, as implied by Equation 18, there is a univocal 

inverse exponential relation between Hamming distances and model likelihoods. It stems from 

here that, for a specific examinee, the latent class with the minimum Hamming distance will be 

also the one with the highest likelihood. Accordingly, the attribute profile classifications from 

the R-DINA model will be exactly the same as those from the NPC method whenever maximum 

likelihood or MAP estimation with a uniform prior distribution is used for the former. As stated 

before, these classifications have been shown to outperform those from the DINA model under a 

wide range of conditions, particularly with small sample sizes (Chiu et al., 2018; Chiu & 

Douglas, 2013; C. Ma et al., 2022; Oka & Okada, 2021). Second, and related to the previous 

point, the R-DINA model makes it possible for the researcher to specify a prior distribution for 

the latent classes whenever using EAP or MAP estimation, which can be helpful when attribute 

hierarchies are expected, and some latent classes are not deemed as possible (e.g., Tu et al., 
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2019). Third, unlike the NPC method, the R-DINA model allows to explore the psychometric 

properties (e.g., model fit, reliability) related to the attribute profile classifications, which is a 

crucial requirement for all valid assessments (AERA et al., 2014). Fourth, the restrictive 

assumption 𝜑 = 𝑔𝑗 = 𝑠𝑗 ∀ 𝑗 of the R-DINA model, which stem from the rationale of the NPC 

method, seems difficult to be fulfilled in real applications. However, we claim that it might be 

preferred over more complex parametric CDMs in those conditions in which the amount of 

information is limited, such as when working with small sample sizes. Following the notation 

used in Equation 19, in the DINA and DINO models the guessing and slip parameters are 

estimated as 𝑔̂𝑗 = 𝑅𝑗
(0)

/𝐼𝑗
(0)

 and 𝑠̂𝑗 = [𝐼𝑗
(1)

− 𝑅𝑗
(1)

]/𝐼𝑗
(1)

, respectively. It can be noted that, if 

either 𝐼𝑗
(0)

 or 𝐼𝑗
(1)

 is small, parameter estimation might not be accurate, even potentially leading 

to boundary problems in which the estimate is equal to 0 or 1 (Kreitchmann et al., 2022; W. Ma 

& Jiang, 2021). Hence, under these challenging scenarios, estimating a single parameter for the 

whole model that summarizes the total amount of probabilistic error might be more adequate 

than poorly estimating the parameters of specific items. We explore this in a systematic fashion 

in the following section by means of an exhaustive simulation study in which different sources of 

model error are considered. 

Simulation Study 

Diagnostic Methods 

 The R-DINA model was systematically evaluated in the present study. Namely, the 

Hamming distances using conjunctive ideal responses were obtained using the NPCD package 

version 1.0-11 (Zheng & Chiu, 2019) of R software (R Core Team, 2021). The optimize function 

from the stats R package was used to find the maximum-likelihood estimate of the 𝜑 

parameter with the Brent’s method. The complete implementation of the R-DINA model has 
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been included in the cdmTools package (Nájera et al., 2023) for public usage. The performance 

of the R-DINA model was compared to that of the DINA model, which was fitted using the 

GDINA package version 2.8.7 (W. Ma & de la Torre, 2020). The MAP estimator was used to 

make attribute profile classifications in both the R-DINA and DINA models using a uniform 

prior for the latent classes. This means that the attribute profile classifications made by the R-

DINA model are equivalent to those of the NPC method. 

Design and Data Generation 

In order to evaluate the performance of the R-DINA model under the presence of model 

misspecification, data were generated under the DINA model using the GDINA package version 

2.8.7 and the cdmTools package version 1.0.3 (Nájera et al., 2023). Moreover, nine simulation 

factors were manipulated: sample size (N = 25, 50, 100, 200), number of attributes (K = 4, 6), 

number of items per attribute (JK = 5, 10), Q-matrix complexity (QC = 0.3, 0.4, 0.5), Q-matrix 

misspecification rate (QM = 0, 0.2), average item quality (IQ = 0.4, 0.6, 0.8, mixed), item quality 

range (IQR = 0.05, 0.10), attribute thresholds (AT = 0, 1), and attribute correlations (AC = 0, 0.4, 

0.8). One hundred datasets were generated for each of the 4608 conditions resulting from 

combining the different simulation factor levels. 

The Q-matrix complexity refers to the number of cells in the Q-matrix that are equal to 1. 

In the simulation, the Q-matrices were randomly generated with the only constraints of having, at 

least, one identity matrix to ensure its completeness (Chiu et al., 2009), and ensuring that each 

item measured one attribute at the least. The Q-matrix misspecification rate was defined as the 

proportion of cells in the fitted Q-matrix (i.e., the one used to fit the models) that differed from 

their corresponding cell in the generating Q-matrix (i.e., the one that was used to generate the 

data). We considered correctly specified Q-matrices (QM = 0) and incorrectly specified Q-
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matrices with 20% of misspecified cells (QM = 0.2) in the simulation study. Furthermore, the 

average item quality was computed as ∑ (1 − 𝑔𝑗 − 𝑠𝑗)/𝐽𝐽
𝑗=1 . Item parameters were drawn from 

uniform distributions; Table 1 summarizes the correspondence between item parameters, average 

item quality, and item quality range. The mixed item quality condition was added as a 

challenging factor for the R-DINA model, as it violates its assumptions. In this condition, the 

guessing and slip parameters were not similar to each other, but they rotated between small 

guessing and large slip for odd items (i.e., j = 1, 3, …, J – 1) and large guessing and small slip 

for even items (i.e., j = 2, 4, …, J). Thus, even though the average item quality for IQ = mixed 

was 0.6, which coincided with the medium item quality condition, this condition was expected to 

be more demanding for the R-DINA model. Moreover, the item quality range reflected the 

degree of deviation from the average guessing or slip parameters. A higher item quality range 

(i.e., IQR = 0.10) increases the degree of violation of the R-DINA model’s assumption of equally 

discriminative items. 

Attribute profiles were generated following the multivariate normal threshold model 

(Chiu et al., 2009). That is, K continuous latent variables were drawn from a multivariate normal 

distribution with mean equal to 0 for all variables and correlations equal to AC (i.e., 0, 0.4, or 

0.8) between all variables. Then, the continuous latent variables were discretized into 

dichotomous attributes by applying a threshold. In the condition of AT = 0, the threshold was 

equal to 0 for all variables, and thus all attributes were generated as being equally prevalent in 

the population. In the condition of AT = 1, attribute thresholds varied. Namely, they were equal 

to {–1, –0.33, 0.33, 1} for each of the respective attributes under K = 4, and equal to {–1, –0.6, –

0.2, 0.2, 0.6, 1} under K = 6. Hence, attributes had a different prevalence in the population. 
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Table 1. Item Parameter Generation 

Average item quality (IQ) Guessing (𝑔𝑗) and slip (𝑠𝑗) parameters 

Low quality (IQ = 0.4) 𝑔𝑗 , 𝑠𝑗~𝑈(0.3 − 𝐼𝑄𝑅 , 0.3 + 𝐼𝑄𝑅) 

Medium quality (IQ = 0.6) 𝑔𝑗 , 𝑠𝑗~𝑈(0.2 − 𝐼𝑄𝑅 , 0.2 + 𝐼𝑄𝑅) 

High quality (IQ = 0.8) 𝑔𝑗 , 𝑠𝑗~𝑈(0.1 − 𝐼𝑄𝑅 , 0.1 + 𝐼𝑄𝑅) 

Mixed quality (IQ = mixed) 

Odd items: 

𝑔𝑗~𝑈(0.1 − 𝐼𝑄𝑅, 0.1 + 𝐼𝑄𝑅); 𝑠𝑗~𝑈(0.3 − 𝐼𝑄𝑅 , 0.3 + 𝐼𝑄𝑅) 

Even items: 

𝑔𝑗~𝑈(0.3 − 𝐼𝑄𝑅, 0.3 + 𝐼𝑄𝑅); 𝑠𝑗~𝑈(0.1 − 𝐼𝑄𝑅 , 0.1 + 𝐼𝑄𝑅) 

Note. IQR = item quality range (either 0.05 or 0.10). 

The conditions included in the simulation study have been previously used in several 

simulation studies (e.g., W. Ma & Jiang, 2021; Nájera et al., 2021) as they are regarded as 

representative from applied studies (Sessoms & Henson, 2018). Notably, small sample sizes 

were considered, which is aligned with the main purpose of the present study of proposing a 

method that is especially aimed at classroom-level assessments. Previous studies with a similar 

purpose have employed sample sizes as low as N = 20 (Oka & Okada, 2021), and applied 

research with school samples have used between N = 44 and 105 (e.g., Jang et al., 2015; Ren et 

al., 2021). Furthermore, Q-matrix complexity is a widely disregarded simulation factor in CDM 

simulation studies. However, a few works have highlighted the impact that this component might 

have on parameter estimation and results stability (e.g., Sorrel et al., 2021). 

Performance measures 

 The performance of the R-DINA and DINA models was evaluated in terms of posterior 

probabilities recovery, true classification accuracy, estimated classification accuracy, and relative 

fit. Note that parameter estimation accuracy is not evaluated because, since the data is generated 

by the DINA model, there is not a true value for the 𝜑 parameter to which 𝜑̂ can be compared. 

However, the item parameters are used in the calculation of posterior probabilities which are our 
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variable of interest as they are the starting point for the rest of the calculations (e.g., person 

parameters, reliability, and model fit).   

 The recovery of the posterior probabilities was evaluated in terms of root-mean-square 

error (RMSE): 

𝑅𝑀𝑆𝐸[𝑃(𝜶𝑙|𝒚𝑖)] = √
1

𝐿 · 𝑁
∑ ∑ (𝑃̂(𝛼𝑙|𝑦𝑖) − 𝑃(𝛼𝑙|𝑦𝑖))

2
𝑁

𝑖=1

𝐿

𝑙=1

, (19) 

where 𝑃̂(𝛼𝑙|𝑦𝑖) and 𝑃(𝛼𝑙|𝑦𝑖) are the estimated and true posterior probabilities of latent class l 

for examinee i, respectively. 

 True classification accuracy was computed as the proportion of correctly classified 

attribute profiles (PCP), defined as 

𝑃𝐶𝑃 =
∑ 𝐼(𝜶̂𝑖 = 𝜶𝑖)

𝑁
𝑖=1

𝑁
. (20) 

 Estimated classification accuracy was calculated by means of the 𝜏 index (see Equation 

15) which, as explained above, is an estimation of the PCP. Namely, in order to evaluate the 

recovery of the estimated classification accuracy, the bias was computed: 

𝐵𝑖𝑎𝑠(𝜏) = 𝜏 − 𝑃𝐶𝑃. (21) 

 Finally, relative fit was measured by the AIC, BIC, CAIC, and SABIC, as defined in 

Equations from 9 to 12. Note that the DINA model contains 2 × J item parameters (guessing and 

slip parameters for each item) plus L – 1 structural parameters, where L is the number of latent 

classes (𝐿 = 2𝐾). On the contrary, the R-DINA model contains the same L – 1 structural 

parameters, but only 1 model parameter (i.e., 𝜑). Thus, p = L for the R-DINA model. 

 The results are presented in a structured fashion for each of the performance measures. 

First, in order to summarize the large number of simulation conditions, a repeated measures 
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ANOVA was conducted on each performance measure. Whenever useful, these results are 

complemented with a univariate ANOVA to better understand the performance of each model 

under certain conditions. A partial eta squared higher than 0.14 was considered as a heuristic to 

identify relevant effect in the ANOVAs (Cohen, 2013). The partial eta squared values for the 

repeated measures ANOVAs can be consulted on Table A1 of the Appendix. Second, for each 

performance measure, the average and standard deviation across the levels of each relevant 

simulation factor (i.e., those with a relevant effect on the ANOVA) is presented for each 

procedure. Third, graphical visualizations are displayed whenever useful to complement the 

explanation of the results. Plots were generated with the ggplot2 package version 3.3.5 

(Wickham, 2016) and the ggpubr package version 0.4.0 (Kassambara, 2020). All R codes can 

be accessed at https://osf.io/deps9/. 

Results 

Recovery of Posterior Probabilities 

 The RMSE of posterior probabilities for the R-DINA and DINA models differed 

according to the ANOVA (𝜂𝑝
2 = .30). The within-factor also interacted with the average item 

quality (𝜂𝑝
2 = .25). Furthermore, the between-factor effects of the Q-matrix misspecification rate 

(𝜂𝑝
2 = .79), the number of attributes (𝜂𝑝

2 = .63), their interaction (𝜂𝑝
2 = .32), and the interaction 

between the Q-matrix misspecification rate and the average item quality (𝜂𝑝
2 = .17) were also 

relevant. Table 2 shows the mean and standard deviation of the posterior probabilities RMSE for 

these relevant simulation factors. The R-DINA model consistently obtained more accurate 

posterior probabilities (.022 ≤ Mean RMSE ≤ .100) than the DINA model (.076 ≤ Mean RMSE ≤ 

.144). These differences were particularly notable under low-quality items, where the R-DINA 

model was much more accurate (Mean RMSE = .048) than the DINA (Mean RMSE = .132).  
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Table 2. Recovery of Posterior Probabilities 

 K QM IQ  

 4 6 0 0.2 0.4 0.6 0.8 Mixed Total 

R-DINA 
.081 

(.057) 

.041 

(.029) 

.022 

(.014) 

.100 

(.040) 

.048 

(.040) 

.061 

(.052) 

.063 

(.063) 

.072 

(.057) 

.061 

(.049) 

DINA 
.139 

(.066) 

.081 

(.029) 

.076 

(.042) 

.144 

(.054) 

.132 

(.050) 

.112 

(.056) 

.087 

(.063) 

.110 

(.057) 

.110 

(.059) 

Note. K = number of attributes; QM = Q-matrix misspecification rate; IQ = average item quality. The mean (and standard deviation) is 

shown in each cell. 
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Figure 1 depicts the interaction between the four relevant simulation factors concerning the 

recovery of posterior probabilities. First, it shows that the R-DINA model was robust to the 

average item quality, especially when the Q-matrix was correctly specified. Second, the R-DINA 

model provided accurate posterior probabilities under all conditions (Mean RMSE ≤ .080), 

except for incorrectly specified Q-matrices and low number of attributes (Mean RMSE ≥ .109). 

Third, the recovery of posterior probabilities for the DINA model was largely dependent on the 

average item quality, particularly under the condition of low number of attributes. 

 
Figure 1. Posterior probabilities RMSE as a function of the model (i.e., R-DINA, DINA), 

average item quality, Q-matrix misspecification rate (QM), and number of attributes (K). 

True and Estimated Classification Accuracy 

 The R-DINA and DINA models provided a similar true classification accuracy (i.e., PCP) 

across all conditions, as judged by the fact that the within-factor did not obtain any relevant 

effect size in the repeated measures ANOVA. However, the PCP of both models was influenced 
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by the average item quality (𝜂𝑝
2 = .71), the Q-matrix misspecification rate (𝜂𝑝

2 = .63), the number 

of attributes (𝜂𝑝
2 = .44), the number of items per attribute (𝜂𝑝

2 = .37), and the attribute correlations 

(𝜂𝑝
2 = .16). Table 3 summarizes the mean and standard deviations for the PCP across the levels of 

these factors. In general, both models obtained more accurate classifications with less attributes 

(Mean PCP ≥ .632), longer tests (Mean PCP ≥ .625), correctly specified Q-matrices (Mean PCP 

≥ .672), high-quality items (Mean PCP ≥ .744), and highly correlated attributes (Mean PCP ≥ 

.597). In general, the R-DINA model provided more stable PCP within factors (.158 ≥ PCP SD ≥ 

.252) than the DINA model (.179 ≥ PCP SD ≥ .278). 

 Regarding the estimated classification accuracy bias (i.e., 𝜏 – PCP), the repeated 

measures ANOVA detected large differences between the R-DINA and the DINA models (𝜂𝑝
2 = 

.42). The within-factor also showed relevant interactions with the average item quality (𝜂𝑝
2 = .27) 

and the Q-matrix misspecification rate (𝜂𝑝
2 = .19). Table 4 shows the estimated classification 

accuracy bias for these simulation factors. The sample size was also included here because, even 

though it obtained a marginally large interaction effect with the model (𝜂𝑝
2 = .13), it is a 

substantially relevant effect. The main finding that stems from Table 4 is that the R-DINA model 

obtained a very low estimated classification accuracy bias, which was very consistent between 

factors (.003 ≤ Mean Bias ≤ .046) and within factors (.052 ≤ Bias SD ≤ .092). On the other hand, 

the DINA model consistently showed largely overestimated classification accuracy estimates 

(.194 ≤ Mean Bias ≤ .490), which was particularly large under small sample sizes (Mean Bias = 

.419), misspecified Q-matrices (Mean Bias = .431), and low-quality items (Mean Bias = .490). 

The difference between the R-DINA and DINA models in terms of their classification accuracy 

estimated can be clearly noted in Figure 2. This figure shows, in a logarithmic scale, the 

frequency (i.e., number of conditions) under which a specific 𝜏 and PCP were obtained. Thus, 
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Table 3. True Classification Accuracy 

 K JK QM IQ AC  

 4 6 5 10 0 0.2 0.4 0.6 0.8 Mixed 0 0.4 0.8 Total 

R-DINA 
.643 

(.208) 

.477 

(.225) 

.493 

(.214) 

.627 

(.229) 

.678 

(.209) 

.443 

(.190) 

.362 

(.158) 

.569 

(.199) 

.744 

(.217) 

.564 

(.201) 

.524 

(.252) 

.559 

(.229) 

.597 

(.207) 

.560 

(.232) 

DINA 
.632 

(.244) 

.470 

(.252) 

.477 

(.243) 

.625 

(.258) 

.672 

(.238) 

.430 

(.225) 

.322 

(.179) 

.560 

(.224) 

.747 

(.217) 

.576 

(.229) 

.494 

(.278) 

.538 

(.255) 

.622 

(.233) 

.551 

(.261) 

Note. K = number of attributes; JK = number of items per attribute; QM = Q-matrix misspecification rate; IQ = average item quality; 

AC = attribute correlations. The mean (and standard deviation) is shown in each cell. 

Table 4. Estimated Classification Accuracy Bias 

 N QM IQ  

 25 50 100 200 0 0.2 0.4 0.6 0.8 Mixed Total 

R-DINA 
.024 

(.092) 

.025 

(.072) 

.025 

(.059) 

.025 

(.052) 

.003 

(.054) 

.046 

(.078) 

.018 

(.070) 

.028 

(.069) 

.022 

(.071) 

.030 

(.072) 

.025 

(.070) 

DINA 
.419 

(.247) 

.358 

(.223) 

.288 

(.199) 

.230 

(.181) 

.216 

(.198) 

.431 

(.198) 

.490 

(.202) 

.311 

(.201) 

.194 

(.190) 

.300 

(.203) 

.324 

(.226) 

Note. N = sample size; QM = Q-matrix misspecification rate; IQ = average item quality. The mean (and standard deviation) is shown in 

each cell. 

Table 5. Relative Fit Difference between the DINA and the R-DINA 

 N K JK QM IQ 

 25 50 100 200 4 6 5 10 0 0.2 0.4 0.6 0.8 Mixed 

AIC 30 108 257 553 199 275 179 295 155 319 71 168 332 378 

BIC –60 –33 65 309 66 74 69 71 –12 152 –96 1 165 210 

CAIC –134 –107 –9 235 7 –15 20 –28 –86 78 –170 –73 91 136 

SABIC 169 199 298 544 251 354 223 382 220 385 136 233 398 443 

Note. N = sample size; K = number of attributes; JK = number of items per attribute; QM = Q-matrix misspecification rate; IQ = 

average item quality. Positive and negative values indicate better fit for the DINA and the R-DINA, respectively. 
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the R-DINA model showed a large correlation between the true and estimated classification 

accuracy (r = .953), while the DINA model only showed a moderate relation (r = .528). In the 

most extreme case, the DINA model estimated a classification accuracy of 𝜏 = .999 when, in 

reality, it was not accurately classifying any examinee (PCP = 0). 

 

Figure 2. Estimated (i.e., 𝜏) and true (i.e., PCP) classification accuracy for each of the 460800 

simulated data sets. Log(No.) = the number of data sets with a particular combination of 𝜏 and PCP 

in a logarithmic scale. 

Relative Fit 

 The R-DINA and the DINA models showed a similar relative fit according to repeated 

measures ANOVA on each of the four fit indices (i.e., AIC, BIC, CAIC, SABIC). Table A1 in 

the Appendix shows all the relevant between-factor effects, which were very similar for the four 

fit indices. The sample size (𝜂𝑝
2 = .99), the number of items per attribute (.94 ≥ 𝜂𝑝

2 ≥ .95), the 

number of attributes (.86 ≥ 𝜂𝑝
2 ≥ .89), the average item quality (.73 ≥ 𝜂𝑝

2 ≥ .74), and the Q-matrix 
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misspecification rate (𝜂𝑝
2 = .25) were the most influential factors. Table 5 shows, for these 

factors, the difference on relative fit between the R-DINA and the DINA models. For instance, in 

the case of the AIC, the table shows the values of AIC(R-DINA) – AIC(DINA), where positive 

and negative outcomes represent a better relative fit for the DINA and the R-DINA, respectively. 

It can be seen from Table 5 that the AIC and SABIC consistently preferred the DINA model, 

especially under larger sample sizes and mixed-quality items. This is expected given that the 

DINA was the generated model. However, the BIC and CAIC preferred the R-DINA model 

under some conditions. Namely, under sample sizes equal or lower to 50 (for the BIC) or 100 

(for the CAIC), under correctly specified Q-matrix, or low-quality items. The CAIC was also 

lower for the R-DINA model under a large number of attributes, long tests, and medium-quality 

items. Please note that, as stated before, the repeated measures ANOVA did not reveal large 

differences between the R-DINA and the DINA for any fit index and simulation factor, so these 

results should be interpreted with caution. 

 In order to better understand the correspondence between the best-fitting procedure and 

its actual performance (i.e., posterior probabilities recovery, true classification accuracy), we 

conducted an additional analysis, which is summarized in Table 6. Namely, for each fit index 

and performance measure, we constructed a cross-table that contains: (a) the proportion of 

conditions in which a procedure obtains the best fit, and (b) the proportion of conditions in which 

a procedure provides a better performance. Note that, for the PCP, the sum of the proportions 

included in each cross-table is equal to .901 instead of 1, because both models provided the same 

PCP in 9.90% of the conditions. In the table, the proportion of correct (PC) identification 

represents the proportion of conditions in which a relative fit index preferred the best performing 

procedure. The fit indices have been ordered from the one that prefers the DINA model under a 
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higher proportion of conditions (i.e., SABIC), to the one that prefers the R-DINA model under a 

higher proportion of conditions (i.e., CAIC). Thus, Table 6 shows that the SABIC and AIC 

indices preferred the DINA over the R-DINA in the large majority of conditions, even though the 

DINA model led to a worse overall performance in terms of posterior probabilities recovery and 

true classification accuracy. On the contrary, the CAIC and BIC indices, which preferred the R-

DINA model under a larger proportion of conditions, were able to identify the best performing 

procedure in more than 50% of the conditions. In any case, no fit index was able to identify the 

best performing procedure in more than 70% of the conditions, which reflects that there is a mild 

relation between relative fit and posterior probabilities recovery or true classification accuracy. 

Table 6. Correspondence between Relative Fit and Performance 

    

Lower PP RMSE 

 

Higher PCP 

 

   R-DINA DINA PC R-DINA DINA PC 

SABIC 
R-DINA 0.006 0.000 

0.060 
0.005 0.001 

0.443 
DINA 0.939 0.054 0.457 0.438 

AIC 
R-DINA 0.113 0.002 

0.166 
0.074 0.023 

0.490 
DINA 0.832 0.053 0.389 0.416 

BIC 
R-DINA 0.544 0.014 

0.585 
0.295 0.189 

0.545 
DINA 0.402 0.041 0.167 0.250 

CAIC 
R-DINA 0.664 0.021 

0.698 
0.345 0.253 

0.530 
DINA 0.282 0.034 0.117 0.185 

   0.946 0.054   0.463 0.439   

Note. Columns reflect the proportion of times that the R-DINA or the DINA model achieved 

better results in terms of posterior probabilities RMSE (Lower PP RMSE) or classification 

accuracy (Higher PCP). Rows reflect the proportion of times that each relative fit index preferred 

the R-DINA or the DINA model. PC reflects the proportion of conditions that a relative fit index 

selected the best performing procedure for a given performance measure. The best PC for each 

measure is shown in bold. 
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Real Data Illustration 

 In this section the performance of the R-DINA is illustrated by using two different real 

data sets. The first data set was the fraction subtraction data (FRAC), which contains the 

responses of 536 examinees to a test formed by 20 items measuring 8 attributes. The data is 

publicly available at the GDINA package and has been previously analyzed with the DINA 

model by de la Torre (2009). The second data set corresponds to the responses of 504 examinees 

to an elementary probability test theory assessment (PTT) formed by 12 items measuring 4 

attributes. The data is publicly available at the edmdata package (Balamuta et al., 2021), and 

has been previously analyzed with the DINA model by Y. Chen et al., (2021). To mimic the 

simulation study design, 100 subsamples were randomly drawn from each data set with sizes of 

N = 25, 50, 100, and 200. The R-DINA and the DINA models were fitted to each subsample, and 

the following information was extracted: parameter estimates (𝜑̂ for the R-DINA model, and 

average 𝑔̂𝑗 and 𝑠̂𝑗 for the DINA model); classification congruency (CC), computed as the 

proportion of examinees for a given sample size that are classified in the same latent class as 

with the complete data set; estimated classification accuracy (𝜏 index); and relative fit. For the 

latter, only the CAIC and SABIC are reported, since they showed the highest preference for the 

R-DINA and the DINA in the simulation study, respectively. 

 The mean and standard deviation for the parameter estimates across the 100 replicates for 

each sample size is presented in Table 7. First, it should be noted that the R-DINA model 

provided very consistent parameter estimates across the different sample sizes and within the 100 

replicates for each sample size, both for the FRAC (.109 ≥ 𝜑̂ ≥ .113) and PPT (.123 ≥ 𝜑̂ ≥ .126) 

data sets. The parameter estimates of the DINA model were less stable across and within sample 

sizes. The average guessing and slip parameters were more similar in magnitude in the FRAC 
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data set (.103 ≥ 𝑔̂𝑗 ≥ .127; .107 ≥ 𝑠̂𝑗 ≥ .142), although the difference between both parameter 

estimates was not very large either for the PTT data (.204 ≥ 𝑔̂𝑗 ≥ .270; .094 ≥ 𝑠̂𝑗 ≥ .118). The 

higher similarity between the guessing and slip estimates in the FRAC data suggests that the two 

models should perform more similarly for these data compared to the PTT. 

Table 7. Parameter Estimates 

 N = 25 N = 50 N = 100 N = 200 N = N 

FRAC 

𝜑̂ .109 (.017) .113 (.011) .111 (.006) .112 (.005) .112 

𝑔̂𝑗 .127 (.041) .120 (.031) .109 (.020) .103 (.016) .103 

𝑠̂𝑗 .107 (.027) .121 (.022) .129 (.015) .138 (.010) .142 

PTT 

𝜑̂ .126 (.023) .123 (.015) .123 (.009) .124 (.006) .124 

𝑔̂𝑗 .270 (.089) .223 (.075) .205 (.056) .204 (.048) .224 

𝑠̂𝑗 .094 (.029) .106 (.023) .115 (.014) .117 (.009) .118 

Note. Average estimates (and standard deviations) across the 100 replicates are presented in each 

cell. N = N represents the estimation with the complete dataset. 𝜑̂ refers to the R-DINA 

parameter, while 𝑔̂𝑗 and 𝑠̂𝑗 refer to the guessing and slip parameters of the DINA model, 

respectively. 

 Regarding the classification congruency between the subsamples and the whole data sets, 

the R-DINA model always provided the same attribute profile classifications regardless of the 

sample size (note that these classifications are the same as those provided by the NPC method). 

That is, the average CC was equal to 1 for all sample sizes, for both the FRAC and PTT data 

sets. This was not the case for the DINA model, which obtained average CC = .458, .479, .514, 

and .560 for N = 25, 50, 100, and 200, respectively, with the FRAC data. The CC was higher for 

the PTT data (CC = .803, .883, .920, and .939), which is explained by the fact that the PTT test 

involved 4 attributes, instead of the 8 attributes measured with the FRAC. Thus, it is easier to 
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have a full match in the attribute profiles. It is important to recall that the CC only measures the 

consistency within a method, and thus it does not reflect classification accuracy. 

 Table 8 shows the estimated classification accuracy. First, note that the R-DINA model 

always reported a lower classification accuracy than the DINA model, which is in line with the 

simulation study, in which the DINA model largely overestimated classification accuracy. 

Second, the estimated classification accuracy by the DINA model decreased as the sample size 

increased; this is also aligned with the previous results, since the classification accuracy bias is 

expected to be milder as item parameter estimation becomes more accurate (by increasing the 

sample size). On the contrary, the estimated classification accuracy was very consistent across 

sample sizes for the R-DINA, as expected by the abovementioned stability in the parameter 

estimates. Finally, the estimated classification accuracy was higher for the PTT than for the 

FRAC data set, which is also explained by the former having half the attributes than the latter. 

Table 8. Estimated Classification Accuracy 

 N = 25 N = 50 N = 100 N = 200 N = N 

 FRAC 

R-DINA .403 (.064) .402 (.054) .406 (.035) .404 (.021) .402 

DINA .567 (.075) .573 (.063) .562 (.045) .556 (.028) .543 

 PTT 

R-DINA .864 (.053) .868 (.028) .869 (.020) .869 (.014) .867 

DINA .977 (.022) .967 (.022) .961 (.017) .950 (.016) .937 

Note. Average values (and standard deviations) across the 100 replicates are presented in each 

cell. N = N represents the estimation with the whole sample size. 

 Finally, Table 9 shows the CAIC and SABIC of both models. Both fit indices reported a 

better relative fit for the DINA over the R-DINA across all sample sizes. The difference between 

the fit of both procedures was smaller for the FRAC data, which was expected by the fact that 

the average guessing and slip parameters were more similar in these data set. Moreover, the 

CAIC reported a more similar fit between the procedures than the SABIC, which is in line with 
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the simulation results that showed that the SABIC had a great tendency towards the DINA 

model, while the CAIC tended to prefer the R-DINA model under some conditions. Finally, the 

fit was also more similar for both procedures with smaller sample sizes, which was also a 

simulation study finding. Nevertheless, these indices should be interpreted with caution as noted 

by the low correspondence between better fit and performance (i.e., posterior probabilities 

recovery, classification accuracy) shown in the simulation study. 

Table 9. Relative Fit 

  N = 25 N = 50 N = 100 N = 200 N = N 

FRAC 

CAIC 
R-DINA 1594 (33) 2305 (42) 3516 (51) 5789 (72) 13039 

DINA 1588 (34) 2211 (42) 3233 (52) 5096 (68) 10953 

SABIC 
R-DINA 544 (33) 1245 (42) 2452 (51) 4722 (72) 11971 

DINA 378 (34) 990 (42) 2007 (52) 3866 (68) 9722 

PTT 

CAIC 
R-DINA 411 (20) 761 (29) 1457 (34) 2844 (44) 7036 

DINA 380 (21) 651 (33) 1168 (43) 2187 (61) 5239 

SABIC 
R-DINA 345 (20) 694 (29) 1391 (34) 2777 (44) 6969 

DINA 220 (21) 489 (33) 1005 (43) 2025 (61) 5077 

Note. Average values (and standard deviations) across the 100 replicates are presented in each 

cell. N = N represents the estimation with the whole sample size. 

Discussion 

 Cognitive diagnosis modeling (CDM) has a great potential to be used in educational 

assessments at a classroom level, given that they provide detailed information about students’ 

strengths and weaknesses that can guide remedial instruction and teachers’ efforts (Chiu et al., 

2018; Paulsen & Valdivia, 2021). Despite this promising area of application, few studies have 

been conducted with small sample sizes (Sessoms & Henson, 2018). This is mainly due to the 

lack of optimal diagnostic procedures for these challenging settings. Parametric CDM requires 

large sample sizes in order to obtain accurate item parameter estimates. A disrupted estimation 

will lead to biased parameters, less precise attribute classifications, and overestimated 
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classification accuracy (Kreitchmann et al., 2022; W. Ma & Jiang, 2021; Sen & Cohen, 2021). 

To address this, nonparametric CDM was proposed as a suitable alternative to provide accurate 

attribute profile classifications under those challenging conditions that disrupt parameter 

estimation (e.g., small sample size, low-quality items, complex Q-matrices; Chiu et al., 2018; C. 

Ma et al., 2022; Oka & Okada, 2021). However, up until today it was not possible to derive the 

likelihood nor posterior probabilities from these methods, which prevented from calculating fit 

and reliability indices. Thus, the validity of nonparametric CDM could not be explored, and 

hence its application in real settings entailed a leap of faith. This is an unacceptable practice 

according to the standards (AERA et al., 2014) since it compromises the validity of the 

measurement. The main purpose of the present paper was to present the R-DINA model, a 

parametric CDM that allows to compute the likelihoods (and fit indices) and posterior 

probabilities (and classification accuracy measures) from the attribute profile classifications 

made by the NPC method. By doing this, a comprehensive CDM procedure for classroom-level 

assessments can be achieved, combining the accurate classifications from nonparametric CDM 

method and the possibility of evaluating the properties of the method as in a parametric CDM. 

The performance of the R-DINA model was evaluated and compared to that of the DINA 

model by means of an exhaustive simulation study. First, it was observed that the 𝜑 parameter 

provided a better recovery of posterior probabilities; in fact, it provided more accurate posterior 

probabilities than the DINA model even under those conditions that do not follow the 

assumptions of the R-DINA model, such as a mixed-quality items. Second, even though the true 

classification accuracy (i.e., PCP) was very similar for both procedures under most conditions, 

the poor recovery of posterior probabilities for the DINA model resulted in a largely 

overestimated classification accuracy. That is, classification accuracy measures will report very 
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high values for the DINA model regardless of its true precision, giving a false sense of 

confidence in the attribute profile classifications. On the contrary, the R-DINA model reported 

very accurate classification accuracy estimates, meaning that researchers can trust its empirical 

reliability. Finally, both procedures led to similar relative fit, with the BIC and CAIC (that 

heavily penalize complexity) showing better fit for the R-DINA model under challenging 

conditions (e.g., small sample size, low-quality items), and the AIC and SABIC (that penalize 

complexity to a lower extent) preferring the DINA model. This was expected, since the DINA 

was the generating model. However, the low correspondence between the value of these fit 

indices and the actual performance of the procedures suggests that practitioners should be 

cautious when basing their decisions on the relative fit. In this study, the BIC and CAIC were the 

indices that correctly identified the best performing procedure in more conditions. 

The simulation results were also illustrated using real data. In general, the findings were 

congruent with those of the simulation study. Namely, parameter estimation for the R-DINA 

model was very stable across sample sizes and replicates; the DINA model showed different 

estimates with sample sizes of 25 and 200 for both data sets. The estimated classification 

accuracy was also higher for the DINA model, particularly under very small sample sizes, which 

reflects the overestimation tendency found in the simulation study due to a poor item parameter 

recovery. The lower dependency of the R-DINA model on sample size was also reflected by the 

fact that it made the same attribute profile classifications regardless of sample size (CC = 1), 

while the DINA model obtained more consistent attribute profile estimates as sample size 

increased. Finally, relative fit was always at least slightly better for the DINA model. As stated 

before, these results should be interpreted with caution, since this might not necessarily need that 
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the DINA model should be preferred in terms of parameter estimation accuracy or true 

classification accuracy. 

Despite the promising performance of the R-DINA model in small sample size scenarios, 

the reader might wonder whether it is realistic to assume that all items have the same guessing 

and slip parameters. We are fully aware that this is a very restrictive assumption, and that it will 

be very unlikely to be fulfilled in real applications. However, statistical models should not only 

be judged by their phenomenological truthfulness, since all models are wrong to some extent, but 

by their practical usefulness in those scenarios for which they have been developed (Box, 1976). 

In that regard, the higher parsimony of the R-DINA model compared to the DINA model makes 

from the former a less plausible but more stable model. In the present paper, the R-DINA model 

has shown a more satisfactory performance than the DINA model with small sample sizes, even 

when the degree of model misspecification was moderate (e.g., 20% of misspecified q-entries, 

dissimilar guessing and slip parameters). This is also in line with previous studies, where the 

NPC method showed a satisfactory performance even when the data was generated by the G-

DINA model (Chiu et al., 2018), which implies a large degree of model misspecification (recall 

that the R-DINA model provides the same classifications as the NPC method). All this evidence 

points out in the direction that, whenever the amount of information in the data is scarce, fitting a 

more restrictive model might be more beneficial (e.g., better parameter recovery and 

classification accuracy) than wrongly estimating a complex one (e.g., Sorrel et al., 2021). Note 

that the opposite is also true and that, whenever there is enough information to reliably estimate a 

more complex model, fitting a more restrictive method will not provide any added value. 

Given the above, a question might arise about how to identify the preferred CDM to use 

in a particular classroom-level assessment, especially since the simulation study revealed that 
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relative fit indices do not always lead to the method that provided the more desirable results. 

Two possible tentative approaches could be taken. The first one consists in applying a 

bootstrapping procedure, in which the DINA and the R-DINA models are systematically applied 

to several data sets formed by randomly resampling with a replacement from the original data 

set. Thus, an empirical distribution of item parameter estimates and attribute profile 

classifications could be constructed as a measure of the stability of the results. A similar 

approach has been already implemented in other psychometric frameworks, such as exploratory 

graph analysis (Christensen & Golino, 2021). The second approach is based on the evaluation of 

absolute fit for both the DINA and R-DINA models, both at the item (J. Chen et al., 2013) and 

test level (Hansen et al., 2016). Here, the challenge might be related to the low statistical power 

derived from the very small sample sizes. Related to this, model comparison at the item level 

could be also extended to the R-DINA model to differentiate whether an item conforms to a 

conjunctive, disjunctive, or general response (Sorrel, Abad, et al., 2017; Sorrel, de la Torre, et 

al., 2017). On another note, the R-DINA model could be also extended to cognitive diagnostic 

computerized adaptive testing (CD-CAT), thus allowing for variable length applications with 

very small sample sizes, with a similar rationale than the one used by the nonparametric item 

selection rule (Chang et al., 2019). Finally, evaluating the performance of the R-DINA model 

using a prior attribute distribution (in comparison to maximum likelihood estimation or the NPC 

method) might be worth considering given the often encountered highly correlated attributes in 

applied studies (Sessoms & Henson, 2018). 

We believe that the R-DINA model fills an important gap in the cognitive diagnosis 

framework by providing both accurate and robust attribute profile classifications (as the NPC 

method) and measures of model fit and reliability (as any other parametric CDM) in small-scale 
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assessments. By making progress in these directions, CDM could be applied not only in large-

scale assessments (Sessoms & Henson, 2018), but also at a classroom level, where the diagnostic 

information can be used to better guide remedial instruction.  
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Appendix 

Table A1. Partial Eta Squared for Repeated Measures ANOVAs 

Effect PP RMSE PCP τ Bias Relative fit 

Within Effects 
M .30  .42  

M × N     

M × JK     

M × QM   .19  

M × IQ .25  .27  

M × AC     

Between Effects 

N   .13 .99 

K .63 .44  .86 – .89 

JK  .37  .94 – .95 

QM .79 .63 .35 .25 

IQ  .71 .26 .73 – .74 

AC  .16   

N × JK    .89 

N × K    .75 – .76 

N × QM    .30 

N × IQ    .59 

K × JK    .38 – .40 

K × QM .32    

JK × IQ    .30 

QM × IQ .17    

Note. M = model; N = sample size; QM = Q-matrix misspecification rate; IQ = average item 

quality; AC = attribute correlations; K = number of attributes; JK = number of items per attribute; 

PP RMSE = RMSE of posterior probabilities; PCP = proportion of correctly classified attribute 

profiles; τ Bias = bias of the τ index. Relative fit includes the four fit indices (i.e., AIC, BIC, 

CAIC, SABIC), with the minimum and maximum partial eta squared among the four indices 

shown in each cell. 
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