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Abstract: We prove the equivalence in the covariant phase space of the metric and connection
formulations for Palatini gravity, with nonmetricity and torsion, on a spacetime manifold with
boundary. To this end, we will rely on the cohomological approach provided by the relative
bicomplex framework. Finally, we discuss some of the physical implications derived from this
equivalence in the context of singularity identification through curvature invariants.
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1 INTRODUCTION
The study of general relativity on manifolds with boundary is of great importance as these can be
used to account for the asymptotics of the gravitational field and the presence of horizons [1–3].
The original formulation of general relativity relied on a Lorentzian metric as the fundamental
field. However, it is also possible to use tetrads for the same purpose. This is important from
a physical point of view for several reasons. First, the use of tetrads provides a natural way
to incorporate fermion fields into the theory. Second, the tetrad formalism leads naturally to
the Ashtekar formulation, which is one of the main avenues for the quantization of gravity
[4, 5]. Finally, local Lorentz gauge invariance plays a crucial role in the tetrad formalism, which
may introduce significant differences in the treatment of the theory compared with the metric
formulation. Within both frameworks, there are several possible choices for the action that can
be classified according to their independent basic field variables. Palatini theories are those in
which the actions are written either in terms of a metric and a connection (metric formalism)
or a frame and a spin connection (tetrad formalism) [6–9].

The present paper attempts to unify and expand certain aspects of previous works [10–20],
focusing on the comparison of both formulations and the treatment of boundaries. In this
regard, we would like to highlight the pioneering work by Obukhov [21], where he introduced
the appropriate surface terms for Palatini gravity. Here we generalize those results and improve
on the variational treatment of the problem by relying on the recently proposed CPS algorithm
[22], which provides a clean, consistent, and ambiguity-free procedure to obtain the solution
spaces, the presymplectic forms canonically associated with the actions, and some relevant
charges.

The equivalence of the metric-Palatini and tetrad-Palatini formalisms will be proven in two
steps. First, we will obtain a precise description of the solution spaces for both theories which
will allow us to map them appropriately. Second, we will show that the presymplectic forms
given by the CPS algorithm are equivalent in both cases.

In the following we consider a 4-dimensional spacetime manifold M diffeomorphic to Σ × R,
where Σ is a 3-dimensional manifold with boundary ∂Σ (possibly empty). We will refer to
∂LM ∼= ∂Σ × R as the lateral boundary of M and restrict ourselves to the open set of metrics
making ∂LM time-like. A few words on notation: Greek letters will denote abstract indices for
tensorial objects in M and barred Greek indices will denote tensors on ∂LM (quite often the
object itself will also carry an overbar). The inclusion map will be denoted as  : ∂LM ↪→ M

and its tangent map as αα.

2 METRIC PALATINI
Given a connection ∇̃, we define its torsion, Riemann, and Ricci tensors as

T̃orαµν(dφ)α = −[∇̃µ, ∇̃ν ]φ ,
R̃iemα

βµνZ
β = ([∇̃µ, ∇̃ν ] + T̃orβµν∇̃β)Zα ,

R̃icβν := R̃iemµ
βµν .

If we endow M with a connection ∇̃ and a metric g, we have the nonmetricity tensor, the
(g,∇̃)-scalar-curvature, the (g,∇̃)-extrinsic-curvature of ∂LM , and its trace

M̃αβγ := ∇̃αgβγ , R̃ := gαβR̃icαβ ,

K̃αβ := 1
2
α
α
β

β

(
∇̃ανβ + gαγ∇̃βνγ

)
, K̃ := gαβK̃αβ ,
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where g := ∗g is the induced metric, να the outward unit vector field, and νβ = gβγν
γ . Notice

that R̃ and K̃αβ are (non-standard) generalizations of the g-scalar
◦
R and g-extrinsic curvature

◦
K defined by the g-Levi-Civita connection

◦
∇. Moreover, in general, K̃αβ is not symmetric if

the nonmetricity is different from zero.

Given two connections ∇ and ∇̃, their difference is a (2, 1)-tensor Q ≡ ∇̃−∇. For a (1, 1)-tensor
Sβγ we have

(∇̃α −∇α)Sβγ = QβαµS
µ
γ −QµαγSβµ

and analogously for higher order objects. Observe that if we choose a fiducial connection, usually
the g-Levi-Civita one, there is a bijection between connections ∇̃ and (2, 1)-tensors Q. Working
with tensors is usually easier, as they form a vector space while connections form an affine space.
Thus, in the following, we will use the variables (g,Q) instead of the equivalent ones (g,∇̃).

We will now use the CPS algorithm [22], which essentially consists in introducing a pair of
bulk and boundary Lagrangians, compute the variations, extract the equations of motion and
symplectic potentials, and get the presymplectic form on the space of solutions. The power
of this method lies in its cohomological nature which renders it ambiguity-free: we can pick
any representative Lagrangians and symplectic potentials to describe the solution spaces and
compute the presymplectic form.

2.1 The action
We consider actions of the form

S =
∫
M
L−

∫
∂M

` ,

for some bulk Lagrangian L and some boundary Lagrangian `. The metric-GR action and its
generalization, known as metric-Palatini, are respectively given by the Lagrangian pairs

L
(m)
EH (g) :=

( ◦
R− 2Λ

)
volg , `

(m)
GHY(g) := −2

◦
K volg ,

L
(m)
PT (g,Q) :=

(
R̃− 2Λ

)
volg , `

(m)
PT (g,Q) := −2K̃ volg .

It is straightforward to rewrite the Palatini Lagrangians as those of standard GR plus a coupling
term

L
(m)
PT (g,Q) = L

(m)
EH (g) + L

(m)
CP (g,Q) ,

`
(m)
PT (g,Q) = `

(m)
GHY(g) + `

(m)
CP (g,Q) ,

where

L
(m)
CP (g,Q) :=

(
CλA

λ −QαβλQλαβ
)
volg + d

(
ι ~A− ~Cvolg

)
,

`
(m)
CP (g,Q) := ∗

(
ι ~A− ~Cvolg

)
,

Aα := gβγQαβγ ,

Bβ := Qµβµ ,

Cγ := Qµµγ .

As mentioned before, the results given by the CPS algorithm do not depend on the choice of
Lagrangians as long as they define the same action (the pairs are equal up to a relative exact
form, see [22] for more details). In the present case it is easy to see that(

L
(m)
PT , `

(m)
PT
)
=
(
L

(m)
EH , `

(m)
GHY

)
+ (L̂(m)

CP , 0)+ d(ι ~A− ~Cvolg, 0) ,

L̂
(m)
CP := L

(m)
CP − d(ι ~A− ~Cvolg) .

Considering (L̂(m)
CP , 0) actually makes the computations a little shorter, but we will stick to

(L(m)
CP , `

(m)
CP ) as this will facilitate the comparison of our results with the existing literature.
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2.2 Variations
The variations of the L(m)

EH and `(m)
GHY terms are standard and they may be found, for instance,

in [23]. The remaining variations are those of the coupling Lagrangians, which can be written
as

dL(m)
CP = (ECP

(m))
αβdgαβ + (ECP

(m))
ασ
γ dQγασ + dΘ(m)

CP ,

d`
(m)
CP − ∗Θ

(m)
CP = 0 ,

where

(ECP
(m))

αβ(g,Q) :=
(
QγασQ

σ β
γ − CσQσαβ + 1

2g
αβ(CσAσ −QγτσQσγτ )

)
volg ,

(ECP
(m))

ασ
γ (g,Q) :=

(
δαγA

σ + gασCγ −Qσ α
γ −Qασγ

)
volg .

Notice that the latter is an equation of motion by itself, but the former is not. To obtain one
we have to add ECP

(m) to the Einstein equations coming from the variation of L(m)
EH (which only

depends on g).

In view of the previous result, we can choose the following representatives (defined up to a
relative exact form) as the contributions of the CP terms to the symplectic potentials

Θ(m)
CP (g,Q) := d(ı ~A− ~Cvolg) , θ

(m)
CP (g,Q) := 0 .

2.3 Space of solutions
The algebraic equation of motion ECP

(m)(g,Q) = 0 can be solved for Q. Its general solution is
Qαβγ0 = gαγUβ with arbitrary Uβ (we sketch the proof of a similar fact in section 3.3). This
solution, moreover, satisfies ECP

(m)(g,Q0) = 0 for any g. Hence, (g,Q) is a solution for Palatini if
and only if Q = Q0 and g satisfies the Einstein equations:

Sol(m)
PT = {(gαβ, δαγUβ) / g ∈ Sol(m)

GR , Uβ arbitrary} .

This, in turn, proves that the metric sector of Palatini is equivalent to metric-GR. Notice that the
boundary only plays a role in the metric sector Sol(m)

GR of the solution space (which is discussed
in detail in [23], where both Dirichlet and Neumann boundary conditions are considered). We
have now the following (“on shell”) identities over the space of solutions

R̃iemα
βµν =

◦
Riemα

βµν + gαβ (dU)µν ,
R̃icβν =

◦
Ricβν + (dU)βν , R̃ =

◦
R ,

K̃αβ =
◦
Kαβ , K̃ =

◦
K ,

M̃αβγ = −2gβγUα , T̃ γαβ = δγβUα − δγαUβ .

(2.1)

The last two equations imply that, on solutions, M̃ = 0 if and only if T̃ = 0. Thus, we have
either the Levi-Civita connection or one with nonmetricity and torsion.

2.4 Presymplectic form
The metric-Palatini presymplectic form on the space of solutions PT

(m) has the same functional
form as the metric-GR presymplectic form GR

(m) since dΘ(m)
CP = 0. However, the solution spaces

are different. In order to compare them, we need the projection π(m)(g,Q) = g. In this way we
get

PT
(m) = π∗(m)

GR
(m) (2.2)

Clearly, all vectors of the form (0,V) ∈ TSol(m)
PT , i.e. in the directions of the connection sector,

define gauge directions since they belong to the kernel of (π(m))∗ and hence annihilate PT
(m).
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3 TETRAD PALATINI
Given a tetrad eIα, we have its ηIJ -dual EαI and the space-time metric g = ηIJe

IeJ =: ΦGR(e)
as explained in more detail in [23]. We can consider the Levi-Civita connection

◦
∇ of g which,

in turn, allows us to build the 1-form connection

◦
ω K
µ I := eKα

◦
∇µEαI . (3.1)

If we now consider a generic 1-form connection ω̃ IJ
µ (not necessarily antisymmetric in the

internal indices), we can define the covariant derivative

∇̃µY β = (dY J)µEβJ + EβK ω̃
K
µ JY

J , Y J := eJγY
γ ,

and extend it in the usual way to objects with more space-time and internal indices. In partic-
ular, using this definition with EβI leads to

ω̃ K
µ I = eKα ∇̃µEαI , (3.2)

which is analogous to (3.1). We also have the ω̃-curvature and the ω̃-covariant derivative over
forms given by

F̃IJ = dω̃IJ + ω̃IK ∧ ω̃KJ , D̃αI = dαI + ω̃ J
I ∧ αJ ,

where the latter is extended, as usual, to objects with more antisymmetric internal indices.
Given two 1-form connections ω and ω̃, we have two covariant derivatives ∇ and ∇̃ which are
related by a (2, 1)-tensor Q. In particular, if we take ∇ =

◦
∇, then

Qβµα = EβKe
J
α

(
ω̃ K
µ J −

◦
ω K
µ J

)
=: ϕ(e, ω̃)βµα .

This allows us to define the map

ΦPT(e, ω̃) :=
(
ΦGR(e), ϕ(e, ω̃)

)
which is surjective but not injective. In fact ΦPT(e, ω̃) = ΦPT(e′, ω̃′) if and only if there exists
some Ψ ∈ SO(1, 3) such that e′I = Ψ J

I eJ and ω̃′ JI = Ψ K
I dΨJ

K + Ψ K
I ΨJ

Lω̃
L

K .

3.1 The action
In order to introduce the tetrad formalism, we perform the “change of variables” given by ΦPT

L
(t)
PT(e, ω̃) := L

(m)
PT ◦ ΦPT(e, ω̃) , `

(t)
PT(e, ω̃) := `

(m)
PT ◦ ΦPT(e, ω̃) .

We could write again these Lagrangians as the GR part plus a coupling term, but in this case
it is more convenient to split the 1-form connection in its antisymmetric and symmetric parts
(in its internal indices)

ω̃IJ = ω̂IJ + SIJ ,

and consider the equivalent variables (e, ω̂, S) instead. Following the ideas of [23], one obtains
the following expressions for these Lagrangians

L
(t)
PT(e, ω̂, S) = 1

2εIJKL
(
F̂ IJ − Λ

6 e
I ∧ eJ + SIM ∧ SMJ

)
∧ eK ∧ eL ,

`
(t)
PT(e, ω̂) = −1

2εIJKL
(
2N IdNJ − ω̂IJ

)
∧ eK ∧ eL ,

where eI := ∗eI , ω̂IJ := ∗ω̂IJ and N I = ναeIα. Notice that `(t)PT does not depend on S.
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3.2 Variations
Computing the variations, one easily obtains

dL(t)
PT = E

(t)
L ∧ deL + E(t)

KL ∧ d ω̂KL + E
(t)
JM ∧ dSJM + dΘ(t)

PT ,

d`
(t)
PT − ∗Θ

(t)
PT = b

(t)
I ∧ deI − dθ(t)

PT ,

where the Euler-Lagrange equations are

E
(t)
L := εIJKL

(
F̂ IJ + SIM ∧ SMJ − Λ

3 e
I ∧ eJ

)
∧ eK ,

E(t)
KL := 1

2D̂(εIJKLeI ∧ eJ) ,

E
(t)
JM := 1

2
(
εIKLJδ

R
M + εIKLMδ

R
J

)
S I
R ∧ eK ∧ eL ,

b
(t)
I := εIJKL(2NKdNL − ω̂KL) ∧ eJ + 2εMJKLN

L(ι
E

J deK) ∧ eMNI ,

and we take the symplectic potentials

Θ(t)
PT := 1

2εIJKLe
I ∧ eJ ∧ d ω̂KL , θ

(t)
PT := εIJKLe

I ∧ eJ ∧NKdNL . (3.3)

Notice that the boundary term bI plays no role in the Dirichlet case as in the variational principle
one has deI = 0, see [22] for a careful discussion.

3.3 Space of solutions
As in the metric case, we can exactly solve some of the equations. We begin by expanding
SIJ = SIJK e

K and using the unique decomposition SIJK = /SIJK + ηIJUK with /SIIK = 0.
Plugging this into E (t) = 0 we get

/SRLI + /SILR − /S J
RJ ηLI − /S J

IJ ηLR = 0 ,

and taking its trace shows that /S J
IJ = 0 which, in turn, implies /SIJK = 0. The general solution

to E (t) = 0 is then SIJK = ηIJUK , with arbitrary UK . Similarly, from E(t) = 0 we obtain the
solution ω̂IJ = ◦

ωIJ . Thus

Sol(t)PT = {(eIα,
◦
ωIJµ + ηIJUµ) / eIα ∈ Sol(t)GR, Uµ arbitrary}

We see, again, that the tetrad sector of Palatini is equivalent to tetrad-GR and that the boundary
plays no role in the connection part. As in the metric case, the Dirichlet or Neumann boundary
conditions for the tetrads are incorporated in Sol(t)GR, which is studied in detail in [23].

3.4 Presymplectic form
It is easy to see that, over the space of solutions, both symplectic potentials on (3.3) are given
by the same expressions as the symplectic potentials obtained in [23] for tetrad GR (remember,
though, that they live in different spaces). In fact, using the projection π(t)(e, ω̃) = e we have

PT
(t) = π∗(t)

GR
(t) (3.4)

in analogy with equation (2.2). We conclude as well that the vectors of the form (0,W) ∈ TSol(t)PT
correspond to degenerate directions of PT

(t) .
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4 CONCLUSIONS AND COMMENTS
In this letter, we have studied Palatini gravity, both in the metric and tetrad formulations, in
a manifold with boundary, and including nonmetricity and torsion. As can be seen in (2.2)
and (3.4), the presymplectic structures defined on the space of solutions of metric and tetrad
Palatini are related to those of metric and tetrad GR by the projection on the first factor. Also,
the solution spaces of metric and tetrad Palatini are related to each other by ΦPT. Finally, since
we have from [23] that

GR
(t) = Φ∗GR

GR
(m) (4.1)

it is immediate to obtain, using π(m) ◦ ΦPT = ΦGR ◦ π(t), the following important relation

PT
(t) = Φ∗PT

PT
(m) (4.2)

This is one of the main results of the paper: the equivalence, up to the internal gauge transfor-
mations given by the kernel of (ΦPT)∗, of metric and tetrad Palatini. Furthermore, equations
(2.2), (3.4), (4.1), and (4.2) show the equivalence (up to the gauge transformations given by the
kernel of the corresponding push-forwards) of all these four formulations of gravity.( PT

(t) , SolPT
(t)
) ( PT

(m), SolPT
(m)
)

( GR
(t) , SolGR

(t)
) ( GR

(m), SolGR
(m)
)π(t)

ΦPT

ΦGR

π(m) (4.3)

This has been proven for both Dirichlet and homogeneous Neumann boundary conditions, al-
though the same result can be obtained in other instances as long as all four formulations are
related in the way shown in the diagram (hence with the appropriate boundary Lagrangians,
[23]). Notice that this may also be seen by realizing that the projection of the spaces of solutions
over the metric/tetrad sector is well defined (in the sense that it is not necessary to know the
second factor to get the first). On the other hand, the main result regarding the connection
sector is that boundaries have no influence whatsoever (once the correct boundary Lagrangian
is considered). We have also found the well-known projective symmetry in both metric and
tetrad formulations, which can be expressed, respectively, in the form

Qαβγ = δαγUβ , SIJβ = ηIJUβ (4.4)

for arbitrary Uβ. This projective symmetry plays an important role to define observables as they
must be U -independent. For instance, the g-Kretschmann curvature

◦
Kres :=

◦
Riemαβγδ

◦
Riemαβγδ

leads to an observable for every (g,Q) as, in fact, it is independent of Q. However, the (g,Q)-
Kretschmann K̃res := R̃iemαβγδR̃iemαβγδ cannot provide an observable. Indeed, using (2.1), it
is easy to show that on the space of solutions we have

K̃res =
◦
Kres + (dU)αβ(dU)αβ

which depends on U . This is important if one plans to use these geometric objects as indicators
of the presence of singularities [24].
Finally, it is relevant to mention that although we have proven the equivalence of the four
theories in vacuum, this equivalence may be broken by matter fields. For instance, pregeodesics
computed by using the connection are insensitive to the U -arbitrariness [25]. However, if matter
is introduced, this may no longer be the case. Since we consider Palatini theories where both
nonmetricity and torsion are allowed to be non-zero, matter fields can be coupled in ways that
are not possible in standard GR. This may produce interesting changes in the dynamics of the
gravity-matter system.
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