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Abstract 

The number of available factor analytic techniques has been increasing in the last decades. 

However, the lack of clear guidelines and exhaustive comparison studies between the 

techniques might hinder that these valuable methodological advances make their way to 

applied research. The present paper evaluates the performance of confirmatory factor analysis 

(CFA), CFA with sequential model modification using modification indices and the Saris 

procedure, exploratory factor analysis (EFA) with different rotation procedures (Geomin, 

target, and objectively refined target matrix), Bayesian structural equation modeling (BSEM), 

and a new set of procedures that, after fitting an unrestrictive model (i.e., EFA, BSEM), 

identify and retain only the relevant loadings to provide a parsimonious CFA solution 

(ECFA, BCFA). By means of an exhaustive Monte Carlo simulation study and a real data 

illustration, it is shown that CFA and BSEM are overly stiff and, consequently, do not 

appropriately recover the structure of slightly misspecified models. EFA usually provides the 

most accurate parameter estimates, although the rotation procedure choice is of major 

importance, especially depending on whether the latent factors are correlated or not. Finally, 

ECFA might be a sound option whenever an a priori structure cannot be hypothesized and the 

latent factors are correlated. Moreover, it is shown that the pattern of the results of a factor 

analytic technique can be somehow predicted based on its positioning in the confirmatory-

exploratory continuum. Applied recommendations are given for the selection of the most 

appropriate technique under different representative scenarios by means of a detailed 

flowchart. 

Keywords: confirmatory factor analysis, exploratory factor analysis, Bayesian structural 

equation modeling, cross-loadings, internal structure.  
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Is Exploratory Factor Analysis Always to be Preferred? A Systematic Comparison of 

Factor Analytic Techniques throughout the Confirmatory-Exploratory Continuum 

Factor analysis is arguably the most used statistical tool to examine the internal 

structure of scales and questionnaires in psychological and educational assessment. Not 

surprisingly, factor analysis is still a topical issue after more than a century since its original 

formulation. This is especially noticeable in the number of factor analytic techniques that 

have been proposed in the last decades. Apart from the traditional exploratory factor analysis 

(EFA) and confirmatory factor analysis (CFA), applied researchers can choose from a wide 

range of recently available methods and variations such as different sequential model 

modification procedures (e.g., Marcoulides et al., 1998; Saris et al., 2009), exploratory 

structural equation modeling (ESEM; Asparouhov & Muthén, 2009) with different rotation 

procedures (Browne, 2001) including, for example, the objectively refined matrix procedure 

(RETAM; Lorenzo-Seva & Ferrando, 2020), Bayesian structural equation modeling (BSEM; 

Muthén & Asparouhov, 2012), Set-ESEM (Marsh et al., 2020), regularized structural 

equation modeling (Jacobucci et al., 2016), and penalized likelihood structural equation 

modeling (Huang et al., 2017), among others. 

With all these options on the table, it might be difficult to decide which method is 

most appropriate for a given dataset. To shed some light on the question, a few simulation 

studies have been conducted to compare the performance of some factor analytic techniques 

(Asparouhov & Muthén, 2009; Guo et al., 2019; Liang et al., 2020; Muthén & Asparouhov, 

2012; Xiao et al., 2019; Whittaker, 2012). In general, these studies concluded that: (a) CFA is 

usually overly restrictive and leads to poor model fit and biased parameter estimates 

(particularly an overestimation of factor correlations), (b) EFA/ESEM often obtains 

satisfactory model fit and provides more accurate parameter estimates, (c) BSEM obtains 

accurate parameter estimates as long as the priors are correctly specified, and (d) sequential 
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model modifications usually perform poorly at recovering the generating internal structure. 

Based on these findings, it might seem that the selection of the most appropriate technique is 

an already answered question: EFA/ESEM would be the indisputable winner, perhaps 

followed by BSEM only if the priors are correctly specified. This notion has made an 

impression on applied researchers, and several scales that were already validated by means of 

CFA have been reanalyzed using EFA/ESEM or BSEM, leading to solutions with better 

model fit and substantially lower factor correlations (e.g., Arens & Morin, 2016; Fong & Ho, 

2013; Garrido et al., 2020). 

However, we can identify some questions that make the selection of the most 

appropriate factor analysis technique still an open issue. First, all the aforementioned 

simulation studies compared only a small number of techniques, such as sequential model 

modifications in CFA (Whittaker, 2012), CFA and ESEM (Asparouhov & Muthén, 2009), 

CFA and BSEM (Muthén & Asparouhov, 2012), ESEM and BSEM (Liang et al., 2020), or 

CFA, ESEM, and BSEM (Guo et al., 2019; Xiao et al., 2019). Second, a limited set of 

conditions was considered, including a fixed sample size (Xiao et al., 2019), number of 

factors (Asparouhov & Muthén, 2009; Guo et al., 2019; Liang et al., 2020; Muthén & 

Asparouhov, 2012; Whittaker, 2012), factor correlations (Guo et al., 2019; Liang et al., 2020; 

Muthén & Asparouhov, 2012), or major loadings magnitude (Asparouhov & Muthén, 2009; 

Guo et al., 2019; Liang et al., 2020; Muthén & Asparouhov, 2012; Xiao et al., 2019). The 

number of items per factors was also fixed in all these studies. Third, the performance of the 

techniques was evaluated almost exclusively based on model fit and parameter estimation 

accuracy. However, the determinacy of factor score estimates has profound implications in 

the definition of the latent constructs, that is, validity (Grice, 2001). In this vein, Booth and 

Hughes (2014) observed that, despite the differences in model fit and parameter estimates 

between CFA and EFA, both techniques showed very similar factor score estimates. 
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Given all this, the present paper aims to fill these gaps by comparing the performance 

of several factor analytic techniques under a unified set of conditions by means of a Monte 

Carlo simulation study. Apart from several already existing techniques, a new procedure that 

combines EFA (or BSEM) and CFA is here presented and evaluated. The ultimate goal of the 

simulation study is to provide applied recommendations and guidelines to help researchers 

choose the most appropriate technique as a function of the model and data characteristics. 

The remainder of the paper is laid out as follows. First, a brief introduction of EFA, 

CFA, and some middle-ground solutions between these approaches is presented. Second, a 

procedure that systematically combines EFA (or BSEM) and CFA is introduced. Third, the 

performance of the factor analytic techniques is evaluated by means of a simulation study. 

Fourth, the techniques are illustrated using real data. Finally, a discussion is made including 

applied guidelines and implications, as well as future research lines. 

Exploratory Factor Analysis 

 EFA was developed in the first half of the 20th century, based on the work of 

Spearman and Thurstone, thus being the first available factor analytic technique. This was for 

a time the only alternative to explore the internal structure of scales and questionnaires. With 

the emergence of the CFA in the 1970s (described below), which provided some theoretical 

and technical advantages, EFA became more oriented towards the evaluation of new 

instruments, while CFA gained popularity as a tool to examine the structure of instruments 

that had already received support in the previous literature. Nonetheless, the recent 

development of ESEM, which allows for the specification of EFA within structural equation 

modeling, has rekindled the interest of both applied and methodological studies in EFA. 

 Arguably, the defining feature of EFA is that, as an unrestricted, data-driven 

procedure, all loadings can obtain non-zero values. Thus, by estimating all possible cross-

loadings, this technique is not prone to model misspecifications (beyond dimensionality 
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issues). This usually results in good model fit and accurate parameter estimates (Asparouhov 

& Muthén, 2009; Marsh et al., 2014; Perry et al., 2015; Sorrel et al., 2021). These desirable 

features, however, come at some costs. First, EFA suffers from rotational indeterminacy, that 

is, there exist infinite factor loading matrices in EFA that are compatible with the observed 

covariance matrix. To minimize the degree of arbitrariness, several rotation procedures have 

been developed aiming to find a loading structure that facilitates interpretation among the 

infinite possible options. Even though each rotation procedure minimizes a particular 

function, often leading to substantially different rotated parameters (see Browne, 2001; Sass 

& Schmitt, 2010; Schmitt & Sass, 2011), they usually seek a simple structure. Rotation 

procedures are usually divided into orthogonal procedures (e.g., Varimax; Kaiser, 1958), 

which force factors to be independent, and oblique procedures (e.g., Geomin; Yates, 1987; 

Promin; Lorenzo-Seva, 1999; Oblimin; Clarkson & Jennrich, 1988), which allow factors to 

be inter-correlated. Oblique rotation is usually preferred in psychological sciences due to the 

inherently complex and interrelated nature of the latent constructs (Goretzko et al., 2021). 

Furthermore, the great complexity of EFA models (i.e., the estimation of many parameters) 

usually demand large sample sizes, as EFA shows estimation issues and unstable results with 

small samples (N < 300; Liang et al., 2020; Marsh et al., 2020). This problem is not exclusive 

for one estimation method (e.g., Liang et al., 2020; Ximenez, 2006), although maximum 

likelihood can be more prone to it in the presence of weak factors and very small sample 

sizes (N = 100; Briggs & MacCallum, 2003). Moreover, as any other data-driven method 

would, EFA is also prone to capitalization on chance because the final rotated loading matrix 

will inherently contain some degree of sampling error that does not reflect the actual 

population model. The extent to which the amount of error might cause a disruption to the 

substantial interpretation of the model will decrease with larger sample sizes, but the final 

EFA solution should be always evaluated in terms of theoretical plausibility. In this vein, just 
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as a meaningless parameter should not be included in a CFA just to improve model fit (as 

discussed in the next section), an untenable cross-loading should not be retained in an EFA. 

The blind acceptance of EFA solutions that are difficult to explain will inevitably lead to 

models that are difficult to generalize. This issue is of special relevance from an applied 

perspective because the satisfactory model fit often showed by EFA might tempt practitioners 

to retain these models without further questioning. 

The above description refers to EFA with a mechanical rotation procedure. 

Mechanical rotation procedures (e.g., Varimax, Geomin) are purely data-driven procedures 

and, thus, they do not require the researcher to prespecify the internal structure beyond 

determining the number of factors. Contrary to these methods, target rotation incorporates 

theoretical knowledge into EFA by means of a prespecified target matrix that reflects the 

hypothesized internal structure. By allowing factors to correlate (oblique target rotation) or 

not (orthogonal target rotation), this procedure will provide, among the infinite possible 

loading matrices, the one that is closer to the target matrix. Thus, it is regarded as a middle-

ground solution between EFA and CFA (Browne, 2001; Marsh et al., 2014). Due to this 

balance, EFA with target rotation has been considered as a sound option to enhance 

interpretability and reduce the probability of capitalization on chance (Marsh et al., 2014). 

However, it should be noted that, unlike mechanical procedures, target rotation is subject to 

misspecification errors (Lorenzo-Seva & Ferrando, 2020). Although the consequences of 

such errors are expected to be milder than those in a CFA model, model misspecification 

might result in biased parameters. 

Confirmatory Factor Analysis 

CFA was developed in the 1970s as a restricted version of EFA with the purpose of 

conducting factor analysis from a hypothesis-testing approach. Accordingly, CFA requires an 

a priori specification of the internal structure of the questionnaire, which is then tested by 
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fitting the model to the data. In practice, an independent clusters model CFA (ICM-CFA) is 

often specified by freely estimating only one target loading (i.e., theoretically expected 

loading) per item, while fixing to zero the remaining non-target loadings. This makes ICM-

CFA a purely hypothesis-driven approach that focuses on the substantial meaning and 

interpretation of the model. However, due to the inherent complexity of most psychological 

constructs, it has been argued that it is virtually impossible to create pure indicators that load 

on a single factor (Asparouhov & Muthén, 2009; Booth & Hughes, 2014; Hopwood & 

Donnellan, 2010; Marsh et al., 2014). Instead, small but non-negligible cross-loadings are 

expected at the population level, which will cause CFA to fail in terms of poor model-data fit 

and biased parameter estimation, particularly with an overestimation of factor correlations 

(Asparouhov & Muthén, 2009; Xiao et al., 2019). 

 To mitigate these problems, researchers often make sequential model modifications to 

the CFA by freeing parameters that are likely to be misspecified. The inspection of 

modification indices (MI; Satorra, 1989; Sörbom, 1989) and expected parameter change 

(EPC; Saris et al., 1987) serve for this matter. The MI associated to a fixed parameter 

indicates the gain in model fit if the parameter were freely estimated, while the EPC is a 

direct estimation of the expected value of such parameter if freed. Hence, an ICM-CFA can 

become more flexible by introducing the cross-loadings with a large associated MI or EPC in 

the model. As a counterpart, the better model fit can come at the cost of capitalization on 

chance. That is, these data-driven model modifications can be based on idiosyncratic 

characteristics of a particular sample, thus being non-generalizable to subsequent samples 

(Browne, 2001; MacCallum et al., 1992). This issue can be further aggravated if model 

misspecifications are present in the original formulation of the ICM-CFA. The recommended 

strategy to mitigate this problem is to make model modifications only if the sample size is 

sufficiently large to provide stable results (usually over 1,000), the number of suggested 
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modifications is not large and, most importantly, such modifications have a meaningful 

interpretation according to theory. The relevance of these precautions is even higher as 

simulation studies have reported a non-optimal performance of both MI and EPC in 

consistently identifying misspecified parameters (Whittaker, 2012; Yuan & Liu, 2021). 

Lastly, even though the present paper focuses on scenarios with a single sample, it should be 

emphasized that using two or more samples to cross-validate the structure found with one 

particular sample using either EFA or CFA is always recommended as a complement to the 

evaluation of the theoretical interpretability, especially to check whether unexpected findings 

are generalizable or can be regarded as spurious (MacCallum et al., 1992). 

Between Confirmatory and Exploratory: From Theory to Data 

 As stated above, the implementation of either a purely confirmatory or purely 

exploratory model comes with a host of methodological and substantive challenges. To 

mitigate them, several techniques have been recently developed with the aim of 

complementing theoretical and empirical information. These new proposals can be regarded 

as middle-ground solutions between the confirmatory and exploratory poles of the factor 

analysis continuum.1 Two traditional middle-ground solutions have been already mentioned: 

(a) the use of MI or EPC to make sequential modifications in CFA models, and (b) the 

implementation of EFA with target rotation. There are, however, two methods related to these 

solutions that are worth mentioning. First, Saris et al. (2009) developed a more 

comprehensive sequential model modification procedure by considering the MI, the statistical 

power associated to the MI, and the fully standardized EPC (Chou & Bentler, 1993) to decide 

whether a parameter should be freed. Although the Saris procedure relies on the somehow 

                                                 
1 It has been repeatedly stated in the literature that the confirmatory and exploratory terms are not precise in the 

sense that a CFA can be implemented in an exploratory fashion, while an EFA can be implemented in a more 

confirmatory fashion (e.g., Browne, 2001). We agree that the terms restricted and unrestricted factor analysis 

(Ferrando, 2021) are far more accurate, and the only reason why we stick to the conventional terminology is to 

facilitate readability. 
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arbitrary selection of cutoff values for each index, it is an exhaustive method that can 

potentially mitigate the limitations associated to the sample size dependency of MI. However, 

despite this promising feature, Whittaker (2012) found that the Saris procedure did not 

consistently provide a more accurate identification of relevant misspecified parameters than 

sole consideration of MI. Second, Lorenzo-Seva and Ferrando (2020) recently developed a 

method to apply sequential modifications to a target matrix, so that the final EFA solution is 

based on an objectively refined target matrix (RETAM). The RETAM procedure is closely 

related to the iteration target rotation algorithm previously developed by Moore et al. (2015). 

The main difference between both methods, and the reason why we focus here on RETAM, is 

that the iteration target rotation algorithm is a purely exploratory procedure that is initiated by 

using a standard analytic rotation method (which will be later modified in an iterative 

manner), while RETAM requires researchers to specify a target matrix in advance, thus 

providing the method a confirmatory basis (Lorenzo-Seva & Ferrando, 2020). Specifically, in 

Step 1 of the RETAM procedure, an EFA using a partially specified target rotation is applied. 

Note that the target matrix includes some zeros, which indicate that the researcher anticipates 

that the item will not have a salient loading on the factor. The remaining entries of the target 

matrix are unspecified (i.e., with no value), and thus the target rotation only minimizes the 

sum of the squared rotated loadings corresponding to the zero positions. In step 2, the Promin 

approach is applied to the target rotated matrix to refine it. Specifically, the target rotated 

matrix is row-normalized, and a cutoff is computed for each column (i.e., 𝑚𝑘 + 𝑠𝑘/4, where 

𝑚𝑘 and 𝑠𝑘 are the mean and standard deviation of the squared loadings in column k). The 

loadings whose squared magnitude is lower than their corresponding cutoff will be the zeros 

in the new target matrix. Steps 1 and 2 are repeated until the partially specified target matrix 

does not change in two consecutive iterations. The authors call it objectively refined target 

matrix since the refinement process is based solely on empirical information (without the 
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involvement of human judgment). Lorenzo-Seva and Ferrando (2020) showed that the 

RETAM procedure was able to correct misspecification errors in the target matrix and, thus, 

provide more accurate parameter estimates. The performance of RETAM under different 

conditions than those covered in their study (e.g., 20 items and 3 independent factors) is yet 

to be evaluated. 

Another recent technique that has gained considerable attention is BSEM. BSEM is a 

middle-ground solution because the internal structure of the questionnaire needs to be 

specified a priori (like in CFA), but no loading is fixed to zero (like in EFA). So far, BSEM 

resembles EFA with target rotation. The difference between both methods is that in BSEM 

the hypothesized model formulation is incorporated in the estimation by using prior 

distributions for the factor loadings. Namely, informative priors (e.g., normal distributions 

with small variance) are used for non-target loadings, while non-informative priors (e.g., 

uniform distributions or normal distributions with large variance) are used for major loadings 

(Muthén & Asparouhov, 2012). Thus, BSEM gives researchers more flexibility when 

incorporating prior knowledge into the model formulation. Motivated by these desirable 

characteristics, BSEM has been already used in scale validation studies (e.g., Fong & Ho, 

2013; Golay et al., 2013). Moreover, it has shown promising results in recent simulation 

studies with continuous variables (Guo et al., 2019; Xiao et al., 2019; Wei et al., 2022) and 

categorical variables (Liang et al., 2020), as well as bifactor models (Zhang et al., 2021). 

Overall, these studies point out that BSEM might be a suitable option under small sample size 

conditions, particularly when cross-loadings are not large. However, simulation results also 

highlight that the specification of the priors has a great impact on BSEM results. For instance, 

Xiao et al. (2019) found that BSEM with a correct prior specification clearly outperformed 

EFA in parameter estimation accuracy, but this was not the case for BSEM with priors with 

mean zero for cross-loadings. Guo et al. (2019) also obtained substantial differences in 
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BSEM solutions depending on whether a prior with mean 0 or 0.1 was used for cross-

loadings. In practice, correctly specifying the priors is virtually impossible (MacCallum et al., 

2012; Xiao et al., 2019), and the implementation of sensitivity analyses to evaluate the 

consistency of BSEM results under different prior specifications has been repeatedly 

recommended (e.g., Liang et al., 2020; MacCallum et al., 2012; Muthén & Asparouhov, 

2012; Xiao et al., 2019). Implementing such a sensitivity analysis might be a difficult task in 

applied studies. Varying the variance of the priors seems easier than applying different means 

to different loadings; however, it has been shown that the mean of the priors has a much 

greater effect on the results compared to the variance of the priors (Liang et al., 2020; Xiao et 

al., 2019; Wei et al., 2022). An additional difficulty for practitioners might be the evaluation 

of model fit in BSEM analyses; until recently, the traditional goodness-of-fit indices that are 

available for CFA and EFA could not be computed for Bayesian analyses (MacCallum et al., 

2012; Rindskopf, 2012). Finally, some authors have pointed out that, similarly to EFA, the 

estimation of all cross-loadings in BSEM can lead to complex structures that, subsequently, 

result in implausible and non-generalizable models (Rindskopf, 2012; Stromeyer et al., 

2015). 

Between Confirmatory and Exploratory: From Data to Theory 

All the procedures described above are based on a previously hypothesized simple 

internal structure, but then allowed to achieve more complex patterns based on the empirical 

data. That might be considered as a desirable feature, since it lets researchers testing their 

specific theories, acknowledging the possibility of some deviations (i.e., cross-loadings). On 

the other hand, relying on a hypothesized internal structure is always inherently associated to 

a certain probability and magnitude of model misspecification (Yuan & Liu, 2021), which 

can be a cause of concern. For instance, a moderate amount of misspecification errors in the 

original model will increase the probability of making an early mistake in sequential 
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modifications, disrupting subsequent ones (Yuan & Liu, 2021). In this case, the complex final 

structure would be uninterpretable and unstable (MacCallum et al., 1992; Marsh et al., 2020). 

Given the above, a “free-to-restricted” middle-ground solution that can achieve a 

parsimony solution while being free of potential model misspecification is still to be 

developed. Here, we propose a method that can fulfil these criteria. The procedure is 

conceptually simple and, despite having been tangentially discussed in the literature (e.g., 

Bandalos & Finney, 2019; Schmitt et al., 2018), to the authors’ knowledge it has not been 

implemented in applied studies nor systematically evaluated in simulation studies. The broad 

rationale of the procedure consists in three steps: (a) fit an EFA model to the data using a 

mechanical rotation procedure, (b) identify the relevant loadings from the rotated EFA 

solution, and (c) fit a CFA model by fixing to zero the non-relevant loadings and freely 

estimating the relevant loadings. This method is referred to as EFA-based CFA (ECFA). 

Although the idea of introducing restrictions to unrestricted factor analysis is not new (e.g., 

Huang et al., 2017), we propose a new set of procedures to implement it in a systematic 

fashion. 

The first step of the ECFA is equivalent to a conventional EFA implementation and, 

accordingly, researchers need to specify the extraction method and the rotation procedure 

(see Goretzko et al., 2021, and Izquierdo et al., 2014, for accessible reviews about EFA uses 

and recommendations). In the remainder of this paper, maximum likelihood estimation and 

oblique Geomin rotation as implemented in Mplus version 8 (Muthén & Muthén, 2017) will 

be assumed for the first step of the ECFA procedure. Please note that, in the codes provided 

below, the ECFA method can be also implemented using the lavaan package (Rosseel, 

2012) from R software (R Core Team, 2021). 

Secondly, in order to develop an empirical procedure to identify the relevant loadings, 

an operative definition of relevant loadings in first required. Two definitions are here 
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considered. The first one defines a relevant loading as a loading that is different from zero in 

the population, that is, a statistically significant loading. The use of factor loading standard 

errors to get information about the stability of the internal structure is not new, but has been 

widely overlooked (Asparouhov & Muthén, 2009; Cudeck & O’Dell, 1994; Schmitt & Sass, 

2011). The third step of the ECFA procedure would then consist in fitting a CFA in which the 

statistically significant loadings from the EFA solution are freely estimated, while the non-

statistically significant loadings are fixed to 0. This variation, based on the p-value, will be 

referred to as ECFAp. 

Despite the advantages of using standard errors to identify the relevant factor 

loadings, the dependency on sample size might be an issue under some scenarios, such as 

low-scale assessments. It this context, small cross-loadings might be non-significant despite 

having a substantial impact on parameter estimation (Asparouhov & Muthén, 2009). This 

issue is addressed by the second definition of relevant loading, which determines the 

importance of the loadings based on their relative contribution to the variance of the item. We 

propose the R-squared method, which is aligned with this definition. The R-squared method 

is based on the work of de la Torre and Chiu (2016) on the empirical Q-matrix validation in 

the cognitive diagnosis modeling framework. To understand the rationale of the method, let J 

denote the number of items and K denote the number of factors. Note that there is a total of 

2K possible configurations when determining what factors are being measured by an item. 

Following the terminology used in cognitive diagnosis modeling, we will denote the binary 

vector of factors being measured by an item as a q-vector. For instance, the q-vector of an 

item measuring the second and third factors in a four-dimensional test (K = 4) would be q = 

{0, 1, 1, 0}. Furthermore, let K(m) denote the number of factors included in a q-vector and k(m) 

denote the vector that identifies the position of such factors (K(m) = 2 and k(m) = {2, 3} in the 

previous example). The pseudo-algorithm for the complete implementation of the ECFAR2 
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(i.e., the ECFA using the R-squared method for relevant loading identification) procedure is 

presented in the following: 

1. Fit an EFA with a mechanical oblique rotation procedure (e.g., Geomin). 

2. Extract the structure matrix S: 

𝐒 = 𝚲𝚽, (1) 

where Λ is the (rotated) factor loading matrix and Φ is the factor intercorrelation 

matrix. Each entry in S (sjk) corresponds to the correlation between item j and factor k. 

3. Calculate the proportion of variance accounted for each item j by the factors included 

in each q-vector m (𝑅𝑗𝑚
2 ): 

𝑅𝑗𝑚
2 = 𝒔𝑗𝒌(𝑚)𝚽𝒌(𝑚)𝒌(𝑚)

−1 𝒔
𝑗𝒌(𝑚)
T . (2) 

Note that 𝑅𝑗𝑚
2 = 𝒔

𝑗𝒌(𝑚)
2  for the q-vectors with K(m) = 1, and 𝑅𝑗𝑚

2 = ℎ𝑗
2 for the q-vector 

with K(m) = K, where ℎ𝑗
2 is the communality of item j. 

4. For each item j and q-vector m, define the proportion of variance accounted for 

(PVAFjm) as 

PVAF𝑗𝑚 =
𝑅𝑗𝑚
2

ℎ𝑗
2 . (3) 

5. For each item j, define a candidate q-vector for each K(m) ∈ {1, …, K} as the one with 

the highest 𝑅𝑗𝑚
2  among the q-vectors with the same K(m). There will be K candidate q-

vectors per item, one for each K(m). 

6. For each item j, define the set of appropriate q-vectors as those candidate q-vectors 

that fulfill PVAFjm > φ, where φ is a prespecified cutoff point. 

7. For each item j, define the suggested q-vector as the simplest q-vector (i.e., the one 

with the lowest K(m)) among the set of appropriate q-vectors. 

8. Fit a CFA by freely estimating the relevant factor loadings (identified as 1 in the 

suggested q-vectors) and fixing to zero the non-relevant factor loadings (identified as 

0 in the suggested q-vectors). 
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In summary, the R-squared method consists in: (a) fitting an EFA to the data, (b) 

identifying which factors are relevant for each item (i.e., which combination of factors 

explain a large proportion of the item’s variance), and (c) fitting a CFA to the data based on 

the identified relevant loadings. Differently from the use of traditional cutoff values directly 

applied to each individual loading (e.g., λ ≥ 0.3), the R-squared method applies a more 

comprehensive approach by considering all the loadings of an item, in addition to factor 

correlations, to determine its most appropriate q-vector. Table 1 illustrates the functioning of 

the ECFAR2, showing the suggested q-vector for item j as a function of the factor correlation 

(ϕ12), the cross-loading magnitude (λj1), and the major loading magnitude (λj2). It should be 

noted that the choice of φ will have an important role in the final suggested q-vectors. Higher 

values for φ will result in more complex models. In the extreme case of φ = 1, all suggested 

q-vectors will be fully specified (i.e., {1}), resulting in a completely unrestricted model. On 

the opposite, a low value for φ will result in simpler models, to the point where a very low φ 

will lead to an ICM-CFA formulation. Researchers can specify the value of φ either based on 

their desired minimum proportion of variance accounted for the items by the factors or an 

empirical criterion. Namely, the latter approach can be accomplished by following the one 

used in penalized likelihood SEM (Huang et al., 2017; Huang, 2020), where different values 

of φ can be employed to fit several CFA based on the different resulting model formulations, 

and then the optimal model can be selected as a function of a model fit index. The Bayesian 

information criterion (BIC; Schwarz, 1978) is here selected following Huang et al. (2017). 

[Please insert Table 1 here] 

Finally, note that either the p-value criterion or the R-squared method can be applied 

to other factor analytic techniques apart from EFA. For instance, if a researcher wanted to 

incorporate previous knowledge into the initial internal structure while achieving a 

parsimonious final solution, these approaches could be easily incorporated to BSEM, 
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resulting in the BSEM-based CFA (BCFA) procedure. In addition to ECFAp and ECFAR2, we 

also explore the performance of BSEMp and BSEMR2 in the present study. 

The Present Investigation 

 Addressing the limitations of previous research focused on the comparison of several 

factor analytic techniques, the present study provides a broad comparison framework 

covering a larger set of methods, simulation conditions, and performance measures. Namely, 

ICM-CFA, CFA with sequential model modifications using either MI (CFAMI) or the Saris 

procedure (CFAS), EFA with Geomin (EFAG) and target (EFAT) rotation, the RETAM 

procedure, BSEM, ECFAp, ECFAR2, BCFAp, and BCFAR2 will be systematically evaluated. 

Furthermore, contrasting with previous simulation studies (with the only exception of 

Lorenzo-Seva & Ferrando, 2020), in the present research the data were generated in a more 

realistic way by introducing misfit in the population covariance matrix (Cudeck & Browne, 

1992; Lai, 2019). The ultimate goal of the simulation study, which is complemented with a 

real data illustration, is to serve as the basis for the development of applied recommendations 

and guidelines. 

 To facilitate the formulation of specific research questions and hypotheses, Table 2 

summarizes the main characteristics of the eleven factor analytic techniques to be compared 

in the present study. The techniques have been ordered based on a confirmatory-exploratory 

continuum as found in the simulation study (this is described in the Similarity of the Factor 

Analytic Techniques subsection). First, regarding the initial specification of the internal 

structure, hypothesis-driven techniques will facilitate the substantial interpretation of the final 

solution, although at the potential cost of having model misspecifications. On the contrary, 

data-driven procedures are aimed at finding an approximately simple structure by optimizing 

a complexity function of factor loadings, which might increase the risk of lacking theoretical 

interpretability. Second, factor analytic techniques with a restricted factor space will produce 
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more parsimonious loading matrices, which might facilitate the understanding of the final 

solution; however, if non-negligible cross-loadings have been incorrectly fixed to 0, the 

model will lack flexibility to accommodate such misspecification, leading to a worse model 

fit and biased parameter estimates. On the other hand, unrestricted techniques will be able to 

address this problem by giving non-zero values to small factor loadings; as a counterpart, the 

resulting complex solutions might hinder the interpretability of the model. Third, the original 

techniques (i.e., ICM-CFA, BSEM, EFAT, EFAG) can be distinguished from their variants 

(i.e., CFAMI, CFAS, BCFAp, BCFAR2, RETAM, ECFAp, ECFAR2), which apply 

modifications to the structure obtained by their original technique. Following the 

categorization of Lorenzo-Seva and Ferrando (2020), model modifications can be made by 

only considering the inclusion of new parameters (make more complex), only considering the 

removal of already-included parameters (make simpler), or both (complete refinement). 

According to this categorization, the procedures that aim to make restrictive models more 

complex (e.g., CFAMI, CFAS) are expected to be more dependent to the initial degree of 

misspecification than the procedures that aim to simplify unrestricted models (e.g., ECFA). 

The specific research questions and hypotheses to be explored in the present study are 

enumerated in the following: 

(Q1) How can the factor analytic techniques be grouped or categorized according to their 

functioning across conditions when the model (i.e., initial internal structure) is 

slightly misspecified? A broader understanding of the similarity between the 

performance of the methods is expected to be achieved by comparing all the above-

mentioned techniques under a unified set of conditions. Namely, ICM-CFA is 

expected to perform very differently (and objectively worse) compared to the other 

procedures. EFAT is expected to be located between EFAG and BSEM in terms of 

functioning. The variants of the original procedures (i.e., CFAMI, CFAS, BCFAp, 
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BCFAR2, RETAM, ECFAp, ECFAR2) are expected to behave more similarly between 

each other compared to the original procedures (i.e., ICM-CFA, BSEM, EFAT, 

EFAG). 

(Q2) When the baseline model is theoretically constrained (i.e., ICM-CFA) but slightly 

misspecified, does sequential model modification substantially improve the recovery 

of the internal structure of a test? Previous studies have reached unclear conclusions 

regarding the use of MI, stating that they can be provide useful information but 

should not be solely used for model modification (Whittaker, 2012). Considering a 

slightly misspecified model, we expect CFAMI and CFAS to provide a better 

recovery of the internal structure compared to ICM-CFA. 

(Q3) When the baseline model is unconstrained but theoretically guided (e.g., BSEM, 

EFAT) and slightly misspecified, does adding model constraints (i.e., BCFA) or 

refining the initial internal structure (i.e., RETAM) provide substantial advantages?  

 The RETAM procedure has been only evaluated in the original study by Lorenzo-

Seva and Ferrando (2020), while the BCFA techniques have not been previously 

studied. BCFA procedures are expected to increase model stability by fixing to zero 

the non-relevant factor loadings resulting from a BSEM, while retaining the relevant 

cross-loadings. RETAM is expected to identify the non-zero cross-loadings, thus 

providing more accurate parameter estimates compared to EFAT. 

(Q4) When the baseline model is unconstrained and not guided by the theory (i.e., EFAG), 

does adding model constraints (i.e., ECFA) provide substantial advantages? ECFA 

procedures are expected to differentiate the negligible cross-loadings from the non-

zero cross-loadings based on the EFAG solutions, leading to a more accurate 

parameter estimation. 
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(Q5) Do the hypothesis-based techniques (i.e., by fixing, targeting, or setting priors for 

expected zeros) substantially improve the performance of the theoretically blind 

techniques (i.e., EFAG, ECFA) when the model is only slightly misspecified? The 

overly restrictive structure of ICM-CFA is expected to be unable to accommodate 

slightly misspecified models. The remaining hypothesis-driven techniques are 

expected to perform similarly to the data-driven techniques under slightly 

misspecified models, due to either their ability to identify relevant cross-loadings or 

to be flexible enough to accommodate them. 

(Q6) Is there a clear correspondence between parameter estimation accuracy, model fit 

indicators, and determinacy of factor score estimates? This correspondence is not 

expected. On the one hand, sequential model modifications are widely known for 

improving model fit despite not always making the proper adjustments (MacCallum 

et al., 1992). On the other hand, it has been shown that EFA and CFA can provide 

similar factor score estimates despite showing very different factor loadings and 

model fit (Booth & Hughes, 2014).  

[Please insert Table 2 here] 

Simulation Study 

Design 

 A Monte-Carlo simulation study was conducted to evaluate the performance of eleven 

factor analytic techniques by manipulating seven simulation factors: sample size (N = 300, 

650, 1000), number of factors (K = 3, 5), number of indicators per factor2 (JK = 4, 8), factor 

correlations (FC = 0, 0.5), magnitude of main loadings (ML = 0.5, 0.7), magnitude of cross-

loadings (CL = 0.15, 0.30), and number of cross-loadings per factor (CLK = 1, 2). The levels 

                                                 
2 By number of indicators per factor, we refer to the number of items that have a major loading (i.e., with a 

magnitude equal to ML) on each factor. 
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for each simulation factor were selected in pursue of representativeness of applied settings, 

reflecting a small/weak or large/strong condition. For instance, even though many scale 

validation studies make use of large sample sizes (N > 1,000; e.g., Arens & Morin, 2016; 

Wiesner & Schanding, 2013), more accessible smaller samples (N < 350) are also common 

(e.g., Fong & Ho, 2013; Golay et al., 2013). In addition, many popular psychological scales 

such as the NEO-FFI (Costa & McCrae, 1992), the Big Five Inventory (BFI; John et al., 

1991), or the Personality Inventory for DSM-5 (PID-5; Krueger et al., 2012) are designed to 

measure around 3 and 5 factors with a number of items/facets per factor that usually varies 

between 4 and 10 (e.g., Fong et al., 2015; Garrido et al., 2020). Moreover, substantive 

loadings are often found to fall within a range from 0.5 to 0.8 (e.g., DiStefano et al., 2017; 

Perry et al., 2013), while moderate to strong factor correlations up to 0.5 are commonly 

encountered in personality or clinical scales (e.g., Booth & Hughes, 2014; Wiesner & 

Schanding, 2013). Finally, even though the amount and magnitude of cross-loadings greatly 

depends on the context of study, it is common in applied studies to obtain a few cross-

loadings with a magnitude up to 0.3 (e.g., Garrido et al., 2020; Tóth-Kiraly, 2017). 

Factor Analytic Techniques 

 Eleven factor analytic techniques were evaluated. All techniques were implemented 

using maximum likelihood estimation with Mplus version 8 via the MplusAutomation 

package (Hallquist & Wiley, 2018) of R software, with two exceptions. First, Markov chain 

Monte Carlo (MCMC) estimation was used for implementing BSEM (Muthén & 

Asparouhov, 2012; Muthén & Muthén, 2017). Second, the Saris procedure was implemented 

with the lavaan package because it provides all the information required for the Saris 

procedure (i.e., MI, SEPC, and statistical power of MI), but Mplus does not. The argument 

mimic=“Mplus” was used to ensure the maximum similarity with the other techniques. A 
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brief description of each factor analytic technique implementation is provided in the 

following: 

– Independent clusters model CFA (ICM-CFA): with major loadings freely estimated 

and the remaining loadings (i.e., cross-loadings and zero-loadings) fixed to 0. 

– CFA with MI (CFAMI): after fitting the ICM-CFA, the loading with the highest 

associated MI, given that the MI was higher than 10.82 (p ≤ 0.001), was introduced in 

the model. The process was iteratively repeated until no factor loading fulfilled that 

criterion. 

– CFA with the Saris procedure (CFAS): after fitting the ICM-CFA, the loading with 

the highest associated MI (higher than 10.82) was introduced in the model if the 

statistical power of the MI was lower than 0.75 or the SEPC was higher than 0.10. 

The process was iteratively repeated until no factor loading fulfilled the above 

criteria. Note that, even though Saris et al. (2009) used an SEPC higher than 0.40 for 

factor loadings in their study, they recognized that these cutoffs are arbitrary and can 

be changed for different contexts. Given that cross-loadings with magnitudes lower 

than 0.40 were generated in the present study, we used 0.10 as the cutoff for factor 

loadings. 

– EFA with oblique Geomin rotation (EFAG): with an epsilon parameter equal to 0.001 

for the case of three factors (K = 3) and 0.01 for the case of five factors (K = 5) 

following Muthén and Muthén (2017). 

– EFA with oblique target rotation (EFAT): with major loadings left as unspecified and 

the remaining loadings (i.e., cross-loadings and zero-loadings) specified as zero in the 

partially specified target matrix. 
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– EFA with refined target matrix (RETAM): after fitting the EFAT, the target matrix 

was iteratively refined using the RETAM procedure with a complete refinement 

approach (Lorenzo-Seva & Ferrando, 2020). 

– BSEM: with non-informative priors for the major loadings and informative priors with 

small variance (N[0, 0.01]) for the remaining loadings (i.e., cross-loadings and zero-

loadings; Guo et al., 2019; Muthén & Asparouhov, 2012). The default options in 

Mplus were used for the MCMC estimation, using a maximum number of iterations of 

60,000 for each MCMC chain. 

– ECFA and BCFA with p-value criterion (ECFAp and BCFAp, respectively): after 

fitting the EFAG or BSEM, respectively, a CFA was conducted by freely estimating 

the resulting statistically significant loadings and fixing to zero the non-significant 

loadings (α = 0.05). 

– ECFA and BCFA with R-squared criterion (ECFAR2 and BCFAR2, respectively): after 

fitting the EFAG or BSEM, respectively, a CFA was conducted by freely estimating 

the resulting relevant loadings and fixing to zero the non-relevant loadings. The R-

squared method was used to identify the relevant loadings using thirty values of φ 

(from 0.70 to 0.99 in steps of 0.01). The BIC was then employed to select the best-

fitting solution. 

Data Generation 

 Data were generated from a linear common factor model. Instead of generating a 

correct model that fits exactly at the population level, which is regarded as unrealistic in 

applied settings (Lai, 2019; Lorenzo-Seva & Ferrando, 2020), model error was introduced in 

the data generation process. Namely, the procedure by Cudeck and Browne (1992) was used, 

which allows to ensure that the minimum of the discrepancy function is achieved at the 

population model parameter values specified by the researcher, while there is a prespecified 
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degree of model misfit at the population level. Specifically, the population covariance matrix 

was generated as 𝚺∗ = 𝚺(𝛉0) + Δerror, where 𝚺(𝛉0) is the reproduced variance-covariance 

matrix and Δerror is a perturbation matrix that is chosen to ensure that 𝛉0 =

argmin 𝐹ML[𝚺
∗, 𝚺(·)] and 𝐹ML[𝚺

∗, 𝚺(𝛉0)] = 𝑐. In the present study, the c value was chosen 

in such a way that the root-mean-square error of approximation (RMSEA; Steiger, 1990) was 

equal to 0.05, which is a commonly encountered value in applied research (Booth & Hughes, 

2014). This procedure allows to study the recovery of model parameters (𝛉0), even if the 

model is misspecified. If necessary, the data generation process was repeated until the 

resulting population correlation matrix Σ was definite positive. 

 For each of the resulting 128 conditions after combining all the simulation factor 

levels, one-hundred datasets were generated. Standardized continuous variables were 

simulated from a multivariate normal distribution using Σ and a sample size of N = 300, 650, 

or 1,000 with the mvtnorm package (Genz et al., 2020). The population loading matrices 

(Λ) were randomly generated with the following constraints: (a) each factor was measured by 

the same number of items (JK = 4 or 8) and (b) each factor contained the same number of 

cross-loadings (CLK = 1 or 2). For the remainder of the paper, the population factor loadings 

with magnitude equal to ML, CL, and zero will be referred to as major loadings, cross-

loadings, and zero-loadings, respectively. 

Performance Measures and Data Analysis 

 The behavior of the factor analytic techniques was evaluated using seven performance 

measures. First, the convergence rate (CR; i.e., proportion of converged estimations in each 

condition) and the computation time in seconds (CT) were examined to give an idea of the 

feasibility and practicality of each technique under each condition. For reference purposes, 

the simulation was conducted in a desktop computer with 8 3.60-GHz processors and 16GB 

RAM memory. 
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Second, parameter estimation accuracy was examined by means of the bias and root-

mean-square error (RMSE): 

𝐵𝑖𝑎𝑠(�̂�) =
1

𝑅
∑(�̂�𝑟 − 𝜽)

𝑅

𝑟=1

 (4) 

and 

𝑅𝑀𝑆𝐸(�̂�) = √
1

𝑅
∑(�̂�𝑟 − 𝜽)

2

𝑅

𝑟=1

, (5) 

where �̂�𝑟 is the parameter estimate in replication r, θ is the generating value of the parameter, 

and R is the number of converged replications in each condition. Overestimation and 

underestimation refer to a positive and negative bias, respectively. Equations (4) and (5) were 

applied separately to major loadings, cross-loadings, zero-loadings, and factor correlations. 

In order to better understand the performance similarities of the techniques regarding 

parameter estimation, an exploratory graph analysis (EGA; Golino & Epskamp, 2017) was 

conducted on a dataset formed by the bias and RMSE of major loadings, cross-loadings, zero-

loadings, and factor correlations of all techniques. Pearson correlations and Gaussian 

graphical model using graphical LASSO were used for EGA implementation with the 

EGAnet package (Golino & Christensen, 2021). The resulting symmetric network from the 

EGA was further inspected by means of a multidimensional scaling (MDS) analysis using the 

smacof package (Mair et al., 2021). 

An additional analysis was conducted to better summarize the information with the 

purpose of providing applied guidelines. Namely, a new dependent variable called proportion 

of successful parameter estimation (PSPE) was defined as the proportion of replications in a 

specific condition in which a factor analytic technique obtained an RMSE ≤ 0.1 in major 

loadings, cross-loadings, zero-loadings, and factor correlations. A non-converged replication 

was counted as an unsuccessful estimation for the PSPE computation. Thus, the PSPE was 

intended as a heuristic performance measure that allows to identify not the best method, but 
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rather what methods can be trusted under what conditions. Table 3 illustrates the PSPE under 

the conditions N = 1,000, JK = 8, FC = 0, and ML = 0 (and the different levels of K, CL, and 

CLK). For each technique, the average PSPE (𝑃𝑆𝑃𝐸̅̅ ̅̅ ̅̅ ̅), minimum PSPE (PSPEmin), and 

maximum PSPE (PSPEmax) can be obtained for these specific conditions. A technique was 

considered as successful under a specific condition if it obtained a 𝑃𝑆𝑃𝐸̅̅ ̅̅ ̅̅ ̅ ≥ 0.90 and a 

PSPEmin ≥ 0.70. 

[Please insert Table 3 here] 

 Beyond parameter estimation, the model fit of the factor analytic techniques was 

evaluated using the RMSEA and the comparative fit index (CFI; Bentler, 1990): 

𝑅𝑀𝑆𝐸𝐴 = max(√
�̂�𝑀

𝑑𝑓𝑀(𝑁 − 1)
, 0) (6) 

and 

𝐶𝐹𝐼 = 1 −
max(𝛿𝑀, 0)

max(𝛿𝑁 , 𝛿𝑀, 0)
, (7) 

where 𝛿𝑀 and 𝛿𝑁 denote the non-centrality parameter of the specified and null model, 

respectively, dfM denote the degrees of freedom of the specified model, and N is the sample 

size. The traditional criteria for model fit evaluation were used in the present study, with 

RMSEA values lower than 0.08 and 0.05, and CFI values higher than 0.90 and 0.95 as 

indicators of good and excellent fit, respectively (Hu & Bentler, 1999; Marsh et al., 2004; Yu, 

2002). For BSEM, the posterior predictive p-value (PPP; see Asparouhov & Muthén, 2010) 

was used for the evaluation of model fit. A PPP close to 0.5 indicates good model fit, with 

values lower than 0.05 regarded as unsatisfactory model fit (Asparouhov & Muthén, 2021). 

 Lastly, the recovery of the latent factor definitions was evaluated by means of the 

determinacy of factor scores estimates. Namely, after estimating factor scores using the least 

squares regression approach (Thurstone, 1935), the squared multiple correlation between 

each latent factor and the original variables was computed. Both the true reliability (R2) and 
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the empirical reliability (�̂�2) were computed based on either the true structure matrix (𝐒 =

𝚲𝚽) or the estimated structure matrix (�̂� = �̂��̂�). As suggested by Beauducel (2011), the 

model-implied correlation matrix (�̂�) was used to compute the determinacy of factor score 

estimates. Thus, the computation of �̂�2 and R2 is as follows: 

�̂�2 = diag(�̂�T𝐖𝐋−1)2 (8) 

and 

𝑅2 = diag(𝐒T𝐖𝐋−1)2, (9) 

where 𝐖 = �̂�−1�̂� is the matrix of factor score coefficients and L is a diagonal matrix of 

factor score standard deviations, which correspond to the square roots of the diagonal 

elements of 𝐂 = 𝐖T�̂�𝐖, which is the latent factors covariance matrix. 

To better summarize the results and identify the most relevant main and interaction 

effects, a univariate ANOVA was conducted for each factor analytic technique and dependent 

variable. A partial eta squared effect higher than 0.14 was used as a heuristic to label an 

effect as relevant (Cohen, 1988); the effects with a partial eta squared higher than 0.14 were 

later visually inspected to determine their substantial importance. Thus, the results are 

presented in a narrative form informed by the ANOVA results but also from a case-by-case 

inspection of the interactions pointed out as most relevant. The partial eta squared for the 

different ANOVAs can be found in the Supplementary Material. Moreover, the results of this 

study are publicly available at https://psychometricmodelling.shinyapps.io/FAcomparison/, 

and the simulation codes and functions used to implement the factor analytic techniques can 

be accessed at https://osf.io/vw4xn/ (Nájera et al., 2022a); these functions have been also 

included in an R package called wrapFA (Nájera et al., 2022b), which is a wrapper that 

allows for factor analysis applications with lavaan and MplusAutomation. This study 

was not preregistered. 

Results 

Feasibility of the Factor Analytic Techniques 
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All techniques obtained a high overall convergence rate (CR ≥ 0.93). ICM-CFA and 

CFAS obtained a satisfactory convergence rate (CR > 0.95) across all conditions. On the 

contrary, CFAMI and BSEM obtained the lowest overall convergence rates. Specifically, 

CFAMI had convergence issues with a larger number of items per factor, larger main loadings, 

and independent factors (CR = 0.62), while BSEM had problems with smaller sample sizes, 

larger number of factors, correlated factors, and smaller main loadings (CR = 0.27). Note that 

BCFA methods are subject to BSEM convergence, so they inherit the same issues. Finally, 

EFA and ECFA procedures obtained a high overall convergence rate (0.95 < CR < 0.98), 

with lower rates under smaller sample sizes, larger number of factors, smaller number of 

items per factor, correlated factors, and smaller main loadings (CR ≤ 0.67), particularly for 

ECFAp (CR = 0.45). 

Regarding computation time, the fastest overall techniques were ICM-CFA and EFAT 

(CT < 3), and the slowest overall procedure was BCFAR2 (CT = 101), mainly due to the 

already high computation time of BSEM (CT = 86). All methods became slower as the test 

length increased, up to an average of 253 seconds for BCFAR2 under the condition of 5 

factors and 8 indicators per factor. 

Similarity of the Factor Analytic Techniques 

The EGA suggested four dimensions constituted as (a) ICM-CFA, BSEM, BCFAp, 

and BCFAR2, (b) CFAMI and CFAS, (c) EFAT and RETAM, and (d) EFAG, ECFAp, and 

ECFAR2. Additionally, Figure 1 shows the two-dimensional MDS analysis based on the EGA 

network. Not surprisingly, all duplets of techniques (i.e., ECFAp and ECFAR2, BCFAp and 

BCFAR2, CFAMI and CFAS, EFAT and RETAM) performed similarly in terms of parameter 

recovery. Arguably, the most unexpected result is the proximity between ICM-CFA and 

BSEM, which might be explained by the small variance used for the priors, which overly 

shrunk the cross-loadings towards zero. The x-axis of Figure 1 can be identified as an 
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exploratory-confirmatory continuum with EFAG and ICM-CFA on each pole, respectively. 

The five EFA-based methods are placed to the left of the dimension, with CFA and BSEM-

based techniques placed to the right. The y-axis has a less clear definition, although it is 

noticeable that the original techniques (i.e., ICM-CFA, BSEM, EFAG, EFAT) are placed at 

the bottom, while the procedures that imply modifications to the original structure are placed 

at the top. RETAM would be the only misplaced technique according to this interpretation, 

which can be explained by the great similarity of RETAM and EFAT outcomes, probably due 

to the small number of modifications applied by RETAM because of the slight degree of 

model misspecification. The exploratory-confirmatory continuum found with the 

multidimensional scaling will be used to provide a sound organization of the techniques’ 

performance in the remainder of the article. 

[Please insert Figure 1 here] 

Estimation Accuracy of Factor Loadings 

Tables 4, 5, and 6 show the marginal means of the bias and RMSE of major loadings, 

zero-loadings, and cross-loadings, respectively, across the simulation factors. First, all factor 

analytic techniques obtained an overall accurate estimation of both major loadings and zero-

loadings, with a bias and RMSE lower than 0.1. Second, most techniques led to poorer 

recovery of parameter estimates with smaller sample size, smaller number of items per factor, 

correlated factors, or smaller main loadings. Third, there were no substantial differences in 

the accuracy of major loading estimates between the different procedures. If at all, BSEM (as 

well as ICM-CFA) showed an overestimation tendency of major loadings under correlated 

factors (Bias ≥ 0.027), while EFAG tended to underestimate the magnitude of major loadings 

under this condition (Bias = –0.035). This was also the case for EFAT and RETAM, although 

only when the number of factors was higher (Bias = –0.030). Fourth, CFAMI, CFAS, BSEM, 

BCFA and ECFA methods provided the most accurate zero-loading estimates, with a very 
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low bias. On the other hand, EFAG, EFAT, and RETAM showed a slightly worse accuracy of 

zero-loading estimates. The zero-loading overestimation tendency obtained by the three 

exploratory techniques was mainly due to the conjunction between correlated factors and 

small major loadings (Bias > 0.022), especially for EFAG (Bias = 0.037). 

Second, the estimation of cross-loadings was generally less accurate compared to that 

of major loadings and zero-loadings. The worst performance occurred again with smaller 

sample sizes, smaller number of items per factor, correlated factors, or smaller main loadings. 

Naturally, ICM-CFA obtained the worst results under all conditions. The behavior of BSEM, 

although slightly better, was like that of ICM-CFA, with a pronounced tendency to 

underestimate cross-loadings (–0.125 ≤ Bias ≤ –0.063) and, subsequently, low accuracy 

(0.072 ≤ RMSE ≤ 0.128). CFAMI and CFAS, as well as the BCFA methods, improved the 

respective performance of ICM-CFA and BSEM, leading to similar results: they still showed 

a slight underestimation tendency (–0.072 ≤ Bias ≤ –0.009) and low accuracy under some 

conditions (0.055 ≤ RMSE ≤ 0.133). For the BCFA procedures, the cross-loading 

underestimation tendency primarily occurred with both small sample sizes and small major 

loadings (Bias = –0.119). Finally, EFAG, EFAT, and RETAM provided the most accurate 

cross-loading estimates (0.042 ≤ RMSE ≤ 0.083) and a low bias. The most challenging 

condition for these techniques, especially for RETAM, was again the conjunction of 

correlated factors and small major loadings (RMSE = 0.092). EFAG was the only technique 

that showed an overestimation tendency for cross-loadings, especially with a larger number 

of items per factor (Bias = 0.020) or correlated factors (Bias = 0.029). Under these 

conditions, the ECFA methods alleviated this bias (–0.014 ≤ Bias ≤ 0.003) but produced 

slightly less accurate estimates (0.058 ≤ RMSE ≤ 0.095) compared to EFAG. 

[Please insert Table 4 here] 

[Please insert Table 5 here] 
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[Please insert Table 6 here] 

Estimation Accuracy of Factor Correlations 

Table 7 displays the marginal means of the bias and RMSE of factor correlations 

across the simulation factors. ICM-CFA showed the greatest overestimation tendency (0.066 

≤ Bias ≤ 0.152), followed closely by BSEM (0.051 ≤ Bias ≤ 0.105). Both techniques 

overestimated factor correlations especially with a smaller number of factors, smaller number 

of items per factor, smaller main loadings, or larger magnitude and number of cross-loadings. 

CFAMI, CFAS, BCFAp, and BCFAR2 provided less biased factor correlation estimates, 

showing only a slight overestimation tendency, particularly under the abovementioned 

conditions. On the other hand, EFAG obtained the most underestimated factor correlation 

estimates overall, which was mainly caused by the condition of correlated factors (Bias = –

0.115), since it did not show any bias with independent factors (Bias = 0.001). Provided that 

the factors were correlated, a smaller magnitude of major loadings led to a greater 

underestimation tendency of factor correlation for EFAG (Bias = –0.170). Larger cross-

loadings also contributed to a greater underestimation tendency. A similar tendency was 

observed for the ECFA procedures, although they showed a much milder underestimation of 

factor correlations when the factors were indeed correlated (–0.046 ≤ Bias ≤ –0.043). Finally, 

EFAT and RETAM showed an overestimation tendency with independent factors (0.057 ≤ 

Bias ≤ 0.059) and an underestimation tendency with correlated factors (Bias = –0.035). The 

latter was caused by the interaction between correlated factors and small major loadings (Bias 

= –0.087), since these techniques showed no bias with correlated factors and large major 

loadings (Bias = 0.008). 

The accuracy of factor correlation estimates is mostly congruent with the bias results, 

since ICM-CFA, BSEM, and EFAG, which were the most biased techniques, provided the 

least accurate factor correlation estimates, with an overall RMSE higher than 0.097. Again, 
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ICM-CFA and BSEM were particularly affected by smaller sample sizes, smaller number of 

factors, smaller number of items per factor, smaller main loadings, or larger magnitude and 

number of cross-loadings, while the bad overall performance for EFAG was mostly due to the 

interaction between correlated factors and small major loadings (RMSE = 0.195). In fact, 

EFAG obtained the most accurate factor correlations with independent factors (RMSE = 

0.061). The remaining techniques also provided overall accurate factor correlations (overall 

RMSE ≤ 0.085), with EFAT and RETAM performing particularly well under the presence of 

both correlated factors and large major loadings (RMSE = 0.049). 

[Please insert Table 7 here] 

Proportion of Successful Parameter Estimation 

 Figure 2 shows a decision tree based on the PSPE results. The decision tree was 

constructed such that it contained the minimum possible number of terminations. A 

termination was achieved when either: (a) at least one factor analytic technique obtained a 

successful parameter recovery (i.e., 𝑃𝑆𝑃𝐸̅̅ ̅̅ ̅̅ ̅ ≥ 0.90 and PSPEmin ≥ 0.70), (b) no technique 

obtained a successful parameter recovery but there was at least one method with PSPEmax ≥ 

0.50, or (c) no technique obtained a PSPEmax ≥ 0.50 and thus no method could be 

recommended under that condition. Accordingly, the higher is a simulation factor in the 

decision tree, the greater its effect on the methods functioning. The simulation factors CL and 

CLK do not appear in the tree for parsimony reasons due to their relatively low relevance, 

which did not substantively change the outcome of the decision tree. The sample size of N = 

1000 was not included in the figure because the results were congruent with those of N = 650; 

that is, the best performing techniques in each condition were the same for both sample sizes. 

Researchers should expect the PSPE to be even higher for these techniques under N = 1000. 

A notable finding is that, provided that the major loadings are high, a successful 

parameter estimation can be expected either by EFAG if the factors are uncorrelated or by 
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EFAT and RETAM if the factors are correlated. If the major loadings are low, the decision 

tree becomes more complex. In general, EFAG is still the preferred method under independent 

factors, obtaining the highest PSPE in all conditions. Note, however, that the PSPE of EFAG 

is still very low under some scenarios, such as smaller sample sizes, smaller number of items 

per factor, and larger number of factors (𝑃𝑆𝑃𝐸̅̅ ̅̅ ̅̅ ̅ = 0.54). Whenever factors are correlated, 

EFAT obtained the most satisfactory results with a smaller number of attributes, while BSEM 

or BCFAp performed the best with a larger number of attributes, even though the PSPE under 

a smaller number of items per factor was insufficient. In this vein, note that there are some 

conditions under which no technique achieved a PSPEmax ≥ 0.50 (e.g., smaller main loadings, 

correlated factors, and smaller sample size). 

[Please insert Figure 2 here] 

Model Fit 

Table 8 shows the marginal means of CFI and RMSE across the simulation factors. 

All techniques achieved a higher CFI under a smaller number of factors, a smaller number of 

items per factors, correlated factors, and larger main loadings, as well as with a larger 

magnitude and number of cross-loadings (except for ICM-CFA). As expected, ICM-CFA 

obtained consistently the worst fit across all conditions (0.800 ≤ CFI ≤ 0.901; 0.056 ≤ 

RMSEA ≤ 0.072). It should be noted that, following the traditional cutoff values, ICM-CFA 

would have been categorized as having bad fit according to CFI, but good fit according to 

RMSEA. CFAMI and CFAS improved model fit in comparison to ICM-CFA, with an overall 

CFI higher than 0.895. ECFA and BCFA methods obtained a similar, slightly higher overall 

CFI values (0.903 ≤ CFI ≤ 0.908), only surpassed by the EFA methods (CFI = 0.913). Unlike 

CFI, RMSEA values were almost identical throughout all conditions and techniques (except 

for ICM-CFA), being the RMSEA almost identical to the one used for the data generation 
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process (i.e., RMSEA = 0.05). Lastly, BSEM obtained unsatisfactory model fit across all 

conditions (PPP ≤ 0.014; see Table 8). 

[Please insert Table 8 here] 

Determinacy of Factor Score Estimates 

 Table 9 shows the marginal means of the determinacy of factor score estimates across 

the simulation factors. Both empirical and true reliabilities are provided. Overall, the 

empirical reliability was very similar for all factor analytic techniques (0.786 ≥ �̂�2 ≥ 0.804). 

Reliability was overestimated for all procedures (�̂�2 − 𝑅2 ≥ 0.033), especially for the 

exploratory methods (i.e., EFAG, EFAT, RETAM; �̂�2 − 𝑅2 ≥ 0.063). 

 Regarding the true reliability, all factor analytic techniques obtained a very similar 

overall determinacy (0.735 ≤ R2 ≤ 0.760), with lower values under smaller main loadings, 

smaller number of items per factor, or independent factors. If at all, the exploratory methods 

obtained comparatively slightly lower true reliabilities under smaller sample sizes (R2 ≤ 

0.723), larger number of factors (R2 ≤ 0.732), correlated factors (R2 ≤ 0.763), and smaller 

main loadings (R2 ≤ 0.636). 

[Please insert Table 9 here] 

Real Data Illustration 

 The functioning of the eleven factor analytic techniques is illustrated by using real 

data. The employed dataset was first used in Roskam et al. (2015) and consists of the 

responses of 2,532 participants to the French version of the Personality Inventory for DSM-5 

(PID-5), originally developed by Krueger et al. (2012).3 The PID-5 is formed by 220 items 

assessed with a 4-point Likert-type scale. The items are grouped into 25 facets, which are in 

turn grouped into 5 domains: Negative affect, Detachment, Antagonism, Disinhibition, and 

Psychoticism. The relationship between the domains, facets, and items can be consulted in 

                                                 
3 This dataset is publicly available at https://doi.org/10.1371/journal.pone.0133413.s001. 
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the Supplementary Material. Many studies have been already conducted on the PID-5, 

revealing good psychometric properties of the scale (see Somma et al., 2019; Sorrel et al., 

2021; Watters & Bagby, 2018). Namely, Somma et al. (2019) conducted the most extensive 

meta-analytic review of validation studies concerning the PID-5, with 23 published articles 

and a total sample size of N = 24,240. The final EFA solution they found with the pooled 

correlation matrix (using the 25 facets and the 5 domains) will be here considered as a 

baseline for comparing the behavior of the eleven factor analytic techniques (see Table 5 in 

Somma et al., 2019). The root-mean-square deviation (RMSD) was used to compare the 

solution provided for each technique compared to the one found by Somma et al. (2019). The 

RMSD is defined as the RMSE in Equation (5), although using the parameter estimates found 

by Somma et al. (2019) instead of the generating parameters (since this is a real application 

and the true parameters are unknown). For those methods that require a prespecified structure 

(i.e., ICM-CFA, BSEM, EFAT), the expected domain for each facet as identified in Somma et 

al. (2019) was considered as a target loading. It is noteworthy that Somma et al. (2019) used 

an oblique target rotation procedure and the weighted least square estimator in their analysis. 

Considering that facets are continuous variables, our analyses were performed using the 

robust maximum likelihood estimator, which has been employed more commonly for the 

PID-5 evaluation (e.g., Sorrel et al., 2021; Thimm et al., 2017), including the original study 

by Krueger et al. (2012). 

The different techniques were implemented as indicated in the Method section with a 

few exceptions. First, CFAMI did not converge after introducing 42 modifications; just with 

the purpose of obtaining some results for the comparison, the outcome from iteration 41 was 

used in these analyses. Note that, in line with the simulation study, only loadings were 

allowed to become free (no residual covariances were considered). Second, ECFAp did not 

achieve convergence with the criterion of α = 0.05. This is mainly because of the great 
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number of significant free loadings (86 loadings out of 125) caused by the large sample size 

(N = 2,532). Forty-six of these loadings had an absolute magnitude lower than 0.10. In order 

to maintain the ECFAp method in the illustration analyses, the nominal level was corrected by 

Bonferroni to reduce the number of free parameters (Cudeck & O’Dell, 1994). 

According to the results found by Somma et al. (2019), the conditions of the real data 

illustration were the following: N = 2,532, K = 5, JK = 5, FC = 0.14, ML = 0.56, CL = 0.24, 

and CLK = 9.20. FC was computed as the average absolute factor correlations, ML as the 

average absolute magnitude of the highest loading for each facet, CL as the average 

magnitude of the loadings with an absolute value higher than 0.15 (excluding the highest 

loading for each item), and CLK as the number of loadings with an absolute value higher than 

0.15 (excluding the highest loading for each item) divided by the number of factors (i.e., K = 

5). All values were close to or in between the levels employed in the simulation study, except 

for the sample size (much larger, expectedly benefiting the performance of the techniques) 

and the number of cross-loadings per factor (much larger, expectedly disrupting the 

performance of the techniques, especially the more confirmatory ones). According to the 

simulation study results, EFAG is expected to perform the best under these conditions 

(considering ML = 0.5, FC = 0, N = 1000, JK = 4, and K = 5 in Figure 2). 

To evaluate the stability and replicability of the factor structure found by each 

technique, we conducted a nonparametric bootstrap resampling procedure as explained in 

Christensen and Golino (2021). Namely, for each of 100 replications, 2,532 participants were 

randomly drawn from the original database with a replacement. Then, each factor analytic 

technique was applied to the resampled data and, once the 100 replications were done, the 

congruent coefficient (CC) of the factor loading matrix between pairs of replicates was 

computed for each factor. The average CC across the 100 replications is used as a measure of 

the stability of the factor structure. 
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 The performance of the techniques is summarized in Table 10. BSEM, BCFAp, and 

BCFAR2 are not presented because BSEM did not achieve convergence. First, ICM-CFA 

obtained the highest major loadings (ML = 0.621) and factor correlations (FC = 0.621), with 

an unsatisfactory model fit (CFI = 0.689; RMSEA = 0.112). The highest stability obtained by 

ICM-CFA across replications (CC = 0.999) is inherent to the fact that the hypothesized 

structure is not modified in this procedure (EFAT, which is the other technique based on an 

unmodifiable structure, shows a similar result in this regard). Unexpectedly, CFAMI and 

CFAS did not provide similar results, mainly due to CFAMI including 42 modifications in the 

model and CFAS including only 20 modifications. For instance, CFAMI obtained larger major 

loadings (ML = 0.633), cross-loadings (CL = 0.144), and factor correlations (FC = 0.364) 

compared to CFAS (ML = 0.566; CL = 0.068; FC = 0.322). Additionally, the smaller number 

of modifications included in CFAS resulted in a worse fit (CFI = 0.835; RMSEA = 0.092). 

Moreover, both procedures obtained the lowest stability across replications (CC < 0.893), 

which is consistent with the literature that argues that these procedures lack replicability due 

to the problem of capitalization on chance (Browne, 2001; MacCallum et al., 1992). On the 

contrary, the EFA-related techniques provided similar average major loadings, cross-

loadings, and factor correlations. The pattern of results of EFA and ICM-CFA supports the 

simulation study findings where exploratory techniques showed: (a) lower factor correlation 

estimates, (b) lower factor score determinacies (e.g., �̂�2 = 0.871 for ICM-CFA and 0.833 for 

EFAG), and (c) better fit (e.g., CFI = 0.689 for ICM-CFA and 0.883 for EFAG). EFAG also 

showed a high degree of stability across replications (CC = 0.964), followed closely by 

ECFAR2 (CC = 0.958). RETAM and ECFAp showed a slightly lower congruence (CC = 0.942 

and 0.933, respectively). The latter obtained a CC > 0.939 for all domains except for 

Disinhibition, which achieved a CC = 0.804. 

 [Please insert Table 10 here] 
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EFAT obtained the most similar structure compared to that of Somma et al. (2019), 

with an RMSD = 0.088 for factor loadings and RMSD = 0.173 for factor correlations, 

followed by RETAM (RMSD = 0.109 and 0.202, respectively). EFAG, ECFAp, and ECFAR2 

also obtained similar estimates compared to Somma et al. (2019; 0.177 ≤ RMSD ≤ 0.181 and 

0.205 ≤ RMSD ≤ 0.221 for factor loading and correlation estimates, respectively). The higher 

similarity of EFAT over EFAG is probably because a target rotation procedure was also used 

in Somma et al. (2019). However, according to the simulation study results, under these 

specific conditions EFAG might be considered particularly, since it provided a more accurate 

estimation of the generating model under similar scenarios. In any case, the interpretation of 

the final EFAT and EFAG models did not greatly differ; as shown in Table 11, they coincided 

in 87.2% of the loadings when categorizing them as relevant (λ ≥ 0.3) and irrelevant (λ < 0.3). 

Moreover, the definition of all domains remained similar in both solutions, although 

Detachment and Disinhibition were less clearly defined for EFAG. The facets from the former 

cross-loaded on Negative affectivity, a tendency that could be already found in Somma et al. 

(2019) and that has been encountered in other scales beyond PID-5 (e.g., Sorrel et al., 2022). 

Disinhibition obtained the lowest main loadings of all domains for both EFAG and EFAT; this 

is congruent with other studies that have found that Disinhibition tends to blend with other 

constructs (Oltmanns & Widiger, 2020; Sorrel et al., 2022). This was especially true for 

EFAG, where some of the Disinhibition facets primarily loaded on Psychoticism. This also 

explains why the stability of this domain was the lowest not only for EFAG (CC = 0.875), but 

for other techniques such as ECFAp. 

[Please insert Table 11 here] 

Discussion 

 The increasing number of factor analytic techniques that have been developed in the 

last years might not have an actual impact on applied settings if practitioners cannot have a 
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clear idea of what technique should be preferred under what circumstances. The present paper 

had the main purpose of providing such guidelines based on the results of an exhaustive 

simulations study. The following research questions were addressed: 

(Q1) How can the factor analytic techniques be grouped or categorized according to their 

functioning across conditions when the model (i.e., initial internal structure) is 

slightly misspecified? The theoretical classification of factor analytic techniques 

along the confirmatory-exploratory continuum was supported by the empirical 

evaluation of their parameter estimates. In line with the previous literature (Guo et 

al, 2019; Xiao et al., 2019), the more confirmatory methods (i.e., ICM-CFA, CFAMI, 

CFAS, BSEM, BCFA) tended to underestimate cross-loadings, overestimate factor 

correlations, and show worse model fit. The functioning of ICM-CFA and BSEM 

was more similar than expected, which might be caused by the small variance used 

for the non-target loadings priors. On the other hand, the more exploratory methods 

(i.e., EFAG, ECFA, EFAT, RETAM) showed better model fit and an overall more 

accurate parameter estimation. 

(Q2) When the baseline model is theoretically constrained (i.e., ICM-CFA) but slightly 

misspecified, does sequential model modification substantially improve the recovery 

of the internal structure of a test? CFAMI and CFAS obtained more accurate 

parameter estimates than ICM-CFA, especially a milder overestimation of factor 

correlations due to the inclusion of cross-loadings. The performance of these 

sequential model modifications was more satisfactory than what had been previously 

found in the literature (Whittaker, 2012; Yuan & Liu, 2021), probably because the 

initial models were only slightly misspecified in the present study. Even though a 

small number of misspecifications is expected in those research fields with a well-

developed theoretical corpus, more novel topics will often contain a certain degree 
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of uncertainty regarding the specification of the internal structure. The performance 

of CFAMI and CFAS will depend on the degree of model misspecification present in 

the initial model formulation. In line with MacCallum et al. (1992), their use should 

be reserved to situations where there is strong a priori knowledge, the sample size is 

large enough to provide consistent results, and the number of suggested 

modifications is low. Otherwise, the temptation of making model adjustments to 

improve model fit might lead to the capitalization on chance problem, as shown in 

the real data example by the low stability of their solutions. Moreover, the use of 

arbitrary cutoff points by the Saris procedure is an additional practical burden that 

might hinder its applicability, and practitioners should be aware that, as a chi-square 

index, the optimal cutoff used to identify relevant model parameters (e.g., MI > 

10.82) is highly dependent on sample size (see, e.g., Whittaker, 2012). 

(Q3) When the baseline model is unconstrained but theoretically guided (e.g., BSEM, 

EFAT) and slightly misspecified, does adding model constraints (i.e., BCFA) or 

refining the initial internal structure (i.e., RETAM) provide substantial advantages? 

The BCFA techniques provided more accurate parameter estimates than BSEM, 

showing less underestimated cross-loadings and, subsequently, less overestimated 

factor correlations. These procedures showed an overall satisfactory model fit, while 

the BSEM obtained a consistently poor model fit according to the PPP. This latter 

result should be interpreted with caution, since the PPP might be overly conservative 

(Asparouhov & Muthén, 2010, 2021). The development and further study of the 

Bayesian adaptations of commonly known fit indices (e.g., RMSEA, CFI) might 

facilitate the comparison of frequentist and Bayesian model fit (Asparouhov & 

Muthén, 2021). On the other hand, RETAM performed very similarly to EFAT. This 

might be due to EFAT being able to accommodate slightly misspecified models due 
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to its unrestricted nature. RETAM is expected to perform better than EFAT under 

those conditions in which the distance between the original target matrix and the 

generating model is larger (Lorenzo-Seva & Ferrando, 2020). 

(Q4) When the baseline model is unconstrained and not guided by the theory (i.e., EFAG), 

does adding model constraints (i.e., ECFA) provide substantial advantages? 

Partially. The ECFA procedures obtained slightly less overestimated zero-loadings 

and, subsequently, less underestimated factor correlations compared to EFAG. This 

was particularly true when the factors were indeed correlated (FC = 0.5), because 

EFAG showed a large underestimation tendency (Bias = –0.177), while ECFAp and 

ECFAR2 reduced the bias (Bias ≥ –0.047). Accordingly, ECFA might be preferred 

over EFAG with clearly correlated factors. On the other hand, EFAG provided 

slightly more accurate cross-loadings overall. Moreover, the three techniques 

obtained very similar CFI and RMSEA values. This reflects that ECFA can be 

applied without the risk of showing inflated fit indices. 

(Q5) Do the hypothesis-based techniques (i.e., by fixing, targeting, or setting priors for 

expected zeros) substantially improve the performance of the theoretically blind 

techniques (i.e., EFAG, ECFA) when the model is only slightly misspecified? 

Partially. EFAG obtained the most accurate parameter estimates when the factors 

were independent (FC = 0). However, it overestimated zero-loadings and 

underestimated factor correlations when the factors were correlated (FC = 0.5). 

Under these conditions, EFAT and RETAM generally provided the best 

performance. This is unfortunate for EFAG since many instruments are designed for 

the measurement of correlated psychological dimensions. To further explore the 

performance of data-driven techniques (i.e., EFAG, ECFAp, ECFAR2) with correlated 

factors, Figure 3 extends the decision tree based on the PSPE by focusing only on 
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these procedures under ML = 0.7 and FC = 0.5. Here, it is shown that EFAG 

maintained a reasonable performance for N = 1000 and K = 5, but ECFAp might be 

generally a better option, particularly with lower sample sizes (N = 300). 

[Please insert Figure 3 here] 

(Q6) Is there a clear correspondence between parameter estimation accuracy, model fit 

indicators, and determinacy of factor score estimates? The simulation study showed 

that this is not the case. As previously suggested, good model fit can be achieved 

with inaccurate parameter estimates (MacCallum et al., 1992). In this vein, ICM-

CFA obtained an RMSEA ≤ 0.08 across all conditions. However, we have also 

observed the opposite: bad model fit achieved with accurate parameter estimates. 

Thus, a CFI ≤ 0.90 was observed for all techniques under several conditions (e.g., 

FC = 0), despite the good parameter estimation accuracy obtained by some of the 

techniques. These findings support the repeated notion that the cutoffs for model fit 

indices should not be blindly taken as golden rules, but contextualized (Hu & 

Bentler, 1999; Marsh et al., 2004; Yu, 2002). Furthermore, the empirical reliability 

of the factor score estimates was virtually identical for all factor analytic techniques 

despite the differences in parameter estimation, which is congruent with previous 

findings (Booth & Hughes, 2014). The determinacy of factor score estimates was, 

however, overestimated, especially for the exploratory procedures. In fact, ICM-

CFA obtained a higher true reliability than EFAG, EFAT, and RETAM. Thus, even 

though ICM-CFA does not properly recover cross-loadings and factor correlations 

under slightly misspecified models, it could be still used to compute factor scores as 

long as the theoretical structure of the test can be clearly specified. Otherwise, a 

largely misspecified model would disrupt factor score estimates to a greater extent. 
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Four procedures were proposed in the present study: ECFAp, ECFAR2, BCFAp, and 

BCFAR2. Based on Figure 1, these methods are located towards the center of the exploratory-

confirmatory continuum. Thus, compared to EFAG, ECFA improved the recovery of major 

loadings, zero-loadings, and factor correlations (under the presence of correlated factors) at 

the cost of obtaining more inaccurate cross-loading estimates. On the other hand, even though 

BCFA is technically a more restrictive model than BSEM, its results were in fact less similar 

to that of the most restrictive technique (i.e., ICM-CFA). Moreover, BCFA consistently 

outperformed BSEM in terms of parameter estimation accuracy, and generally obtained 

accurate estimates for major loadings, zero-loadings, and factor correlations, at the expense 

of underestimating cross-loadings. Thus, whenever BSEM is used in scale validation studies, 

BCFA is also recommended to compare both solutions and evaluate the discrepancies in 

parameter estimates. Nonetheless, the high computational cost and potential convergence 

issues might hinder the applicability of these techniques in real settings. In line with the 

guidelines provided by Bandalos and Finney (2019), a series of steps should be followed 

when conducting and reporting the results from ECFA or BCFA: (a) clearly present the 

results from the original EFA or BSEM analysis, (b) compare the results from the original 

model (EFA or BSEM) with that of the final solution (ECFA or BSEM), (c) transparently 

notify the unexpected findings (e.g., cross-loadings) in both the original and final solution 

and whether they should be considered from a substantial point of view or not, (d) try to 

replicate the results using either cross-validation (if a second sample is available) or the 

bootstrapping procedure explained in the Real Data Illustration section. 

 Based on the above, a series of practical recommendations can be stated. First, given 

that confirmatory and exploratory techniques have opposed strengths and weaknesses, a safe 

practice when conducting a validation study would consist in analyzing the data with one of 

each and then evaluate to what extent the results of both approaches are congruent (Garrido et 
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al., 2020; Schmitt et al., 2018). Of course, the simulation study results imply that more credit 

should be given to EFAG whenever factors are approximately independent, and to EFAT and 

RETAM whenever the factors are clearly correlated. In this vein, the decision tree shown in 

Figure 2 can give an idea of what technique is expected to perform the best under a specific 

set of conditions. Moreover, it should be noted that, under certain conditions, no factor 

analytic technique is expected to provide reliable results. To avoid these scenarios, 

researchers can attempt to create larger tests and have larger sample sizes for validation 

studies. 

 It could be argued that the reason why we do not recommend the use of ICM-CFA to 

explore the internal structure of questionnaires based on the findings of the simulation study 

is because we did not include any simulation condition without cross-loadings. In other 

words, the fact that ICM-CFA performed poorly in the simulation study (were all conditions 

included some degree of cross-loadings) could be regarded as a trivial finding. We believe 

that this is not the case, since one of the relevant results from this simulation study (as well as 

some previous research; e.g., Asparouhov & Muthén, 2009) is that ICM-CFA provides very 

biased parameter estimates even when the model is just slightly misspecified. That is, only 

one or two cross-loadings per factor were included in the simulation study; this might be even 

considered as a benevolent scenario for the confirmatory methods, since the majority of 

empirical applications in psychological sciences often encounter more and larger cross-

loadings (Booth & Hughes, 2014; Hopwood & Donnellan, 2010). As a final note, please note 

that if we had generated items without cross-loadings, then the true, simple structure ICM-

CFA model would probably have performed much better. Similarly, BSEM is expected to 

show a very good performance when all the priors are correctly specified (Xiao et al., 2019). 

In summary, even though ICM-CFA and BSEM are arguably the most appropriate techniques 

when the hypothesized structure is indeed correct, it is imperative to critically consider 
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whether this is a plausible scenario in most real settings (Asparouhov & Muthén, 2009; Booth 

& Hughes, 2014; Hopwood & Donnellan, 2010; MacCallum et al., 2012; Marsh et al., 2014; 

Xiao et al., 2019). Testing the replicability of such a structure in multiple samples will be 

essential in any case (Franco-Martínez et al., 2022). 

 On another note, we have focused on explaining the main effects of the simulation 

factors, along with a few relevant interaction effects, due to the impossibility of reflecting the 

whole complexity of the simulation study. Thus, in addition to Figure 2, which summarizes in 

a practical fashion the preferred factor analytic techniques under different conditions, we 

have created a Shiny app (Chang et al., 2021) in which the interested reader can interactively 

explore the performance of each technique under any condition, visualizing the distribution 

of the different dependent variables as a function of various interaction effects between the 

independent variables.4 The ANOVA results available in the Supplementary Material can 

serve as a guide to explore the desired effects using the app. Furthermore, in order to increase 

the applied repercussion of the research, all the R codes corresponding to the factor analysis 

functions, simulation study and data analysis were made available at https://osf.io/vw4xn/. 

The present study is not without limitations. First, standardized continuous variables 

had been employed in the simulation study. This setting relates to those instruments in which 

facets, rather than items, are used as indicators. Some well-known examples of these 

instruments are the PID-5 (Krueger et al., 2012), Five-Factor Personality Inventory for ICD-

11 (Sorrel et al., 2022), or facet-level analyses of the NEO inventories (Lui et al., 2020). 

Although the results of the present study are mostly congruent with those obtained by Liang 

et al. (2021) with categorical indicators, further research is needed to evaluate whether our 

conclusions hold when normality cannot be assumed. Second, and related to this, we only 

evaluated the performance of the different factor analytic techniques using maximum 

                                                 
4 https://psychometricmodelling.shinyapps.io/FAcomparison/ 
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likelihood estimation which, even though it is one of the recommended estimation methods 

when data follow a multivariate normal distribution (Goretzko et al., 2019), it is also more 

prone to convergence issues or to fail to identify small factors than other estimation 

procedures (Briggs & MacCallum, 2003). A good practice in real settings would be to 

evaluate the consistency of the factor solution between different estimation methods, such as 

unweighted least squares. Third, the identification of correlated residuals was not considered 

in the present study. The detection of relevant correlated residuals, in conjunction with the 

cross-loadings here explored, should be further studied. Fourth, we only explored the 

performance of EFA with Geomin rotation, although it should be highlighted again that other 

rotation procedures might lead to different results (Browne, 2001; Hakstian, 1971; Hakstian 

& Abell, 1974; Sass & Schmitt, 2010; Schmitt & Sass, 2011). Recently, Nguyen and Waller 

(2022) found that Geomin is more prone to converge to local minima than other rotation 

procedures. For the sake of the present investigation, and following the suggestion from one 

of the reviewers, we replicated the simulation study using EFA with Oblimin rotation and 

found that the results did not substantially differ from those of EFA with Geomin. Compared 

to Geomin, Oblimin tended to provide more biased parameter estimated under the presence of 

independent factors (i.e., EFA with Geomin is still the recommended technique for these 

scenarios) and provided less biased estimates with correlated factors, although it did not 

outperform EFA with Target rotation or the RETAM procedure in these settings. In any case, 

practitioners should be aware that the choice of the rotation procedure is nontrivial, and that 

different rotation methods are better suited to different settings. Accordingly, further research 

should be conducted regarding the exploration of the performance of ECFA with different 

rotation procedures. Fifth, BSEM underperformed in comparison with previous studies (Guo 

et al., 2019; Xiao et al., 2019; Wei et al., 2022) due to the misspecified priors with small 

variance. Using larger variance for the BSEM priors might reduce the bias of the estimates, at 
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the cost of increasing convergence issues (MacCallum et al., 2012; Muthén & Asparouhov, 

2012). Note that BSEM already had the highest nonconvergence rates among all techniques. 

It is noteworthy that BSEM showed the lowest convergence rate with small sample sizes, 

where Bayesian methods are expected to perform better than frequentists (Muthén & 

Asparouhov, 2012). These findings enhance the importance of conducting sensitivity 

analyses for prior selection, even though it might be a practical burden (MacCallum et al., 

2012; Rindskopf, 2012). Moreover, the model fit evaluation of BSEM is still to be 

investigated to achieve an easy interpretation and known type I error rate (Asparouhov & 

Muthén, 2021). In this vein, Bayesian adaptations of those indices have been recently 

proposed, but further research is still required to understand their functioning (Asparouhov & 

Muthén, 2021). Sixth, only RMSEA and CFI were here calculated to evaluate model fit, but 

other indices such as the Tucker-Lewis index (TLI; Tucker & Lewis, 1980) or the 

standardized root mean square residual (SRMR; Jöreskog & Sörbom, 1988) are also worth 

exploring. Finally, a few techniques could not be included in the simulation study due to 

computational burden. This is the case of regularized structural equation modeling (Jacobucci 

et al., 2016) and penalized likelihood structural equation modeling (Huang et al., 2017). 

Moreover, the inclusion of different BSEM priors would be also valuable according to the 

importance of sensitivity analyses. However, it is expected that the results would not 

substantially differ if different variances were used for the priors (Liang et al., 2020; Xiao et 

al., 2019). Regarding the ECFA procedures, further research could focus on evaluating their 

performance with slightly different criteria for the identification of the relevant factor 

loadings. For instance, it could be explored whether using a multiple comparison correction 

(e.g., Bonferroni) systematically improves the performance of the ECFAp or, on the contrary, 

leads to overly simple structures. Similarly, a more liberal criterion than the BIC, such as the 

Akaike information criterion (Akaike, 1974), could be used for the selection of the optimal φ 
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in the ECFAR2, noticing that it would lead to more complex final models. Other approaches, 

such as the Promin criterion (Lorenzo-Seva, 1999) or the SLiD criterion (Garcia-Garzon et 

al., 2018) could be also explored as methods to specify the optimal cutoffs to identify 

relevant loadings. 

 Lastly, it should be highlighted again that an appropriate implementation of all factor 

analytic techniques goes beyond methodological knowledge. Since all techniques (but ICM-

CFA) are prone to capitalization on chance, given that they have some degree of data-driven 

component (MacCallum et al., 1992), substantial interpretation is crucial to increase the 

likelihood of a model being replicable and generalizable to other samples and situations; this 

should be complemented, whenever possible, with a cross-validation study to empirically 

evaluate the consistency of the findings. In other words, even though a high emphasis has 

been put into methodological advances in the last decades, with numerous new techniques 

and variations, theoretical interpretation and applicability of the models should not be put 

aside (Ferrando, 2021). The inclusion of a parameter that cannot be understood nor defended 

in substantive terms is a problem that should not be blindly accepted regardless of what factor 

analytic technique has been implemented.   
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Tables 

Table 1 

Suggested q-vectors as a function of Factor Correlations and Factor Loadings for a Test 

Measuring 2 factors using φ = 0.90 

     𝑅𝑗𝑚
2   PVAFjm 

ϕ12 λj1 λj2 sj1 sj1 {1,0} {0,1} {1,1}  {1,0} {0,1} {1,1} 

0 .10 .50 .10 .50 .010 .250 .260  .038 .962 1 

0 .10 .70 .10 .70 .010 .490 .500  .020 .980 1 

0 .30 .50 .30 .50 .090 .250 .340  .265 .735 1 

0 .30 .70 .30 .70 .090 .490 .580  .155 .845 1 

.50 .10 .50 .35 .55 .122 .303 .310  .395 .976 1 

.50 .10 .70 .45 .75 .202 .562 .570  .355 .987 1 

.50 .30 .50 .55 .65 .303 .423 .490  .617 .862 1 

.50 .30 .70 .65 .85 .422 .722 .790  .535 .915 1 

Note. ϕ12 = correlation between factors 1 and 2; λj1 = factor loading of item j on factor 1; sj1 = 

correlation between item j and factor 1; {1, 0} = q-vector for item j where only factor 1 is 

specified. For each condition, the PVAF that exceeds φ = .90 is shown in grey. φ = .90 is here 

used just for illustration purposes. The suggested q-vector would be the one corresponding to 

the highlighted PVAF. 

Table 2 

Organization of Factor Analytic Techniques 

 Initial Specification Factor Space Model Modifications a 

ICM-CFA Hypothesis Driven Restricted None 

BSEM Hypothesis Driven Unrestricted None 

CFAMI Hypothesis Driven Restricted Make More Complex 

CFAS Hypothesis Driven Restricted Make More Complex 

BCFAp Hypothesis Driven Restricted Make Simpler 

BCFAR2 Hypothesis Driven Restricted Make Simpler 

EFAT Hypothesis Driven Unrestricted None 

RETAM Hypothesis Driven Unrestricted Complete Refinement 

ECFAp Data Driven Restricted Make Simpler 

ECFAR2 Data Driven Restricted Make Simpler 

EFAG Data Driven Unrestricted None 
a Make More Complex = loadings can be freed, but not fixed; Make Simpler = loadings can 

be fixed, but not freed; Complete Refinement = loadings can be turned either to specified or 

unspecified elements in the target matrix. 
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Table 3 

Illustration of the Proportion of Successful Parameter Estimation under N = 1,000, JK = 8, FC = 0, and ML = 0.5 

K CL CLK ICM-CFA CFAMI CFAS EFAG ECFAp ECFAR2 EFAT RETAM BSEM BCFAp BCFAR2 

3 0.15 1 .00 .91 .92 1.00 .98 .97 1.00 1.00 .99 .99 .93 

3 0.15 2 .00 .88 .89 1.00 .99 .96 .94 .94 .79 .98 .95 

3 0.30 1 .00 1.00 1.00 1.00 1.00 1.00 .96 .88 .18 .97 1.00 

3 0.30 2 .00 .97 .98 .93 .96 .96 .56 .33 .07 .73 .94 

5 0.15 1 .00 .98 .98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .96 

5 0.15 2 .00 .96 .98 1.00 .98 1.00 1.00 1.00 1.00 1.00 1.00 

5 0.30 1 .00 1.00 1.00 1.00 .98 1.00 .99 .99 .22 .97 .98 

5 0.30 2 .00 1.00 1.00 1.00 .92 1.00 .99 .99 .41 1.00 1.00 

PSPE  .00 .96 .97 .99 .98 .99 .93 .89 .58 .96 .97 

PSPEmin .00 .88 .89 .93 .92 .96 .56 .33 .07 .73 .93 

PSPEmax .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Note. N = sample size; K = number of factors; JK = number of items per factor; FC = factor correlations; ML = magnitude of major loadings; CL 

= magnitude of cross-loadings; CLK = number of cross-loadings per factor; 𝑃𝑆𝑃𝐸̅̅ ̅̅ ̅̅ ̅ = average proportion of successful parameter estimation; 

PSPEmin = minimum proportion of successful parameter estimation; PSPEmax = maximum proportion of successful parameter estimation. PSPE 

values lower than 0.70 are shown in italics. 𝑃𝑆𝑃𝐸̅̅ ̅̅ ̅̅ ̅ and PSPEmin values higher than 0.90 and 0.70, respectively, are shown in bold. 
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Table 4 

Marginal Means of the Bias and RMSE of Major Loadings 

 N K JK FC ML CL CLK  

 300 650 1,000 3 5 4 8 0 0.5 0.5 0.7 0.15 0.30 1 2 Total 

 Bias 
ICM-CFA .014 .014 .015 .014 .014 .019 .009 –.001 .029 .014 .015 .010 .019 .009 .020 .014 

BSEM .015 .016 .016 .016 .015 .023 .009 .005 .027 .017 .015 .009 .023 .010 .022 .016 

CFAMI .009 .007 .007 .007 .009 .012 .003 .000 .015 .011 .004 .007 .008 .005 .010 .008 

CFAS .009 .007 .005 .006 .008 .012 .002 .000 .014 .012 .002 .007 .007 .005 .009 .007 

BCFAp .007 .007 .006 .008 .006 .011 .003 .000 .014 .008 .005 .005 .008 .004 .009 .007 

BCFAR2 .006 .006 .004 .007 .004 .009 .002 .000 .011 .008 .003 .006 .005 .003 .008 .005 

EFAT –.010 –.007 –.006 –.002 –.013 –.005 –.010 .001 –.016 –.012 –.003 –.006 –.010 –.008 –.007 –.008 

RETAM –.012 –.007 –.006 –.003 –.014 –.006 –.010 .001 –.018 –.014 –.003 –.006 –.011 –.009 –.008 –.008 

ECFAp –.008 –.007 –.006 –.005 –.009 –.006 –.008 .001 –.015 –.009 –.005 –.005 –.009 –.006 –.008 –.007 

ECFAR2 –.007 –.007 –.007 –.005 –.009 –.007 –.006 .000 –.015 –.008 –.006 –.002 –.011 –.006 –.008 –.007 

EFAG –.020 –.016 –.015 –.013 –.022 –.016 –.018 .000 –.035 –.019 –.015 –.014 –.021 –.017 –.018 –.017 

Total .000 .001 .001 .003 –.001 .004 –.002 .001 .001 .001 .001 .001 .001 –.001 .003 .001 

 RMSE 
ICM-CFA .071 .058 .054 .061 .061 .072 .050 .041 .081 .071 .051 .049 .073 .058 .064 .061 

BSEM .065 .053 .048 .053 .057 .063 .046 .040 .071 .067 .044 .048 .062 .053 .057 .055 

CFAMI .074 .056 .050 .056 .065 .075 .044 .041 .078 .080 .038 .054 .066 .055 .065 .060 
CFAS .072 .056 .048 .055 .063 .076 .041 .039 .078 .082 .036 .051 .066 .054 .063 .059 

BCFAp .062 .051 .045 .052 .053 .063 .042 .039 .066 .067 .038 .049 .056 .050 .055 .052 

BCFAR2 .065 .051 .044 .052 .054 .064 .042 .039 .068 .070 .037 .051 .055 .051 .054 .053 
EFAT .076 .057 .050 .056 .067 .072 .051 .040 .082 .081 .042 .058 .064 .062 .060 .061 

RETAM .079 .059 .051 .058 .068 .075 .052 .041 .086 .085 .042 .058 .068 .063 .063 .063 

ECFAp .072 .054 .048 .058 .058 .071 .046 .040 .078 .078 .040 .053 .063 .056 .060 .058 

ECFAR2 .075 .052 .046 .056 .059 .071 .045 .039 .077 .078 .038 .054 .062 .055 .060 .058 

EFAG .082 .061 .053 .060 .070 .077 .053 .040 .090 .086 .045 .061 .069 .065 .065 .065 

Total .072 .055 .049 .056 .061 .071 .047 .040 .078 .077 .041 .053 .064 .057 .061 .059 

Note. N = sample size; K = number of factors; JK = number of items per factor; FC = factor correlations; ML = magnitude of major loadings; CL 

= magnitude of cross-loadings; CLK = number of cross-loadings per factor; Total = marginal mean. The lowest RMSE per condition (differences 

lower than 0.01 are not considered) is shown in bold. 
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Table 5 

Marginal Means of the Bias and RMSE of Zero-Loadings 

 N K JK FC ML CL CLK  

 300 650 1,000 3 5 4 8 0 0.5 0.5 0.7 0.15 0.30 1 2 Total 

 Bias 
ICM-CFA .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

BSEM –.009 –.012 –.013 –.016 –.006 –.015 –.008 –.013 –.010 –.008 –.015 –.007 –.016 –.006 –.017 –.011 

CFAMI –.002 –.004 –.004 –.004 –.003 –.004 –.003 –.001 –.006 –.004 –.002 –.002 –.005 –.003 –.004 –.003 

CFAS –.002 –.003 –.003 –.004 –.002 –.004 –.002 –.001 –.005 –.004 –.001 –.001 –.004 –.002 –.003 –.003 

BCFAp –.003 –.006 –.008 –.008 –.003 –.007 –.005 –.005 –.007 –.005 –.007 –.003 –.009 –.003 –.008 –.006 

BCFAR2 –.002 –.003 –.003 –.004 –.001 –.003 –.002 –.002 –.003 –.002 –.002 –.002 –.003 –.001 –.004 –.002 

EFAT .001 –.002 –.003 –.008 .006 –.004 .001 –.013 .011 .005 –.007 –.002 –.001 .003 –.005 –.001 

RETAM .000 –.002 –.003 –.008 .005 –.004 .001 –.014 .011 .004 –.007 –.002 –.002 .002 –.006 –.002 

ECFAp .006 .008 .008 .009 .005 .008 .006 .001 .014 .009 .005 .004 .011 .007 .008 .007 

ECFAR2 .007 .007 .009 .009 .006 .009 .006 .001 .014 .009 .006 .003 .012 .007 .009 .008 

EFAG .017 .016 .016 .019 .013 .016 .017 .003 .030 .020 .013 .010 .022 .016 .017 .016 

Total .001 .000 .000 –.001 .002 –.001 .001 –.004 .005 .002 –.002 .000 .001 .002 –.001 .000 

 RMSE 
ICM-CFA .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

BSEM .035 .039 .041 .040 .037 .042 .035 .036 .041 .033 .043 .032 .045 .036 .041 .038 

CFAMI .020 .028 .033 .025 .028 .033 .020 .012 .040 .034 .019 .016 .038 .023 .031 .027 
CFAS .019 .027 .030 .024 .027 .033 .017 .011 .039 .034 .017 .015 .036 .022 .029 .025 

BCFAp .022 .033 .038 .032 .031 .034 .029 .025 .038 .032 .031 .023 .040 .029 .034 .032 

BCFAR2 .026 .027 .028 .025 .029 .030 .023 .019 .034 .033 .021 .023 .030 .025 .028 .027 
EFAT .074 .060 .055 .065 .062 .070 .057 .053 .074 .074 .053 .058 .068 .063 .064 .063 

RETAM .076 .061 .056 .067 .062 .072 .058 .054 .076 .076 .053 .059 .070 .063 .066 .065 

ECFAp .044 .042 .043 .044 .042 .050 .037 .030 .057 .052 .035 .036 .050 .043 .043 .043 

ECFAR2 .041 .034 .035 .038 .035 .045 .028 .023 .050 .047 .027 .029 .044 .034 .039 .037 

EFAG .075 .059 .053 .066 .058 .068 .057 .048 .076 .076 .049 .059 .066 .062 .062 .062 

Total .039 .037 .037 .039 .037 .043 .033 .029 .048 .045 .032 .032 .044 .036 .040 .038 

Note. N = sample size; K = number of factors; JK = number of items per factor; FC = factor correlations; ML = magnitude of major loadings; CL 

= magnitude of cross-loadings; CLK = number of cross-loadings per factor; Total = marginal mean. The lowest RMSE per condition (ICM-CFA 

and differences lower than 0.01 are not considered) is shown in bold. 
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Table 6 

Marginal Means of the Bias and RMSE of Cross-Loadings 

 N K JK FC ML CL CLK  

 300 650 1,000 3 5 4 8 0 0.5 0.5 0.7 0.15 0.30 1 2 Total 

 Bias 
ICM-CFA –.225 –.225 –.225 –.225 –.225 –.225 –.225 –.225 –.225 –.225 –.225 –.150 –.300 –.225 –.225 –.225 

BSEM –.119 –.089 –.072 –.096 –.088 –.109 –.076 –.095 –.090 –.125 –.063 –.068 –.117 –.096 –.089 –.093 

CFAMI –.072 –.028 –.009 –.038 –.035 –.052 –.018 –.033 –.039 –.057 –.013 –.067 –.007 –.032 –.041 –.036 

CFAS –.070 –.025 –.010 –.036 –.034 –.051 –.019 –.031 –.039 –.056 –.014 –.062 –.007 –.031 –.039 –.035 

BCFAp –.068 –.030 –.014 –.041 –.031 –.058 –.013 –.032 –.040 –.061 –.013 –.046 –.026 –.036 –.036 –.036 

BCFAR2 –.068 –.036 –.021 –.045 –.036 –.059 –.022 –.026 –.056 –.065 –.018 –.054 –.028 –.043 –.039 –.041 

EFAT –.015 –.017 –.017 –.016 –.017 –.032 –.002 –.034 .002 –.015 –.018 –.009 –.024 –.023 –.010 –.017 

RETAM –.016 –.017 –.017 –.016 –.017 –.033 .000 –.034 .001 –.015 –.018 –.009 –.024 –.022 –.011 –.017 

ECFAp –.022 –.003 .003 –.010 –.004 –.018 .003 –.014 .000 –.017 .002 –.017 .003 –.008 –.007 –.007 

ECFAR2 –.031 –.011 –.002 –.014 –.015 –.020 –.009 –.015 –.014 –.025 –.004 –.032 .003 –.018 –.011 –.014 

EFAG .009 .010 .011 .011 .009 .000 .020 –.008 .029 .009 .011 .007 .014 .008 .012 .010 

Total –.063 –.043 –.034 –.048 –.045 –.060 –.033 –.050 –.044 –.060 –.034 –.046 –.047 –.048 –.045 –.047 

 RMSE 
ICM-CFA .225 .225 .225 .225 .225 .225 .225 .225 .225 .225 .225 .150 .300 .225 .225 .225 

BSEM .123 .093 .077 .100 .093 .112 .082 .098 .096 .128 .068 .072 .122 .100 .093 .097 

CFAMI .133 .091 .072 .096 .102 .113 .083 .076 .120 .127 .067 .108 .091 .097 .101 .099 

CFAS .130 .091 .067 .093 .099 .115 .078 .073 .119 .129 .063 .103 .089 .095 .097 .096 

BCFAp .114 .073 .056 .082 .077 .098 .061 .066 .094 .107 .055 .085 .075 .080 .079 .080 

BCFAR2 .116 .079 .061 .087 .081 .101 .068 .066 .104 .112 .059 .093 .076 .085 .083 .084 

EFAT .062 .049 .044 .049 .054 .059 .044 .051 .052 .061 .042 .048 .055 .054 .049 .051 

RETAM .071 .054 .048 .055 .060 .067 .049 .052 .063 .073 .043 .049 .065 .057 .057 .057 
ECFAp .098 .066 .056 .077 .070 .089 .058 .059 .089 .097 .051 .075 .072 .071 .075 .073 

ECFAR2 .107 .070 .056 .079 .076 .093 .062 .061 .095 .105 .052 .086 .069 .076 .079 .078 

EFAG .082 .060 .052 .066 .063 .074 .055 .048 .082 .083 .046 .061 .068 .064 .065 .064 

Total .115 .087 .074 .092 .092 .105 .079 .080 .104 .114 .070 .085 .099 .092 .092 .092 

Note. N = sample size; K = number of factors; JK = number of items per factor; FC = factor correlations; ML = magnitude of major loadings; CL 

= magnitude of cross-loadings; CLK = number of cross-loadings per factor; Total = marginal mean. Absolute biases higher than 0.05 are shown 

in italics. The lowest RMSE per condition (differences lower than 0.01 are not considered) is shown in bold. 
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Table 7 

Marginal Means of the Bias and RMSE of Factor Correlations 

 N K JK FC ML CL CLK  

 300 650 1,000 3 5 4 8 0 0.5 0.5 0.7 0.15 0.30 1 2 Total 

 Bias 
ICM-CFA .109 .110 .110 .132 .087 .138 .081 .095 .124 .124 .095 .066 .152 .078 .141 .109 

BSEM .082 .078 .074 .099 .054 .099 .056 .076 .080 .089 .067 .051 .105 .053 .102 .078 

CFAMI .044 .031 .026 .039 .028 .042 .025 .019 .047 .045 .020 .038 .030 .025 .042 .034 

CFAS .041 .028 .019 .035 .024 .041 .018 .017 .042 .045 .014 .035 .025 .023 .037 .030 

BCFAp .050 .040 .037 .054 .028 .056 .027 .031 .053 .055 .030 .032 .052 .028 .056 .042 

BCFAR2 .043 .029 .023 .042 .020 .044 .018 .019 .044 .046 .018 .031 .031 .020 .042 .031 

EFAT .001 .014 .019 .038 –.016 .024 –.001 .057 –.035 –.010 .032 .002 .020 –.002 .025 .011 

RETAM .004 .015 .019 .039 –.015 .026 .000 .059 –.035 –.007 .032 .003 .022 .000 .026 .013 

ECFAp –.007 –.019 –.024 –.018 –.016 –.014 –.019 .007 –.043 –.023 –.011 –.008 –.026 –.020 –.014 –.017 

ECFAR2 –.012 –.020 –.029 –.019 –.022 –.024 –.017 .004 –.046 –.028 –.013 –.001 –.040 –.021 –.020 –.020 

EFAG –.061 –.055 –.052 –.057 –.054 –.052 –.059 .001 –.115 –.080 –.032 –.046 –.066 –.059 –.053 –.056 

Total .026 .023 .020 .035 .011 .035 .011 .035 .011 .023 .023 .018 .028 .011 .035 .023 

 RMSE 
ICM-CFA .136 .125 .122 .143 .113 .158 .097 .122 .134 .146 .110 .087 .168 .101 .155 .128 

BSEM .112 .096 .089 .111 .084 .121 .075 .104 .093 .113 .085 .075 .122 .079 .118 .098 

CFAMI .103 .077 .067 .084 .082 .102 .061 .075 .090 .104 .058 .078 .087 .073 .092 .083 
CFAS .101 .075 .064 .081 .079 .102 .058 .072 .088 .104 .056 .075 .085 .071 .089 .080 

BCFAp .098 .074 .067 .086 .072 .098 .060 .076 .082 .098 .062 .071 .088 .070 .088 .079 

BCFAR2 .097 .071 .059 .080 .070 .093 .056 .072 .079 .097 .055 .072 .078 .069 .081 .075 
EFAT .090 .074 .068 .074 .081 .089 .066 .081 .073 .093 .063 .071 .084 .072 .082 .077 

RETAM .094 .077 .070 .078 .082 .092 .069 .083 .077 .099 .063 .072 .089 .074 .086 .080 
ECFAp .093 .079 .075 .088 .076 .100 .065 .070 .095 .105 .060 .074 .091 .081 .084 .082 

ECFAR2 .102 .079 .075 .090 .080 .106 .065 .070 .102 .112 .059 .075 .095 .081 .090 .085 

EFAG .115 .093 .084 .100 .093 .105 .089 .061 .134 .129 .066 .091 .102 .098 .096 .097 

Total .104 .084 .076 .092 .083 .106 .069 .081 .095 .109 .067 .076 .099 .079 .097 .088 

Note. N = sample size; K = number of factors; JK = number of items per factor; FC = factor correlations; ML = magnitude of major loadings; CL 

= magnitude of cross-loadings; CLK = number of cross-loadings per factor; Total = marginal mean. Absolute biases higher than 0.05 is shown in 

italics. The lowest RMSE per condition (ICM-CFA and differences lower than 0.01 are not considered) is also shown in bold. 
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Table 8 

Marginal Means of CFI, RMSEA, and PPP 

 N K JK FC ML CL CLK  

 300 650 1,000 3 5 4 8 0 0.5 0.5 0.7 0.15 0.30 1 2 Total 

 CFI 
ICM-CFA .848 .851 .852 .875 .826 .866 .835 .817 .884 .800 .901 .870 .831 .858 .842 .850 

CFAMI .888 .899 .903 .921 .872 .924 .866 .876 .916 .850 .950 .884 .909 .893 .901 .897 

CFAS .890 .901 .904 .923 .874 .925 .872 .880 .916 .850 .946 .887 .910 .894 .902 .898 

BCFAp .898 .906 .908 .924 .881 .927 .880 .886 .923 .854 .950 .894 .914 .899 .909 .904 

BCFAR2 .902 .904 .905 .923 .881 .928 .878 .886 .922 .855 .948 .894 .912 .899 .908 .903 

EFAT .912 .913 .913 .934 .891 .945 .882 .895 .931 .872 .953 .903 .922 .908 .918 .913 

RETAM .913 .913 .913 .934 .892 .945 .882 .896 .931 .872 .953 .904 .923 .908 .918 .913 

ECFAp .904 .909 .911 .929 .886 .937 .880 .892 .926 .862 .952 .899 .918 .904 .912 .908 

ECFAR2 .904 .906 .907 .929 .882 .937 .876 .889 .923 .861 .949 .896 .916 .901 .911 .906 

EFAG .912 .913 .913 .934 .891 .945 .882 .895 .931 .872 .953 .903 .923 .908 .918 .913 

Total .897 .901 .903 .923 .877 .928 .873 .881 .920 .855 .945 .893 .907 .897 .904 .900 

 RMSEA 

ICM-CFA .064 .064 .064 .067 .061 .070 .058 .066 .062 .058 .070 .056 .072 .060 .068 .064 

CFAMI .052 .049 .048 .050 .049 .049 .050 .050 .049 .050 .049 .051 .048 .049 .050 .050 

CFAS .052 .049 .048 .050 .050 .049 .050 .050 .049 .050 .049 .051 .048 .049 .050 .050 

BCFAp .051 .049 .048 .049 .049 .049 .049 .050 .049 .050 .048 .050 .048 .049 .049 .049 

BCFAR2 .051 .049 .049 .050 .049 .050 .050 .050 .050 .050 .049 .050 .049 .049 .050 .050 

EFAT .052 .052 .052 .051 .053 .052 .053 .054 .050 .052 .052 .054 .050 .053 .052 .052 

RETAM .052 .052 .052 .051 .053 .052 .053 .054 .050 .052 .052 .054 .050 .053 .052 .052 

ECFAp .048 .047 .047 .048 .048 .046 .049 .049 .047 .048 .047 .049 .047 .048 .048 .048 

ECFAR2 .048 .048 .048 .048 .048 .046 .050 .049 .047 .048 .048 .049 .047 .048 .048 .048 

EFAG .052 .052 .052 .051 .053 .052 .053 .054 .050 .052 .052 .054 .050 .053 .052 .052 

Total .052 .051 .051 .052 .051 .052 .051 .053 .050 .051 .052 .052 .051 .051 .052 .051 

 PPP 
BSEM .014 .001 .000 .009 .001 .010 .000 .004 .006 .003 .006 .006 .003 .006 .004 .005 

Note. N = sample size; K = number of factors; JK = number of items per factor; FC = factor correlations; ML = magnitude of major loadings; CL 

= magnitude of cross-loadings; CLK = number of cross-loadings per factor; Total = marginal mean. 
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Table 9 

Marginal Means of the Determinacy of Factor Score Estimates 

 N K JK FC ML CL CLK  

 300 650 1,000 3 5 4 8 0 0.5 0.5 0.7 0.15 0.30 1 2 Total 

 Empirical reliability 
ICM-CFA .794 .790 .789 .789 .792 .750 .832 .753 .829 .714 .867 .778 .803 .784 .797 .791 

BSEM .801 .796 .795 .793 .801 .757 .838 .762 .833 .715 .873 .781 .813 .789 .805 .797 

CFAMI .790 .785 .783 .783 .788 .750 .826 .746 .822 .717 .865 .769 .802 .780 .792 .786 

CFAS .795 .791 .790 .789 .795 .751 .834 .761 .824 .717 .867 .779 .805 .785 .799 .792 

BCFAp .799 .792 .791 .791 .797 .752 .836 .761 .828 .713 .869 .780 .808 .786 .801 .794 

BCFAR2 .799 .791 .788 .790 .796 .752 .835 .760 .827 .712 .867 .780 .806 .786 .800 .793 

EFAT .812 .803 .797 .796 .812 .773 .834 .770 .839 .735 .871 .788 .820 .802 .806 .804 

RETAM .813 .803 .797 .796 .813 .774 .834 .770 .839 .735 .871 .788 .820 .803 .806 .804 

ECFAp .799 .789 .783 .787 .795 .751 .829 .763 .821 .712 .865 .778 .804 .785 .796 .791 

ECFAR2 .800 .786 .783 .785 .794 .749 .829 .762 .819 .712 .864 .778 .801 .785 .794 .790 

EFAG .813 .800 .789 .784 .817 .773 .827 .767 .835 .734 .865 .785 .816 .799 .802 .801 

Total .801 .793 .789 .789 .800 .575 .832 .762 .829 .720 .868 .780 .809 .790 .800 .795 

 True reliability 
ICM-CFA .744 .754 .756 .751 .752 .695 .808 .725 .777 .659 .844 .753 .750 .751 .752 .751 

BSEM .754 .758 .759 .758 .757 .707 .810 .728 .789 .664 .845 .752 .763 .753 .762 .757 

CFAMI .742 .753 .755 .751 .749 .705 .801 .720 .778 .665 .848 .738 .761 .748 .752 .750 

CFAS .749 .762 .765 .760 .758 .706 .812 .736 .781 .665 .852 .751 .767 .755 .762 .759 

BCFAp .755 .760 .762 .758 .760 .708 .811 .732 .788 .662 .849 .752 .767 .755 .763 .759 

BCFAR2 .754 .761 .764 .759 .761 .708 .813 .734 .788 .661 .851 .751 .769 .755 .764 .760 
EFAT .723 .746 .752 .749 .732 .691 .789 .719 .763 .636 .842 .733 .748 .735 .746 .741 

RETAM .723 .745 .751 .747 .732 .689 .788 .719 .760 .633 .842 .733 .746 .735 .744 .739 

ECFAp .745 .754 .754 .751 .751 .697 .803 .731 .773 .650 .847 .746 .756 .747 .754 .751 

ECFAR2 .740 .757 .759 .752 .753 .696 .807 .734 .772 .650 .851 .747 .758 .750 .755 .752 

EFAG .715 .741 .748 .741 .729 .683 .785 .720 .750 .625 .841 .728 .742 .730 .740 .735 

Total .740 .754 .757 .752 .748 .699 .802 .727 .774 .652 .846 .744 .757 .747 .754 .750 

Note. N = sample size; K = number of factors; JK = number of items per factor; FC = factor correlations; ML = magnitude of major loadings; CL 

= magnitude of cross-loadings; CLK = number of cross-loadings per factor; Total = marginal mean. The highest true reliability per condition 

(differences lower than 0.01 are not considered) is shown in bold. 
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Table 10 

Results for the Real Data Illustration 

 ML CL FC �̂�2 CFI RMSEA BIC CC Somma ICM-CFA CFAMI CFAS EFAT RETAM ECFAp ECFAR2 

ICM-CFA .621 .000 .621 .871 .689 .112 88799.8 .999 
.201 

(.507) 
       

CFAMI .633 .144 .364 .854 .880 .075 83104.2 .883 
.158 

(.296) 

.220 

(.339) 
      

CFAS .566 .068 .322 .834 .835 .092 84479.5 .893 
.151 

(.258) 

.178 

(.391) 

.155 

(.223) 
     

EFAT .559 .141 .272 .842 .887 .080 82861.5 .977 
.088 

(.173) 

.197 

(.401) 

.137 

(.206) 

.127 

(.127) 
    

RETAM .555 .143 .318 .844 .887 .080 82861.5 .942 
.109 

(.202) 

.208 

(.335) 

.137 

(.185) 

.122 

(.154) 
.061 

(.092) 
   

ECFAp .487 .127 .249 .838 .889 .073 82806.6 .933 
.181 

(.221) 

.237 

(.454) 

.207 

(.274) 

.154 

(.125) 

.164 

(.118) 

.151 

(.166) 
  

ECFAR2 .482 .133 .239 .834 .891 .073 82759.7 .958 
.179 

(.217) 

.238 

(.475) 

.209 

(.269) 

.159 

(.132) 

.162 

(.119) 

.149 

(.177) 
.034 

(.043) 
 

EFAG .484 .146 .214 .833 .887 .080 82861.5 .964 
.177 

(.205) 

.236 

(.486) 

.207 

(.292) 

.156 

(.166) 

.160 

(.135) 

.147 

(.187) 
.040 

(.054) 
.032 

(.050) 

Note. ML = average of major loadings; CL = average of cross-loadings; FC = average of factor correlations; �̂�
2
 = average determinacy of factor 

score estimates; Somma = root-mean-square deviation (RMSD) of factor loadings (and factor correlations) with respect to the results from 

Somma et al. (2019); CC = average congruent coefficient across domains and 100 replications. The columns with factor analytic technique 

names display the RMSD of factor loadings (and factor correlations) between pairs of techniques. RMSD lower 0.100 are shown in bold. 
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Table 11 

Factor loading and correlation matrices of EFA with Geomin and target rotation 

 EFA with Geomin rotation (EFAG) EFA with target rotation (EFAT) 

 Factor loadings 

PID-5 Facets Neg. Det. Ant. Dis. Psy. Neg. Det. Ant. Dis. Psy. 

Anxiousness .83 –.18 –.05 –.02 .03 .73 .22 –.03 –.08 .03 

Emotional Lability .55 –.36 –.06 .03 .35 .65 –.06 –.06 .12 .26 

Hostility .32 –.03 .42 .00 .11 .27 .13 .41 .08 .07 

Perseveration .58 –.01 .07 –.11 .31 .45 .24 .12 –.06 .31 

Restricted Affectivity .02 .61 .23 –.05 .03 –.36 .58 .25 –.09 .09 

Separation Insecurity .61 –.39 .16 .03 –.03 .69 –.07 .16 .03 –.08 

Submissiveness .45 –.03 .16 .00 –.14 .35 .18 .16 –.06 –.13 

Anhedonia .59 .45 .02 .25 –.05 .19 .80 –.05 .11 –.10 

Depressivity .67 .19 –.03 .24 .13 .41 .59 –.09 .17 .04 

Intimacy Avoidance .12 .47 .01 .03 .12 –.19 .53 .01 –.01 .13 

Suspiciousness .48 .11 .11 –.02 .16 .30 .34 .13 –.02 .15 

Withdrawal .37 .62 –.01 –.02 .04 –.09 .77 .02 –.13 .10 

Attention Seeking .11 –.32 .55 –.09 .10 .27 –.28 .56 .06 .06 

Callousness –.02 .30 .60 .05 .05 –.19 .30 .57 .12 .02 

Deceitfulness .06 .02 .90 .05 –.12 .03 .06 .86 .15 –.17 

Grandiosity –.04 .12 .49 –.29 .12 –.11 .01 .57 –.17 .20 

Manipulativeness –.03 .00 .85 –.14 –.05 –.03 –.06 .87 –.01 –.04 

Distractibility .21 .01 .06 .30 .45 .19 .22 –.03 .41 .25 

Impulsivity –.03 –.23 .27 .21 .40 .16 –.15 .19 .40 .21 

Rigid Perfectionism .59 .02 .02 –.59 –.02 .39 .12 .23 –.63 .23 

Risk Taking –.38 –.06 .25 .03 .40 –.23 –.22 .22 .24 .30 

Irresponsibility .01 .06 .45 .34 .24 .01 .18 .32 .47 .04 

Eccentricity .08 .15 .04 .01 .67 .00 .21 .04 .20 .57 

Perceptual Dysregulation .21 .01 –.02 –.02 .74 .19 .12 .00 .18 .63 

Unusual Beliefs & Experiences .00 .07 .02 –.23 .68 –.02 .01 .10 –.01 .67 

Average congruent coefficient .99 .99 .98 .88 .97 .99 .99 .99 .95 .95 

 Factor correlations 

PID-5 Domains Neg. Det. Ant. Dis. Psy. Neg. Det. Ant. Dis. Psy. 

Negative Affectivity 1.00     1.00     

Detachment .17 1.00    .30 1.00    

Antagonism .24 .21 1.00   .13 .31 1.00   

Disinhibition .15 –.03 –.03 1.00  .20 .14 .25 1.00  

Psychoticism .46 .20 .52 .14 1.00 .32 .40 .49 .27 1.00 

Note. Neg. = negative affectivity; Det. = detachment; Ant. = antagonism; Dis. = disinhibition; 

Psy. = psychoticism. The expected domain for each facet (Somma et al., 2019) is highlighted 

in gray. Additionally, the facets contributing primarily to each domain as stated in the PID-5 

user’s manual (see Krueger et al., 2013) are shown in bold. 
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Figures 

Figure 1 

Two-dimensional Multidimensional Scaling of Factor Analytic Techniques based on their 

Parameter Estimates 
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Figure 2 

Decision Tree of Factor Analytic Techniques as a Function of Data and Model Conditions based on the Proportion of Successful Parameter 

Estimation 

 

Note. ML = magnitude of major loadings; FC = factor correlations; N = sample size; JK = number of items per factor; K = number of factors. 

Factor analytic techniques that have a 𝑃𝑆𝑃𝐸̅̅ ̅̅ ̅̅ ̅ ≥ 0.90 and a PSPEmin ≥ 0.70 are highlighted in gray. Factor analytic techniques that have a PSPEmax 

≥ 0.50 are shown in white. A hyphen is shown for those conditions under which no factor analytic technique achieved a PSPEmax ≥ 0.50. Below 

each factor analytic technique, it is shown the 𝑃𝑆𝑃𝐸̅̅ ̅̅ ̅̅ ̅; {PSPEmin, PSPEmax}. If more than one factor analytic technique is displayed, the lowest 

PSPE results among the techniques are shown. 
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Figure 3 

Decision Tree of Data-Driven Factor Analytic Techniques under ML = 0.7 and FC = 0.5 

 

Note. ML = magnitude of major loadings; FC = factor correlations; N = sample size; JK = number of items per factor; K = number of factors. 

Factor analytic techniques that have a 𝑃𝑆𝑃𝐸̅̅ ̅̅ ̅̅ ̅ ≥ 0.90 and a PSPEmin ≥ 0.70 are highlighted in gray. Factor analytic techniques that have a PSPEmax 

≥ 0.50 are shown in white. Below each factor analytic technique, it is shown the 𝑃𝑆𝑃𝐸̅̅ ̅̅ ̅̅ ̅; {PSPEmin, PSPEmax}. If more than one factor analytic 

technique is displayed, the lowest PSPE results among the techniques are shown. 
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