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Executive Summary  

Introduction 

In the world of Operational Research (OR), linear optimization is one of the most 

used tools to solve problems. Linear Programming (LP) has been studied for more 

than a century, becoming the most extensively studied optimization problem.  

Thanks to the versatility of this science, it applies to a wide range of different 

fields, from engineering to financial, going through social and environmental 

issues. When it comes to a real-life problem, the dimensions start getting difficult 

to manage, and even though there are algorithms which can solve them, the time 

that takes to reach an optimal solution is absurdly long. Here is where the 

simplification appears. In this paper, a sensibility analysis for a simplification 

operation is made, in order to see how the problems react to different levels of 

simplification, with the objective of being able to make a decision whether it is or 

it is not worth it. This will be possible with the help of three indexes and graphs of 

their evolution during the simplification process.  

Pre-solve methods 

Before starting to solve any LP, there exist some operations that simplify the 

problem. These operations are called pre-solved methods. The main objective of 

these methods is to reduce as much as possible the dimensions of the problem. In 

this paper, the 9 most popular methods are explained and illustrated with a simple 

example. The battery of problems used in the project has been pre-solved with 

these methods, before solving and applying the simplification operation.  

Problems battery under study 

The problems studied in this project is selected from the model library of the 

software GAMS, from where thirty LPs are randomly selected and afterwards pre-

solved, solved and simplified. The battery is formed by problems from different 

fields such as: agricultural economics, management science and OR, stochastic 

programming, macro and micro economics and mathematics. 



 
 

Sensibility analysis  

Once the problems have been pre-solved, solved and simplified with the 

sparsification1 operation, main data is uploaded into Jupyter notebook, the 

environment where the coding is made. The main data is:  

- Epsilon: signification level that is used to modify the matrix A, if the 

element is less than epsilon (matrix A normalized) it takes 0 value. 

- Objective_function: With the new matrix A (modified using epsilon), a new 

model is built. This is the value for the new objective function for each 

epsilon. 

- Decision_variables: It contains the value of each decision variable for each 

epsilon in the new model built with the modified matrix A. 

- Changed_indices: Elements that have been modified from the matrix A, for 

each value of epsilon. 

- Constraint_violation: Taking the solution of the new model (modified 

matrix A) and putting it in the original model, the violation of each 

constraint is evaluated, for each epsilon value. 

- of_original_decision: Taking the solution of the new model (modified 

matrix A) and putting it in the original model, the objective function is 

evaluated, for each epsilon value.  

- time_required: It shows the time required to solved the problem for each 

epsilon value.  

Using this data three indexes are calculated to measure the evolution of the 

objective function, the complexity and the infeasibility of the problem. These 

indexes are normalized, so comparisons between different problems are possible. 

For every value of epsilon, each index will have a value, so afterwards the graph 

of the evolution during the simplification will be made for every index. Here is an 

example (problem form the battery called IBM1) of the graph of the evolution of 

the objective function through the simplification process: 

 
1 Simplification operation used and applied by the Co-director of the project, Phillipe Vilaça Gomes.  



 
 

 

Graphs like the one above will be obtained for the other two indexes too. With a 

function coded, the entire battery will be iterated with a loop. With this iteration, 

the three graphs will be obtained for every problem from the battery. Once that all 

the graphs are obtained, four main behaviours are visualized. The first behaviour 

consists of a notably improvement on the objective function value and in the 

complexity of the problem, but with the cost of the problem becoming extremely 

infeasible. The second behaviour is quite similar, but in this case the objective 

function worsens. For the complexity and the infeasibility happens the same as in 

the first one. The third type consists of the problems that do not see themselves 

affected until big epsilons. When this happens the objective function and 

complexity improve, but at the same time the problem becomes infeasible. For the 

three cases mention before, the sensibility analysis shows that it has no value the 

simplification in these kinds of problems. But, the four behaviour is the one where 

the objective function and the infeasibility index barely vary, while the complexity 

of the problem decreases. For this behaviour, the simplification operation is worth 



 
 

it, because the problem will be simplified in a notably percentage, while keeping 

almost the same objective function value, and without becoming infeasible.  

Conclusion 

The main conclusions obtained with this project can be synthesized in two main 

points: 

Firstly, each problem must be study and simplified individually, since it has been 

clearly obtained that there are different behaviours through the simplification 

operation. Even though most of the problems cannot be simplified, because they 

become infeasible, there are some of them that are acceptable for the 

simplification, reaching an easier solution without affecting the infeasibility or the 

objective function value. This can be translated into the use of less variables and/or 

constraints.  

The second point is that with the sensibility analysis defined in the project, any 

project could be easily analysed and classified in one of the four main behaviours, 

just by looking at three graphs. With this information, decisions towards 

simplifying or not the LP can be made.  
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Abstract 

Linear optimization is an essential tool when facing complex problems. Thanks to 

its ability to adapt to all types of challenges across various fields of application, it 

is highly prevalent in the daily activities of any profession. Because real-life 

problems complexity, due to the number of variables and constraints, 

simplification is key. Adding to the traditional pre-solved methods, simplification 

operations are in constant innovation, in order to make these problems easier. With 

this project, a sensibility analysis is made, to see the reaction of a battery of 

problems to a simplification operation called sparsification, which will be done 

for different signification levels (epsilons) from less to more simplified. The study 

will use a battery of LPs from the optimization software GAMS.  

First of all, three main indexes are calculated, all of them normalized so it is 

possible making comparisons between problems. The first one measures the 

objective function value, the second one measures the infeasibility and the last one 

the complexity of the problem. The three will be calculated for every epsilon, and 

afterwards, the graphs for the three of them will be obtained.  

Once the graphs are obtained, the analysis starts. It consists of searching for similar 

reactions and patterns in the different problems. Four main behaviours are 

identified in the analysis, and only one of them shows that the simplification 

operation is worth it.  

Key words: simplification, sensibility, linear programming, optimization, 

behaviours, infeasibility, complexity 

 



 
 

Autor: García-Mina Peñaranda, José María. 

Director. Lumbreras Sancho, Sara. 

Co-director: Villaça Gomes, Phillipe. 

 

Resumen 

La optimización lineal es una herramienta esencial al enfrentar problemas 

complejos. Gracias a su capacidad para adaptarse a todo tipo de desafíos en 

diversos campos de aplicación, es altamente prevalente en las actividades diarias 

de cualquier profesión. Debido a la complejidad de los problemas de la vida real, 

por el número de variables y restricciones, la simplificación es clave. Además de 

los métodos tradicionales pre-resueltos, las operaciones de simplificación están en 

constante innovación para hacer estos problemas más manejables. Con este 

proyecto, se realiza un análisis de sensibilidad para observar la reacción de una 

batería de problemas a una operación de simplificación llamada esparsificación, 

que se llevará a cabo para diferentes niveles de significación (épsilons), desde 

menos hasta más simplificado. El estudio utilizará una batería de PLs del software 

de optimización GAMS. 

En primer lugar, se calculan tres índices principales, todos ellos normalizados para 

que sea posible hacer comparaciones entre problemas. El primero mide el valor de 

la función objetivo, el segundo mide la inviabilidad y el último la complejidad del 

problema. Los tres se calcularán para cada épsilon y, posteriormente, se obtendrán 

los gráficos de los tres. 

Una vez obtenidos los gráficos, comienza el análisis. Consiste en buscar reacciones 

y patrones similares en los diferentes problemas. En el análisis se identifican cuatro 

comportamientos principales, y solo uno de ellos muestra que la operación de 

simplificación merece la pena. 

Palabras clave: simplificación, sensibilidad, programación lineal, optimización, 

comportamientos, infactibilidad, complejidad. 



 
 

Content table 
 

1. Introduction ........................................................................................................... 12 

2. Linear programming ............................................................................................... 13 

3. Pre-solve methods. ................................................................................................. 14 

3.1. Introduction .................................................................................................. 14 

3.2. Methods........................................................................................................ 15 

3.2.1. Eliminate zero rows. ................................................................................... 15 

3.2.2. Eliminate zero columns. .............................................................................. 17 

3.2.3. Eliminate singleton equality constraints. ....................................................... 19 

3.2.4. Eliminate singleton inequality constraints. .................................................... 22 

3.2.5. Eliminate dual singleton inequality constraints. .............................................. 24 

3.2.6. Eliminate implied free singleton columns. ..................................................... 26 

3.2.7. Eliminate redundant columns. ...................................................................... 29 

3.2.8. Eliminate implied bounds on rows. ............................................................... 30 

3.2.9. Eliminate redundant rows. ........................................................................... 32 

4. Problems battery under study ................................................................................... 34 

4.1. Agricultural Economics .................................................................................. 35 

4.2. Management Science and OR .......................................................................... 35 

4.3. Stochastic Programming ................................................................................. 35 

4.4. Macro and Micro economics ........................................................................... 36 

4.5. Mathematics .................................................................................................. 36 

5. Sensibility analysis ................................................................................................. 36 

5.1. Indexes ......................................................................................................... 38 

5.2. Procedure of the analysis ................................................................................ 41 

5.3. Conclusions of the analysis ............................................................................. 50 

6. Bibliography .......................................................................................................... 51 

7. Annex ................................................................................................................... 51 

7.1. Coding ......................................................................................................... 51 

 

 
 



 
 

 

Illustration index 
 

1. Index that measures the objective function degradation. ................................. 38 

2. Index that measures the problem infeasibility. ................................................. 40 

3. Index that measures the problem complexity. .................................................. 41 

4. Objective functions from type 1 problems. ...................................................... 42 

5. Infeasibility from type 1 problems. .................................................................. 43 

6. Complexity from type 1 problems. ................................................................... 43 

7. Objective functions from type 2 problems. ...................................................... 44 

8. Infeasibility from type 2 problems. .................................................................. 45 

9. Complexity from type 2 problems. ................................................................... 45 

10. Objective functions from type 3 problems. .................................................... 46 

11. Infeasibility from type 3 problems. ................................................................ 47 

12. Complexity from type 3 problems. ................................................................. 47 

13. Objective functions from type 4 problems. .................................................... 48 

14.  Infeasibility from type 4 problems. ............................................................... 49 

15. Complexity from type 4 problems. ................................................................. 49 

 

 

 

 

 

 

 

 

 

  

 

  



 
 

1. Introduction 

 

Linear optimization is an essential tool when facing complex problems. Thanks to 

its ability to adapt to all types of challenges across various fields of application, it 

is highly prevalent in the daily activities of any profession. One of the 

characteristics of these problems is the large number of variables and constraints, 

which makes solving them an arduous task. Because of this, the simplification of 

linear programming is constantly innovating and trying to find a way to make this 

science easier. Numerous models of simplifying problems exist, and with this 

analysis it will be possible to evaluate the impact of the simplification to complex 

linear programming problems.  

The project explains basic linear programming knowledge, shows the ten most 

important pre-solve methods that are used in simplification operations and then 

enters the sensibility analysis, ending with the conclusions obtained by the 

analysis. All the codes used for the operations and obtaining the graphs are in the 

annex. 

Firstly, sixty problems will be solved and simplify by the sparsification operation, 

saving the results of this operations in a json file. This simplification solves the 

problem for 30 different levels of signification (epsilons), being the first one the 

original problem and the last one the most simplified. To read and study the data 

the open-source web application Jupyter notebook is used, programming in 

Python. The objective of this study is to visualize graphically the evolution of the 

LPs problems and how they react to the simplification.  

The main indicators for the project are the normalized objective function, an 

unfeasibility index and a complexity index, that are calculated for each value of 

epsilon. First this three are calculated just for a small sample of problems, and then 

a function is program with all the operations needed, to then iterate every problem 

and be able to observe the graphs and reach conclusions with the entire battery.  

 



 
 

2. Linear programming  

 

The Linear Programming (LP) problem is arguably the most significant and 

extensively studied optimization problem. A multitude of real-world issues can be 

formulated as Linear Programming problems (LPs). LP involves the process of 

minimizing or maximizing a linear objective function subject to a ser of linear 

equality and/or inequality constraints.  

The structure of a LP problem in standard form is the following: 

- Objective function:    min 𝑧 = 𝑐𝑇𝑥 

- Constraints:    s.t        𝐴𝑥 ≥  𝑏    

     𝑥 ≥ 0 

Where x is the vector of decision variables, A is the matrix of restrictions, c is the 

coefficients vector of the objective function and b is the right-hand side vector. 

Furthermore, 𝐴 ∈ ℝ𝑚×𝑛, (𝑐, 𝑥) ∈ ℝ𝑛 and T denotes transposition, and that the 

linear system 𝐴𝑥 = 𝑏 is consistent. With the word min it is shown that the problem 

is to minimize de objective function. In order to be a linear programming problem, 

both the objective function and the constraints must be linear. 

In addition, from every LP we can obtain the dual problem. Both problems keep a 

close relation between them. The canonical form of the dual problem is the 

following:  

- Objective function:    max 𝑧 = 𝑏𝑇𝑤 

- Constraints:    s.t        𝐴𝑇𝑤 ≤  𝑐    

     𝑤 ≥ 0 

The easiest problems can be solved graphically, while for the more complex ones 

the most popular way of approaching these problems is the simplex algorithm. The 



 
 

algorithm starts with a first feasible solution and moves towards an adjacent 

solution until the optimal is reached.  

3. Pre-solve methods. 

3.1. Introduction 

 

Pre-solve methods play a crucial role in solving linear programming (LP) problems 

by reducing their size and determining if they are unbounded or infeasible. These 

methods are applied before an LP algorithm to: remove redundant constraints, fix 

certain variables, adjust bounds on individual structural variables, and decrease the 

number of variables and constraints through eliminations.  

Nine pre-solve methods used before executing an LP algorithm are going to be 

shown: eliminating zero rows, eliminating zero columns, eliminating singleton 

equality constraints, eliminating kton equality constraints, eliminating singleton 

inequality constraints, eliminating dual singleton inequality constraints, 

eliminating implied free singleton columns, eliminating redundant columns, 

eliminating implied bounds on rows, eliminating redundant rows, and ensuring the 

coefficient matrix is structurally full rank.  

The following LP problem in canonical form is considered: 

 

min 𝑧 = 𝑐𝑇𝑥 

s.t       𝑏    ≤  𝐴𝑥  ≤  𝑏     

𝑥   ≤    𝑥   ≤   𝑥 

 



 
 

Where 𝑐, 𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛, 𝑥 = 0, 𝑥 = ∞, 𝑏 = (ℝ ∪ {−∞})𝑚, 𝑏 = (ℝ ∪

{+∞})𝑚, and T denotates transposition. Let 𝐴𝑖 be the ith row of matrix A and 𝐴𝑗 

be the jth column of the matrix A. 

 

3.2. Methods2 

3.2.1. Eliminate zero rows. 

A row in the coefficient matrix 𝐴 is considered an empty row if all the coefficients 

in that row are zero. A zero row can be expressed as: 

𝑏𝑖 ≤ 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≤ 𝑏𝑖 

A constraint of this type maybe redundant or may state that the LP problem is 

infeasible. All possible cases are distinguished in the following theorem:  

For each empty row we distinguished the following cases: 

 

1. 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≤ 𝑏𝑖  𝑎𝑛𝑑 𝑏𝑖 ≥ 0: The constraint is redundant 

and can be deleted. 

2. 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≤ 𝑏𝑖  𝑎𝑛𝑑 𝑏𝑖 < 0: The LP problem is 

infeasible. 

3. 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≥ 𝑏𝑖  𝑎𝑛𝑑 𝑏𝑖 ≤ 0: The constraint is redundant 

and can be deleted. 

4. 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≥ 𝑏𝑖𝑎𝑛𝑑 𝑏𝑖 > 0: The LP problem is 

infeasible. 

5. 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≥ 𝑏𝑖 = 𝑏𝑖 = 𝑏𝑖  𝑎𝑛𝑑 𝑏𝑖 = 0: The constraint is 

redundant and can be deleted. 

 
2 Methods and examples obtained from Ploskas, N., & Samaras, N. (n.d.). Springer Optimization and its 

applications. 

 



 
 

6. 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≥ 𝑏𝑖 = 𝑏𝑖 = 𝑏𝑖  𝑎𝑛𝑑 𝑏𝑖 ≠ 0: The LP problem 

is infeasible. 

 

With the next illustrative example, we can see the demonstration of the pre-solve 

method that eliminates zero rows. 

The LP problem that will be presolved is the following:  

 

                   min 𝑧 = −𝑥1 + 4𝑥2 + 5𝑥3 − 2𝑥4 − 8𝑥5 + 2𝑥6 

                   s.t                 2𝑥1 − 3𝑥2                          + 3𝑥5 +  𝑥6 ≤     9  (1) 

                                     −𝑥1 + 3𝑥2 + 2𝑥3              −   𝑥5 − 2𝑥6 ≥       1 (2) 

                                      0𝑥1 + 0𝑥2 + 0𝑥3 + 0𝑥4 + 0𝑥5 + 0𝑥6 ≥  −5  (3) 

                          7𝑥1 + 5𝑥2 + 2𝑥3             − 2𝑥5 + 4𝑥6 =       7  (4)  

                                      0𝑥1 + 0𝑥2 + 0𝑥3 + 0𝑥4 + 0𝑥5 + 0𝑥6 ≥ −10  (5) 

                  𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4, 5, 6) 

 

The matrix notation is: 

 

𝐴 =  

[
 
 
 
 

2 −3 0 0     3   1
−1
0

3   2
0   0

 0 −1 −2
 0   0   0

7
0

5   2
0   0

0 −2   4
0    0   0 ]

 
 
 
 

, 𝑐 =

[
 
 
 
 
 
−1
4
5

−2
−8
2 ]

 
 
 
 
 

, 𝑏 =

[
 
 
 
 

9
1

−5
7

−10]
 
 
 
 

, 𝐸𝑞𝑖𝑛 =  

[
 
 
 
 
−1
1
1
0
1 ]

 
 
 
 

 

 

We observe that all the elements of the third and fifth row are equal to zero. 

According to the third case of the previous section, the constraint is redundant and 



 
 

can be deleted. Therefore, we can delete the third and fifth row of matrix A and the 

third and fifth element from vectors b and Eqin: 

 

𝐴 = [
2 −3 0 0       3   1

−1
7

3  2 0 −1 −2
5 2 0 −2     4

] , 𝑐 =

[
 
 
 
 
 
−1
4
5

−2
−8
2 ]

 
 
 
 
 

, 𝑏 = [
9
1
7
] , 𝐸𝑞𝑖𝑛 = [

−1
1
0

] 

 

Finally, the equivalent LP problem after presolve is:  

 

                 min        𝑧 = −𝑥1 + 4𝑥2 + 5𝑥3 − 2𝑥4 − 8𝑥5 + 2𝑥6 

                   s.t                 2𝑥1 − 3𝑥2                          + 3𝑥5 +  𝑥6 ≤ 9 

                                     −𝑥1 + 3𝑥2 + 2𝑥3              −   𝑥5 − 2𝑥6 ≥ 1 

                          7𝑥1 + 5𝑥2 + 2𝑥3             − 2𝑥5 + 4𝑥6 = 7    

                  𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4, 5, 6) 

 

3.2.2. Eliminate zero columns. 

A column of the coefficient matrix 𝐴 is considered an empty column if all the 

coefficients in that column are zero. A variable associated with such a column may 

either be redundant or indicate that the LP problem is unbounded. The following 

theorem distinguishes between these two scenarios: 

1.  𝑐𝑗 ≥ 0: 𝑇ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑠 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑎𝑛𝑑 𝑐𝑎𝑛 𝑏𝑒 𝑑𝑒𝑙𝑒𝑡𝑒𝑑 

2. 𝑐𝑗 < 0: 𝑇ℎ𝑒 𝐿𝑃 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑 

Through the next illustrative example, this method is demonstrated:  



 
 

The LP problem that will be presolved is the following: 

 

                   min     𝑧 = −𝑥1 + 4𝑥2 + 5𝑥3 + 2𝑥4 − 8𝑥5 + 2𝑥6 

                   s.t                 2𝑥1 − 3𝑥2                         + 3𝑥5 +  𝑥6 ≤   9   

                                     −𝑥1 + 3𝑥2                          −   𝑥5 − 2𝑥6 ≥   1 

                                        𝑥1                                                                ≥ −5 

                           6𝑥1 + 5𝑥2                          − 2𝑥5 + 4𝑥6 =   7  

                                                                                       3𝑥5 + 4𝑥6 ≥ −10 

                  𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4, 5, 6) 

 

In matrix notation: 

 

𝐴 =  

[
 
 
 
 

2 −3 0 0     3   1
−1
1

3   0
0   0

 0 −1 −2
 0   0   0

6
0

5   0
0   0

0 −2   4
0    3   4 ]

 
 
 
 

, 𝑐 =

[
 
 
 
 
 
−1
4
5
2

−8
2 ]

 
 
 
 
 

, 𝑏 =

[
 
 
 
 

9
1

−5
7

−10]
 
 
 
 

, 𝐸𝑞𝑖𝑛 =  

[
 
 
 
 
−1
1
1
0
1 ]

 
 
 
 

 

 

We observe that all the elements of the third and fourth column are equal to zero. 

According to the first case of the previous subsection, the variable is redundant 

and can be deleted. Therefore, we can delete both columns of matrix A, and the 

third and fourth elements from vector c. The presolved LP problem is now:  

 



 
 

𝐴 =

[
 
 
 
 

2 −3    3   1
−1 3 −1 −2
1
6
0

0
5
0

0
−2
3

0
4
4 ]

 
 
 
 

, 𝑐 =

[
 
 
 
 
−1
4
2

−8
2 ]

 
 
 
 

, 𝑏 =

[
 
 
 
 

9
1

−5
7

−10]
 
 
 
 

, 𝐸𝑞𝑖𝑛 =  

[
 
 
 
 
−1
1
1
0
1 ]

 
 
 
 

 

 

And the equivalent LP problem after presolve is:  

                   min     𝑧 = −𝑥1 + 4𝑥2 − 8𝑥5 + 2𝑥6 

                   s.t                 2𝑥1 − 3𝑥2 + 3𝑥5 +  𝑥6 ≤   9   

                                     −𝑥1 + 3𝑥2  −   𝑥5 − 2𝑥6 ≥   1 

                                        𝑥1                                      ≥ −5 

                           6𝑥1 + 5𝑥2 − 2𝑥5 + 4𝑥6 =   7  

                                                               3𝑥5 + 4𝑥6 ≥ −10 

                  𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 5, 6) 

3.2.3. Eliminate singleton equality constraints. 

An equality row in the coefficient matrix A is considered a singleton row if and 

only if it contains exactly one nonzero coefficient. A singleton equality row can be 

expressed as follows: 

𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 = 𝑏𝑖  

Where 𝐴𝑖𝑘 ≠ 0 Λ  𝐴𝑖𝑗 = 0, 𝑖 = 1, 2, … ,𝑚, 𝑗 = 1,2, … , 𝑛, 𝑎𝑛𝑑 𝑗 ≠ 𝑘. The 

constraint can be rewritten as: 

𝐴𝑖𝑘𝑥𝑘 = 𝑏𝑖 

Therefore, the value of 𝑥𝑘 is fixed at 𝑏𝑖/𝐴𝑖𝑘. A constraint of this type may either 

be redundant or indicate that the linear programming (LP) problem is infeasible. 

We can identify the following scenarios: 

1. 𝑥𝑘 ≥ 0: Row i and column k are redundant and can be deleted.  



 
 

2. 𝑥𝑘 < 0: The LP problem is infeasible.  

If 𝑥𝑘 ≥ 0 we replace 𝑥𝑘 to all constraints: 

𝑏 = 𝑏 − 𝑥𝑘𝐴.𝑘 

If 𝑐𝑘 ≠ 0, then a constant term of the objective function is computed as:  

𝑐0 = 𝑐0 − 𝑐𝑘 ∗ (
𝑏𝑖

𝐴𝑖𝑘

) 

After making that replacement, row i is deleted from matrix A, element i is 

removed from vectors b and Eqin, column k is deleted from matrix A, and element 

k is removed from vector c. It is common for a new singleton equality row to 

appear after eliminating the previous one. Therefore, the current presolve method 

continues until no additional singleton equality rows are present. 

With the next example we can see a demonstration: 

 

                   min     𝑧 = −2𝑥1 + 4𝑥2 − 2𝑥3 + 2𝑥4 

                   s.t                                       + 3𝑥3              =    6 

                                         4𝑥1 − 3𝑥2 + 8𝑥3 −   𝑥4 =  20 

                                     −3𝑥1 + 2𝑥2              − 4𝑥4 = −8 

                             4𝑥1             −    𝑥3              =   18  

 𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4) 

In matrix notation: 

 

𝐴 = [

0 0  3   0
4 −3    8 −1

−3
4

2
0

   0
−1

−4
0

] , 𝑐 = [

−2
4

−2
2

] , 𝑏 = [

6
20
−8
18

] , 𝐸𝑞𝑖𝑛 =  [

0
0
0
0

] 

 



 
 

Initially, we begin by searching for equality constraints that contain only one 

nonzero element. We observe that, in the first equality constraint, all elements are 

zero except for the third element: 

3𝑥3 = 6 

So, the value for 𝑥3: 

 3𝑥3 =
6

3
= 2 

Following the first case of the previous subsection, the first row and the third 

column are redundant and can be deleted. We then update vector 𝑏:  

 

𝑏 = 𝑏 − 𝑥3𝐴.3 = [

6
20
−8
18

] − 2 [

3
8
0

−1

] = [

0
4

−8
20

] 

 

𝑐3 ≠ 0, so a constant term of the objective function is computed as:  

𝑐0 = 𝑐0 − (−2) ∗ (
6

3
) = 0 + 4 = 4 

Next, we delete the first row and the third column from matrix A, the first element 

from vectors b and Eqin, and the third element from vector c. The presolved LP 

problem is now: 

 

𝐴 = [
4 −3 −1

−3 2 −4
4 0 0

] , 𝑐 = [
−2
4
2

] , 𝑏 = [
4

−8
20

] , 𝐸𝑞𝑖𝑛 =  [
0
0
0
] , 𝑐0 = 4  

 



 
 

3.2.4. Eliminate singleton inequality constraints. 

An inequality row in the coefficient matrix A is considered a singleton row if and 

only if it contains exactly one nonzero coefficient. A singleton inequality row can 

be expressed as follows: 

𝑏𝑖 ≤ 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≤ 𝑏𝑖  

Where 𝐴𝑖𝑘 ≠ 0 Λ  𝐴𝑖𝑗 = 0, 𝑖 = 1, 2, … ,𝑚, 𝑗 = 1,2, … , 𝑛, 𝑎𝑛𝑑 𝑗 ≠ 𝑘. A constraint 

of this type may either be redundant or indicate that the linear programming (LP) 

problem is infeasible. All possible cases in the following theorem. 

For each singleton inequality constraint, we distinguish the following cases: 

 

1. Constraint type ≤ 𝑏𝑖 , 𝐴𝑖𝑘 > 0  𝑎𝑛𝑑 𝑏𝑖 < 0: The LP is infeasible 

2. Constraint type ≤ 𝑏𝑖 , 𝐴𝑖𝑘 < 0  𝑎𝑛𝑑 𝑏𝑖 > 0: Row i is redundant and can be 

deleted. 

3. Constraint type ≤ 𝑏𝑖 , 𝐴𝑖𝑘 > 0  𝑎𝑛𝑑 𝑏𝑖 = 0: Row i and column k are redundant 

and can be deleted 

4. Constraint type ≤ 𝑏𝑖 , 𝐴𝑖𝑘 < 0  𝑎𝑛𝑑 𝑏𝑖 = 0: Row i is redundant and can be 

deleted.  

5. Constraint type ≥ 𝑏𝑖 , 𝐴𝑖𝑘 > 0  𝑎𝑛𝑑 𝑏𝑖 < 0: Row i is redundant and can be 

deleted 

6. Constraint type ≥ 𝑏𝑖 , 𝐴𝑖𝑘 < 0  𝑎𝑛𝑑 𝑏𝑖 > 0: The LP problem is infeasible. 

7. Constraint type ≥ 𝑏𝑖 , 𝐴𝑖𝑘 > 0  𝑎𝑛𝑑 𝑏𝑖 = 0: Row i is redundant and can be 

deleted 

8. Constraint type ≥ 𝑏𝑖 , 𝐴𝑖𝑘 < 0  𝑎𝑛𝑑 𝑏𝑖 = 0: Row i and column k are redundant 

and can be deleted 

 

Throughout the next illustrative example this method is demonstrated. 



 
 

 

                   min     𝑧 = −2𝑥1 + 4𝑥2 − 2𝑥3 + 2𝑥4 

                   s.t                                      − 3𝑥3              ≤    2 

                                         4𝑥1 − 3𝑥2 + 8𝑥3 −   𝑥4 =  20 

                                     −3𝑥1 + 2𝑥2              − 4𝑥4 ≥ −8 

                                                  −   𝑥3              =   18  

 𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4) 

 

In matrix notation: 

 

𝐴 = [

0 0  3   0
4 −3    8 −1

−3
0

2
0

   0
−1

−4
0

] , 𝑐 = [

−2
4

−2
2

] , 𝑏 = [

2
20
−8
18

] , 𝐸𝑞𝑖𝑛 =  [

−1
0
1
0

] 

 

Initially, we begin by searching for inequality constraints that contain only one 

nonzero element. We observe that, in the first equality constraint, all elements are 

zero except for the third element: 

−3𝑥3 ≤    2 

Following the first second case of the previous subsection, the first row is 

redundant and can be deleted. So we can update matrix A and the first element 

from vectors 𝑏 and Eqin : 

 

𝐴 = [
4 −3   8 −1

−3 2   8 −4
0 0 −1 0

] , 𝑐 = [

−2
4

−2
2

] , 𝑏 = [
20
−8
18

] , 𝐸𝑞𝑖𝑛 =  [
0
1
0
] 



 
 

 

Finally, the presolved problem is:  

 

                   min     𝑧 = −2𝑥1 + 4𝑥2 − 2𝑥3 + 2𝑥4               

                   s.t.             −4𝑥1 − 3𝑥2 + 8𝑥3 −   𝑥4 =  20 

                                     −3𝑥1 + 2𝑥2              − 4𝑥4 ≥ −8 

                                                  −   𝑥3              =   18  

 𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4) 

 

3.2.5. Eliminate dual singleton inequality constraints. 

This method is similar to the previous one but is applied to the dual LP problem. 

A column in the coefficient matrix A is considered a singleton column if and 

only if it contains exactly one nonzero coefficient. When transforming the primal 

LP problem to its dual, a singleton column in the primal corresponds to a dual 

singleton constraint in the dual LP problem. A dual singleton inequality row can 

be formulated as follows: 

𝐴𝑗1𝑤1 + 𝐴𝑗2𝑤2 + ⋯+ 𝐴𝑗𝑚𝑤𝑚 ≤ 𝑐𝑗  

Where 𝐴𝑗𝑘 ≠ 0 Λ  𝐴𝑗𝑖 = 0, 𝑖 = 1, 2, … , 𝑚, 𝑗 = 1,2, … , 𝑛, 𝑎𝑛𝑑 𝑖 ≠ 𝑘. A constraint 

of this type may either be redundant or indicate that the dual LP problem is 

unbounded and the primal LP problem is infeasible. We present this method and 

the corresponding eliminations without needing to transform the initial problem to 

its dual. Instead of eliminating a row in the dual LP problem, we eliminate a 

column in the primal LP problem. The following theorem distinguished all the 

possible cases.  

For each dual singleton inequality constraint, we distinguish the following cases: 



 
 

 

1. Constraint type ≤,𝐴𝑘𝑗 > 0  𝑎𝑛𝑑 𝑐𝑗 > 0: Column j is redundant and can be 

deleted.  

2. Constraint type ≤,𝐴𝑘𝑗 < 0  𝑎𝑛𝑑 𝑐𝑗 < 0: The LP problem is infeasible. 

3. Constraint type ≤,𝐴𝑖𝑘 > 0  𝑎𝑛𝑑 𝑐𝑗 = 0: Column j is redundant and can be 

deleted. 

4. Constraint type ≤,𝐴𝑖𝑘 < 0  𝑎𝑛𝑑 𝑐𝑗 = 0: Row k and column j are redundant and 

can be deleted. 

5. Constraint type ≥,𝐴𝑖𝑘 > 0  𝑎𝑛𝑑 𝑐𝑗 < 0: The LP problem is infeasible. 

6. Constraint type ≥,𝐴𝑖𝑘 < 0  𝑎𝑛𝑑 𝑐𝑗 > 0: Column j is redundant and can be 

deleted. 

7. Constraint type ≥,𝐴𝑖𝑘 > 0  𝑎𝑛𝑑 𝑐𝑗 = 0: Row k and column j are redundant and 

can be deleted. 

8. Constraint type ≥,𝐴𝑖𝑘 < 0  𝑎𝑛𝑑 𝑐𝑗 = 0: Column j is redundant and can be 

deleted.  

 

Throughout the next illustrative example this method is demonstrated. 

 

                   min     𝑧 = 4𝑥1 +    𝑥2 − 2𝑥3 + 7𝑥4               

                   s.t.              3𝑥1               −   𝑥3 − 6𝑥4 ≤ 0 

                                     −3𝑥1 + 2𝑥2 + 5𝑥3 −  𝑥4 ≥ 0 

                             4𝑥1             + 3𝑥3 + 4𝑥4 ≤ 5  

 𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4) 

 

In matrix notation: 

  



 
 

𝐴 = [
3 0 −1 −6

−3 −2   5 −1
4 0  3    4

] , 𝑐 = [

4
1

−2
7

] , 𝑏 = [
0
0
5
] , 𝐸𝑞𝑖𝑛 =  [

−1
1

−1
] 

 

Initially, we begin by searching for columns that contain only one nonzero element. 

We observe that, in the second column, all elements are zero except for the third 

element. According to the sixth case of the theorem, the second column is 

redundant and can be deleted. We can delete the second column of matrix A and 

the second element from vector c: 

 

𝐴 = [
3 −1 −6

−3 5 −1
4 3 4

] , 𝑐 = [
4

−2
7

] , 𝑏 = [
0
0
5
] , 𝐸𝑞𝑖𝑛 =  [

−1
1

−1
] 

 

Finally, the presolved LP problem is:  

 

                   min     𝑧 = 4𝑥1   − 2𝑥3 + 7𝑥4               

                   s.t.              3𝑥1   −   𝑥3 − 6𝑥4 ≤ 0 

                                     −3𝑥1 + 5𝑥3 −  𝑥4 ≥ 0 

                             4𝑥1 + 3𝑥3 + 4𝑥4 ≤ 5  

 𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4) 

 

3.2.6. Eliminate implied free singleton columns. 

 

A constraint that implies a free singleton column can be formulated as: 

𝐴𝑖.𝑥 + 𝐴𝑖𝑠𝑥𝑠 = 𝑏 



 
 

where 𝑖 = 1, 2, … ,𝑚, and the singleton column inside it (𝐴𝑖𝑠 ≠ 0) is redundant if 

and only if:  

𝐴𝑖𝑠 > 0 Λ  𝐴𝑖𝑗 ≤ 0, 𝑗 ≠ 𝑠, 𝑗 = 1,2, … , 𝑛 

or: 

𝐴𝑖𝑠 < 0 Λ  𝐴𝑖𝑗 ≥ 0, 𝑗 ≠ 𝑠, 𝑗 = 1,2, … , 𝑛 

In this scenario, we can remove variable 𝑥𝑠 from the LP problem. Furthermore, we 

have the option to eliminate constraint i. If 𝑐𝑠 = 0, we delete only constraint i. If 

𝑐𝑠 ≠ 0, we update vector c and adjust the constant term of the objective function 

(𝑐0): 

𝑐 = 𝑐 −
𝑐𝑠

𝐴𝑖𝑠

𝐴𝑖.
𝑇  

𝑐0 = 𝑐0 +
𝑐𝑠

𝐴𝑖𝑠

𝑏𝑖 

Throughout the next illustrative example this method is demonstrated. 

 

                   min     𝑧 =    𝑥1 + 2𝑥2 − 4𝑥3 − 3𝑥4               

                   s.t.              3𝑥1              + 5𝑥3 + 2𝑥4 ≤ 5 

                                     −𝑥1 + 2𝑥2             − 3𝑥4 = 8 

                        −2𝑥1            − 2𝑥3  +   𝑥4 ≥ 6 

 𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4) 

 

In matrix notation: 

 



 
 

𝐴 = [
3 0 5     2

−1 1 0 −3
−2 0 −2 1

] , 𝑐 = [

1
2

−4
−3

] , 𝑏 = [
5
8
6
] , 𝐸𝑞𝑖𝑛 =  [

−1
0
1

] 

 

Initially, we begin by searching for columns that contain only one nonzero element. 

We observe that, in the second column, all elements are zero except for the second 

element. According to the first case, the second column is redundant and can be 

deleted. First, we update vector c and calculate the constant term of the objective 

function, assuming that its initial value is zero: 

 

𝑐0 = 𝑐0 +
𝑐2

𝐴22

𝑏2 = 0 +
2

1
8 = 16𝑐 = 𝑐 −

𝑐2

𝐴22

𝐴2.
𝑇 = [

1
2

−4
−3

] −
2

1
[

−1
1
0

−3

] = [

3
0

−4
−3

] 

 

So, we delete the second row and the second column for matrix A and the second 

element from vectors c, b and Eqin: 

 

𝐴 = [
3 5 2

−2 −2 1
] , 𝑐 = [

3
−4
−3

] , 𝑏 = [
5
6
] , 𝐸𝑞𝑖𝑛 =  [

−1
1

] , 𝑐0 = 16  

 

So, the presolved LP problem is:  

 

                   min     𝑧 =    𝑥1 − 4𝑥3 − 3𝑥4 + 16              

                   s.t.              3𝑥1 + 5𝑥3 + 2𝑥4 ≤   5 

                        −2𝑥1 − 2𝑥3  +  𝑥4 ≥  6 

 𝑥𝑗 ≥ 0,         (𝑗 = 1, 3, 4) 



 
 

 

3.2.7. Eliminate redundant columns. 

A linear constraint of the form:  

𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑘𝑥𝑘 = 0 

With all 𝐴𝑖𝑗 > 0, 𝑖 = 1, 2, … , 𝑚, 𝑗 = 1,2, … , 𝑘, 1 ≤ 𝑘 ≤ 𝑛, 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑥𝑗 = 0  

Also, a linear constraint of the form:  

𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑘𝑥𝑘 = 0 

With all 𝐴𝑖𝑗 < 0, 𝑖 = 1, 2, … , 𝑚, 𝑗 = 1,2, … , 𝑘, 1 ≤ 𝑘 ≤ 𝑛, 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑥𝑗 = 0 

 

In both cases, all variables 𝑥𝑗 = 0, 𝑗 = 1,2, … , 𝑘, 1 ≤ 𝑘 ≤ 𝑛, are redundant an can 

be deleted. Consequently, the constraints shown above are also linearly dependent 

and they can be deleted.  

With this example, the presolved method that eliminates redundant columns is 

demonstrated. The LP problem is the following: 

 

                   min     𝑧 = −6𝑥1 + 4𝑥2  −  2𝑥3 − 8𝑥4 

                   s.t                   2𝑥1 − 4𝑥2  +  2𝑥3 + 2𝑥4                    =    20 

                                                 − 6𝑥2  −  2𝑥3 + 2𝑥4 + 𝑥5          =    26          

                                                     2𝑥2  +  8𝑥3                      + 𝑥6 =       0 

                                       16𝑥2 − 12𝑥3 − 8𝑥4                   = −84  

                  𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4, 5, 6) 

 

In matrix notation:  

 



 
 

𝐴 =  [

2 −4 2 2 0 0
0
0

−6 −2
2 8

 2 1 0
0   0 1

0 16 −12 −8 0 0

] , 𝑐 =

[
 
 
 
 
 
−6
4

−2
−8
0
0 ]

 
 
 
 
 

, 𝑏 = [

20
26
0

−84

] , 𝐸𝑞𝑖𝑛 =  [

0
0
0
0

] 

 

Initially, we begin by searching for equality constraints with a zero in the right 

hand side. We observe that, in the third constraint, the right hand is zero. Also, all 

the elements in the third row are greater or equal to zero.  

Variables 𝑥2, 𝑥3 and 𝑥6 are redundant and can be deleted:  

𝐴 =  [

2 2 0
0 2 1
0
0

0
−8

0
0

] , 𝑐 = [
−6
−8
0

] , 𝑏 = [

20
26
0

−84

] , 𝐸𝑞𝑖𝑛 =  [

0
0
0
0

] 

Also, the third constraint and can be eliminated too. The presolved LP problem is:  

                   min     𝑧 = −6𝑥1 − 8𝑥4              

                   s.t.                 2𝑥1 + 2𝑥4            =    20 

                                      + 2𝑥4 +  𝑥5 =    26 

                                      + 2𝑥4            = −84 

       𝑥𝑗 ≥ 0,         (𝑗 = 1, 4, 5) 

3.2.8. Eliminate implied bounds on rows. 

 

A constraint that implies new bounds for the constraints can be formulated as: 

𝑏𝑖 ≤ 𝐴𝑖.𝑥 ≤ 𝑏𝑖  

and: 

𝑥 ≤ 𝑥 ≤ 𝑥 



 
 

where 𝑥 = 0 and 𝑥 =  +∞. These new bounds can be computed by: 

𝑏𝑖
′ = 𝑖𝑛𝑓𝑥≤𝑥≤𝑥𝐴𝑖.𝑥 =  ∑ 𝐴𝑖𝑗𝑥𝑗

𝐴𝑖𝑗≥0

+ ∑ 𝐴𝑖𝑗𝑥𝑗

𝐴𝑖𝑗≤0

 

 

𝑏𝑖

′
= 𝑠𝑢𝑝𝑥≤𝑥≤𝑥𝐴𝑖.𝑥 =  ∑ 𝐴𝑖𝑗𝑥𝑗

𝐴𝑖𝑗≥0

+ ∑ 𝐴𝑖𝑗𝑥𝑗

𝐴𝑖𝑗≤0

 

These equations calculate both the greatest from the inferior bounds and the 

smallest from the superior bounds. If [𝑏𝑖
′, 𝑏𝑖

′
]  ∩ [𝑏𝑖 , 𝑏𝑖] =  ∅, then the LP problem 

is infeasible. If [𝑏𝑖
′, 𝑏𝑖

′
]∁ [𝑏𝑖 , 𝑏𝑖], then the constraint i is redundant and can be 

deleted. All the possible cases are distinguished in the following theorem. 

For each constraint that implies new bounds, we distinguished the following cases: 

 

1. Constraint type ≤,𝐴𝑖. ≤ 0  𝑎𝑛𝑑 𝑏𝑖 ≥ 0: Row i is redundant and can be deleted. 

2. Constraint type ≤,𝐴𝑘𝑗 ≥ 0  𝑎𝑛𝑑 𝑏𝑖 ≤ 0: Row i is redundant and can be deleted. 

With this example, the presolved method that eliminates redundant columns is 

demonstrated. The LP problem is the following: 

 

                   min     𝑧 =    3𝑥1 − 4𝑥2 + 5𝑥3 − 2𝑥4 

                   s.t               −2𝑥1 −   𝑥2 − 4𝑥3 − 2𝑥4  ≤      4 

                                        5𝑥1 + 3𝑥2 +   𝑥3 + 2𝑥4  ≤    18 

                                        5𝑥1 + 3𝑥2             +    𝑥4  ≥ −13 

                             4𝑥1 + 6𝑥2 + 2𝑥3 + 5𝑥4  ≥ −10  

 𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4) 



 
 

In matrix notation:  

 

𝐴 = [

−2 −1 −4 −2
5 3 1 2
5
4

3
6

0
2

1
5

] , 𝑐 = [

3
−4
5

−2

] , 𝑏 = [

4
18

−13
−10

] , 𝐸𝑞𝑖𝑛 =  [

−1
−1
1
1

] 

 

Initially, we begin by searching for inequality constraints, in this case all of them 

are. Looking at the first case of the theorem, the first row and the third row are 

redundant and can be deleted. Also, looking at the second case of the theorem, the 

fourth row is redundant and can be deleted:  

 

𝐴 = [5 3 1 2], 𝑐 = [

3
−4
5

−2

] , 𝑏 = [18], 𝐸𝑞𝑖𝑛 =  [−1] 

 

Finally, the presolved problem is: 

 

                   min     𝑧 =    3𝑥1 − 4𝑥2 + 5𝑥3 − 2𝑥4 

                   s.t.                5𝑥1 + 3𝑥2 +   𝑥3 + 2𝑥4  ≤    18 

 𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4) 

 

3.2.9. Eliminate redundant rows. 

 

Two constraints i and k are linearly dependent if and only if 𝐴𝑖 = 𝜆𝐴𝑘 . The 

identification of linearly dependent constraints can be done by calculating the rank 



 
 

of the coefficient matrix A using the augmented matrix. [𝐴|𝑏] and performing 

adequate row operations until the identity matrix is derived. The LP problem must 

be in standard form. The redundant constraints that must be deleted are: 

 

𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 = 0 

 

Where 𝐴𝑖𝑗 = 0, 𝑖 = 1, 2, … ,𝑚 and 𝑗 = 1, 2, … , 𝑛.  

If the constraint looks like the next one, the problem is infeasible.  

 

𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 = 𝑏𝑖 

 

Where 𝐴𝑖𝑗 = 0, 𝑏𝑖 ≠ 0, 𝑖 = 1, 2, … ,𝑚 and 𝑗 = 1, 2, … , 𝑛. 

The next example portraits this method.  

 

                   min     𝑧 =      𝑥1 +   𝑥2 − 2𝑥3 −   3𝑥4 

                   s.t                     𝑥1 + 2𝑥2 + 4𝑥3 +    5𝑥4 = 10 

                                        3𝑥1 + 3𝑥2 + 8𝑥3 +    4𝑥4 =    2 

                                     0.5𝑥1 +  𝑥2 + 2𝑥3 + 2.5𝑥4 =   5 

 𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4) 

 

In matrix notation: 

 



 
 

𝐴 = [
1 2 4 5
3 5 8 4

0.5 1   2 2.5

] , 𝑐 = [

1
1

−2
−3

] , 𝑏 = [
10
2
5

] , 𝐸𝑞𝑖𝑛 =  [
0
0
0
] 

 

The augmented matrix [𝐴|𝑏]: 

 

𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = [
1 2 4 5    ⋮ 10
3 5 8 4  ⋮ 2

0.5 1 2 2.5 ⋮ 5

] 

 

Looking at the first and third row, they are linearly dependent, because the third is 

the first one divided by two. Because of this we can deleted one of them, having 

the equivalent LP problem after presolve: 

 

                   min     𝑧 =      𝑥1 +   𝑥2 − 2𝑥3 −   3𝑥4 

                   s.t                     𝑥1 + 2𝑥2 + 4𝑥3 +    5𝑥4 = 10 

                                        3𝑥1 + 3𝑥2 + 8𝑥3 +    4𝑥4 =    2 

 𝑥𝑗 ≥ 0,         (𝑗 = 1, 2, 3, 4) 

4. Problems battery under study  

 

The battery of problems that is going to be study throughout the project is chosen 

from the model library of the software GAMS Studio. Thirty LP problems from 

the entire library are selected, solved and simplified with the sparsification 

method, to be later analysed. The battery covers a wide range of different topics.  

 



 
 

4.1. Agricultural Economics 

 

• AGRESTE: Agricultural farm level model of NE Brazil. 

• CHINA: Organic fertilizer use in intensive farming.  

• DEMO1: Simple farm level model. 

• PAKLIVE: Pakistan Punjab livestock model. 

 

4.2. Management Science and OR 

 

• AIRCRAFT: Aircraft allocation under uncertain demand. 

• AMPL: AMPL sample problem.  

• DECOMP: Decomposition principle. 

• GUSSEX1: simple GUSS example. 

• GUSSGRID: simple GUSS grid example 

• IBM1: Aluminium alloy smelter sample problem. 

• JOBT: On-the-job training. 

• MINE: Opencast Mining. 

• PRODMIX: A production mix problem. 

• ROBERT: Elementary production and inventory model. 

• SENSTRAN: Sensitivity analysis using loops. 

• SPARTA: Military manpower planning from wanger. 

• TRNSPORT: A transportation problem. 

• UIMP: Production scheduling problem. 

• WHOUSE: Simple warehouse problem. 

 

4.3. Stochastic Programming 

 

• AIRSP: Aircraft allocation. 



 
 

• CLEARLAK: Scenario reduction: Clearklake exercise. 

• MARKOV: Strategic petroleum reserve. 

• SRKANDW: Stochastic programming scenario reduction. 

• SRPCHASE: Scenario tree construction example. 

• KAND: Stochastic problem. 

• LANDS: Optimal investment.  

 

4.4. Macro and Micro economics 

 

• DIET: Stigler’s nutrition model. 

• MEXSS: Mexico Steel – Small Static.  

• ORANI: A multisector price endogenous model of Australia. 

 

4.5. Mathematics 

 

• DEA: Data envelopment analysis. 

• IMSL: Piecewise Linear approximation. 

• QP5: Standard QP model – linear approximation. 

 

5. Sensibility analysis  

 

The sensibility analysis aims to portrait and evaluate graphically the evolution of 

the battery of problems, for different levels of simplification (epsilon). The 

analysis will focus on how the objective function reacts to the operation, while the 

unfeasibility of the problem is controlled too. The entire analysis is program with 

Python in Jupyter Notebook.  



 
 

60 linear programming problems are solved and simplified with the same 

algorithm, minimizing the objective function. The simplification is done for thirty 

values of epsilon and the results obtained are organised on vectors of length thirty 

(one for each epsilon). These results are saved into a json file, with the 60 

probemes, and 6 keys for each one. The keys considered are: 

- Epsilon: signification level that is used to modify the matrix A, if the 

element is less than epsilon (matrix A normalized) it takes 0 value. 

- Objective_function: With the new matrix A (modified using epsilon), a new 

model is built. This is the value for the new objective function for each 

epsilon. 

- Decision_variables: It contains the value of each decision variable for each 

epsilon in the new model built with the modified matrix A. 

- Changed_indices: Elements that have been modified from the matrix A, for 

each value of epsilon. 

- Constraint_violation: Taking the solution of the new model (modified 

matrix A) and putting it in the original model, the violation of each 

constraint is evaluated, for each epsilon value. 

- of_original_decision: Taking the solution of the new model (modified 

matrix A) and putting it in the original model, the objective function is 

evaluated, for each epsilon value.  

- time_required: It shows the time required to solved the problem for each 

epsilon value.  

The json file is read directly in Jupyter notebook and all the data is used here. For 

the analysis three main indexes for each epsilon and for each problem are 

calculated: a normalized objective function, an unfeasibility index and a problem 

complexity index. 

Firstly, the study is done for a small sample of problems, and afterwards a function 

is made to iterate the complete battery. 

 



 
 

5.1. Indexes 

 

The first index calculated is the normalized objective function. In order to reach it, 

the objective function value for each epsilon is divided by the first one. After 

iterating all the epsilons, there is a vector with thirty elements, one for each epsilon, 

with the normalised objective function. The graph of this vector will show the 

degradation of the objective function while the simplification increases. (Codes of 

the operations needed to obtain the indexes in the annex). The equation to obtain 

this index is: 

𝑂𝑏 𝑓𝑢𝑛𝑐 𝑝𝑢 =
𝑂𝑏 𝑓𝑢𝑛𝑐

𝑂𝑏 𝑓𝑢𝑛𝑐[0]
  

 

Being Ob_func_pu the list with the normalized objective function values, 

Ob_func the list with the objective function values and Ob_func[0] the optimal 

solution. 
 
Example: 

 

1. Index that measures the objective function degradation. 



 
 

 

Secondly, the unfeasibility index is calculated. Before making any operation, it is 

applied a filter, to only consider de violations bigger than 10−6, to avoid 

operational mistakes. Because not all the constraints have the same weight in the 

objective function, it is necessary to give to each constraint violation its weight. 

This is done by multiplying them by the dual value of each restriction. Afterwards, 

all the absolute values of the weighted constraints violations are summed, getting 

a value for each epsilon. These values depend on the data of the problem, so they 

need to be normalized, therefore the actual index is divided by the optimal solution 

for each problem. Iterating all the epsilons, the solution is a vector with thirty 

elements, one for one epsilon, measuring how infeasible the problem is. The graph 

of this vector shows the evolution of the unfeasibility of the problem while the 

simplification increases. The equations to obtain this index are: 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡_𝑐𝑣_𝑣𝑑 = 𝑐𝑜𝑛𝑠𝑡_𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 × 𝑣𝑎𝑟_𝑑𝑢𝑎𝑙 

Being const_violations the list of constraint violations for each value of epsilon, 

and var_dual the list of dual decision variables for each value of epsilon. 

product_cv_vd is a list of lists, so in order to have one value for each epsilon, the 

sublists for every epsilons are sum together, with coding, and is saved into a new 

variable called sum. Once the variable sum has a value for each epsilon the next 

equation is used: 

 

𝑢𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =
𝑠𝑢𝑚

𝑂𝑏 𝑓𝑢𝑛𝑐[0]
 

 

Being Ob_func[0] the optimal solution.  

Example: 



 
 

 

2. Index that measures the problem infeasibility. 

 

Lastly, to see the evolution of the complexity while the simplification goes on, the 

complexity problem index is calculated. First of all, the total number of elements 

in the matrix A is obtained by multiplying the number of variables by the number 

of constraints. This value will be used to normalize the index, being the index 

always positive and between zero and one. In the key changed_indices there is the 

number of elements of the matrix that are zero for each epsilon, so after dividing 

this number by the total number of elements, by getting the opposite (one minus 

the value before) the complexity index is obtained. The equations to obtain the 

index are:  

𝑚𝑎𝑡 𝐴 𝑒𝑙𝑒𝑚 = 𝑑𝑒𝑐 𝑣𝑎𝑟 ∗ 𝑑𝑢𝑎𝑙 𝑑𝑒𝑐 𝑣𝑎𝑟 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 = 1 −
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 0 

𝑚𝑎𝑡 𝐴 𝑒𝑙𝑒𝑚
 

Being elements 0 the list with matrix A elements that are 0 for each epsilon 



 
 

Example: 

 

3. Index that measures the problem complexity. 

 

5.2. Procedure of the analysis  

 

Once that all the operations needed to obtain the indexes are done, the next part is 

to integrate them into a big function, to be able to iterate the entire battery of 

problems with a loop. The analysis is based on three graphs for each problem 

showing the three indexes evolution throughout the simplification operation. By 

iterating all the problem all the graphs are obtain and the analysis can begin.  

The analysis consists of looking for the different answers that each problem gives 

to the simplification, in order to find similarities or a pattern in some of the graphs. 

Before the analysis begin, it is expected that the objective function takes a close 

value to the optimum, while the complexity decreases, and the infeasibility 



 
 

worsens in a barely noticeable manner. Taking a close look at the graphs, we can 

observe four main behaviours in response to the simplification. For each one three 

graphs with the indexes are obtained. Additionally, in this graphs statistics of 

media, median and quartiles (25 and 75) are included. 

The first behaviour appreciated is the problems that the objective function 

improves in a great percentage, but they become notably infeasible in a very swift 

manner. For these type of problems, the simplification does not have sense, and 

the optimal solution that was reached in the beginning is the best one. The graph 

only shows 3 models as representatives of this behaviour for clarity reasons, but 

more than 15 had this behaviour.  

Example: 

 

4. Objective function evolution from type 1 problems. 

 



 
 

 

5. Infeasibility evolution from type 1 problems. 

 

6. Complexity evolution  from type 1 problems. 

 



 
 

The next behaviour is quite similar to the one before. This time the objective 

function worsens, but the problems still become notably infeasible very quickly. 

Again, the simplification for these models does not have any sense. As in the other 

two, the graph does not show all the models that follow this behaviour, but just 

some of them, so the graph is clearer. 

Example: 

 

7. Objective functions from type 2 problems. 



 
 

 

8. Infeasibility from type 2 problems. 

 

9. Complexity from type 2 problems. 

 



 
 

The third behaviour that appeared is the problems which does not see themselves 

affected by the simplification until big epsilons. When this happens, the objective 

function improves at the same rate that the problem becomes infeasible. It is not 

until this time that the complexity of the problem decreases. So again, the 

simplification of this problems is not possible. Again, here for clarity reasons not 

all the models that follows this behaviour are included in the graph.  

Example: 

 

10. Objective functions from type 3 problems. 



 
 

 

11. Infeasibility from type 3 problems. 

 

12. Complexity from type 3 problems. 

 



 
 

Finally, the fourth behaviour is the one that we expected before doing the analysis. 

For these problems, the complexity of the problem starts decreasing from the 

beginning, while the unfeasibility and the objective function are minimally 

affected. The simplification here has an important role, because the problem can 

be solved easier, while almost keeping the optimal solution, and without turning it 

into an infeasible model. Even though only 1 model follows this behaviour, it is 

the most important one, because it shows that it is possible to simplify problems 

and still get almost the optimal solution, without being infeasible. Obviously for 

this one, all the statistics match with the values of the only model. 

 

13. Objective functions from type 4 problems. 



 
 

 

14.  Infeasibility from type 4 problems. 

 

15. Complexity from type 4 problems. 

 



 
 

5.3. Conclusions of the analysis 

 

After visualizing and analysing the graphs the next conclusions are obtained: 

Firstly, the sensibility analysis show that the problems react mainly in four 

different ways, and only in one of them makes sense doing the simplification. With 

this method, any problem can be analysed graphically in a way that you can see if 

the simplification process will help and will make easier solving the problem.  

Another conclusion is that the time that takes the algorithm to solve the 

simplification for each value of epsilon is not a valuable data for this battery of 

problems, because the difference between them is insignificant. It could only be 

interesting for making comparisons between different problems. Even though the 

battery is composed of complex problems, real life problems sometimes will be 

more complex and bigger, so for them the time that takes to solve for the different 

values of epsilon might be useful.  

In addition, there are many possible simplification operations, but this analysis 

only considers the sparsification method. Taking this into account, the majority of 

the problems become infeasible rapidly when simplifying, what means that this 

simplification is of no use for those problems.  

In the end, the objective of the analysis was to portrait graphically how the 

simplifications affect the battery of problems, and with the coding made this 

objective is fulfilled.  
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7. Annex 

7.1. Coding3 

Uploading data from json: 

# Defining the function to upload data from JSON 

def cargar_datos_desde_json(ruta_archivo): 

    with open(ruta_archivo, 'r') as archivo: 

        datos = json.load(archivo) 

    return datos 

 

Reading and showing data: 

# Reading and showing the result of an specific model 

model_name = 'ORANI'  # Name of the model 

tipo = 'primal' # primal or dual 

key = 'epsilon' # key considered 

MODELO_pr_eps = datos[model_name][tipo][key] 

print(MODELO_pr_eps) 

 

Objective function normalized: 

Model_name = 'MODELO'   

tipo = 'primal'  

key = 'of_original_decision' 

MODELO_pr_ofod = datos[model_name][tipo][key] 

 

divider = MODELO_pr_ofod[0] 

# Using a loop to divide each value by the divider 

MODELO_pr_ofod_pu = [] 

for elemento in MODELO_pr_ofod: 

    MODELO_pr_ofod_pu.append(elemento / divider) 

 

 
3 Open AI and Microsoft Copilot were used to optimize the code and for error solving during coding. 



 
 

Infeasibility index: 

# Reading and showing the result of an specific model 

model_name = 'IBM1'  # Name of the model 

tipo = 'primal' # primal or dual 

key = 'epsilon' # key considered 

modelo_pr_eps = datos_buenos[model_name][tipo][key] 

 

model_name = 'IBM1'  # Name of the model 

tipo = 'primal' # primal or dual 

key = 'constraint_violation' # key considered 

modelo_pr_cv = datos_buenos[model_name][tipo][key] 

 

model_name = 'IBM1'  # Name of the model 

tipo = 'dual' # primal or dual 

key = 'decision_variables' # key considered 

modelo_du_dv = datos_buenos[model_name][tipo][key] 

 

model_name = 'IBM1'  # Name of the model 

tipo = 'primal' # primal or dual 

key = 'of_original_decision' # key considered 

modelo_pr_ofod = datos_buenos[model_name][tipo][key] 

 

##INFEASIBILITY INDEX 

cifra_referencia = 1e-6 

 

modelo_pr_cv_sin_nan = quitar_sublistas_nan(modelo_pr_cv) 

modelo_pr_cv_filtrado = 

establecer_a_cero_valores_menores(modelo_pr_cv_sin_nan, 

cifra_referencia) 

 

producto_cv_vd = multiplicar_matrices(modelo_pr_cv_filtrado, 

modelo_du_dv) 

suma_producto = obtener_sumas_de_sublistas(producto_cv_vd) 

 

unfeasiblity_index = [x / abs(modelo_pr_ofod[0]) for x in 

suma_producto] 

 

Complexity index:  

## PROBLEM COMPLEXITY 

 

## Cálculo de la media de la constraint violations 

modelo_pr_cv_medias = calcular_medias(modelo_pr_cv) 

 

## Cálculo de los índices cambiados a 0 de la matriz A 

acumulado_modelo_ci = calcular_longitudes(modelo_pr_ci) 

elementos_A_totales = len(modelo_pr_dv) * len(modelo_du_dv) 

 

## Ahora calculamos el número de no 0s en la matriz A, para cada valor 

de epsilon. Esto lo podemos calcular mediante el  

## número de índices que cambian en cada nivel de epsilon 

elementos_A_que_se_hacen_0_pu = [x / elementos_A_totales for x in 

acumulado_modelo_ci] 

complexity_problem = [1 - x for x in elementos_A_que_se_hacen_0_pu] 

 

 

Generalized function: 



 
 

def analisis_de_sensibilidad(modelo, datos): 

    if modelo in datos: 

        modelo_datos = datos[modelo] 

        modelo_primal = modelo_datos.get('primal', {}) 

        modelo_dual = modelo_datos.get('dual', {}) 

         

        modelo_pr_eps = modelo_primal.get('epsilon', []) 

        modelo_pr_of = modelo_primal.get('objective_function', []) 

        modelo_pr_dv = modelo_primal.get('decision_variables', []) 

        modelo_pr_ci = modelo_primal.get('changed_indices', []) 

        modelo_pr_cv = modelo_primal.get('constraint_violation', []) 

        modelo_pr_ofod = modelo_primal.get('of_original_decision', []) 

        modelo_pr_time = modelo_primal.get('execution_time', []) 

        modelo_du_dv = modelo_dual.get('decision_variables', []) 

         

        # Cálculo de degradación de la función objetivo original 

        divisor = modelo_pr_of[0] if modelo_pr_of else None 

        modelo_pr_of_pu = [elemento / divisor for elemento in 

modelo_pr_of] if divisor else None 

        # Cálculo de degradación de la función objetivo original 

        divisor1 = modelo_pr_ofod[0] if modelo_pr_ofod else None 

        modelo_pr_ofod_pu = [elemento / divisor1 for elemento in 

modelo_pr_ofod] if divisor1 else None 

         

         

        ## Cálculo de INFEASIBILITY INDEX 

        cifra_referencia = 1e-6  

        modelo_pr_cv_sin_nan = quitar_sublistas_nan(modelo_pr_cv)  

        modelo_pr_cv_filtrado = 

establecer_a_cero_valores_menores(modelo_pr_cv_sin_nan,cifra_referenci

a) 

         

        producto_cv_vd = 

multiplicar_matrices(modelo_pr_cv_filtrado,modelo_du_dv) 

        suma_producto = obtener_sumas_de_sublistas(producto_cv_vd) 

        infeasiblity_index  = [x / abs(modelo_pr_ofod[0]) for x in 

suma_producto] 

         

        ## Cálculo de PROBLEM COMPLEXITY 

         

        ## Cálculo de la media de la constraint violations 

        modelo_pr_cv_medias = calcular_medias(modelo_pr_cv) 

        ## Cálculo de los índices cambiados a 0 de la matriz A 

        acumulado_modelo_ci = calcular_longitudes(modelo_pr_ci) 

        #for i, num in enumerate(acumulado_modelo_ci[1:], start=1): 

        #    if num == 0: 

        #        acumulado_modelo_ci[i] = float('nan') 

        convert_late_zeros_to_nan(acumulado_modelo_ci) 

        elementos_A_totales = len(modelo_pr_dv)*len(modelo_du_dv) 

        ## Ahora calculamos el número de no 0s en la matriz A, para 

cada valor de epsilon. Esto lo podemos calcular mediante el  

        ## número de indices que cambian en cada nivel de epsilon 

        elementos_A_que_se_hacen_0_pu = [x / elementos_A_totales for x 

in acumulado_modelo_ci] 

        complexity_problem = [1 - x for x in 

elementos_A_que_se_hacen_0_pu] 

        suma_objfunc_unfeasiblity = [a + b for a, b in 

zip(modelo_pr_ofod_pu, infeasiblity_index)] 

         

        ## PROBLEM COMPLEXITY, con el tiempo de ejecución 

        #modelo_pr_time1 = modelo_pr_time[1:]; 



 
 

     

        # Convertir los tiempos a números flotantes 

        #modelo_pr_time1 = [float(tiempo.split(':')[2]) for tiempo in 

modelo_pr_time1] 

     

        #divisor = modelo_pr_time1[0] if modelo_pr_time1 else None 

        #modelo_pr_time_pu = [elemento / divisor for elemento in 

modelo_pr_time1] if divisor else None 

        #complexity_problem = modelo_pr_time_pu; 

        ## GRÁFICAS 

        #titulo1=(modelo + " Objective function degradation vs 

complexity") 

        #titulo2=(modelo + " Infeasibility ") 

        #titulo3=(modelo + " Sum of infeasibility and objective 

function") 

        titulo1=(modelo + " Objective function degradation") 

        titulo2=(modelo + " Infeasibility evolution") 

        titulo3=(modelo + " Complexity evolution") 

        objective_function = "Objective function" 

        complexity = "Complexity" 

        infeasibility = "Infeasibility" 

        #suma = "Objective function + Infeasibility" 

        

#graficar2(modelo_pr_eps,modelo_pr_ofod_pu,complexity_problem,titulo1,

objective_function,complexity) 

        #graficar2(modelo_pr_eps,infeasiblity_index, 

complexity_problem,titulo2,infeasibility,complexity) 

        

graficar1(modelo_pr_eps,modelo_pr_ofod_pu,titulo1,objective_function) 

        

graficar1(modelo_pr_eps,infeasiblity_index,titulo2,infeasibility) 

        graficar1(modelo_pr_eps,complexity_problem,titulo3,complexity) 

         

        print(elementos_A_que_se_hacen_0_pu) 

        return  

     

    else: 

        print(f"El modelo '{modelo}' no se encontró en los datos 

proporcionados.") 

        return None 

 

Loop for iterating the battery: 

for elemento in modelos: 

     

    analisis_de_sensibilidad(elemento, datos_buenos) 

 

Function used to graph the different type of problems together: 

def calcular_media(lista): 

    return np.nanmean(lista) if lista else None 

 

def calcular_mediana(lista): 

    return np.nanmedian(lista) if lista else None 

 

def calcular_cuartiles(lista): 

    return np.nanpercentile(lista, [25, 75]) if lista else (None, 

None) 

 



 
 

def ajustar_longitudes(eps, datos): 

    min_longitud = min(len(eps), len(datos)) 

    return eps[:min_longitud], datos[:min_longitud] 

 

def rellenar_con_nan(datos, longitud_maxima): 

    return datos + [np.nan] * (longitud_maxima - len(datos)) 

 

def analisis_de_sensibilidad_global(modelos, datos): 

    # Definir variables para almacenar los datos 

    all_epsilons = {} 

    all_objective_function_degradation = {} 

    all_infeasibility = {} 

    all_complexity = {} 

     

    # Inicializar listas para acumular datos 

    objective_function_degradation_list = [] 

    infeasibility_list = [] 

    complexity_list = [] 

     

    # Determinar la longitud máxima 

    max_length = 0 

    for modelo in modelos: 

        if modelo in datos: 

            modelo_datos = datos[modelo] 

            modelo_primal = modelo_datos.get('primal', {}) 

             

            modelo_pr_eps = modelo_primal.get('epsilon', []) 

            modelo_pr_of = modelo_primal.get('objective_function', []) 

            modelo_pr_cv = modelo_primal.get('constraint_violation', 

[]) 

            modelo_pr_ci = modelo_primal.get('changed_indices', []) 

            modelo_pr_ofod = modelo_primal.get('of_original_decision', 

[]) 

            modelo_du_dv = modelo_datos.get('dual', 

{}).get('decision_variables', []) 

             

            # Cálculo de degradación de la función objetivo original 

            divisor = modelo_pr_of[0] if modelo_pr_of else None 

            modelo_pr_ofod_pu = [elemento / divisor for elemento in 

modelo_pr_of] if divisor else [] 

 

            # Cálculo de INFEASIBILITY INDEX 

            cifra_referencia = 1e-6  

            modelo_pr_cv_sin_nan = quitar_sublistas_nan(modelo_pr_cv)  

            modelo_pr_cv_filtrado = 

establecer_a_cero_valores_menores(modelo_pr_cv_sin_nan, 

cifra_referencia) 

             

            if modelo_du_dv and modelo_pr_cv_filtrado: 

                producto_cv_vd = 

multiplicar_matrices(modelo_pr_cv_filtrado, modelo_du_dv) 

                suma_producto = 

obtener_sumas_de_sublistas(producto_cv_vd) 

                infeasiblity_index = [x / abs(modelo_pr_ofod[0]) for x 

in suma_producto] if modelo_pr_ofod else [] 

            else: 

                infeasiblity_index = [] 

 

            # Cálculo de PROBLEM COMPLEXITY 

            acumulado_modelo_ci = calcular_longitudes(modelo_pr_ci) 

            convert_late_zeros_to_nan(acumulado_modelo_ci) 



 
 

            elementos_A_totales = len(modelo_pr_dv) * 

len(modelo_du_dv) 

            elementos_A_que_se_hacen_0_pu = [x / elementos_A_totales 

for x in acumulado_modelo_ci] if elementos_A_totales else [] 

            complexity_problem = [1 - x for x in 

elementos_A_que_se_hacen_0_pu] 

             

            # Actualizar la longitud máxima 

            max_length = max(max_length, len(modelo_pr_eps), 

len(modelo_pr_ofod_pu), len(infeasiblity_index), 

len(complexity_problem)) 

 

            # Acumular datos para análisis global 

            all_epsilons[modelo] = modelo_pr_eps 

            all_objective_function_degradation[modelo] = 

modelo_pr_ofod_pu 

            all_infeasibility[modelo] = infeasiblity_index 

            all_complexity[modelo] = complexity_problem 

             

            # Asegurarse de que todas las listas tengan la misma 

longitud 

            

objective_function_degradation_list.append(rellenar_con_nan(modelo_pr_

ofod_pu, max_length)) 

            

infeasibility_list.append(rellenar_con_nan(infeasiblity_index, 

max_length)) 

            

complexity_list.append(rellenar_con_nan(complexity_problem, 

max_length)) 

        else: 

            print(f"El modelo '{modelo}' no se encontró en los datos 

proporcionados.") 

 

    # Función para calcular estadísticas por índice 

    def calcular_estadisticas_por_indice(datos_por_indice): 

        num_epsilons = len(datos_por_indice[0]) if datos_por_indice 

else 0 

        media = [calcular_media([datos[i] for datos in 

datos_por_indice]) for i in range(num_epsilons)] 

        mediana = [calcular_mediana([datos[i] for datos in 

datos_por_indice]) for i in range(num_epsilons)] 

        cuartiles = [calcular_cuartiles([datos[i] for datos in 

datos_por_indice]) for i in range(num_epsilons)] 

        return media, mediana, cuartiles 

     

    # Calcular estadísticas para cada métrica 

    media_of, mediana_of, cuartiles_of = 

calcular_estadisticas_por_indice(objective_function_degradation_list) 

    media_infeasibility, mediana_infeasibility, 

cuartiles_infeasibility = 

calcular_estadisticas_por_indice(infeasibility_list) 

    media_complexity, mediana_complexity, cuartiles_complexity = 

calcular_estadisticas_por_indice(complexity_list) 

     

    # Función para graficar los datos 

    def graficar_datos(titulo, ylabel, datos_dict, 

estadisticas_dict=None): 

        plt.figure(figsize=(10, 6)) 

        colores = plt.cm.get_cmap('tab10', len(datos_dict)) 

         



 
 

        for i, modelo in enumerate(modelos): 

            eps = all_epsilons.get(modelo, []) 

            datos = datos_dict.get(modelo, []) 

            eps_ajustado, datos_ajustado = ajustar_longitudes(eps, 

datos) 

             

            plt.plot(eps_ajustado, datos_ajustado, label=f'{modelo}') 

 

        if estadisticas_dict: 

            num_epsilons = len(estadisticas_dict.get('media', [])) 

            eps_comunes = np.linspace(min(eps_ajustado), 

max(eps_ajustado), num=num_epsilons) 

            media = estadisticas_dict.get('media', []) 

            mediana = estadisticas_dict.get('mediana', []) 

            cuartiles = estadisticas_dict.get('cuartiles', []) 

            cuartiles_25 = [q[0] for q in cuartiles] 

            cuartiles_75 = [q[1] for q in cuartiles] 

             

            print(f"Longitudes para graficar estadísticas: 

eps_ajustado = {len(eps_ajustado)}, media = {len(media)}, mediana = 

{len(mediana)}, cuartiles_25 = {len(cuartiles_25)}, cuartiles_75 = 

{len(cuartiles_75)}") 

 

            plt.plot(eps_ajustado, media[:len(eps_ajustado)], '--', 

label='Media', color='black') 

            plt.plot(eps_ajustado, mediana[:len(eps_ajustado)], ':', 

label='Median', color='blue') 

            plt.plot(eps_ajustado, cuartiles_25[:len(eps_ajustado)], 

'-.', label='Quartile 25', color='green') 

            plt.plot(eps_ajustado, cuartiles_75[:len(eps_ajustado)], 

'-.', label='Quartile 75', color='red') 

         

        plt.title(titulo, fontname='Times New Roman', fontsize=20) 

        plt.xlabel("Epsilon", fontname='Times New Roman', fontsize=14) 

        plt.ylabel(ylabel) 

        plt.legend(fontsize=12) 

        plt.show() 

 

    # Graficar datos acumulados 

    graficar_datos("Objective Function Degradation for type 4 models", 

"", all_objective_function_degradation,  

                   {'media': media_of, 'mediana': mediana_of, 

'cuartiles': cuartiles_of}) 

    graficar_datos("Infeasibility Evolution for type 4 models", "", 

all_infeasibility,  

                   {'media': media_infeasibility, 'mediana': 

mediana_infeasibility, 'cuartiles': cuartiles_infeasibility}) 

    graficar_datos("Complexity Evolution for type 4 models", "", 

all_complexity,  

                   {'media': media_complexity, 'mediana': 

mediana_complexity, 'cuartiles': cuartiles_complexity}) 

 

    return 

 

Models distributed in different types: 

modelos_tipo1 = ['AIRSP', 'AMPL','ASYNCLOOP','PAPERCO','CHINA', 

'CLEARLAK', 'DEMO1', 'JOBT', 'LANDS', 'MARKOV', 'MEXSS', 'MINE', 

'PAKLIVE', 'PRODMIX', 'ROBERT', 'SPARTA', 'SRPCHASE'] 

#graphed: 



 
 

modelos_tipo1 = ['AIRSP', 'PRODMIX', 'SPARTA' ] 

modelos_tipo2 = ['AIRCRAFT', 'BLEND','DIET', 'KAND','SRKANDW','UIMP'] 

#graphed: 

modelos_tipo2 = ['AIRCRAFT','SRKANDW','UIMP'] 

modelos_tipo3 = ['DEA','GUSSEX1','GUSSGRID','SENSTRAN','TRNSPORT'] 

#grahped: 

modelos_tipo3 = ['GUSSEX1','GUSSGRID','SENSTRAN','TRNSPORT'] 

modelos_tipo4 = ['IBM1'] 

Auxiliary functions used: 

#Function to calculate the media of a list. 

def calcular_medias(lista): 

    medias = [] 

    for sublista in lista: 

        if isinstance(sublista, list): 

            if len(sublista) > 1: 

                media = np.nanmean(sublista) 

                medias.append(media) 

            elif len(sublista) == 1: 

                medias.append(sublista[0]) 

            else: 

                medias.append(None) 

        elif isinstance(sublista, (float, int)): 

            medias.append(sublista) 

    return medias 

 

def calcular_longitudes(vector_con_vectores): 

    # Creamos una lista para almacenar las longitudes de los vectores 

    longitudes = [] 

 

    # Iteramos sobre cada vector en el vector_con_vectores 

    for vector in vector_con_vectores: 

        # Si el vector es None, consideramos su longitud como 0 

        if vector is None: 

            longitudes.append(0) 

        # Si el vector contiene NaN, lo excluimos del cálculo de 

longitud 

        elif isinstance(vector, (list, np.ndarray)) and 

np.isnan(vector).any(): 

            continue 

        else: 

            # Verificamos si el vector es iterable antes de intentar 

calcular su longitud 

            try: 

                longitud = len(vector) 

            except TypeError: 

                # Si no es iterable, agregamos 0 a las longitudes 

                longitud = 0 

            longitudes.append(longitud) 

 

    return longitudes 

 

def establecer_a_cero_valores_menores(lista_de_listas, 

cifra_referencia): 

 

    for i in range(len(lista_de_listas)): 

        for j in range(len(lista_de_listas[i])): 

            if abs(lista_de_listas[i][j]) < cifra_referencia: 

                lista_de_listas[i][j] = 0 



 
 

    return lista_de_listas 

 

 

# PARA ALGUNOS MODELOS COMO AIRCRAFT, APARECEN SUBLISTAN NaN y hay que 

quitarlas 

def quitar_sublistas_nan(lista_de_listas): 

    lista_sin_nan = [sublista for sublista in lista_de_listas if not 

np.any(np.isnan(sublista))] 

    return lista_sin_nan 

 

def multiplicar_matrices(A, B): 

    # Obtener las dimensiones de las matrices 

    filas_A = len(A) 

    columnas_A = len(A[0]) 

    filas_B = len(B) 

    columnas_B = len(B[0]) 

 

    # Verificar si las matrices son multiplicables 

    if columnas_A != columnas_B: 

        raise ValueError("Las matrices no son multiplicables") 

 

    # Inicializar la matriz resultante con ceros 

    C = [[0] * columnas_B for _ in range(filas_A)] 

 

    # Multiplicar elemento por elemento y sumar los resultados 

    for i in range(filas_A): 

        for j in range(columnas_B): 

            for k in range(columnas_A): 

                C[i][j] = A[i][j] * B[i][j] 

 

 

    return C 

def obtener_sumas_de_sublistas(lista_de_listas): 

    return [sum(map(float, sublista)) for sublista in lista_de_listas] 

 

 

def graficar1(modelo_pr_epsilon, vector1, titulo, nombre1): 

    # Determinar la longitud máxima de los vectores 

    max_length = max(len(modelo_pr_epsilon), len(vector1)) 

     

    # Generar el eje_x con la misma longitud que el vector más largo 

    eje_x = modelo_pr_epsilon[:max_length] 

     

    # Graficar los vectores 

    plt.figure(figsize=(8, 6)) 

    plt.plot(eje_x[:len(vector1)], vector1, label=nombre1) 

     

    # Configurar etiquetas y título con tamaños de letra 

    plt.xlabel('Epsilon', fontsize=15,fontname = 'Times New Roman') 

    plt.ylabel('', fontsize=12) 

    plt.title(titulo, fontsize=16, fontname = 'Times New Roman') 

     

    # Configurar leyenda con tamaño de letra 

    plt.legend(fontsize=12) 

     

    # Configurar tamaño de letra de los ticks 

    plt.tick_params(axis='both', which='major', labelsize=12) 

     

    # Configurar otros parámetros del gráfico 



 
 

    plt.grid(False) 

    plt.xlim(eje_x[0], eje_x[-1])  # Ajustar límites del eje x 

     

    # Mostrar el gráfico 

    plt.show() 

  

 

 

 

 

 

 

 


