

GRADO UNIVERSITARIO EN

INGENIERÍA INDUSTRIAL

TRABAJO FIN DE GRADO

ANÁLISIS DE SENSIBILIDAD DE

SIMPLIFICACIONES EN PROBLEMAS

DE OPTIMIZACIÓN LINEAL

Alumno: José María García-Mina Peñaranda

Director: Sara Lumbreras Sancho

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

Análisis de sensibilidad de simplificaciones en problemas de optimización lineal.

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2023/24 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos.

El Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha

sido tomada de otros documentos está debidamente referenciada

Fdo.: José María García-Mina Peñaranda Fecha: 25/ 07/2024

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Sara Lumbreras Sancho Fecha: 25/07/2024

Executive Summary

Introduction

In the world of Operational Research (OR), linear optimization is one of the most

used tools to solve problems. Linear Programming (LP) has been studied for more

than a century, becoming the most extensively studied optimization problem.

Thanks to the versatility of this science, it applies to a wide range of different

fields, from engineering to financial, going through social and environmental

issues. When it comes to a real-life problem, the dimensions start getting difficult

to manage, and even though there are algorithms which can solve them, the time

that takes to reach an optimal solution is absurdly long. Here is where the

simplification appears. In this paper, a sensibility analysis for a simplification

operation is made, in order to see how the problems react to different levels of

simplification, with the objective of being able to make a decision whether it is or

it is not worth it. This will be possible with the help of three indexes and graphs of

their evolution during the simplification process.

Pre-solve methods

Before starting to solve any LP, there exist some operations that simplify the

problem. These operations are called pre-solved methods. The main objective of

these methods is to reduce as much as possible the dimensions of the problem. In

this paper, the 9 most popular methods are explained and illustrated with a simple

example. The battery of problems used in the project has been pre-solved with

these methods, before solving and applying the simplification operation.

Problems battery under study

The problems studied in this project is selected from the model library of the

software GAMS, from where thirty LPs are randomly selected and afterwards pre-

solved, solved and simplified. The battery is formed by problems from different

fields such as: agricultural economics, management science and OR, stochastic

programming, macro and micro economics and mathematics.

Sensibility analysis

Once the problems have been pre-solved, solved and simplified with the

sparsification1 operation, main data is uploaded into Jupyter notebook, the

environment where the coding is made. The main data is:

- Epsilon: signification level that is used to modify the matrix A, if the

element is less than epsilon (matrix A normalized) it takes 0 value.

- Objective_function: With the new matrix A (modified using epsilon), a new

model is built. This is the value for the new objective function for each

epsilon.

- Decision_variables: It contains the value of each decision variable for each

epsilon in the new model built with the modified matrix A.

- Changed_indices: Elements that have been modified from the matrix A, for

each value of epsilon.

- Constraint_violation: Taking the solution of the new model (modified

matrix A) and putting it in the original model, the violation of each

constraint is evaluated, for each epsilon value.

- of_original_decision: Taking the solution of the new model (modified

matrix A) and putting it in the original model, the objective function is

evaluated, for each epsilon value.

- time_required: It shows the time required to solved the problem for each

epsilon value.

Using this data three indexes are calculated to measure the evolution of the

objective function, the complexity and the infeasibility of the problem. These

indexes are normalized, so comparisons between different problems are possible.

For every value of epsilon, each index will have a value, so afterwards the graph

of the evolution during the simplification will be made for every index. Here is an

example (problem form the battery called IBM1) of the graph of the evolution of

the objective function through the simplification process:

1 Simplification operation used and applied by the Co-director of the project, Phillipe Vilaça Gomes.

Graphs like the one above will be obtained for the other two indexes too. With a

function coded, the entire battery will be iterated with a loop. With this iteration,

the three graphs will be obtained for every problem from the battery. Once that all

the graphs are obtained, four main behaviours are visualized. The first behaviour

consists of a notably improvement on the objective function value and in the

complexity of the problem, but with the cost of the problem becoming extremely

infeasible. The second behaviour is quite similar, but in this case the objective

function worsens. For the complexity and the infeasibility happens the same as in

the first one. The third type consists of the problems that do not see themselves

affected until big epsilons. When this happens the objective function and

complexity improve, but at the same time the problem becomes infeasible. For the

three cases mention before, the sensibility analysis shows that it has no value the

simplification in these kinds of problems. But, the four behaviour is the one where

the objective function and the infeasibility index barely vary, while the complexity

of the problem decreases. For this behaviour, the simplification operation is worth

it, because the problem will be simplified in a notably percentage, while keeping

almost the same objective function value, and without becoming infeasible.

Conclusion

The main conclusions obtained with this project can be synthesized in two main

points:

Firstly, each problem must be study and simplified individually, since it has been

clearly obtained that there are different behaviours through the simplification

operation. Even though most of the problems cannot be simplified, because they

become infeasible, there are some of them that are acceptable for the

simplification, reaching an easier solution without affecting the infeasibility or the

objective function value. This can be translated into the use of less variables and/or

constraints.

The second point is that with the sensibility analysis defined in the project, any

project could be easily analysed and classified in one of the four main behaviours,

just by looking at three graphs. With this information, decisions towards

simplifying or not the LP can be made.

Author: García-Mina Peñaranda, José María.

Director: Lumbreras Sancho, Sara.

Co-director: Villaça Gomes, Phillipe.

Abstract

Linear optimization is an essential tool when facing complex problems. Thanks to

its ability to adapt to all types of challenges across various fields of application, it

is highly prevalent in the daily activities of any profession. Because real-life

problems complexity, due to the number of variables and constraints,

simplification is key. Adding to the traditional pre-solved methods, simplification

operations are in constant innovation, in order to make these problems easier. With

this project, a sensibility analysis is made, to see the reaction of a battery of

problems to a simplification operation called sparsification, which will be done

for different signification levels (epsilons) from less to more simplified. The study

will use a battery of LPs from the optimization software GAMS.

First of all, three main indexes are calculated, all of them normalized so it is

possible making comparisons between problems. The first one measures the

objective function value, the second one measures the infeasibility and the last one

the complexity of the problem. The three will be calculated for every epsilon, and

afterwards, the graphs for the three of them will be obtained.

Once the graphs are obtained, the analysis starts. It consists of searching for similar

reactions and patterns in the different problems. Four main behaviours are

identified in the analysis, and only one of them shows that the simplification

operation is worth it.

Key words: simplification, sensibility, linear programming, optimization,

behaviours, infeasibility, complexity

Autor: García-Mina Peñaranda, José María.

Director. Lumbreras Sancho, Sara.

Co-director: Villaça Gomes, Phillipe.

Resumen

La optimización lineal es una herramienta esencial al enfrentar problemas

complejos. Gracias a su capacidad para adaptarse a todo tipo de desafíos en

diversos campos de aplicación, es altamente prevalente en las actividades diarias

de cualquier profesión. Debido a la complejidad de los problemas de la vida real,

por el número de variables y restricciones, la simplificación es clave. Además de

los métodos tradicionales pre-resueltos, las operaciones de simplificación están en

constante innovación para hacer estos problemas más manejables. Con este

proyecto, se realiza un análisis de sensibilidad para observar la reacción de una

batería de problemas a una operación de simplificación llamada esparsificación,

que se llevará a cabo para diferentes niveles de significación (épsilons), desde

menos hasta más simplificado. El estudio utilizará una batería de PLs del software

de optimización GAMS.

En primer lugar, se calculan tres índices principales, todos ellos normalizados para

que sea posible hacer comparaciones entre problemas. El primero mide el valor de

la función objetivo, el segundo mide la inviabilidad y el último la complejidad del

problema. Los tres se calcularán para cada épsilon y, posteriormente, se obtendrán

los gráficos de los tres.

Una vez obtenidos los gráficos, comienza el análisis. Consiste en buscar reacciones

y patrones similares en los diferentes problemas. En el análisis se identifican cuatro

comportamientos principales, y solo uno de ellos muestra que la operación de

simplificación merece la pena.

Palabras clave: simplificación, sensibilidad, programación lineal, optimización,

comportamientos, infactibilidad, complejidad.

Content table

1. Introduction ... 12

2. Linear programming ... 13

3. Pre-solve methods. ... 14

3.1. Introduction .. 14

3.2. Methods.. 15

3.2.1. Eliminate zero rows. ... 15

3.2.2. Eliminate zero columns. .. 17

3.2.3. Eliminate singleton equality constraints. ... 19

3.2.4. Eliminate singleton inequality constraints. .. 22

3.2.5. Eliminate dual singleton inequality constraints. .. 24

3.2.6. Eliminate implied free singleton columns. ... 26

3.2.7. Eliminate redundant columns. .. 29

3.2.8. Eliminate implied bounds on rows. ... 30

3.2.9. Eliminate redundant rows. ... 32

4. Problems battery under study ... 34

4.1. Agricultural Economics .. 35

4.2. Management Science and OR .. 35

4.3. Stochastic Programming ... 35

4.4. Macro and Micro economics ... 36

4.5. Mathematics .. 36

5. Sensibility analysis ... 36

5.1. Indexes ... 38

5.2. Procedure of the analysis .. 41

5.3. Conclusions of the analysis ... 50

6. Bibliography .. 51

7. Annex ... 51

7.1. Coding ... 51

Illustration index

1. Index that measures the objective function degradation. 38

2. Index that measures the problem infeasibility. ... 40

3. Index that measures the problem complexity. .. 41

4. Objective functions from type 1 problems. .. 42

5. Infeasibility from type 1 problems. .. 43

6. Complexity from type 1 problems. ... 43

7. Objective functions from type 2 problems. .. 44

8. Infeasibility from type 2 problems. .. 45

9. Complexity from type 2 problems. ... 45

10. Objective functions from type 3 problems. .. 46

11. Infeasibility from type 3 problems. .. 47

12. Complexity from type 3 problems. ... 47

13. Objective functions from type 4 problems. .. 48

14. Infeasibility from type 4 problems. ... 49

15. Complexity from type 4 problems. ... 49

1. Introduction

Linear optimization is an essential tool when facing complex problems. Thanks to

its ability to adapt to all types of challenges across various fields of application, it

is highly prevalent in the daily activities of any profession. One of the

characteristics of these problems is the large number of variables and constraints,

which makes solving them an arduous task. Because of this, the simplification of

linear programming is constantly innovating and trying to find a way to make this

science easier. Numerous models of simplifying problems exist, and with this

analysis it will be possible to evaluate the impact of the simplification to complex

linear programming problems.

The project explains basic linear programming knowledge, shows the ten most

important pre-solve methods that are used in simplification operations and then

enters the sensibility analysis, ending with the conclusions obtained by the

analysis. All the codes used for the operations and obtaining the graphs are in the

annex.

Firstly, sixty problems will be solved and simplify by the sparsification operation,

saving the results of this operations in a json file. This simplification solves the

problem for 30 different levels of signification (epsilons), being the first one the

original problem and the last one the most simplified. To read and study the data

the open-source web application Jupyter notebook is used, programming in

Python. The objective of this study is to visualize graphically the evolution of the

LPs problems and how they react to the simplification.

The main indicators for the project are the normalized objective function, an

unfeasibility index and a complexity index, that are calculated for each value of

epsilon. First this three are calculated just for a small sample of problems, and then

a function is program with all the operations needed, to then iterate every problem

and be able to observe the graphs and reach conclusions with the entire battery.

2. Linear programming

The Linear Programming (LP) problem is arguably the most significant and

extensively studied optimization problem. A multitude of real-world issues can be

formulated as Linear Programming problems (LPs). LP involves the process of

minimizing or maximizing a linear objective function subject to a ser of linear

equality and/or inequality constraints.

The structure of a LP problem in standard form is the following:

- Objective function: min 𝑧 = 𝑐𝑇𝑥

- Constraints: s.t 𝐴𝑥 ≥ 𝑏

 𝑥 ≥ 0

Where x is the vector of decision variables, A is the matrix of restrictions, c is the

coefficients vector of the objective function and b is the right-hand side vector.

Furthermore, 𝐴 ∈ ℝ𝑚×𝑛, (𝑐, 𝑥) ∈ ℝ𝑛 and T denotes transposition, and that the

linear system 𝐴𝑥 = 𝑏 is consistent. With the word min it is shown that the problem

is to minimize de objective function. In order to be a linear programming problem,

both the objective function and the constraints must be linear.

In addition, from every LP we can obtain the dual problem. Both problems keep a

close relation between them. The canonical form of the dual problem is the

following:

- Objective function: max 𝑧 = 𝑏𝑇𝑤

- Constraints: s.t 𝐴𝑇𝑤 ≤ 𝑐

 𝑤 ≥ 0

The easiest problems can be solved graphically, while for the more complex ones

the most popular way of approaching these problems is the simplex algorithm. The

algorithm starts with a first feasible solution and moves towards an adjacent

solution until the optimal is reached.

3. Pre-solve methods.

3.1. Introduction

Pre-solve methods play a crucial role in solving linear programming (LP) problems

by reducing their size and determining if they are unbounded or infeasible. These

methods are applied before an LP algorithm to: remove redundant constraints, fix

certain variables, adjust bounds on individual structural variables, and decrease the

number of variables and constraints through eliminations.

Nine pre-solve methods used before executing an LP algorithm are going to be

shown: eliminating zero rows, eliminating zero columns, eliminating singleton

equality constraints, eliminating kton equality constraints, eliminating singleton

inequality constraints, eliminating dual singleton inequality constraints,

eliminating implied free singleton columns, eliminating redundant columns,

eliminating implied bounds on rows, eliminating redundant rows, and ensuring the

coefficient matrix is structurally full rank.

The following LP problem in canonical form is considered:

min 𝑧 = 𝑐𝑇𝑥

s.t 𝑏 ≤ 𝐴𝑥 ≤ 𝑏

𝑥 ≤ 𝑥 ≤ 𝑥

Where 𝑐, 𝑥 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛, 𝑥 = 0, 𝑥 = ∞, 𝑏 = (ℝ ∪ {−∞})𝑚, 𝑏 = (ℝ ∪

{+∞})𝑚, and T denotates transposition. Let 𝐴𝑖 be the ith row of matrix A and 𝐴𝑗

be the jth column of the matrix A.

3.2. Methods2

3.2.1. Eliminate zero rows.

A row in the coefficient matrix 𝐴 is considered an empty row if all the coefficients

in that row are zero. A zero row can be expressed as:

𝑏𝑖 ≤ 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≤ 𝑏𝑖

A constraint of this type maybe redundant or may state that the LP problem is

infeasible. All possible cases are distinguished in the following theorem:

For each empty row we distinguished the following cases:

1. 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≤ 𝑏𝑖 𝑎𝑛𝑑 𝑏𝑖 ≥ 0: The constraint is redundant

and can be deleted.

2. 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≤ 𝑏𝑖 𝑎𝑛𝑑 𝑏𝑖 < 0: The LP problem is

infeasible.

3. 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≥ 𝑏𝑖 𝑎𝑛𝑑 𝑏𝑖 ≤ 0: The constraint is redundant

and can be deleted.

4. 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≥ 𝑏𝑖𝑎𝑛𝑑 𝑏𝑖 > 0: The LP problem is

infeasible.

5. 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≥ 𝑏𝑖 = 𝑏𝑖 = 𝑏𝑖 𝑎𝑛𝑑 𝑏𝑖 = 0: The constraint is

redundant and can be deleted.

2 Methods and examples obtained from Ploskas, N., & Samaras, N. (n.d.). Springer Optimization and its

applications.

6. 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≥ 𝑏𝑖 = 𝑏𝑖 = 𝑏𝑖 𝑎𝑛𝑑 𝑏𝑖 ≠ 0: The LP problem

is infeasible.

With the next illustrative example, we can see the demonstration of the pre-solve

method that eliminates zero rows.

The LP problem that will be presolved is the following:

 min 𝑧 = −𝑥1 + 4𝑥2 + 5𝑥3 − 2𝑥4 − 8𝑥5 + 2𝑥6

 s.t 2𝑥1 − 3𝑥2 + 3𝑥5 + 𝑥6 ≤ 9 (1)

 −𝑥1 + 3𝑥2 + 2𝑥3 − 𝑥5 − 2𝑥6 ≥ 1 (2)

 0𝑥1 + 0𝑥2 + 0𝑥3 + 0𝑥4 + 0𝑥5 + 0𝑥6 ≥ −5 (3)

 7𝑥1 + 5𝑥2 + 2𝑥3 − 2𝑥5 + 4𝑥6 = 7 (4)

 0𝑥1 + 0𝑥2 + 0𝑥3 + 0𝑥4 + 0𝑥5 + 0𝑥6 ≥ −10 (5)

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4, 5, 6)

The matrix notation is:

𝐴 =

[

2 −3 0 0 3 1
−1
0

3 2
0 0

 0 −1 −2
 0 0 0

7
0

5 2
0 0

0 −2 4
0 0 0]

, 𝑐 =

[

−1
4
5

−2
−8
2]

, 𝑏 =

[

9
1

−5
7

−10]

, 𝐸𝑞𝑖𝑛 =

[

−1
1
1
0
1]

We observe that all the elements of the third and fifth row are equal to zero.

According to the third case of the previous section, the constraint is redundant and

can be deleted. Therefore, we can delete the third and fifth row of matrix A and the

third and fifth element from vectors b and Eqin:

𝐴 = [
2 −3 0 0 3 1

−1
7

3 2 0 −1 −2
5 2 0 −2 4

] , 𝑐 =

[

−1
4
5

−2
−8
2]

, 𝑏 = [
9
1
7
] , 𝐸𝑞𝑖𝑛 = [

−1
1
0

]

Finally, the equivalent LP problem after presolve is:

 min 𝑧 = −𝑥1 + 4𝑥2 + 5𝑥3 − 2𝑥4 − 8𝑥5 + 2𝑥6

 s.t 2𝑥1 − 3𝑥2 + 3𝑥5 + 𝑥6 ≤ 9

 −𝑥1 + 3𝑥2 + 2𝑥3 − 𝑥5 − 2𝑥6 ≥ 1

 7𝑥1 + 5𝑥2 + 2𝑥3 − 2𝑥5 + 4𝑥6 = 7

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4, 5, 6)

3.2.2. Eliminate zero columns.

A column of the coefficient matrix 𝐴 is considered an empty column if all the

coefficients in that column are zero. A variable associated with such a column may

either be redundant or indicate that the LP problem is unbounded. The following

theorem distinguishes between these two scenarios:

1. 𝑐𝑗 ≥ 0: 𝑇ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑠 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑎𝑛𝑑 𝑐𝑎𝑛 𝑏𝑒 𝑑𝑒𝑙𝑒𝑡𝑒𝑑

2. 𝑐𝑗 < 0: 𝑇ℎ𝑒 𝐿𝑃 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑢𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑

Through the next illustrative example, this method is demonstrated:

The LP problem that will be presolved is the following:

 min 𝑧 = −𝑥1 + 4𝑥2 + 5𝑥3 + 2𝑥4 − 8𝑥5 + 2𝑥6

 s.t 2𝑥1 − 3𝑥2 + 3𝑥5 + 𝑥6 ≤ 9

 −𝑥1 + 3𝑥2 − 𝑥5 − 2𝑥6 ≥ 1

 𝑥1 ≥ −5

 6𝑥1 + 5𝑥2 − 2𝑥5 + 4𝑥6 = 7

 3𝑥5 + 4𝑥6 ≥ −10

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4, 5, 6)

In matrix notation:

𝐴 =

[

2 −3 0 0 3 1
−1
1

3 0
0 0

 0 −1 −2
 0 0 0

6
0

5 0
0 0

0 −2 4
0 3 4]

, 𝑐 =

[

−1
4
5
2

−8
2]

, 𝑏 =

[

9
1

−5
7

−10]

, 𝐸𝑞𝑖𝑛 =

[

−1
1
1
0
1]

We observe that all the elements of the third and fourth column are equal to zero.

According to the first case of the previous subsection, the variable is redundant

and can be deleted. Therefore, we can delete both columns of matrix A, and the

third and fourth elements from vector c. The presolved LP problem is now:

𝐴 =

[

2 −3 3 1
−1 3 −1 −2
1
6
0

0
5
0

0
−2
3

0
4
4]

, 𝑐 =

[

−1
4
2

−8
2]

, 𝑏 =

[

9
1

−5
7

−10]

, 𝐸𝑞𝑖𝑛 =

[

−1
1
1
0
1]

And the equivalent LP problem after presolve is:

 min 𝑧 = −𝑥1 + 4𝑥2 − 8𝑥5 + 2𝑥6

 s.t 2𝑥1 − 3𝑥2 + 3𝑥5 + 𝑥6 ≤ 9

 −𝑥1 + 3𝑥2 − 𝑥5 − 2𝑥6 ≥ 1

 𝑥1 ≥ −5

 6𝑥1 + 5𝑥2 − 2𝑥5 + 4𝑥6 = 7

 3𝑥5 + 4𝑥6 ≥ −10

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 5, 6)

3.2.3. Eliminate singleton equality constraints.

An equality row in the coefficient matrix A is considered a singleton row if and

only if it contains exactly one nonzero coefficient. A singleton equality row can be

expressed as follows:

𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 = 𝑏𝑖

Where 𝐴𝑖𝑘 ≠ 0 Λ 𝐴𝑖𝑗 = 0, 𝑖 = 1, 2, … ,𝑚, 𝑗 = 1,2, … , 𝑛, 𝑎𝑛𝑑 𝑗 ≠ 𝑘. The

constraint can be rewritten as:

𝐴𝑖𝑘𝑥𝑘 = 𝑏𝑖

Therefore, the value of 𝑥𝑘 is fixed at 𝑏𝑖/𝐴𝑖𝑘. A constraint of this type may either

be redundant or indicate that the linear programming (LP) problem is infeasible.

We can identify the following scenarios:

1. 𝑥𝑘 ≥ 0: Row i and column k are redundant and can be deleted.

2. 𝑥𝑘 < 0: The LP problem is infeasible.

If 𝑥𝑘 ≥ 0 we replace 𝑥𝑘 to all constraints:

𝑏 = 𝑏 − 𝑥𝑘𝐴.𝑘

If 𝑐𝑘 ≠ 0, then a constant term of the objective function is computed as:

𝑐0 = 𝑐0 − 𝑐𝑘 ∗ (
𝑏𝑖

𝐴𝑖𝑘

)

After making that replacement, row i is deleted from matrix A, element i is

removed from vectors b and Eqin, column k is deleted from matrix A, and element

k is removed from vector c. It is common for a new singleton equality row to

appear after eliminating the previous one. Therefore, the current presolve method

continues until no additional singleton equality rows are present.

With the next example we can see a demonstration:

 min 𝑧 = −2𝑥1 + 4𝑥2 − 2𝑥3 + 2𝑥4

 s.t + 3𝑥3 = 6

 4𝑥1 − 3𝑥2 + 8𝑥3 − 𝑥4 = 20

 −3𝑥1 + 2𝑥2 − 4𝑥4 = −8

 4𝑥1 − 𝑥3 = 18

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4)

In matrix notation:

𝐴 = [

0 0 3 0
4 −3 8 −1

−3
4

2
0

 0
−1

−4
0

] , 𝑐 = [

−2
4

−2
2

] , 𝑏 = [

6
20
−8
18

] , 𝐸𝑞𝑖𝑛 = [

0
0
0
0

]

Initially, we begin by searching for equality constraints that contain only one

nonzero element. We observe that, in the first equality constraint, all elements are

zero except for the third element:

3𝑥3 = 6

So, the value for 𝑥3:

 3𝑥3 =
6

3
= 2

Following the first case of the previous subsection, the first row and the third

column are redundant and can be deleted. We then update vector 𝑏:

𝑏 = 𝑏 − 𝑥3𝐴.3 = [

6
20
−8
18

] − 2 [

3
8
0

−1

] = [

0
4

−8
20

]

𝑐3 ≠ 0, so a constant term of the objective function is computed as:

𝑐0 = 𝑐0 − (−2) ∗ (
6

3
) = 0 + 4 = 4

Next, we delete the first row and the third column from matrix A, the first element

from vectors b and Eqin, and the third element from vector c. The presolved LP

problem is now:

𝐴 = [
4 −3 −1

−3 2 −4
4 0 0

] , 𝑐 = [
−2
4
2

] , 𝑏 = [
4

−8
20

] , 𝐸𝑞𝑖𝑛 = [
0
0
0
] , 𝑐0 = 4

3.2.4. Eliminate singleton inequality constraints.

An inequality row in the coefficient matrix A is considered a singleton row if and

only if it contains exactly one nonzero coefficient. A singleton inequality row can

be expressed as follows:

𝑏𝑖 ≤ 𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 ≤ 𝑏𝑖

Where 𝐴𝑖𝑘 ≠ 0 Λ 𝐴𝑖𝑗 = 0, 𝑖 = 1, 2, … ,𝑚, 𝑗 = 1,2, … , 𝑛, 𝑎𝑛𝑑 𝑗 ≠ 𝑘. A constraint

of this type may either be redundant or indicate that the linear programming (LP)

problem is infeasible. All possible cases in the following theorem.

For each singleton inequality constraint, we distinguish the following cases:

1. Constraint type ≤ 𝑏𝑖 , 𝐴𝑖𝑘 > 0 𝑎𝑛𝑑 𝑏𝑖 < 0: The LP is infeasible

2. Constraint type ≤ 𝑏𝑖 , 𝐴𝑖𝑘 < 0 𝑎𝑛𝑑 𝑏𝑖 > 0: Row i is redundant and can be

deleted.

3. Constraint type ≤ 𝑏𝑖 , 𝐴𝑖𝑘 > 0 𝑎𝑛𝑑 𝑏𝑖 = 0: Row i and column k are redundant

and can be deleted

4. Constraint type ≤ 𝑏𝑖 , 𝐴𝑖𝑘 < 0 𝑎𝑛𝑑 𝑏𝑖 = 0: Row i is redundant and can be

deleted.

5. Constraint type ≥ 𝑏𝑖 , 𝐴𝑖𝑘 > 0 𝑎𝑛𝑑 𝑏𝑖 < 0: Row i is redundant and can be

deleted

6. Constraint type ≥ 𝑏𝑖 , 𝐴𝑖𝑘 < 0 𝑎𝑛𝑑 𝑏𝑖 > 0: The LP problem is infeasible.

7. Constraint type ≥ 𝑏𝑖 , 𝐴𝑖𝑘 > 0 𝑎𝑛𝑑 𝑏𝑖 = 0: Row i is redundant and can be

deleted

8. Constraint type ≥ 𝑏𝑖 , 𝐴𝑖𝑘 < 0 𝑎𝑛𝑑 𝑏𝑖 = 0: Row i and column k are redundant

and can be deleted

Throughout the next illustrative example this method is demonstrated.

 min 𝑧 = −2𝑥1 + 4𝑥2 − 2𝑥3 + 2𝑥4

 s.t − 3𝑥3 ≤ 2

 4𝑥1 − 3𝑥2 + 8𝑥3 − 𝑥4 = 20

 −3𝑥1 + 2𝑥2 − 4𝑥4 ≥ −8

 − 𝑥3 = 18

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4)

In matrix notation:

𝐴 = [

0 0 3 0
4 −3 8 −1

−3
0

2
0

 0
−1

−4
0

] , 𝑐 = [

−2
4

−2
2

] , 𝑏 = [

2
20
−8
18

] , 𝐸𝑞𝑖𝑛 = [

−1
0
1
0

]

Initially, we begin by searching for inequality constraints that contain only one

nonzero element. We observe that, in the first equality constraint, all elements are

zero except for the third element:

−3𝑥3 ≤ 2

Following the first second case of the previous subsection, the first row is

redundant and can be deleted. So we can update matrix A and the first element

from vectors 𝑏 and Eqin :

𝐴 = [
4 −3 8 −1

−3 2 8 −4
0 0 −1 0

] , 𝑐 = [

−2
4

−2
2

] , 𝑏 = [
20
−8
18

] , 𝐸𝑞𝑖𝑛 = [
0
1
0
]

Finally, the presolved problem is:

 min 𝑧 = −2𝑥1 + 4𝑥2 − 2𝑥3 + 2𝑥4

 s.t. −4𝑥1 − 3𝑥2 + 8𝑥3 − 𝑥4 = 20

 −3𝑥1 + 2𝑥2 − 4𝑥4 ≥ −8

 − 𝑥3 = 18

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4)

3.2.5. Eliminate dual singleton inequality constraints.

This method is similar to the previous one but is applied to the dual LP problem.

A column in the coefficient matrix A is considered a singleton column if and

only if it contains exactly one nonzero coefficient. When transforming the primal

LP problem to its dual, a singleton column in the primal corresponds to a dual

singleton constraint in the dual LP problem. A dual singleton inequality row can

be formulated as follows:

𝐴𝑗1𝑤1 + 𝐴𝑗2𝑤2 + ⋯+ 𝐴𝑗𝑚𝑤𝑚 ≤ 𝑐𝑗

Where 𝐴𝑗𝑘 ≠ 0 Λ 𝐴𝑗𝑖 = 0, 𝑖 = 1, 2, … , 𝑚, 𝑗 = 1,2, … , 𝑛, 𝑎𝑛𝑑 𝑖 ≠ 𝑘. A constraint

of this type may either be redundant or indicate that the dual LP problem is

unbounded and the primal LP problem is infeasible. We present this method and

the corresponding eliminations without needing to transform the initial problem to

its dual. Instead of eliminating a row in the dual LP problem, we eliminate a

column in the primal LP problem. The following theorem distinguished all the

possible cases.

For each dual singleton inequality constraint, we distinguish the following cases:

1. Constraint type ≤,𝐴𝑘𝑗 > 0 𝑎𝑛𝑑 𝑐𝑗 > 0: Column j is redundant and can be

deleted.

2. Constraint type ≤,𝐴𝑘𝑗 < 0 𝑎𝑛𝑑 𝑐𝑗 < 0: The LP problem is infeasible.

3. Constraint type ≤,𝐴𝑖𝑘 > 0 𝑎𝑛𝑑 𝑐𝑗 = 0: Column j is redundant and can be

deleted.

4. Constraint type ≤,𝐴𝑖𝑘 < 0 𝑎𝑛𝑑 𝑐𝑗 = 0: Row k and column j are redundant and

can be deleted.

5. Constraint type ≥,𝐴𝑖𝑘 > 0 𝑎𝑛𝑑 𝑐𝑗 < 0: The LP problem is infeasible.

6. Constraint type ≥,𝐴𝑖𝑘 < 0 𝑎𝑛𝑑 𝑐𝑗 > 0: Column j is redundant and can be

deleted.

7. Constraint type ≥,𝐴𝑖𝑘 > 0 𝑎𝑛𝑑 𝑐𝑗 = 0: Row k and column j are redundant and

can be deleted.

8. Constraint type ≥,𝐴𝑖𝑘 < 0 𝑎𝑛𝑑 𝑐𝑗 = 0: Column j is redundant and can be

deleted.

Throughout the next illustrative example this method is demonstrated.

 min 𝑧 = 4𝑥1 + 𝑥2 − 2𝑥3 + 7𝑥4

 s.t. 3𝑥1 − 𝑥3 − 6𝑥4 ≤ 0

 −3𝑥1 + 2𝑥2 + 5𝑥3 − 𝑥4 ≥ 0

 4𝑥1 + 3𝑥3 + 4𝑥4 ≤ 5

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4)

In matrix notation:

𝐴 = [
3 0 −1 −6

−3 −2 5 −1
4 0 3 4

] , 𝑐 = [

4
1

−2
7

] , 𝑏 = [
0
0
5
] , 𝐸𝑞𝑖𝑛 = [

−1
1

−1
]

Initially, we begin by searching for columns that contain only one nonzero element.

We observe that, in the second column, all elements are zero except for the third

element. According to the sixth case of the theorem, the second column is

redundant and can be deleted. We can delete the second column of matrix A and

the second element from vector c:

𝐴 = [
3 −1 −6

−3 5 −1
4 3 4

] , 𝑐 = [
4

−2
7

] , 𝑏 = [
0
0
5
] , 𝐸𝑞𝑖𝑛 = [

−1
1

−1
]

Finally, the presolved LP problem is:

 min 𝑧 = 4𝑥1 − 2𝑥3 + 7𝑥4

 s.t. 3𝑥1 − 𝑥3 − 6𝑥4 ≤ 0

 −3𝑥1 + 5𝑥3 − 𝑥4 ≥ 0

 4𝑥1 + 3𝑥3 + 4𝑥4 ≤ 5

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4)

3.2.6. Eliminate implied free singleton columns.

A constraint that implies a free singleton column can be formulated as:

𝐴𝑖.𝑥 + 𝐴𝑖𝑠𝑥𝑠 = 𝑏

where 𝑖 = 1, 2, … ,𝑚, and the singleton column inside it (𝐴𝑖𝑠 ≠ 0) is redundant if

and only if:

𝐴𝑖𝑠 > 0 Λ 𝐴𝑖𝑗 ≤ 0, 𝑗 ≠ 𝑠, 𝑗 = 1,2, … , 𝑛

or:

𝐴𝑖𝑠 < 0 Λ 𝐴𝑖𝑗 ≥ 0, 𝑗 ≠ 𝑠, 𝑗 = 1,2, … , 𝑛

In this scenario, we can remove variable 𝑥𝑠 from the LP problem. Furthermore, we

have the option to eliminate constraint i. If 𝑐𝑠 = 0, we delete only constraint i. If

𝑐𝑠 ≠ 0, we update vector c and adjust the constant term of the objective function

(𝑐0):

𝑐 = 𝑐 −
𝑐𝑠

𝐴𝑖𝑠

𝐴𝑖.
𝑇

𝑐0 = 𝑐0 +
𝑐𝑠

𝐴𝑖𝑠

𝑏𝑖

Throughout the next illustrative example this method is demonstrated.

 min 𝑧 = 𝑥1 + 2𝑥2 − 4𝑥3 − 3𝑥4

 s.t. 3𝑥1 + 5𝑥3 + 2𝑥4 ≤ 5

 −𝑥1 + 2𝑥2 − 3𝑥4 = 8

 −2𝑥1 − 2𝑥3 + 𝑥4 ≥ 6

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4)

In matrix notation:

𝐴 = [
3 0 5 2

−1 1 0 −3
−2 0 −2 1

] , 𝑐 = [

1
2

−4
−3

] , 𝑏 = [
5
8
6
] , 𝐸𝑞𝑖𝑛 = [

−1
0
1

]

Initially, we begin by searching for columns that contain only one nonzero element.

We observe that, in the second column, all elements are zero except for the second

element. According to the first case, the second column is redundant and can be

deleted. First, we update vector c and calculate the constant term of the objective

function, assuming that its initial value is zero:

𝑐0 = 𝑐0 +
𝑐2

𝐴22

𝑏2 = 0 +
2

1
8 = 16𝑐 = 𝑐 −

𝑐2

𝐴22

𝐴2.
𝑇 = [

1
2

−4
−3

] −
2

1
[

−1
1
0

−3

] = [

3
0

−4
−3

]

So, we delete the second row and the second column for matrix A and the second

element from vectors c, b and Eqin:

𝐴 = [
3 5 2

−2 −2 1
] , 𝑐 = [

3
−4
−3

] , 𝑏 = [
5
6
] , 𝐸𝑞𝑖𝑛 = [

−1
1

] , 𝑐0 = 16

So, the presolved LP problem is:

 min 𝑧 = 𝑥1 − 4𝑥3 − 3𝑥4 + 16

 s.t. 3𝑥1 + 5𝑥3 + 2𝑥4 ≤ 5

 −2𝑥1 − 2𝑥3 + 𝑥4 ≥ 6

 𝑥𝑗 ≥ 0, (𝑗 = 1, 3, 4)

3.2.7. Eliminate redundant columns.

A linear constraint of the form:

𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑘𝑥𝑘 = 0

With all 𝐴𝑖𝑗 > 0, 𝑖 = 1, 2, … , 𝑚, 𝑗 = 1,2, … , 𝑘, 1 ≤ 𝑘 ≤ 𝑛, 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑥𝑗 = 0

Also, a linear constraint of the form:

𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑘𝑥𝑘 = 0

With all 𝐴𝑖𝑗 < 0, 𝑖 = 1, 2, … , 𝑚, 𝑗 = 1,2, … , 𝑘, 1 ≤ 𝑘 ≤ 𝑛, 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑥𝑗 = 0

In both cases, all variables 𝑥𝑗 = 0, 𝑗 = 1,2, … , 𝑘, 1 ≤ 𝑘 ≤ 𝑛, are redundant an can

be deleted. Consequently, the constraints shown above are also linearly dependent

and they can be deleted.

With this example, the presolved method that eliminates redundant columns is

demonstrated. The LP problem is the following:

 min 𝑧 = −6𝑥1 + 4𝑥2 − 2𝑥3 − 8𝑥4

 s.t 2𝑥1 − 4𝑥2 + 2𝑥3 + 2𝑥4 = 20

 − 6𝑥2 − 2𝑥3 + 2𝑥4 + 𝑥5 = 26

 2𝑥2 + 8𝑥3 + 𝑥6 = 0

 16𝑥2 − 12𝑥3 − 8𝑥4 = −84

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4, 5, 6)

In matrix notation:

𝐴 = [

2 −4 2 2 0 0
0
0

−6 −2
2 8

 2 1 0
0 0 1

0 16 −12 −8 0 0

] , 𝑐 =

[

−6
4

−2
−8
0
0]

, 𝑏 = [

20
26
0

−84

] , 𝐸𝑞𝑖𝑛 = [

0
0
0
0

]

Initially, we begin by searching for equality constraints with a zero in the right

hand side. We observe that, in the third constraint, the right hand is zero. Also, all

the elements in the third row are greater or equal to zero.

Variables 𝑥2, 𝑥3 and 𝑥6 are redundant and can be deleted:

𝐴 = [

2 2 0
0 2 1
0
0

0
−8

0
0

] , 𝑐 = [
−6
−8
0

] , 𝑏 = [

20
26
0

−84

] , 𝐸𝑞𝑖𝑛 = [

0
0
0
0

]

Also, the third constraint and can be eliminated too. The presolved LP problem is:

 min 𝑧 = −6𝑥1 − 8𝑥4

 s.t. 2𝑥1 + 2𝑥4 = 20

 + 2𝑥4 + 𝑥5 = 26

 + 2𝑥4 = −84

 𝑥𝑗 ≥ 0, (𝑗 = 1, 4, 5)

3.2.8. Eliminate implied bounds on rows.

A constraint that implies new bounds for the constraints can be formulated as:

𝑏𝑖 ≤ 𝐴𝑖.𝑥 ≤ 𝑏𝑖

and:

𝑥 ≤ 𝑥 ≤ 𝑥

where 𝑥 = 0 and 𝑥 = +∞. These new bounds can be computed by:

𝑏𝑖
′ = 𝑖𝑛𝑓𝑥≤𝑥≤𝑥𝐴𝑖.𝑥 = ∑ 𝐴𝑖𝑗𝑥𝑗

𝐴𝑖𝑗≥0

+ ∑ 𝐴𝑖𝑗𝑥𝑗

𝐴𝑖𝑗≤0

𝑏𝑖

′
= 𝑠𝑢𝑝𝑥≤𝑥≤𝑥𝐴𝑖.𝑥 = ∑ 𝐴𝑖𝑗𝑥𝑗

𝐴𝑖𝑗≥0

+ ∑ 𝐴𝑖𝑗𝑥𝑗

𝐴𝑖𝑗≤0

These equations calculate both the greatest from the inferior bounds and the

smallest from the superior bounds. If [𝑏𝑖
′, 𝑏𝑖

′
] ∩ [𝑏𝑖 , 𝑏𝑖] = ∅, then the LP problem

is infeasible. If [𝑏𝑖
′, 𝑏𝑖

′
]∁ [𝑏𝑖 , 𝑏𝑖], then the constraint i is redundant and can be

deleted. All the possible cases are distinguished in the following theorem.

For each constraint that implies new bounds, we distinguished the following cases:

1. Constraint type ≤,𝐴𝑖. ≤ 0 𝑎𝑛𝑑 𝑏𝑖 ≥ 0: Row i is redundant and can be deleted.

2. Constraint type ≤,𝐴𝑘𝑗 ≥ 0 𝑎𝑛𝑑 𝑏𝑖 ≤ 0: Row i is redundant and can be deleted.

With this example, the presolved method that eliminates redundant columns is

demonstrated. The LP problem is the following:

 min 𝑧 = 3𝑥1 − 4𝑥2 + 5𝑥3 − 2𝑥4

 s.t −2𝑥1 − 𝑥2 − 4𝑥3 − 2𝑥4 ≤ 4

 5𝑥1 + 3𝑥2 + 𝑥3 + 2𝑥4 ≤ 18

 5𝑥1 + 3𝑥2 + 𝑥4 ≥ −13

 4𝑥1 + 6𝑥2 + 2𝑥3 + 5𝑥4 ≥ −10

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4)

In matrix notation:

𝐴 = [

−2 −1 −4 −2
5 3 1 2
5
4

3
6

0
2

1
5

] , 𝑐 = [

3
−4
5

−2

] , 𝑏 = [

4
18

−13
−10

] , 𝐸𝑞𝑖𝑛 = [

−1
−1
1
1

]

Initially, we begin by searching for inequality constraints, in this case all of them

are. Looking at the first case of the theorem, the first row and the third row are

redundant and can be deleted. Also, looking at the second case of the theorem, the

fourth row is redundant and can be deleted:

𝐴 = [5 3 1 2], 𝑐 = [

3
−4
5

−2

] , 𝑏 = [18], 𝐸𝑞𝑖𝑛 = [−1]

Finally, the presolved problem is:

 min 𝑧 = 3𝑥1 − 4𝑥2 + 5𝑥3 − 2𝑥4

 s.t. 5𝑥1 + 3𝑥2 + 𝑥3 + 2𝑥4 ≤ 18

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4)

3.2.9. Eliminate redundant rows.

Two constraints i and k are linearly dependent if and only if 𝐴𝑖 = 𝜆𝐴𝑘 . The

identification of linearly dependent constraints can be done by calculating the rank

of the coefficient matrix A using the augmented matrix. [𝐴|𝑏] and performing

adequate row operations until the identity matrix is derived. The LP problem must

be in standard form. The redundant constraints that must be deleted are:

𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 = 0

Where 𝐴𝑖𝑗 = 0, 𝑖 = 1, 2, … ,𝑚 and 𝑗 = 1, 2, … , 𝑛.

If the constraint looks like the next one, the problem is infeasible.

𝐴𝑖1𝑥1 + 𝐴𝑖2𝑥2 + ⋯+ 𝐴𝑖𝑛𝑥𝑛 = 𝑏𝑖

Where 𝐴𝑖𝑗 = 0, 𝑏𝑖 ≠ 0, 𝑖 = 1, 2, … ,𝑚 and 𝑗 = 1, 2, … , 𝑛.

The next example portraits this method.

 min 𝑧 = 𝑥1 + 𝑥2 − 2𝑥3 − 3𝑥4

 s.t 𝑥1 + 2𝑥2 + 4𝑥3 + 5𝑥4 = 10

 3𝑥1 + 3𝑥2 + 8𝑥3 + 4𝑥4 = 2

 0.5𝑥1 + 𝑥2 + 2𝑥3 + 2.5𝑥4 = 5

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4)

In matrix notation:

𝐴 = [
1 2 4 5
3 5 8 4

0.5 1 2 2.5

] , 𝑐 = [

1
1

−2
−3

] , 𝑏 = [
10
2
5

] , 𝐸𝑞𝑖𝑛 = [
0
0
0
]

The augmented matrix [𝐴|𝑏]:

𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = [
1 2 4 5 ⋮ 10
3 5 8 4 ⋮ 2

0.5 1 2 2.5 ⋮ 5

]

Looking at the first and third row, they are linearly dependent, because the third is

the first one divided by two. Because of this we can deleted one of them, having

the equivalent LP problem after presolve:

 min 𝑧 = 𝑥1 + 𝑥2 − 2𝑥3 − 3𝑥4

 s.t 𝑥1 + 2𝑥2 + 4𝑥3 + 5𝑥4 = 10

 3𝑥1 + 3𝑥2 + 8𝑥3 + 4𝑥4 = 2

 𝑥𝑗 ≥ 0, (𝑗 = 1, 2, 3, 4)

4. Problems battery under study

The battery of problems that is going to be study throughout the project is chosen

from the model library of the software GAMS Studio. Thirty LP problems from

the entire library are selected, solved and simplified with the sparsification

method, to be later analysed. The battery covers a wide range of different topics.

4.1. Agricultural Economics

• AGRESTE: Agricultural farm level model of NE Brazil.

• CHINA: Organic fertilizer use in intensive farming.

• DEMO1: Simple farm level model.

• PAKLIVE: Pakistan Punjab livestock model.

4.2. Management Science and OR

• AIRCRAFT: Aircraft allocation under uncertain demand.

• AMPL: AMPL sample problem.

• DECOMP: Decomposition principle.

• GUSSEX1: simple GUSS example.

• GUSSGRID: simple GUSS grid example

• IBM1: Aluminium alloy smelter sample problem.

• JOBT: On-the-job training.

• MINE: Opencast Mining.

• PRODMIX: A production mix problem.

• ROBERT: Elementary production and inventory model.

• SENSTRAN: Sensitivity analysis using loops.

• SPARTA: Military manpower planning from wanger.

• TRNSPORT: A transportation problem.

• UIMP: Production scheduling problem.

• WHOUSE: Simple warehouse problem.

4.3. Stochastic Programming

• AIRSP: Aircraft allocation.

• CLEARLAK: Scenario reduction: Clearklake exercise.

• MARKOV: Strategic petroleum reserve.

• SRKANDW: Stochastic programming scenario reduction.

• SRPCHASE: Scenario tree construction example.

• KAND: Stochastic problem.

• LANDS: Optimal investment.

4.4. Macro and Micro economics

• DIET: Stigler’s nutrition model.

• MEXSS: Mexico Steel – Small Static.

• ORANI: A multisector price endogenous model of Australia.

4.5. Mathematics

• DEA: Data envelopment analysis.

• IMSL: Piecewise Linear approximation.

• QP5: Standard QP model – linear approximation.

5. Sensibility analysis

The sensibility analysis aims to portrait and evaluate graphically the evolution of

the battery of problems, for different levels of simplification (epsilon). The

analysis will focus on how the objective function reacts to the operation, while the

unfeasibility of the problem is controlled too. The entire analysis is program with

Python in Jupyter Notebook.

60 linear programming problems are solved and simplified with the same

algorithm, minimizing the objective function. The simplification is done for thirty

values of epsilon and the results obtained are organised on vectors of length thirty

(one for each epsilon). These results are saved into a json file, with the 60

probemes, and 6 keys for each one. The keys considered are:

- Epsilon: signification level that is used to modify the matrix A, if the

element is less than epsilon (matrix A normalized) it takes 0 value.

- Objective_function: With the new matrix A (modified using epsilon), a new

model is built. This is the value for the new objective function for each

epsilon.

- Decision_variables: It contains the value of each decision variable for each

epsilon in the new model built with the modified matrix A.

- Changed_indices: Elements that have been modified from the matrix A, for

each value of epsilon.

- Constraint_violation: Taking the solution of the new model (modified

matrix A) and putting it in the original model, the violation of each

constraint is evaluated, for each epsilon value.

- of_original_decision: Taking the solution of the new model (modified

matrix A) and putting it in the original model, the objective function is

evaluated, for each epsilon value.

- time_required: It shows the time required to solved the problem for each

epsilon value.

The json file is read directly in Jupyter notebook and all the data is used here. For

the analysis three main indexes for each epsilon and for each problem are

calculated: a normalized objective function, an unfeasibility index and a problem

complexity index.

Firstly, the study is done for a small sample of problems, and afterwards a function

is made to iterate the complete battery.

5.1. Indexes

The first index calculated is the normalized objective function. In order to reach it,

the objective function value for each epsilon is divided by the first one. After

iterating all the epsilons, there is a vector with thirty elements, one for each epsilon,

with the normalised objective function. The graph of this vector will show the

degradation of the objective function while the simplification increases. (Codes of

the operations needed to obtain the indexes in the annex). The equation to obtain

this index is:

𝑂𝑏 𝑓𝑢𝑛𝑐 𝑝𝑢 =
𝑂𝑏 𝑓𝑢𝑛𝑐

𝑂𝑏 𝑓𝑢𝑛𝑐[0]

Being Ob_func_pu the list with the normalized objective function values,

Ob_func the list with the objective function values and Ob_func[0] the optimal

solution.

Example:

1. Index that measures the objective function degradation.

Secondly, the unfeasibility index is calculated. Before making any operation, it is

applied a filter, to only consider de violations bigger than 10−6, to avoid

operational mistakes. Because not all the constraints have the same weight in the

objective function, it is necessary to give to each constraint violation its weight.

This is done by multiplying them by the dual value of each restriction. Afterwards,

all the absolute values of the weighted constraints violations are summed, getting

a value for each epsilon. These values depend on the data of the problem, so they

need to be normalized, therefore the actual index is divided by the optimal solution

for each problem. Iterating all the epsilons, the solution is a vector with thirty

elements, one for one epsilon, measuring how infeasible the problem is. The graph

of this vector shows the evolution of the unfeasibility of the problem while the

simplification increases. The equations to obtain this index are:

𝑝𝑟𝑜𝑑𝑢𝑐𝑡_𝑐𝑣_𝑣𝑑 = 𝑐𝑜𝑛𝑠𝑡_𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 × 𝑣𝑎𝑟_𝑑𝑢𝑎𝑙

Being const_violations the list of constraint violations for each value of epsilon,

and var_dual the list of dual decision variables for each value of epsilon.

product_cv_vd is a list of lists, so in order to have one value for each epsilon, the

sublists for every epsilons are sum together, with coding, and is saved into a new

variable called sum. Once the variable sum has a value for each epsilon the next

equation is used:

𝑢𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =
𝑠𝑢𝑚

𝑂𝑏 𝑓𝑢𝑛𝑐[0]

Being Ob_func[0] the optimal solution.

Example:

2. Index that measures the problem infeasibility.

Lastly, to see the evolution of the complexity while the simplification goes on, the

complexity problem index is calculated. First of all, the total number of elements

in the matrix A is obtained by multiplying the number of variables by the number

of constraints. This value will be used to normalize the index, being the index

always positive and between zero and one. In the key changed_indices there is the

number of elements of the matrix that are zero for each epsilon, so after dividing

this number by the total number of elements, by getting the opposite (one minus

the value before) the complexity index is obtained. The equations to obtain the

index are:

𝑚𝑎𝑡 𝐴 𝑒𝑙𝑒𝑚 = 𝑑𝑒𝑐 𝑣𝑎𝑟 ∗ 𝑑𝑢𝑎𝑙 𝑑𝑒𝑐 𝑣𝑎𝑟

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 = 1 −
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 0

𝑚𝑎𝑡 𝐴 𝑒𝑙𝑒𝑚

Being elements 0 the list with matrix A elements that are 0 for each epsilon

Example:

3. Index that measures the problem complexity.

5.2. Procedure of the analysis

Once that all the operations needed to obtain the indexes are done, the next part is

to integrate them into a big function, to be able to iterate the entire battery of

problems with a loop. The analysis is based on three graphs for each problem

showing the three indexes evolution throughout the simplification operation. By

iterating all the problem all the graphs are obtain and the analysis can begin.

The analysis consists of looking for the different answers that each problem gives

to the simplification, in order to find similarities or a pattern in some of the graphs.

Before the analysis begin, it is expected that the objective function takes a close

value to the optimum, while the complexity decreases, and the infeasibility

worsens in a barely noticeable manner. Taking a close look at the graphs, we can

observe four main behaviours in response to the simplification. For each one three

graphs with the indexes are obtained. Additionally, in this graphs statistics of

media, median and quartiles (25 and 75) are included.

The first behaviour appreciated is the problems that the objective function

improves in a great percentage, but they become notably infeasible in a very swift

manner. For these type of problems, the simplification does not have sense, and

the optimal solution that was reached in the beginning is the best one. The graph

only shows 3 models as representatives of this behaviour for clarity reasons, but

more than 15 had this behaviour.

Example:

4. Objective function evolution from type 1 problems.

5. Infeasibility evolution from type 1 problems.

6. Complexity evolution from type 1 problems.

The next behaviour is quite similar to the one before. This time the objective

function worsens, but the problems still become notably infeasible very quickly.

Again, the simplification for these models does not have any sense. As in the other

two, the graph does not show all the models that follow this behaviour, but just

some of them, so the graph is clearer.

Example:

7. Objective functions from type 2 problems.

8. Infeasibility from type 2 problems.

9. Complexity from type 2 problems.

The third behaviour that appeared is the problems which does not see themselves

affected by the simplification until big epsilons. When this happens, the objective

function improves at the same rate that the problem becomes infeasible. It is not

until this time that the complexity of the problem decreases. So again, the

simplification of this problems is not possible. Again, here for clarity reasons not

all the models that follows this behaviour are included in the graph.

Example:

10. Objective functions from type 3 problems.

11. Infeasibility from type 3 problems.

12. Complexity from type 3 problems.

Finally, the fourth behaviour is the one that we expected before doing the analysis.

For these problems, the complexity of the problem starts decreasing from the

beginning, while the unfeasibility and the objective function are minimally

affected. The simplification here has an important role, because the problem can

be solved easier, while almost keeping the optimal solution, and without turning it

into an infeasible model. Even though only 1 model follows this behaviour, it is

the most important one, because it shows that it is possible to simplify problems

and still get almost the optimal solution, without being infeasible. Obviously for

this one, all the statistics match with the values of the only model.

13. Objective functions from type 4 problems.

14. Infeasibility from type 4 problems.

15. Complexity from type 4 problems.

5.3. Conclusions of the analysis

After visualizing and analysing the graphs the next conclusions are obtained:

Firstly, the sensibility analysis show that the problems react mainly in four

different ways, and only in one of them makes sense doing the simplification. With

this method, any problem can be analysed graphically in a way that you can see if

the simplification process will help and will make easier solving the problem.

Another conclusion is that the time that takes the algorithm to solve the

simplification for each value of epsilon is not a valuable data for this battery of

problems, because the difference between them is insignificant. It could only be

interesting for making comparisons between different problems. Even though the

battery is composed of complex problems, real life problems sometimes will be

more complex and bigger, so for them the time that takes to solve for the different

values of epsilon might be useful.

In addition, there are many possible simplification operations, but this analysis

only considers the sparsification method. Taking this into account, the majority of

the problems become infeasible rapidly when simplifying, what means that this

simplification is of no use for those problems.

In the end, the objective of the analysis was to portrait graphically how the

simplifications affect the battery of problems, and with the coding made this

objective is fulfilled.

6. Bibliography

Bridgelall, R. (2023). Tutorial and Pratice in Linear Programming.

Dantzig, G. B. (n.d.). Linear Programming.

Karloff, H. (n.d.). Linear Programming.

Ploskas, N., & Samaras, N. (n.d.). Springer Optimization and its applications.

7. Annex

7.1. Coding3

Uploading data from json:

Defining the function to upload data from JSON

def cargar_datos_desde_json(ruta_archivo):

 with open(ruta_archivo, 'r') as archivo:

 datos = json.load(archivo)

 return datos

Reading and showing data:

Reading and showing the result of an specific model

model_name = 'ORANI' # Name of the model

tipo = 'primal' # primal or dual

key = 'epsilon' # key considered

MODELO_pr_eps = datos[model_name][tipo][key]

print(MODELO_pr_eps)

Objective function normalized:

Model_name = 'MODELO'

tipo = 'primal'

key = 'of_original_decision'

MODELO_pr_ofod = datos[model_name][tipo][key]

divider = MODELO_pr_ofod[0]

Using a loop to divide each value by the divider

MODELO_pr_ofod_pu = []

for elemento in MODELO_pr_ofod:

 MODELO_pr_ofod_pu.append(elemento / divider)

3 Open AI and Microsoft Copilot were used to optimize the code and for error solving during coding.

Infeasibility index:

Reading and showing the result of an specific model

model_name = 'IBM1' # Name of the model

tipo = 'primal' # primal or dual

key = 'epsilon' # key considered

modelo_pr_eps = datos_buenos[model_name][tipo][key]

model_name = 'IBM1' # Name of the model

tipo = 'primal' # primal or dual

key = 'constraint_violation' # key considered

modelo_pr_cv = datos_buenos[model_name][tipo][key]

model_name = 'IBM1' # Name of the model

tipo = 'dual' # primal or dual

key = 'decision_variables' # key considered

modelo_du_dv = datos_buenos[model_name][tipo][key]

model_name = 'IBM1' # Name of the model

tipo = 'primal' # primal or dual

key = 'of_original_decision' # key considered

modelo_pr_ofod = datos_buenos[model_name][tipo][key]

##INFEASIBILITY INDEX

cifra_referencia = 1e-6

modelo_pr_cv_sin_nan = quitar_sublistas_nan(modelo_pr_cv)

modelo_pr_cv_filtrado =

establecer_a_cero_valores_menores(modelo_pr_cv_sin_nan,

cifra_referencia)

producto_cv_vd = multiplicar_matrices(modelo_pr_cv_filtrado,

modelo_du_dv)

suma_producto = obtener_sumas_de_sublistas(producto_cv_vd)

unfeasiblity_index = [x / abs(modelo_pr_ofod[0]) for x in

suma_producto]

Complexity index:

PROBLEM COMPLEXITY

Cálculo de la media de la constraint violations

modelo_pr_cv_medias = calcular_medias(modelo_pr_cv)

Cálculo de los índices cambiados a 0 de la matriz A

acumulado_modelo_ci = calcular_longitudes(modelo_pr_ci)

elementos_A_totales = len(modelo_pr_dv) * len(modelo_du_dv)

Ahora calculamos el número de no 0s en la matriz A, para cada valor

de epsilon. Esto lo podemos calcular mediante el

número de índices que cambian en cada nivel de epsilon

elementos_A_que_se_hacen_0_pu = [x / elementos_A_totales for x in

acumulado_modelo_ci]

complexity_problem = [1 - x for x in elementos_A_que_se_hacen_0_pu]

Generalized function:

def analisis_de_sensibilidad(modelo, datos):

 if modelo in datos:

 modelo_datos = datos[modelo]

 modelo_primal = modelo_datos.get('primal', {})

 modelo_dual = modelo_datos.get('dual', {})

 modelo_pr_eps = modelo_primal.get('epsilon', [])

 modelo_pr_of = modelo_primal.get('objective_function', [])

 modelo_pr_dv = modelo_primal.get('decision_variables', [])

 modelo_pr_ci = modelo_primal.get('changed_indices', [])

 modelo_pr_cv = modelo_primal.get('constraint_violation', [])

 modelo_pr_ofod = modelo_primal.get('of_original_decision', [])

 modelo_pr_time = modelo_primal.get('execution_time', [])

 modelo_du_dv = modelo_dual.get('decision_variables', [])

 # Cálculo de degradación de la función objetivo original

 divisor = modelo_pr_of[0] if modelo_pr_of else None

 modelo_pr_of_pu = [elemento / divisor for elemento in

modelo_pr_of] if divisor else None

 # Cálculo de degradación de la función objetivo original

 divisor1 = modelo_pr_ofod[0] if modelo_pr_ofod else None

 modelo_pr_ofod_pu = [elemento / divisor1 for elemento in

modelo_pr_ofod] if divisor1 else None

 ## Cálculo de INFEASIBILITY INDEX

 cifra_referencia = 1e-6

 modelo_pr_cv_sin_nan = quitar_sublistas_nan(modelo_pr_cv)

 modelo_pr_cv_filtrado =

establecer_a_cero_valores_menores(modelo_pr_cv_sin_nan,cifra_referenci

a)

 producto_cv_vd =

multiplicar_matrices(modelo_pr_cv_filtrado,modelo_du_dv)

 suma_producto = obtener_sumas_de_sublistas(producto_cv_vd)

 infeasiblity_index = [x / abs(modelo_pr_ofod[0]) for x in

suma_producto]

 ## Cálculo de PROBLEM COMPLEXITY

 ## Cálculo de la media de la constraint violations

 modelo_pr_cv_medias = calcular_medias(modelo_pr_cv)

 ## Cálculo de los índices cambiados a 0 de la matriz A

 acumulado_modelo_ci = calcular_longitudes(modelo_pr_ci)

 #for i, num in enumerate(acumulado_modelo_ci[1:], start=1):

 # if num == 0:

 # acumulado_modelo_ci[i] = float('nan')

 convert_late_zeros_to_nan(acumulado_modelo_ci)

 elementos_A_totales = len(modelo_pr_dv)*len(modelo_du_dv)

 ## Ahora calculamos el número de no 0s en la matriz A, para

cada valor de epsilon. Esto lo podemos calcular mediante el

 ## número de indices que cambian en cada nivel de epsilon

 elementos_A_que_se_hacen_0_pu = [x / elementos_A_totales for x

in acumulado_modelo_ci]

 complexity_problem = [1 - x for x in

elementos_A_que_se_hacen_0_pu]

 suma_objfunc_unfeasiblity = [a + b for a, b in

zip(modelo_pr_ofod_pu, infeasiblity_index)]

 ## PROBLEM COMPLEXITY, con el tiempo de ejecución

 #modelo_pr_time1 = modelo_pr_time[1:];

 # Convertir los tiempos a números flotantes

 #modelo_pr_time1 = [float(tiempo.split(':')[2]) for tiempo in

modelo_pr_time1]

 #divisor = modelo_pr_time1[0] if modelo_pr_time1 else None

 #modelo_pr_time_pu = [elemento / divisor for elemento in

modelo_pr_time1] if divisor else None

 #complexity_problem = modelo_pr_time_pu;

 ## GRÁFICAS

 #titulo1=(modelo + " Objective function degradation vs

complexity")

 #titulo2=(modelo + " Infeasibility ")

 #titulo3=(modelo + " Sum of infeasibility and objective

function")

 titulo1=(modelo + " Objective function degradation")

 titulo2=(modelo + " Infeasibility evolution")

 titulo3=(modelo + " Complexity evolution")

 objective_function = "Objective function"

 complexity = "Complexity"

 infeasibility = "Infeasibility"

 #suma = "Objective function + Infeasibility"

#graficar2(modelo_pr_eps,modelo_pr_ofod_pu,complexity_problem,titulo1,

objective_function,complexity)

 #graficar2(modelo_pr_eps,infeasiblity_index,

complexity_problem,titulo2,infeasibility,complexity)

graficar1(modelo_pr_eps,modelo_pr_ofod_pu,titulo1,objective_function)

graficar1(modelo_pr_eps,infeasiblity_index,titulo2,infeasibility)

 graficar1(modelo_pr_eps,complexity_problem,titulo3,complexity)

 print(elementos_A_que_se_hacen_0_pu)

 return

 else:

 print(f"El modelo '{modelo}' no se encontró en los datos

proporcionados.")

 return None

Loop for iterating the battery:

for elemento in modelos:

 analisis_de_sensibilidad(elemento, datos_buenos)

Function used to graph the different type of problems together:

def calcular_media(lista):

 return np.nanmean(lista) if lista else None

def calcular_mediana(lista):

 return np.nanmedian(lista) if lista else None

def calcular_cuartiles(lista):

 return np.nanpercentile(lista, [25, 75]) if lista else (None,

None)

def ajustar_longitudes(eps, datos):

 min_longitud = min(len(eps), len(datos))

 return eps[:min_longitud], datos[:min_longitud]

def rellenar_con_nan(datos, longitud_maxima):

 return datos + [np.nan] * (longitud_maxima - len(datos))

def analisis_de_sensibilidad_global(modelos, datos):

 # Definir variables para almacenar los datos

 all_epsilons = {}

 all_objective_function_degradation = {}

 all_infeasibility = {}

 all_complexity = {}

 # Inicializar listas para acumular datos

 objective_function_degradation_list = []

 infeasibility_list = []

 complexity_list = []

 # Determinar la longitud máxima

 max_length = 0

 for modelo in modelos:

 if modelo in datos:

 modelo_datos = datos[modelo]

 modelo_primal = modelo_datos.get('primal', {})

 modelo_pr_eps = modelo_primal.get('epsilon', [])

 modelo_pr_of = modelo_primal.get('objective_function', [])

 modelo_pr_cv = modelo_primal.get('constraint_violation',

[])

 modelo_pr_ci = modelo_primal.get('changed_indices', [])

 modelo_pr_ofod = modelo_primal.get('of_original_decision',

[])

 modelo_du_dv = modelo_datos.get('dual',

{}).get('decision_variables', [])

 # Cálculo de degradación de la función objetivo original

 divisor = modelo_pr_of[0] if modelo_pr_of else None

 modelo_pr_ofod_pu = [elemento / divisor for elemento in

modelo_pr_of] if divisor else []

 # Cálculo de INFEASIBILITY INDEX

 cifra_referencia = 1e-6

 modelo_pr_cv_sin_nan = quitar_sublistas_nan(modelo_pr_cv)

 modelo_pr_cv_filtrado =

establecer_a_cero_valores_menores(modelo_pr_cv_sin_nan,

cifra_referencia)

 if modelo_du_dv and modelo_pr_cv_filtrado:

 producto_cv_vd =

multiplicar_matrices(modelo_pr_cv_filtrado, modelo_du_dv)

 suma_producto =

obtener_sumas_de_sublistas(producto_cv_vd)

 infeasiblity_index = [x / abs(modelo_pr_ofod[0]) for x

in suma_producto] if modelo_pr_ofod else []

 else:

 infeasiblity_index = []

 # Cálculo de PROBLEM COMPLEXITY

 acumulado_modelo_ci = calcular_longitudes(modelo_pr_ci)

 convert_late_zeros_to_nan(acumulado_modelo_ci)

 elementos_A_totales = len(modelo_pr_dv) *

len(modelo_du_dv)

 elementos_A_que_se_hacen_0_pu = [x / elementos_A_totales

for x in acumulado_modelo_ci] if elementos_A_totales else []

 complexity_problem = [1 - x for x in

elementos_A_que_se_hacen_0_pu]

 # Actualizar la longitud máxima

 max_length = max(max_length, len(modelo_pr_eps),

len(modelo_pr_ofod_pu), len(infeasiblity_index),

len(complexity_problem))

 # Acumular datos para análisis global

 all_epsilons[modelo] = modelo_pr_eps

 all_objective_function_degradation[modelo] =

modelo_pr_ofod_pu

 all_infeasibility[modelo] = infeasiblity_index

 all_complexity[modelo] = complexity_problem

 # Asegurarse de que todas las listas tengan la misma

longitud

objective_function_degradation_list.append(rellenar_con_nan(modelo_pr_

ofod_pu, max_length))

infeasibility_list.append(rellenar_con_nan(infeasiblity_index,

max_length))

complexity_list.append(rellenar_con_nan(complexity_problem,

max_length))

 else:

 print(f"El modelo '{modelo}' no se encontró en los datos

proporcionados.")

 # Función para calcular estadísticas por índice

 def calcular_estadisticas_por_indice(datos_por_indice):

 num_epsilons = len(datos_por_indice[0]) if datos_por_indice

else 0

 media = [calcular_media([datos[i] for datos in

datos_por_indice]) for i in range(num_epsilons)]

 mediana = [calcular_mediana([datos[i] for datos in

datos_por_indice]) for i in range(num_epsilons)]

 cuartiles = [calcular_cuartiles([datos[i] for datos in

datos_por_indice]) for i in range(num_epsilons)]

 return media, mediana, cuartiles

 # Calcular estadísticas para cada métrica

 media_of, mediana_of, cuartiles_of =

calcular_estadisticas_por_indice(objective_function_degradation_list)

 media_infeasibility, mediana_infeasibility,

cuartiles_infeasibility =

calcular_estadisticas_por_indice(infeasibility_list)

 media_complexity, mediana_complexity, cuartiles_complexity =

calcular_estadisticas_por_indice(complexity_list)

 # Función para graficar los datos

 def graficar_datos(titulo, ylabel, datos_dict,

estadisticas_dict=None):

 plt.figure(figsize=(10, 6))

 colores = plt.cm.get_cmap('tab10', len(datos_dict))

 for i, modelo in enumerate(modelos):

 eps = all_epsilons.get(modelo, [])

 datos = datos_dict.get(modelo, [])

 eps_ajustado, datos_ajustado = ajustar_longitudes(eps,

datos)

 plt.plot(eps_ajustado, datos_ajustado, label=f'{modelo}')

 if estadisticas_dict:

 num_epsilons = len(estadisticas_dict.get('media', []))

 eps_comunes = np.linspace(min(eps_ajustado),

max(eps_ajustado), num=num_epsilons)

 media = estadisticas_dict.get('media', [])

 mediana = estadisticas_dict.get('mediana', [])

 cuartiles = estadisticas_dict.get('cuartiles', [])

 cuartiles_25 = [q[0] for q in cuartiles]

 cuartiles_75 = [q[1] for q in cuartiles]

 print(f"Longitudes para graficar estadísticas:

eps_ajustado = {len(eps_ajustado)}, media = {len(media)}, mediana =

{len(mediana)}, cuartiles_25 = {len(cuartiles_25)}, cuartiles_75 =

{len(cuartiles_75)}")

 plt.plot(eps_ajustado, media[:len(eps_ajustado)], '--',

label='Media', color='black')

 plt.plot(eps_ajustado, mediana[:len(eps_ajustado)], ':',

label='Median', color='blue')

 plt.plot(eps_ajustado, cuartiles_25[:len(eps_ajustado)],

'-.', label='Quartile 25', color='green')

 plt.plot(eps_ajustado, cuartiles_75[:len(eps_ajustado)],

'-.', label='Quartile 75', color='red')

 plt.title(titulo, fontname='Times New Roman', fontsize=20)

 plt.xlabel("Epsilon", fontname='Times New Roman', fontsize=14)

 plt.ylabel(ylabel)

 plt.legend(fontsize=12)

 plt.show()

 # Graficar datos acumulados

 graficar_datos("Objective Function Degradation for type 4 models",

"", all_objective_function_degradation,

 {'media': media_of, 'mediana': mediana_of,

'cuartiles': cuartiles_of})

 graficar_datos("Infeasibility Evolution for type 4 models", "",

all_infeasibility,

 {'media': media_infeasibility, 'mediana':

mediana_infeasibility, 'cuartiles': cuartiles_infeasibility})

 graficar_datos("Complexity Evolution for type 4 models", "",

all_complexity,

 {'media': media_complexity, 'mediana':

mediana_complexity, 'cuartiles': cuartiles_complexity})

 return

Models distributed in different types:

modelos_tipo1 = ['AIRSP', 'AMPL','ASYNCLOOP','PAPERCO','CHINA',

'CLEARLAK', 'DEMO1', 'JOBT', 'LANDS', 'MARKOV', 'MEXSS', 'MINE',

'PAKLIVE', 'PRODMIX', 'ROBERT', 'SPARTA', 'SRPCHASE']

#graphed:

modelos_tipo1 = ['AIRSP', 'PRODMIX', 'SPARTA']

modelos_tipo2 = ['AIRCRAFT', 'BLEND','DIET', 'KAND','SRKANDW','UIMP']

#graphed:

modelos_tipo2 = ['AIRCRAFT','SRKANDW','UIMP']

modelos_tipo3 = ['DEA','GUSSEX1','GUSSGRID','SENSTRAN','TRNSPORT']

#grahped:

modelos_tipo3 = ['GUSSEX1','GUSSGRID','SENSTRAN','TRNSPORT']

modelos_tipo4 = ['IBM1']

Auxiliary functions used:

#Function to calculate the media of a list.

def calcular_medias(lista):

 medias = []

 for sublista in lista:

 if isinstance(sublista, list):

 if len(sublista) > 1:

 media = np.nanmean(sublista)

 medias.append(media)

 elif len(sublista) == 1:

 medias.append(sublista[0])

 else:

 medias.append(None)

 elif isinstance(sublista, (float, int)):

 medias.append(sublista)

 return medias

def calcular_longitudes(vector_con_vectores):

 # Creamos una lista para almacenar las longitudes de los vectores

 longitudes = []

 # Iteramos sobre cada vector en el vector_con_vectores

 for vector in vector_con_vectores:

 # Si el vector es None, consideramos su longitud como 0

 if vector is None:

 longitudes.append(0)

 # Si el vector contiene NaN, lo excluimos del cálculo de

longitud

 elif isinstance(vector, (list, np.ndarray)) and

np.isnan(vector).any():

 continue

 else:

 # Verificamos si el vector es iterable antes de intentar

calcular su longitud

 try:

 longitud = len(vector)

 except TypeError:

 # Si no es iterable, agregamos 0 a las longitudes

 longitud = 0

 longitudes.append(longitud)

 return longitudes

def establecer_a_cero_valores_menores(lista_de_listas,

cifra_referencia):

 for i in range(len(lista_de_listas)):

 for j in range(len(lista_de_listas[i])):

 if abs(lista_de_listas[i][j]) < cifra_referencia:

 lista_de_listas[i][j] = 0

 return lista_de_listas

PARA ALGUNOS MODELOS COMO AIRCRAFT, APARECEN SUBLISTAN NaN y hay que

quitarlas

def quitar_sublistas_nan(lista_de_listas):

 lista_sin_nan = [sublista for sublista in lista_de_listas if not

np.any(np.isnan(sublista))]

 return lista_sin_nan

def multiplicar_matrices(A, B):

 # Obtener las dimensiones de las matrices

 filas_A = len(A)

 columnas_A = len(A[0])

 filas_B = len(B)

 columnas_B = len(B[0])

 # Verificar si las matrices son multiplicables

 if columnas_A != columnas_B:

 raise ValueError("Las matrices no son multiplicables")

 # Inicializar la matriz resultante con ceros

 C = [[0] * columnas_B for _ in range(filas_A)]

 # Multiplicar elemento por elemento y sumar los resultados

 for i in range(filas_A):

 for j in range(columnas_B):

 for k in range(columnas_A):

 C[i][j] = A[i][j] * B[i][j]

 return C

def obtener_sumas_de_sublistas(lista_de_listas):

 return [sum(map(float, sublista)) for sublista in lista_de_listas]

def graficar1(modelo_pr_epsilon, vector1, titulo, nombre1):

 # Determinar la longitud máxima de los vectores

 max_length = max(len(modelo_pr_epsilon), len(vector1))

 # Generar el eje_x con la misma longitud que el vector más largo

 eje_x = modelo_pr_epsilon[:max_length]

 # Graficar los vectores

 plt.figure(figsize=(8, 6))

 plt.plot(eje_x[:len(vector1)], vector1, label=nombre1)

 # Configurar etiquetas y título con tamaños de letra

 plt.xlabel('Epsilon', fontsize=15,fontname = 'Times New Roman')

 plt.ylabel('', fontsize=12)

 plt.title(titulo, fontsize=16, fontname = 'Times New Roman')

 # Configurar leyenda con tamaño de letra

 plt.legend(fontsize=12)

 # Configurar tamaño de letra de los ticks

 plt.tick_params(axis='both', which='major', labelsize=12)

 # Configurar otros parámetros del gráfico

 plt.grid(False)

 plt.xlim(eje_x[0], eje_x[-1]) # Ajustar límites del eje x

 # Mostrar el gráfico

 plt.show()

