
Grado en Ingenierı́a en Tecnologı́a de Telecomunicaciones

Trabajo de Fin de Grado

Detección de alucinaciones en modelos del lenguaje
grandes en el ámbito médico

Autor
Javier Dı́az de Rábago Pemán

Director
David Contreras Bárcena

Madrid
Julio 2024

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el tı́tulo

Detección de alucinaciones en modelos del lenguaje grandes en el ámbito médico

en la ETS de Ingenierı́a - ICAI de la Universidad Pontificia Comillas en el

curso académico 2023/2024 es de mi autorı́a, original e inédito y

no ha sido presentado con anterioridad a otros efectos. El Proyecto no es plagio

de otro, ni total ni parcialmente y la información que ha sido tomada

de otros documentos está debidamente referenciada.

Fdo.: Javier Dı́az de Rábago Pemán Fecha: 02/07/2024

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: David Contreras Bárcena Fecha: 03/07/2024

Grado en Ingenierı́a en Tecnologı́a de Telecomunicaciones

Trabajo de Fin de Grado

Detección de alucinaciones en modelos del lenguaje
grandes en el ámbito médico

Autor
Javier Dı́az de Rábago Pemán

Director
David Contreras Bárcena

Madrid
Julio 2024

Quiero agradecer a mis padres su apoyo incondicional durante todos estos años de mi
trayectoria académica y personal. Gracias a ellos he llegado hasta donde estoy.

A mis compañeros, muchas gracias por vuestra amistad y apoyo durante toda la carrera.
Han sido cuatro años llenos de experiencias tanto dentro como fuera de la universidad.

Gracias también a todos los amigos que he conocido en Delft, por hacer de este año uno
de los mejores de mi vida. Muchas gracias especialmente por mantenerme animado

durante estas últimas semanas de tanto trabajo.

Por último, quiero dar las gracias a David, mi director, por contar conmigo para este
proyecto y por sus consejos e ideas a lo largo de todo el proceso.

Gracias a todos por creer en mı́ y por ayudarme a alcanzar mis metas. Este logro es tanto
mı́o como vuestro.

DETECCIÓN DE ALUCINACIONES EN MODELOS
DEL LENGUAJE GRANDES EN EL ÁMBITO

MÉDICO

Autor: Dı́az de Rábago Pemán, Javier
Director: Contreras Bárcena, David
Entidad Colaboradora: ICAI — Universidad Pontificia Comillas

Resumen
Desde el lanzamiento de ChatGPT en noviembre de 2022, los grandes modelos del
lenguaje (LLMs, por sus siglas en inglés) han demostrado un gran potencial en diversas
aplicaciones, desde redacción de texto y generación de ideas hasta programación. Sin
embargo, estos modelos tienden a generar información falsa, conocida como alucinación,
lo que dificulta su adopción en ámbitos sensibles como el de la salud. Este trabajo se
centra en desarrollar y evaluar técnicas de detección de alucinaciones en las respuestas
de los LLMs, particularmente en el campo médico.

Diseñamos y evaluamos varios métodos de detección, incluyendo Verificación Con-
textual Básica (BCV), BCV con cadenas de pensamiento (BCV-CoT), Análisis Con-
textual por Oraciones (SCA), Contraste Iterativo de Oraciones y Muestras (ISSC) e
ISSC-CoT, en datasets tanto generales como de ámbito médico. En cada benchmark,
comparamos varios modelos juez como llama2, llama3, nous-hermes2, gemma y mistral.

Los resultados muestran que BCV-CoT, particularmente con nous-hermes2 como
juez, alcanza el mejor rendimiento en términos de sensibilidad y especificidad. Asignar
un rol de experto al modelo juez puede mejorar aún más la precisión en la detección.
Estos resultados subrayan la importancia de la ingenierı́a de prompts y demuestran el
potencial de las herramientas basadas en LLMs para aplicaciones médicas.

Palabras clave: grandes modelos del lenguaje, alucinación, cadena de pensamiento,
ingenierı́a de prompts

Introducción

Desde el lanzamiento de ChatGPT en noviembre de 2022, los LLMs
han demostrado su potencial en diversas aplicaciones como la redacción
de texto, la generación de ideas y la programación. Sin embargo, este
progreso tan rápido ha generado debates sobre cuestiones legales, éticas y
prácticas, incluyendo dudas sobre derechos de autor y la generación de
desinformación.

Esta investigación se centra en un problema muy común con los LLMs:
las alucinaciones. Las alucinaciones, o la generación de información
falsa por parte de los modelos, representan un desafı́o especialmente en
dominios sensibles como la salud. Los últimos avances técnicos para
detectar estas alucinaciones utilizan un segundo LLM para evaluar la
veracidad del texto generado. Ası́ lo hacen ChainPoll [1] (que utiliza
cadenas de pensamiento), Rowen [2] (que evalúa la consistencia semántica
entre idiomas) y SelfCheckGPT [3] (que contrasta múltiples respuestas
alternativas).

Para evaluar la efectividad de estos métodos de detección, se emplean
varios benchmarks como RealHall [1], HaluEval [4] o TruthfulQA [5]. En
el ámbito médico, se ha investigado muy poco en la detección de aluci-
naciones. Med-HALT [6] es el único benchmark relativamente completo
en este campo, y sus resultados están lejos de ser prometedores, dejando
mucho margen para posibles mejoras.

El objetivo principal del proyecto es desarrollar, ajustar y evaluar
técnicas automáticas de detección de alucinaciones adaptadas al ámbito
médico. En última instancia, la meta es facilitar la toma de decisiones
clı́nicas, garantizar la salud del paciente, promover el uso ético de la IA y
la adopción de herramientas basadas en IA en aplicaciones reales.

Metodologı́a

Este proyecto evalúa varios métodos de detección de alucinaciones y
modelos juez en conjuntos de datos tanto de conocimiento general co-

mo de dominio médico. HaluEval incluye un contexto para cada par
pregunta-respuesta. También incluye respuestas alucinadas, lo que facilita
la creación de una test de detección. TruthfulQA, en lugar de contexto,
incluye múltiples muestras para cada respuesta fáctica y alucinada. En el
ámbito médico, MedQuad [7] recopila información de fuentes oficiales,
aunque requiere cierto preprocesamiento, como limpiar los datos crudos
y generar respuestas alucinadas. Finalmente, EHRTest contiene pares
de preguntas y respuestas generados a partir de una serie de expedientes
clı́nicos electrónicos anonimizados.

Dentro de las limitaciones del hardware disponible, se seleccionaron
los siguientes modelos abiertos para actuar como LLM juez: llama2
(7B), llama2:13b, llama3 (8B), llama3-gradient, nous-hermes2, gemma y
mistral.

Incorporando ideas de diferentes técnicas, se diseñaron una serie de
métodos para detección de alucinaciones. La Verificación Contextual
Básica (BCV) simplemente pide al modelo juez que contraste un par
pregunta-respuesta con un contexto dado. BCV-CoT añade la técnica
de chain-of-thought (CoT), donde se pide al modelo que explique su
proceso de razonamiento antes de emitir un veredicto final. El Análisis
Contextual por Oraciones (SCA) usa una cadena de pensamiento más
compleja, donde se le pide al modelo que divida la respuesta dada en
oraciones y encuentre un extracto del contexto que apoye o contradiga
cada oración. En el Contraste Iterativo de Oraciones y Muestras (ISSC),
el modelo repetidamente recibe una oración de la respuesta y se le pide
que la contraste con otra respuesta muestreada. Por último, también se
implementa una alternativa con CoT de este último método, ISSC-CoT.

Este proyecto se llevará a cabo en dos fases principales. En la primera
parte, se utilizarán técnicas de ingenierı́a de prompts y pruebas manuales
para generar y refinar plantillas de prompts para los diferentes métodos
de detección de alucinaciones. A continuación, se evaluarán con los
diferentes datasets y modelos juez para encontrar las combinaciones más
efectivas.

Resultados

La primera fase del proyecto destacó varios de los problemas que surgen
al diseñar prompts para LLM. Por ejemplo, uno de los desafı́os fue obtener
respuestas consistentes con un formato fácil de analizar. Otros problemas
que se tuvieron que resolver mediante una cuidadosa ingenierı́a de prompts
incluyeron las alucinaciones de temática fantástica (muy evidentes) al
crear tests y la tendencia a agregar una advertencia siempre que se genera
una alucinación.

Para cada benchmark, se seleccionaron los métodos de detección más
apropiados según la estructura de los datos. Por ejemplo, HaluEval se
probó con BCV y BCV-CoT. Aunque nous-hermes2 y llama3 lograron
buenos resultados, estas pruebas mostraron que algunos modelos tienen un
sesgo en sus veredictos, prefiriendo juzgar todos los casos como fáctico,
o como alucinado. TruthfulQA, que contiene muestras adicionales para
cada par de preguntas y respuestas, parecı́a ideal para probar los métodos
ISSC e ISSC-CoT. Sin embargo, los resultados fueron mucho menos
prometedores que con BCV(-CoT). Dado el alto número de inferencias
necesarias para probar un solo ejemplo y su bajo rendimiento, ISSC(-CoT)
se descartó de las siguientes pruebas.

En los datasets médicos, MedQuad y EHRTest, las respuestas más
largas permitieron evaluar SCA además de BCV(-CoT). En ambos casos,
solo nous-hermes2 funcionó razonablemente bien sin CoT. En BCV-CoT,
nous-hermes2, llama3 y mistral lograron una sensibilidad y especificidad
relativamente altas. Añadir CoT también ayudó a reducir el sesgo en los
veredictos. Por último, SCA mostró mejores resultados que BCV, pero
pobres comparados con los de BCV-CoT. Las instrucciones y el formato
más complejos requeridos por SCA llevaron a diferentes errores en el
razonamiento de los modelos. Además, requiere prompts y respuestas
notablemente más extensas.

Para los diferentes datasets médicos y métodos de detección, se ha
evaluado una segunda versión de cada prompt donde se asigna al modelo
juez el papel de un experto médico. La Figura 1 muestra las curvas ROC

resultantes de usar nous-hermes2 como juez. En estos gráficos, BCV-CoT
claramente destaca como la técnica de detección más efectiva y parece
mejorar al agregar el rol de experto. Sin embargo, el efecto de este rol en
las otras pruebas es más ambiguo.

(a) EHRTest (b) MedQuad

?figurename? 1: Efectos del rol de experto en nous-hermes2

Conclusiones

Este proyecto ha tenido limitaciones de hardware, que no han permitido
utilizar los modelos más recientes con decenas de miles de millones de
parámetros. Incluso con modelos más pequeños, para cada uno se han
llevado a cabo dieciséis pruebas diferentes, ejecutadas secuencialmente
durante un total de más de 110 horas de computación. Con hardware
más capaz y una inferencia más optimizada, las técnicas propuestas de
detección de alucinaciones podrı́an probarse en modelos como llama3:70b
o mixtral:8x22b.

Durante el desarrollo de las plantillas, se tuvieron que superar muchos
de los desafı́os tı́picos en la ingenierı́a de prompts. El sesgo de veredicto y
las inconsistencias de formato se trasladaron a algunos de los tests a gran

escala en modelos menos capaces.
Los resultados muestran que la mejor combinación para la detección

de alucinaciones es la Verificación Contextual Básica con un enfoque CoT,
con nous-hermes2 como modelo juez. A futuro, posibles mejoras serı́an
hacer pruebas en modelos más grandes y potentes, ası́ como la adaptación
de las plantillas de prompt especı́ficamente para cada modelo juez. Se
podrı́a desarrollar un filtro de alucinaciones para facilitar la implementa-
ción de LLMs en un asistente médico virtual o en otras aplicaciones del
mundo real.

Referencias

[1] Robert Friel y Atindriyo Sanyal. Chainpoll: A high efficacy method for LLM
hallucination detection. 2023. arXiv: 2310.18344 [cs.CL].

[2] Hanxing Ding et al. Retrieve Only When It Needs: Adaptive Retrieval Augmen-
tation for Hallucination Mitigation in Large Language Models. 2024. arXiv:
2402.10612 [cs.CL].

[3] Potsawee Manakul, Adian Liusie y Mark J. F. Gales. SelfCheckGPT: Zero-Resource
Black-Box Hallucination Detection for Generative Large Language Models. 2023.
arXiv: 2303.08896 [cs.CL].

[4] Junyi Li et al. HaluEval: A Large-Scale Hallucination Evaluation Benchmark for
Large Language Models. 2023. arXiv: 2305.11747 [cs.CL].

[5] Stephanie Lin, Jacob Hilton y Owain Evans. TruthfulQA: Measuring How Models
Mimic Human Falsehoods. 2022. arXiv: 2109.07958 [cs.CL].

[6] Ankit Pal, Logesh Kumar Umapathi y Malaikannan Sankarasubbu. Med-HALT:
Medical Domain Hallucination Test for Large Language Models. 2023. arXiv:
2307.15343 [cs.CL].

[7] Asma Ben Abacha y Dina Demner-Fushman. “A Question-Entailment Approach
to Question Answering”. En: BMC Bioinform. (). URL: https://bmcbioinformatics.
biomedcentral.com/articles/10.1186/s12859-019-3119-4.

https://arxiv.org/abs/2310.18344
https://arxiv.org/abs/2402.10612
https://arxiv.org/abs/2303.08896
https://arxiv.org/abs/2305.11747
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2307.15343
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3119-4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3119-4

MEDICAL-DOMAIN HALLUCINATION DETECTION
IN LARGE LANGUAGE MODELS

Author: Dı́az de Rábago Pemán, Javier
Supervisor: Contreras Bárcena, David
Collaborating Entity: ICAI — Universidad Pontificia Comillas

Abstract
Since the release of ChatGPT in November 2022, large language models (LLMs)

have shown significant potential across various applications, including writing, idea
generation, and coding. These models offer a wide range of benefits, but they also
sometimes generate false information, known as hallucinations, posing challenges to
wide adoption, especially in sensitive domains like healthcare. This research focuses on
developing and benchmarking techniques for detecting hallucinations in LLM outputs,
particularly in the medical field.

To evaluate the effectiveness of different hallucination detection methods, we bench-
marked several approaches, including Basic Contextual Verification (BCV), BCV with
chain-of-thought (BCV-CoT), Sentence-level Contextual Analysis (SCA), Iterative Sentence-
Sample Comparison (ISSC), and ISSC-CoT, across both general knowledge and medical
datasets. Each benchmark was conducted using various judge models, such as llama2,
llama3, nous-hermes2, gemma, and mistral.

Our findings indicate that BCV-CoT, especially when used with the nous-hermes2
model, achieves the highest sensitivity and specificity in detecting hallucinations. Ad-
ditionally, incorporating a medical expert role in the prompts can further enhance per-
formance. These results underscore the importance of tailored prompt engineering and
demonstrate the potential for improving LLM-based tools for medical applications. By
refining these techniques, we can significantly enhance the reliability and usefulness of
LLMs in critical fields such as healthcare.

Keywords: Large Language Model, hallucination, Chain of Thought, prompt engineering

Introduction

Since the release of ChatGPT in November 2022, LLMs have demon-
strated their potential in various applications such as writing, idea genera-
tion, and coding. However, this rapid progress has sparked debates about
legal, ethical, and practical issues, including copyright concerns and the
generation of misinformation.

This research focuses on a very common problem with LLMs —
hallucinations. Hallucinations, or the generation of false information
by LLMs, pose a significant challenge, especially in sensitive domains
like healthcare. SOTA techniques for detecting these hallucinations make
use of a second LLM to evaluate the factuality in the generated text, this
is the case of ChainPoll[1] (which leverages chain-of-thought prompting),
Rowen[2] (semantic consistency accross languages) and SelfCheckGPT[3]
(constrasting multiple sampled responses).

To evaluate the effectiveness of these detection methods, several bench-
marks are employed, i.e. RealHall[1], HaluEval[4] and TruthfulQA[5]. If
looking specifically at the medical domain, very little research has been
done in hallucination detection. Med-HALT[6] is the only comprehensive
benchmark in this field, and its results are far from promising, leaving
much room for improvement.

The primary objective of the project is to develop, refine and bench-
mark automatic hallucination detection techniques tailored to the medical
domain. Ultimately, the goal is to facilitate clinical decision-making, en-
sure patient safety, promote ethical AI usage and the adoption of AI-based
tools in real-world applications.

Methodology

This project benchmarks a variety of hallucination methods and judge
LLMs on both general knowledge and medical domain datasets. HaluEval
includes a context field for each question-answer pair. It also includes
hallucinated answers, which makes creating a detection test quite simple.

TruthfulQA, instead of context, includes multiple samples for both factual
and hallucinated responses. In the medical domain, MedQuad[7] compiles
information from trusted sources, although it requires some processing
such as cleaning the raw, scraped data and generating hallucinated answers.
Finally, EHRTest contains QA pairs generated from a series of anonymized
electronic health records.

Within the limitations of the available hardware, the following open-
source models are selected to act as judge LLM: llama2 (7B), llama2:13b,
llama3 (8B), llama3-gradient, nous-hermes2, gemma and mistral.

Incorporating ideas from different SOTA techniques and benchmarks, a
series of approaches to hallucination detection were designed. Basic Con-
textual Verification (BCV) simply asks the judge LLM to contrast a QA
pair with some given context. BCV-CoT adds chain-of-thought prompting,
where the judge model is asked to explain its reasoning process before
outputting a final verdict. Sentence-level Contextual Analysis (SCA) is
a more complex CoT methodology where the model is asked to split
the given answer into sentences and find a extract from the context that
supports or contradicts that sentence. In Iterative Sentence-Sample Com-
parison (ISSC), the judge LLM is repeatedly fed one sentence from the
answer and asked to contrast it with a different sampled response. Lastly,
a chain-of-thought variation of the latter method is also implemented,
ISSC-CoT.

There are two main phases to this project. In the first part, prompt
engineering techniques and small-scale manual tests will be used to itera-
tively generate and refine prompt templates for the different hallucination
detection methods. Then, they will be benchmarked on different datasets
and judge models to find the best performing combinations.

Results

The first phase of the project highlighted some of the many issues that
arise when engineering LLM prompts. For instance, the challenge of

consistently obtaining a response with an easy-to-parse format. Other
problems that had to be solved through careful prompt engineering were
blatantly obvious fantasy-themed hallucinations when creating tests, and
adding disclaimers whenever a hallucination is generated.

For each test, the most appropiate detection methods were selected
according to the dataset structure. For instance, HaluEval was bench-
marked on BCV and BCV-CoT. While producing very good results on
nous-hermes2 and llama3, these tests showed that some models have a
verdict bias, by which they have a clear preference for always judging
every case as factual or every case as hallucinated. TruthfulQA, which
contains extra samples for each QA pair, seemed ideal to test the ISSC
and ISSC-CoT methods. The results for these benchmarks are much less
promising than with BCV(-CoT), and given the high number of inferences
required to test a single example and its poor performance, ISSC(-CoT)
was discarded from further testing.

On the medical datasets, MedQuad and EHRTest, the longer multi-
sentence answers allow for SCA as well as BCV(-CoT) to be benchmarked.
In both cases, only nous-hermes2 performed reasonably well without
chain-of-thought prompting. On BCV-CoT, nous-hermes2, llama3 and
mistral achieve relatively high sensitivity and specificity. This method also
serves to reduce verdict bias. Finally, SCA does show improved results
with respect to raw BCV, but it falls short compared to BCV-CoT. The
more complex instructions and format required in the SCA method lead
to different errors in the models’ reasoning. It also requires noticeably
longer prompts and judge LLM responses.

For both medical datasets and the three hallucination detection methods
benchmarked on them, a second version of each prompt template was
tested where the judge LLM is instructed to take the role of a medical
expert. Figure 2 shows the resulting ROC curves when using nous-hermes2
as the judge model. From these plots, BCV-CoT clearly stands out as the
superior detection technique, and it seems to benefit from adding such an
expert role. However, the effect of this role on the other tests is ambiguous.

(a) EHRTest (b) MedQuad

Figure 2: Effect of expert role on nous-hermes2

Conclusion

This project faced considerable hardware limitations, which made running
the latest models with tens of billions of parameters impossible. Even with
smaller models, for each one sixteen different benchmarks were carried
out, which had to be run sequentially over more than 110 execution
hours. With more capable hardware and optimized inference processes,
the proposed hallucination detection techniques could be tested on models
like llama3:70b or mixtral:8x22b.

During the prompt template development process, many of the chal-
lenges involved in prompt engineering had to be overcome. Verdict bias
and format inconsistencies carried on to some of the large-scale bench-
marks on less capable models.

The results show that the best combination for hallucination detection
is a chain-of-thought approach to Basic Contextual Verification, lever-
aging nous-hermes2 as its judge model. Possible future improvements
include testing on larger, more powerful models, as well as tailoring the

prompt templates for specific judge LLMs. This could well lead to a
comprehensive hallucination filter for an LLM-based medical assistant or
other real-life applications.

References

[1] Robert Friel and Atindriyo Sanyal. Chainpoll: A high efficacy method for LLM
hallucination detection. 2023. arXiv: 2310.18344 [cs.CL].

[2] Hanxing Ding et al. Retrieve Only When It Needs: Adaptive Retrieval Augmen-
tation for Hallucination Mitigation in Large Language Models. 2024. arXiv:
2402.10612 [cs.CL].

[3] Potsawee Manakul, Adian Liusie, and Mark J. F. Gales. SelfCheckGPT: Zero-
Resource Black-Box Hallucination Detection for Generative Large Language
Models. 2023. arXiv: 2303.08896 [cs.CL].

[4] Junyi Li et al. HaluEval: A Large-Scale Hallucination Evaluation Benchmark for
Large Language Models. 2023. arXiv: 2305.11747 [cs.CL].

[5] Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring How
Models Mimic Human Falsehoods. 2022. arXiv: 2109.07958 [cs.CL].

[6] Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Med-HALT:
Medical Domain Hallucination Test for Large Language Models. 2023. arXiv:
2307.15343 [cs.CL].

[7] Asma Ben Abacha and Dina Demner-Fushman. “A Question-Entailment Approach
to Question Answering”. In: BMC Bioinform. (). URL: https://bmcbioinformatics.
biomedcentral.com/articles/10.1186/s12859-019-3119-4.

https://arxiv.org/abs/2310.18344
https://arxiv.org/abs/2402.10612
https://arxiv.org/abs/2303.08896
https://arxiv.org/abs/2305.11747
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2307.15343
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3119-4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3119-4

Contents

1 Introduction 1

2 Background knowledge 5
2.1 Evolution of Natural Language Processing 5
2.2 The transformer model 7

2.2.1 Word embeddings 7
2.2.2 Attention mechanism 8
2.2.3 Encoder-decoder architecture 9
2.2.4 Impact . 11

2.3 Large Language Models 11
2.3.1 Key architectures 11
2.3.2 Open models 14

2.4 LLM hallucinations . 15
2.4.1 Types of hallucinations 15
2.4.2 Causes of hallucination 19

2.5 Advanced LLM techniques 21
2.5.1 Fine-tuning . 21
2.5.2 Chain of thought 22
2.5.3 Retrieval-augmented generation 22
2.5.4 Quantization 23

3 State of the art 25
3.1 Domain-agnostic hallucination detection 25

3.1.1 Detection techniques 26
3.1.2 Benchmarks . 28

3.2 Hallucinations in the medical domain 29
3.2.1 Benchmarks . 29

4 Motivation 31
4.1 Addressing the limitations of LLMs 31
4.2 AI in healthcare . 32

5 Project objectives 35

6 Resources and tools 39
6.1 Benchmarking datasets 39

6.1.1 General knowledge 39
6.1.2 Medical domain 40

6.2 Tools . 41
6.2.1 Hardware limitations 41
6.2.2 Scripting and libraries 41
6.2.3 Choice of LLMs 42

7 Methodology 45
7.1 Preparing the benchmark datasets 45

7.1.1 Pre-processing 45
7.1.2 Generating hallucinations 47
7.1.3 Sampling tests 48

7.2 Implementing hallucination detection 48
7.2.1 Customized detection methods 48
7.2.2 Prompt engineering 50
7.2.3 Parsing LLM responses 50

7.3 Testing . 51
7.3.1 Small-scale tests 51
7.3.2 Large-scale tests 52
7.3.3 Analysis of results 53

8 Experimentation and results 55
8.1 Prompt engineering . 55

8.1.1 Findings and insights 56
8.2 Benchmarking results 61

8.2.1 General knowledge 61
8.2.2 Medical domain 68

9 Discussion 75
9.1 Limitations . 75
9.2 The challenges of prompt engineering 76
9.3 Benchmarking and comparatives 76
9.4 Possible methodology improvements 78
9.5 Conclusion . 79

Bibliography 81

A Alignment with Sustainable Development Goals 85

B Prompt templates 87
B.1 Dataset creation . 87

B.1.1 Regenerate MedQuad answers 87
B.1.2 Generate QA pairs from report 88
B.1.3 Generate hallucinated answer 89

B.2 Hallucination detection tests 90
B.2.1 BCV . 90
B.2.2 BCV-CoT . 92
B.2.3 SCA . 93
B.2.4 ISSC . 95
B.2.5 ISSC-CoT . 95

C Test results and statistics 97
C.1 General domain tests 98
C.2 Medical-domain tests 99

Chapter 1

Introduction

Since the release of ChatGPT in November 2022, Artificial Intelligence

has gained a spotlight in the media and in everyday conversation. While

Deep Learning models have been in development for years, it is the rise

of Large Language Models that has finally proven how much of an impact

these tools can have in the near future. ChatGPT, in particular, quickly

became a widely used tool for writing documents, coming up with ideas

or even coding.

OpenAI’s work on ChatGPT has not stopped. One of the most im-

pressive functionalities that has progressively been added to the tool is

its multimodality. ChatGPT is not longer limited to processing text but

can now extract information from inputted images, generate new images

through its integration with Dall-E, and even engage in real-time voice

conversations.

The vertiginous development in this field has sparked significant de-

1

CHAPTER 1. INTRODUCTION

bate, particularly regarding legal and ethical issues. For instance, AI tools

can already generate never-before-seen images, music, movie scripts...

which leads to complex issues with copyright, authorship and royalties[1].

Language models are trained on vast datasets sourced from the internet

which makes them able to replicate human-like language patterns. How-

ever, these models are not without flaws and can present certain biases

and generate misinformation with the same level of confidence as their

factual information.

World-class tech experts —including Steve Wozniak and Elon Musk—

have advocated for a pause in massive model training, to allow legal and

ethical regulations to catch up[2]. This does not mean that progress in the

field should come to a standstill. Rather, it calls for a more balanced and

responsible approach to innovation. AI has vast potential if harnessed for

constructive purposes, while taking into account its ethical implications.

One of the main limitations of Large Language Models that can make

them impractical for real life use cases, especially in very sensitive do-

mains such as medicine, is their tendency to make up false claims pre-

sented with the same confidence as any of their other generated informa-

tion. These are known as hallucinations. When the user is non-expert in

the field, their inability to filter out false information can result in very

negative consequences.

By developing and implementing effective hallucination detection

2

filters as a buffer layer between the model’s output and what the user

receives, the risk of generating misinformation can be mitigated. Differ-

ent approaches have been investigated in order to detect and minimize

these hallucinations, but they are generally tested on general, common-

knowledge databases.

In this work, a deep dive will be taken into a variety of hallucination

detection techniques. After researching the latest, state-of-the-art methods

available, they will be adapted and implemented through custom scripts

and prompt templates to allow for maximum configurability and testing ca-

pabilities. Different benchmarking datasets will be gathered or generated,

from common-knowledge tests to more specific medical-domain sets.

With all these different detection techniques and datasets, a wide range

of LLM models will be tested on their ability to identify hallucinated

information, specifically in the medical domain1. This setup allows for

much experimentation, by switching between different methods, prompts,

models and datasets. The principal aim of this research is to determine

if, given the current technology, hallucination detection can reduce the

risk of misinformation to a low enough degree to make LLMs viable for

real-life applications, especially in very sensitive domains as is healthcare.

1 Datasets, scripts and results are available at github.com/jdrp/llm-hallucination-detection

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Background knowledge

2.1 Evolution of Natural Language Processing

Natural Language Processing (NLP) encompasses a wide range of tasks

revolving around text analysis and generation. Some examples would be

speech recognition, sentiment analysis, text completion, question answer-

ing or translation.

It all started with Alan Turing’s proposal of the“imitation game”[3],

which evaluates a machine’s ability to exhibit intelligent behavior indis-

tinguishable from that of a human. Early attempts at developing such an

algorithm made use of rule-based systems and simple pattern matching.

During the 1960s and 70s, these rules where expanded upon to account

for more grammatical variations and syntactic structures. However, the

amount of rules and patterns to account for when processing text became

increasingly difficult to manage.

5

CHAPTER 2. BACKGROUND KNOWLEDGE

In the early 1990s, researchers in this field realized that the complexities

and sheer vastness of human language could hardly be encompassed as

a series of manually defined rules. Completely shifting their perspective,

they began to frame NLP as a statistical problem. This change was driven

by the availability of increasingly large corpora of text and computational

power. N-gram models, which calculate the probability of occurrence of

N consecutive words, became the state-of-the-art for tasks such as text

completion and spelling correction. However, these models have trouble

when processing patterns which are not in their vocabulary.

In 2003, a feed-forward, multi-layer perceptron and a longer context

length, trained on over ten million words surpassed the performance of all

previous n-gram models[4]. As gathering large amounts of annotated data

was very costly and time-consuming, research focused on unsupervised

learning from raw, non-annotated text corpora. More advanced Machine

Learning (ML) models, e.g. support vector machines (SVMs), were

developed and applied to NLP tasks.

In the early 2010s, the rise of deep learning —making use of neural

networks with numerous hidden layers— and the use of models such as

Recurrent Neural Networks (RNN) or Long Short-Term Memory (LSTM)

drastically improved the capabilities when handling sequential data and

long-range dependencies between concepts.

6

2.2. The transformer model

2.2 The transformer model

In 2017, a new ML architecture was presented, based on word embed-

dings and attention mechanisms, that greatly optimized the training and

inference of sequence-to-sequence models. It became the state-of-the-art

architecture for a variety of tasks, such as NLP, speech recognition and

generation, or image processing.

2.2.1 Word embeddings

In 2013, researchers at Google introduced the concept of word embed-

dings[5]. By representing words as vectors in a multi-dimensional space,

semantic similarities and relations could be captured. They used different

neural network architectures (feed-forward, recurrent) to train models on

a 1.6 billion word dataset.

When analyzing the resulting vectors, the researchers observed that,

not only were semantically similar concepts assigned to similar vectors,

but more complex relations were also captured. For instance, the differ-

ence between the man and woman vectors would be almost equal to the

difference between king and queen, or brother and sister. Similarly, the

vector from Norway to Oslo was the same as that from Greece to Athens.

This suggests that concepts such as gender, capitals, size... are captured as

directions in the word embedding vectorial space.

7

CHAPTER 2. BACKGROUND KNOWLEDGE

The introduction of word embeddings was a major breakthrough. Using

vectorial representations instead of raw text as an input made it much easier

to capture semantic relations, improving performance across many NLP

tasks.

2.2.2 Attention mechanism

Initially introduced in 2016[6], the attention mechanism was improved on

in the well-known Transformer paper[7]. It operates as follows:

1. Input representations: The attention mechanism operates on a set

of input representations, typically embedding vectors.

2. Query, Key, and Value matrices: By multiplying the input embed-

dings with pre-trained weights, QKV matrices are generated.

3. Attention scores: To determine the relevance of each input element

to a specific query, the attention mechanism computes attention

scores. These scores are often calculated using a similarity measure,

such as the dot product, between the query and key. The resulting

value is then normalized according to the number of dimensions and

goes through a softmax function. Then, these probabilities are used

to carry out a weighted sum on the values.

Attention(Q,K,V) = softmax
(

QKT
√

d

)
V (2.1)

8

2.2. The transformer model

The transformer model applies two variations of the attention mech-

anism: self-attention —the QKV matrices are all derived from the same

input sequence— and multi-headed attention —calculations are divided

into various parallel heads.

2.2.3 Encoder-decoder architecture

The Transformer model is built upon an encoder-decoder architecture,

which facilitates efficient and effective handling of sequence-to-sequence

tasks. This architecture consists of two main blocks: the encoder and

the decoder, each composed of multiple layers of self-attention and feed-

forward neural networks.

The encoder block repeatedly passes the input embeddings through

multiple attention mechanisms and feed-forward networks, resulting in

new output embeddings that will be used as the input to the decoder.

In the decoder, the embeddings are repeatedly processed against them-

selves and against the encoder output, to end up generating a series of

logits. These logits are then converted to probabilities for each token in

the available dictionary.

The input embeddings in the transformer model have some peculiarities.

Firstly, text isn’t usually divided into words, but rather into certain“tokens”

or parts of words. Secondly, a positional encoding is added to the initial

embedding in order to capture the order of the tokens.

9

CHAPTER 2. BACKGROUND KNOWLEDGE

Figure 2.1: The encoder-decoder architecture of transformer models

The attention mechanism in the decoder is slightly different as the

original method, as it incorporates a mask to ensure that the prediction for

each position only depends on the previous positions.

The encoder and decoder blocks can be used separately or in conjunc-

tion, depending on the task at hand. Multiple instances of these blocks

are usually stacked on top of each other, providing the model with more

opportunities to attend to and relate tokens.

10

2.3. Large Language Models

2.2.4 Impact

The transformer architecture is designed with modern computation in

mind. Nowadays, GPUs can carry out enormous amounts of calculations

in parallel, which works great with the highly parallelizable operations

involved in matrix multiplication —the core of the attention mechanism.

This design is much more efficient than simply using a very large neural

network, as in that case most calculations would have to be carried out

sequentially.

Models based on the transformer architecture have proven to excel at

identifying related terms, even when they are far from each other in the

text. Nowadays, most language models are based on different variations

of the transformer, and its parallel nature has allowed for the training of

models with tens of billions of parameters.

2.3 Large Language Models

2.3.1 Key architectures

In mid-2018, OpenAI released GPT 1, a decoder-only model trained on

the next token prediction task. When inputted a string of text, GPT —

shorthand for Generative Pre-trained Transformer— would predict the

most likely way to continue the sentence. Using simplified decoder blocks

without the second multihead attention layer –as there is no encoder output

11

CHAPTER 2. BACKGROUND KNOWLEDGE

to attend to–, this 117 million parameter model managed to improve on

state-of-the-art results for a variety of NLP tasks, even without being tuned

specifically for those tasks[8].

Later that same year, Google released their BERT model, which stands

for Bidirectional Encoder Representations from Transformers. They lever-

aged the capabilities of their new transformer architecture to train an

encoder-only model with a 110 million and a 340 million parameter vari-

ants. By bidirectionally attending both preceding and following words,

the model can fulfill two main tasks: masked token completion, where

it predicts the most likely word to fill in a gap in a sentence, and next

sentence prediction, where it detects whether two sentences could appear

sequentially in a text[9]. Other models can be trained to carry out different

tasks on the output vectors of BERT, such as sentiment classification[10].

The architectures of BERT and GPT, as can be seen in figure 2.2,

look very similar, the only differences being the masked attention and

the number of repeating blocks. However, they are based on the encoder

and the decoder respectively and their training, inputs and usage focus

on tasks associated to those components. That is why BERT works best

for downstream tasks such as entity recognition and classification and

completion, and GPT works best as an autoregressive model for text

generation[11].

The release of GPT and BERT triggered a new trend in the field, as the

12

2.3. Large Language Models

Figure 2.2: Differences in architecture in BERT and GPT

focus shifted to training increasingly large models, eventually reaching

tens of billions of parameters. This was made possible by the parallel na-

ture of the transformer architecture, which made training massive models

viable as long as enough GPU capacity was available.

Throughout the next few years, a variety of these Large Language

Models were released, rapidly increasing in number of parameters, size of

training datasets and context length, i.e. the maximum number of tokens

that can be processed. GPT 1 was followed by GPT 2 (2019), 3 (2020),

3.5 (2022) and 4 (2023). As the capabilities and precision of these models

increased, OpenAI became more secretive with regards of architectural

details and weights, and since late 2022 provides a “black-box” service

13

CHAPTER 2. BACKGROUND KNOWLEDGE

through their ChatGPT interface. However, some details on GPT 4 have

been leaked claiming that it contains 1.76 trillion parameters divided into

8 models in a Mixture of Experts fashion. MoE refers to an architecture

design where different sub-models are trained to excel at certain tasks or

domains, and a governing neural network decides which of these models

to activate for a given input.

2.3.2 Open models

While OpenAI has been at the top of most LLM benchmarks with their

GPT models, the fact that they are only accessible through API —with

usage caps even for paying users— and their parameter weights are not

disclosed makes these models impractical for any large-scale project.

Other companies have focused on releasing models with openly avail-

able weights, which, although usually lagging behind GPT in performance

benchmarks, are a much better option for projects that require fine-tuning

the model for specific tasks (as explained in 2.5.1) or automating a large

number of prompts.

Meta’s Llama 3 in its 8B parameter version outperforms GPT 3.5 on

different benchmarks[12], while being much faster and requiring relatively

low GPU capacity. The 70B version can even surpass GPT 4 in some

tasks, such as Python coding or grade school math[13]. Even the previous

version of Llama, Llama 2 70B, performs better than GPT 3.5 in plenty of

14

2.4. LLM hallucinations

tasks.

Another model that falls into the top spots of most benchmarks is

Mistral AI’s Mixtral 8x7B, which applies a MoE architecture like the one

in GPT 4. This approach not only enhances performance across a wide

range of tasks but also optimizes efficiency, making it a competitive choice

in terms of both speed and computational resource requirements.

2.4 LLM hallucinations

The ability of LLMs to generate human-like text comes at the risk of what

is commonly referred to as hallucinations. At times, language models can

generate content that, while sounding plausible, is factually incorrect or

does not align with the user’s instructions or a given context. A common

way to classify these hallucinations is to distinguish between lack of

factuality and lack of faithfulness[14].

2.4.1 Types of hallucinations

Factuality

This type of hallucination occurs when a language model produces a fact

that contradicts or cannot be verified using real world knowledge. There is

further distinction between factual inconsistency and factual fabrication.

Factual inconsistencies refer to hallucinations where the generated

15

CHAPTER 2. BACKGROUND KNOWLEDGE

content contradicts the available information. A common example of this

kind of hallucination would be the following:

Chat 2.1: Factual inconsistency

User: Who was the first person to land on the Moon?

Model: Yuri Gagarin in 1956.

Explanation: The answer according to common knowledge

is Neil Armstrong in 1969. Yuri Gagarin was the first man to travel

through outer space, but he never landed on the Moon.

Factual fabrication, on the other hand, happens when a model has no

knowledge of the topic in question and tries to provide plausible-sounding

responses without any basis in reality.

Chat 2.2: Factual fabrication
User: Who invented the first teleportation device?

Model: The first teleportation device was invented by Dr. Alan

Turner in 2025, allowing instant travel between two points.

Explanation: Teleportation devices do not exist, and the

model fabricated the name“Dr. Alan Turner” and the invention in

2025.

16

2.4. LLM hallucinations

Faithfulness

In faithfulness hallucinations, the model’s response might not necessarily

contradict real world knowledge. However, it diverges from the user’s

instructions or the context provided. Here is an example where the model

does not stick to what the user is instructing:

Chat 2.3: Instruction inconsistency

User: Translate the following sentence to Spanish: What is the

capital of France?

Model: The capital of France is Paris.

Explanation: The model did not translate the sentence as

the user asked. The answer should be “¿Cuál es la capital de

Francia?”

In other cases, specially in summarization tasks, the user inputs some

context. The model might ignore or contradict that context in its response,

leading to hallucination.

17

CHAPTER 2. BACKGROUND KNOWLEDGE

Chat 2.4: Context inconsistency

User: The Eiffel Tower is located in Paris, France. How tall is it?

Model: The Eiffel Tower in New York City is 300 meters tall.

Explanation: The model ignores the location of the Eiffel

Tower inputted by the user.

Finally, language models also fall into contradictions. These most

frequently occur in mathematical reasoning, especially when using a

non-finetuned model, but contradictions may also appear between two

sentences in the same generated answer.

Chat 2.5: Logical inconsistency

User: Tell me about the tallest mountain in the world.

Model: Mount Everest is the tallest mountain in the world. However,

K2 is actually taller than Mount Everest.

Explanation: The model contradicts itself by stating both

that Mount Everest is the tallest and that K2 is taller.

The previous examples of user-model interactions are designed to

clearly highlight each specific type of hallucination. However, real lan-

guage models typically hallucinate in much more subtle ways. The varied

and inconsistent nature of language and information makes it very chal-

18

2.4. LLM hallucinations

lenging to systematically detect misinformation in LLM-generated text,

and unaware users tend to accept the model’s response as factual as long

as it sounds “right”.

2.4.2 Causes of hallucination

The causes behind LLM can be divided into three main stages: the data

used in training the model, the training process itself, and inference.

Data

Training datasets are usually built by scraping Internet resources. When

handling vast amounts of data, manual filtering becomes unmanageable

and misinformation might be passed to the model during training. When

asked about these topics, the model will remember its training data and

output false information.

Any subset of data, especially from the Internet, will contain some

inherent biases. These biases will propagate to the model’s responses,

possibly causing hallucination.

Training

A common cause of hallucination is the different approach between the

training and inference procedures. In training a model, ground truth tokens

are used as an input. Meanwhile, during inference the model’s output is

19

CHAPTER 2. BACKGROUND KNOWLEDGE

recursively fed into itself. This inconsistency can cause hallucinations,

as a wrongly generated token is likely to propagate the error to the en-

tire subsequent sequence. This mismatch between training inference is

commonly known as exposure bias[15].

There is another phase in the training process where supervised fine-

tuning and reinforcement learning from human feedback enable the model

to follow user instructions and conversations. In this phase, there is a risk

of capability misalignment —where the model is demanded more than it

can do— and belief misalignment —where the model will tend to satisfy

the human evaluator over producing correct information.

Inference

LLMs implement a certain degree of randomness when sampling the

output token out of a probability distribution. This usually leads to higher-

quality answers than just picking the most likely token. However, infer-

encing with too much temperature —randomness— can lead to unlikely,

imprecise tokens being chosen.

Another common problem during inference is the limited context length

of the models. Sometimes, a piece of data required to answer a question

might be too far back in the text, and the model is unable to apply the

attention mechanism on that information.

20

2.5. Advanced LLM techniques

2.5 Advanced LLM techniques

A variety of techniques have been used throughout the development of

LLMs with the aim to improve performance and accuracy. Fine-tuning,

chain of thought and retrieval-augmented generation focus on generating

higher quality answers and reducing hallucinations. Quantization, on the

other hand, optimizes memory and computing requirements.

2.5.1 Fine-tuning

A common approach when leveraging LLMs for specific purposes is

to fine-tune an existing model on a custom dataset tailored to whatever

domain is being worked on. In this way, the conversational and reason-

ing capabilities of the original model —which usually require massive

amounts of training data and computing resources— are maintained, while

adding expertise and knowledge of certain fields. Typically, the internal

weights of the model are frozen and only the last neural network layers

are tuned. This greatly reduces the time of training and ensures that the

original performance does not deteriorate.

Fine-tuning language models has been shown to significantly improve

their accuracy in technical domains. Several studies support this claim by

demonstrating how domain-specific fine-tuning enhances the performance

of LLMs across various specialized tasks[16].

21

CHAPTER 2. BACKGROUND KNOWLEDGE

2.5.2 Chain of thought

When applying chain of thought (CoT), a language model will first gener-

ate a step-by-step explanation of its reasoning process in order to reach a

final answer to the user’s enquiry. Instructing the model to respond in this

way is particularly useful for tasks requiring logical reasoning, complex

problem-solving, or multi-step calculations.

In elaborate CoT-based responses, the model will subdivide the user’s

prompt into a number of subproblems, and sequentially go through the

different steps involved in solving those individual problems. This leads

to a number of advantages:

• The output is easier to interpret, as the user can read and follow the

model’s thought process.

• Complex, multi-step tasks can be handled better.

• By explicitly validating each step, the model can catch errors before

they propagate, improving its accuracy.

2.5.3 Retrieval-augmented generation

In some situations, a model might not have the required knowledge to

meet the user’s requirements. While fine-tuning is an option, the training

process required for it might be too costly in terms of resources or time.

22

2.5. Advanced LLM techniques

In these instances, retrieval-augmented generation (RAG) can be a great

alternative.

RAG gives a model access to domain-specific databases or online

sources, usually through an intermediate step which adds this retrieved

knowledge to the user’s prompt before the actual inference. In this way,

the model has the necessary context to properly answer the user’s prompt,

without needing to be specifically trained or fine-tuned for that purpose.

2.5.4 Quantization

Quantization is a technique used to reduce the computational and memory

requirements of ML models by representing their parameters with lower

precision. LLMs are typically trained using 32-bit floating-point numbers

for their parameters. This high precision allows for accurate calculations

when applying gradient descent, leading to better performance and more

effective learning.

However, and thanks to the probabilistic nature of LLM token predic-

tion, parameter precision can be reduced to decrease the model size and

speed up inference, with barely any reduction in accuracy and response

quality. Different quantization schemes can be applied, storing parameters

using 16-bit, 8-bit and even 4-bit precision.

Even though quantizing a model can take a —very small— hit on

answer quality, the considerable reduction in parameter size means much

23

CHAPTER 2. BACKGROUND KNOWLEDGE

larger models can run on a machine with limited capacity.

24

Chapter 3

State of the art

3.1 Domain-agnostic hallucination detection

One of the biggest problems that prevent Large Language Models from

being deployed in commercial settings is their tendency to hallucinate,

as explained in section 2.4. Businesses cannot risk a model giving their

customers false details about their products or services, or disclosing sen-

sitive information. For this reason, hallucination detection for LLMs has

been very active area of research in recent months, with widely different

approaches being developed and investigated.

There is no infallible method for detecting hallucinations. Each ap-

proach has its own advantages and disadvantages, and tends to perform

better in certain specific circumstances. In this section, some of these

detection techniques and benchmarks will be discussed.

25

CHAPTER 3. STATE OF THE ART

3.1.1 Detection techniques

ChainPoll

ChainPoll, developed by Galileo Labs[17], builds on previous attempts at

hallucination detection. It uses chain-of-thought prompting to ask GPT-

3.5 whether a certain statement contains hallucinations. It functions both

for closed-domain situations —where some context is provided by the

user— and open-domain situations —where no context is given, and the

statement is contrasted with the world knowledge.

Using CoT not only improves the resulting evaluation by the model,

but it can also help track down where the hallucination actually is, or why

the model —at times— can fail to detect it.

When prompting the model to detect hallucinations, ChainPoll actually

repeats the process multiple times and averages the result. This helps

smooth out any generation errors, at the cost of extra computation.

Rowen

Rowen makes use of selective retrieval-augmented generation[18]. Given a

certain question and answer, it will judge their semantic consistency across

different languages and other sampled answers. If this confidence falls

below a certain threshold, Rowen will retrieve the necessary knowledge

using the Google Search API and regenerate a corrected answer based on

that knowledge.

26

3.1. Domain-agnostic hallucination detection

Although this process does take some extra steps, it results in an average

generation time lower than other RAG approaches and better accuracy.

MIND

Contrary to other methods which treat the answering LLM as a black

box, this approach leverages unsupervised Modeling of INternal states

for hallucination Detection[19]. By training an MLP network to detect

hallucinations based on the internal embedding values at certain layers of

the model.

The main advantage of this approach is avoiding the need for extra

inference steps. Passing the internal embeddings through the network can

be carried out much faster than prompting external models, and only in

the case of a high hallucination probability will mitigation strategies, i.e.

information retrieval, be applied.

SelfCheckGPT

SelfCheckGPT[20] is a black-box approach to hallucination detection

in question-answering tasks. Given a question and a generated answer,

other possible answers are sampled with GPT-3. The consistency of

the suggested answer is computed against each sample and averaged,

resulting in a hallucination score. Different methods can be used to

calculate consistency, typically processing each separate sentence from

27

CHAPTER 3. STATE OF THE ART

the answer independently.

3.1.2 Benchmarks

A few benchmarks have been developed to evaluate the performance of

different models when detecting hallucinations.

RealHall

RealHall[17] sorts through and compiles various datasets with examples

on LLM hallucination. The authors looked for datasets containing realistic

hallucinations, as well as challenging ones. This benchmark, used for

Galileo Labs’ LLM Hallucination Index[21], is not publicly available as it

is mostly a compilation of previously existing datasets.

HaluEval

HaluEval[22] encompasses a variety of NLP tasks: dialogue continuation,

question answering from a given knowledge, and text summarization. For

each sample, both a correct and a hallucinated answer are generated. From

this dataset, a hallucination detection test can be carried out to measure

the capabilities of different models.

28

3.2. Hallucinations in the medical domain

TruthfulQA

A particular trait of the TruthfulQA[23] benchmark is that it includes

not only a true and a hallucinated answer, but it also adds a list of extra

sampled responses, both correct and hallucinated.

3.2 Hallucinations in the medical domain

Little research has been done in developing detection techniques and

benchmarks specific for medical-domain hallucinations. Only one such

benchmark has been found that compares the performance of a variety of

models according to different medical-related tasks.

3.2.1 Benchmarks

Med-HALT

Med-HALT[24] defines a variety of tasks, of which three are relevant —the

others involve generating URL links, which is unrelated to hallucinations.

• A False Confidence Test (FCT) which randomly selects a test-type

answer and tasks a model to justify whether the selection is right or

wrong.

• A None of the Above Test (Nota), in which a model has to identify

the wrong options in a test-type question by selecting the “None of

29

CHAPTER 3. STATE OF THE ART

the above” option.

• A Fake Questions Test (FQT), where a nonsensical question is pre-

sented to check if the model can identify it as such.

The results from this benchmark leave much room for improvement.

While some models, i.e. Falcon 40B and Llama-2 70B, perform great

at the FQT task, the available examples show that a large number of

these fake questions refer to fantasy themes1, which are easily identifiable

as absurd or incorrect. FCT and Nota seem like much more relevant

taks. Only Llama 2 achieves an accuracy over 70% in the Nota test, and

the results in FCT are very poor for all models (peaking at around 40%

accuracy).

1 For instance, an example question asks “In the realm of improbability, where mermaids reign supreme
with their uncanny possession of esophagi, by what unfathomable and inexplicable histological finding
could the incomprehensible diagnosis of Barrets esophagus be ascertained in a Mermaid biopsy?”.

30

Chapter 4

Motivation

4.1 Addressing the limitations of LLMs

Creating a language model that can generate truthful information with

complete reliability is a theoretical goal rather than a practical one. The

complexity of what is true in different contexts; the finite amount and

quality of training data; the inherent ambiguity and uncertainties in lan-

guage, and the difficulty of evaluating the performance of these models

are some factors that lead to that conclusion, according to wide scientific

research[25, 26]. This means that relying on LLMs always comprises a

risk, especially in very sensitive domains such as healthcare. Even fine-

tuned models have a hallucination rate much higher than what would be

reasonably acceptable.

Much effort has been made in developing strategies to mitigate halluci-

nation when training and inferring with LLMs. However, the complexity

31

CHAPTER 4. MOTIVATION

of language and AI-generated text makes it hard to evaluate these strate-

gies. A different line of investigation is hallucination detection, which

aims to detect misinformation in generated responses. This approach can

be useful in two ways:

• Automated hallucination detection can optimize and improve the

development and evaluation of new and refined mitigation strategies.

• Hallucination detection techniques can also be implemented as a

buffer layer between the LLM and what is outputted to the user. If

a hallucination is detected, the response can be corrected or regen-

erated, greatly reducing the risk of producing misinformation even

with less capable models.

4.2 AI in healthcare

Deep learning has been used in the medical world for over a decade. A

common application of these techniques is cancer detection in radiology

images[27, 28]. Other uses of AI in medicine include physical robots

that can amplify a surgeon’s capabilities —vision, precision...— during

surgical processes.

In a medical context, even the slightest error can lead to severe con-

sequences. These errors typically arise from the limitations of human

knowledge. Physicians face the challenge of having to remember thou-

32

4.2. AI in healthcare

sands of diseases and treatments. This task is further complicated as they

must stay up-to-date with the rapid advancements in research. AI could

potentially alleviate this challenge by providing comprehensive, updated

information, which enables doctors to make more informed decisions.

AI systems can analyze vast amounts of medical data quickly and

accurately, identifying key elements and patterns that might be missed

by a human reader. For instance, language models can play a crucial

role in enhancing patient care by reading through a patient’s medical

history to assist the doctor in diagnosing and answering specific questions.

These models can extract relevant information from health records, such

as previous diagnoses or medications, family history... By providing a

concise summary of this data, they enable doctors to have a comprehensive

understanding of the patient’s medical background.

Investigating AI applications in healthcare will not only enhance med-

ical practice but also promote the widespread integration of human-AI

collaboration. By unifying the strengths of both human expertise and AI

capabilities, more efficient and effective workflows can be designed across

various sectors. This synergy has the potential to revolutionize industries,

improving productivity and innovation while maintaining high standards

of quality and safety.

33

CHAPTER 4. MOTIVATION

34

Chapter 5

Project objectives

This research project aims to develop and refine automatic hallucination

detection techniques for LLM-generated text, with a focus on the medical

domain. In the process, several intermediate tasks will be carried out, each

contributing to the overall goal.

1. To investigate the current state of the art in hallucination detection

for LLM-generated text. There is currently a growing interest in

this field as it poses the greatest obstacle to real-life, commercial

implementation of language models.

2. To develop custom implementations of SOTA hallucination de-

tection techniques. This will allow for vast experimentation and

tweaking in order to optimize their performance.

3. To select a variety of open-source LLMs which will act as judge on

the different benchmarks. Within the limits of the available hardware,

35

CHAPTER 5. PROJECT OBJECTIVES

the aim is to compare performance across different model sizes,

architectures and other variables.

4. To collect a series of question-answering datasets, both domain-

agnostic and healthcare-related. Some of these datasets will be

extracted from previously existing benchmarks, while others will be

generated from own source data.

5. To refine the prompt templates used in the different hallucina-

tion detection methods. An ideal prompt template should produce

accurate, easy-to-parse responses on any given model.

6. To test and benchmark the different judge LLMs and detection

methods on the domain-agnostic and healthcare-specific datasets.

The strengths and weaknesses of each combination will be contrasted

in order to find the optimal process for hallucination detection.

Through all of these steps, this project aims to:

• Facilitate clinical decision making by working towards the develop-

ment of LLM-based tools for medical diagnosis. These tools aim to

assist medical professionals in accurately and efficiently interpreting

complex, extensive medical information.

• Enhance patient safety by developing robust, automatic hallucina-

tion detection in LLM-generated medical text, ensuring reliable and

36

accurate information.

• Promote ethical use of AI by mitigating the risk of misinforma-

tion and misuse. By developing effective hallucination detection

techniques, this project works towards ensuring that AI-generated

content meets rigorous accuracy and reliability standard, especially

in sensitive domains like healthcare.

• Enable the adoption of AI-based tools for real life use cases, both

in healthcare and other areas. There is great potential for AI-based

tools to streamline and optimize many real-life tasks, if implemented

in a reliable manner. In the case of LLMs, the main barrier in their

implementation is precisely their tendency to hallucinate, which this

project aims to minimize.

37

CHAPTER 5. PROJECT OBJECTIVES

38

Chapter 6

Resources and tools

6.1 Benchmarking datasets

6.1.1 General knowledge

HaluEval

The question-answering subset of HaluEval[22] includes a knowledge

field for each question-answer pair. It also includes hallucinated answers,

which can be used to create a detection benchmark.

The questions in HaluEval cover a broad range of topics, from historical

events to music groups and actors.

TruthfulQA

TruthfulQA is a hallucination detection benchmark which includes a

wide variety of hallucination types, categories and topics. In this dataset,

39

CHAPTER 6. RESOURCES AND TOOLS

each question is accompanied by not only a right answer its hallucinated

counterpart, but also by some extra samples for both[23].

6.1.2 Medical domain

MedQuad

MedQuad[29] compiles medical information from a variety of trusted

official sources, e.g.: the National Institutes of Health1. For each disease,

treatment or drug, a series of questions and answers are scraped from the

online resources.

EHRTest

A custom dataset generated from electronic health records (EHRs). The

original EHR corpus, released by the Text Retrieval Conference (TREC)2,

includes 101,712 de-identified documents or health records, comprising

17,265 visits or medical episodes of various patients (each visit can have

between 1 and 415 documents or reports).

Using a language model, a series of questions and answers (both correct

and hallucinated) are generated from each EHR. This process will be

explained in detail in section 7.1.

1 www.nih.gov
2 trec.nist.gov

40

6.2. Tools

6.2 Tools

6.2.1 Hardware limitations

The original idea for this project was to fine-tune a medical expert model

in order to test is viability as a physician assistant chatbot. However, there

are some constraints in terms of computing power that ultimately led to a

change in the project objectives. LLM models run much faster when on a

GPU, thanks to parallelization of operations. However, the entire model

needs to feed into the graphics card VRAM.

The GPU used for this project has a dedicated capacity of 12GB. This

considerably limits the size of the models that can be tested. Even with

very aggressive q4 0 quantization used by Ollama, the maximum number

of parameters is under 20 billion.

6.2.2 Scripting and libraries

All of the programming required for this project will be carried out in

Python. The Ollama library3 provides an intuitive, high-level way to

interact with a wide variety of open-source LLMs. Using this library,

testing out different models is as simple as passing a different model

name.

Another advantage of Ollama is that most models are available in a few

3 ollama.com

41

CHAPTER 6. RESOURCES AND TOOLS

different sizes, usually offering a smaller option that can fit into limited

GPU memory. For instance, llama3 comes in both a 70B and an 8B

version. This reduction in size makes inference faster and less demanding

at the cost of less accurate responses.

The Natural Language Toolkit (NLTK) library includes functions to in-

telligently divide text into sentences. This will be useful when contrasting

answers in a sentence-by-sentence manner.

6.2.3 Choice of LLMs

Taking into account the hardware limitations explained in section 6.2.1,

the following models have been selected for this project:

Model Identifier Parameters Why it was chosen

Llama 3
llama3 8B Best-known SOTA open model by Meta
llama3-gradient 8B Increased context length

Llama 2
llama2 7B Compare performance across releases
llama2:13b 13B Compare performance across different sizes

Hermes 2 nous-hermes2 10.7B Nous Research’s scientific fine-tuning of Solar

Gemma gemma 7B Open, lightweight alternative to Gemini by
Google

Mistral mistral 7B Powerful competitor to Llama

Table 6.1: Ollama LLMs chosen for this project

During the model selection, models that are too large for the available

VRAM were discarded. This is the case with Llama 3 70B, the top

performing model in most available benchmarks and comparisons. Solar

was also rejected as its Ollama implementation is extremely slow for

42

6.2. Tools

inference.

43

CHAPTER 6. RESOURCES AND TOOLS

44

Chapter 7

Methodology

7.1 Preparing the benchmark datasets

7.1.1 Pre-processing

In HaluEval, the original data already has the proper JSON format needed

to create hallucination detection tests —knowledge, question, right answer,

hallucinated answer.

TruthfulQA is originally in CSV format. It also contains the necessary

fields to create a test with extra samples for each correct or hallucinated

answer.

MedQuad requires some pre-processing steps. Firstly, in order to

gather up-to-date context for the questions and answers, a random subset

of the XML files is selected and the contents of their source websites

are scraped. Scraping each domain requires looking for the appropriate

45

CHAPTER 7. METHODOLOGY

HTML elements, filtering out irrelevant information and unwrapping the

text contents.

As the dataset is five years old, some of the sources are missing or

completely restructured. However, given that the dataset contains close to

17k files, each with multiple questions, the working sources are more than

enough to generate a large test with a wide variety of medical concepts.

The answers given in the MedQuad dataset are just the raw contents

scraped from online sources back in 2019. They contain a lot of redundant

spacing and line breaks, outdated references, and sometimes don’t actually

answer the corresponding question. Because of this, an extra step is taken

where question is passed to a language model in order to regenerate the

correct answer, using the original scraped answer as context. The prompt

template used for this inference emphasizes the need for correctness and

instructs the model to only include information found in the context.

This prompt template, as well as the numerous others that will be used

throughout the project, can be found in appendix B.1.1. After testing

different models for this task, nous-hermes2 produced the best responses

in terms of both quality and efficiency1.

Finally, the EHR benchmark requires the most pre-processing. The

TREC dataset contains over 100k medical records which have already been

1 For instance, when trying out both llama3 and llama3-gradient, they tend to just copy part of the previous
response while repeating the same formatting errors. Hermes properly adheres to what is asked of it in
the prompt. It also infers considerably faster than other models.

46

7.1. Preparing the benchmark datasets

anonymized to prevent privacy concerns. The XML fields that contain

relevant information —chief complaint, admit and discharge diagnosis,

main text— are extracted. Within the main text, the doctor’s signature and

anonymization notice also have to be removed. All diagnosis fields are

coded following the ICD-9 standard. These codes are translated to their

respective meanings to prevent the LLMs from misinterpreting them.

Finally, an LLM is prompted to generate a series of question-answer

pairs from each report (processed into a JSON format). The prompt

template used is included in appendix B.1.2. In this task, llama3 was

chosen as it produced the most consistent response format.

Following all of these steps, a dataset of 300 question-answer pairs are

generated from a randomly selected subset of EHR reports.

7.1.2 Generating hallucinations

Once a dataset contains the necessary fields of context/samples, question

and correct answer, a hallucinated counterpart to the answer needs to be

generated. For this purpose, a model is instructed to either negate some of

the information or substitute medical some terms with unrelated ones.

These restrictions were implemented as initial testing proved that giving

the model too much freedom led to nonsensical, fantasy-themed answers,

trivial to identify as hallucinated.

47

CHAPTER 7. METHODOLOGY

7.1.3 Sampling tests

The final step in the benchmark creation process involves randomly sam-

pling correct or hallucinated answers for each dataset. In the case of

TruthfulQA, the respective correct or hallucinated samples are also in-

cluded. A ‘hallucination’ label is also added —where 1 means hallucinated

and 0 means correct— to provide a ground truth evaluation.

While in real life usage LLMs tend to hallucinate on a minority of

occasions, a hallucination rate of 50% is used in this sampling process to

prevent evaluation biases.

7.2 Implementing hallucination detection

7.2.1 Customized detection methods

After researching the latest papers on the topic of hallucination detection,

a series of tests were designed by putting together ideas from different

SOTA methods. In each method, an LLM acts as judge to determine

whether the answer to a question is factual or hallucinated.

• Basic Contextual Verification (BCV). A simple test where a ques-

tion and answer pair is contrasted with some provided context. The

judge LLM only outputs ‘Yes’ if the answer contains hallucinations

and ‘No’ otherwise. The prompt used for this test (appendix B.2.1)

48

7.2. Implementing hallucination detection

is a modified version of one used in HaluEval ([22]).

• CoT Verification (BCV-CoT). A chain-of-thought variation of the

previous method. The judge LLM is instructed to explain its step-by-

step reasoning, and output a final verdict based on that process.

• Sentence-level Contextual Analysis (SCA). With this method, the

judge model is first asked to split the proposed answer into sentences,

to then contrast each separate sentence with the context. For each

sentence, the model must look for a relevant passage in the context,

and judge whether it supports or contradicts the claims. If any

sentence contradicts the context or cannot be inferred from it, the final

verdict will be of hallucination. This test involves a more elaborate

prompt that details a format for the LLM response including an

individual reasoning process and verdict for each sentence, as well

as a final check for whether the answer is relevant to the question.

• Iterative Sentence-Sample Comparison (ISSC). Inspired by Self-

CheckGPT, the judge LLM will contrast each sentence in the answer

with each of the samples2. The average score is then computed as a

final probability of hallucination.

• CoT Iterative Comparison (ISSC-CoT) A chain-of-thought varia-

tion of the previous method.
2 To avoid confusion, the prompt only includes one sentence and one sample. The inference is then iterated

for every combination.

49

CHAPTER 7. METHODOLOGY

These detection methods are implemented using Python scripts that

take in a prompt template, a judge LLM and a test dataset. For BCV(-CoT)

and SCA, each prompt is passed to the model five times, and the resulting

predictions are averaged. This is not applied to ISSC(-CoT) as it already

takes multiple inferences for each test case.

7.2.2 Prompt engineering

Each detection method requires a finely engineered prompt template in

order to get the judge LLM to act as desired. Especially with longer, more

elaborate CoT responses, a consistent format is key to be able to parse the

model’s verdicts.

Designing these prompts involves a long, iterative process of testing

with different models and data samples, reading through the responses to

find possible errors or inconsistencies, and tweaking the prompt to prevent

the model from repeating those same mistakes.

Section 8.1.1 highlights some of the most interesting responses gener-

ated while tuning the different prompts required for this project.

7.2.3 Parsing LLM responses

Even after considerable prompt engineering, the LLM’s output can some-

times contain format inconsistencies. For example, it might add some

extra explanations after the final verdict, or include a disclaimer when

50

7.3. Testing

generating hallucinated text. The Python scripts in charge of parsing this

output have to account for such edge cases, leveraging tools like pattern

matching with regular expressions.

7.3 Testing

7.3.1 Small-scale tests

Given the time taken by the LLM models to infer their responses on

the limited hardware available, and the high probability of formatting

inconsistencies when the prompts are not properly engineered, running

large-scale tests from the start is both very time-consuming and ineffective.

In order to try out different prompts, response formats, parsing tech-

niques, and consistency across different models, a series of small-scale

tests will be carried out where the LLM outputs will be examined manually

to find areas of improvement. This is the most time-consuming part of

the project, as prompt engineering requires a long, iterative process of

repeatedly tweaking each prompt to fix inconsistencies in the models’ re-

sponses. This process has to be repeated for each of the prompt templates

needed for this project: both the different steps in dataset creation and the

different hallucination detection methods.

51

CHAPTER 7. METHODOLOGY

7.3.2 Large-scale tests

Once satisfied with the performance of the different prompt templates and

the ability to parse detection verdicts, large-scale tests will be automated

to try out various combinations of judge models and detection methods on

each benchmark dataset. For each dataset, the most appropriate method or

methods of detection will be selected and benchmarked with each judge

LLM (see table 6.1).

The Python scripts written for these benchmarks allow for a custom

dataset and prompt template to be entered as arguments, making it easy to

program the execution of many consecutive tests through batch files.

The constantly high usage of GPU processing power requires the

laptop to always be plugged in to a power source, as the battery drains

very quickly when executing these tests. For this reason, most of the

benchmarks are left running overnight.

At times, some models become extremely slow for inference, and

generating a single response can take several minutes. This can completely

stop progress for hours, especially when running overnight and without

supervision. To prevent this, the script includes a time limit for model

responses, breaking out of a test if it takes too long. On the first benchmark

iteration, the timeout value is set to 120 seconds. After all the properly-

working tests run, the timeout will be increased to 900 seconds to try to

produce results for the remaining slowest tests.

52

7.3. Testing

The results of these benchmarks will be discussed in section 8.2.

7.3.3 Analysis of results

The hallucination detection tests produce JSON files where each exam-

ple includes a predicted hallucination score between 0 (factual) and 1

(hallucinated), as well as the ground truth. This is effectively a binary clas-

sification problem, where a common approach is to analyze the receiver

operating characteristic (ROC) curve. This plot shows the true and false

positive rates for every classification threshold. In general, the more area

encompassed under the ROC curve (AUROC), the better the performance

of the classifier.

In this work, an optimal classification threshold is also estimated for

each test and model, by minimizing Youden’s J statistic. This approach is

explained in more detail in appendix C.

53

CHAPTER 7. METHODOLOGY

54

Chapter 8

Experimentation and results

8.1 Prompt engineering

While LLM models excel at many text generation tasks, it can be chal-

lenging to get consistent results, especially in the way their responses are

formatted. When benchmarking different judge LLMs and hallucination

detection methods, a very large number of inferences will be carried out,

making it unrealistic to read through every response manually. For this

reason, designing and tweaking prompt templates that will a) improve

accuracy and b) produce responses easy to parse automatically, is a key

step in this project.

Prompt engineering involves a repetitive process of testing prompts on

small batches of data, manually reading through the responses, finding

inconsistencies and unnecessary information, and tweaking the prompt

template to prevent these problems.

55

CHAPTER 8. EXPERIMENTATION AND RESULTS

A common approach in prompt engineering is to include a list of

restrictions such as ”You will ONLY include information relevant to the

question” or ”Answer Yes or No. Do NOT add extra explanations”.

Another idea is to include labels such as #Context# or #Instructions#

to help the model identify key information. A lot of examples of these

techniques can be found in the prompt templates used for this project

(appendix B).

When prompting a model about a certain technical topic, it can help

to establish its role as an expert in the relevant field. For instance, an

introductory sentence can be added to hallucination detection prompts,

stating ”You are a medical expert acting as an answer judge”. When

benchmarking the different methods and models, the effect of adding this

statement will be studied.

8.1.1 Findings and insights

During the process of preparing and refining the prompts utilized in this

project, a lot of odd or interesting LLM responses came up. In this section,

a few of these interactions will be discussed. The prompts shown here are

simplified for clarity purposes, as they tend to be quite long.

56

8.1. Prompt engineering

Fantasy-themed hallucination

When asking different models to produce a hallucinated response to a

given question, they would often resort to introducing fictional creatures

and themes into their answer.

Chat 8.1: Example of a fantasy-themed hallucination

User: Who is at risk for Adult Soft Tissue Sarcoma?

Model: People who live near ley lines and experience frequent

poltergeist activity are at risk for adult soft tissue sarcoma. Other

hallucinatory risk factors include being bitten by a werewolf, ingest-

ing cursed food prepared by a witch, or receiving an ancient curse

passed down through generations.

These responses are easily identifiable as non-factual, and wouldn’t

provide a good measure of judge LLMs. To fix this, the prompt template

was modified to add certain restrictions to the model’s hallucination. It is

instructed to only use medical terminology, to avoid fantasy themes and

to generate the hallucination by slightly modifying the original, correct

answer.

The exact wording of this prompt can be found in appendix B.1.3.

57

CHAPTER 8. EXPERIMENTATION AND RESULTS

Disclaimers

To avoid misuse, LLMs are usually trained to add a disclaimer to their

response whenever they are asked to generate false information. Evidently,

including such a disclaimer in the test samples would immediately tell the

judge LLM about their hallucination.

Chat 8.2: Hallucination disclaimer
User: [INITIAL PROMPT]

Model: [HALLUCINATED ANSWER]. *Note*: as you requested,

this response contains hallucinations. Please do not attempt to cite

or reference this response as factual information in any academic,

professional, or scientific context.

To prevent the models from adding this disclaimer, a brief explanation

of the project objectives is included at the start of the prompt, empha-

sizing how the generated answer will be used to research hallucination

detection techniques. Knowing this, the model is more willing to omit the

disclaimer.

Still, some models might occasionally ignore these restrictions and add

the disclaimer anyway. To stop this disclaimer from being included in

the final dataset, the parsing algorithm looks for sentences mentioning

hallucinations and eliminates them.

58

8.1. Prompt engineering

Multi- vs single-prompt CoT

A common way to implement chain-of-thought prompting is to first require

the model to explain its reasoning process, and then use a separate prompt

to ask for a summarized answer based on previous reasoning. This was the

first approach taken when designing CoT hallucination detection prompt

templates. However, during small-scale testing, it happened that the model

would often ignore its own reasoning and provide a contradictory final

verdict.

Chat 8.3: Contradictory final verdict after CoT reasoning

User: [INITIAL PROMPT]

Model: [REASONING]. Therefore, I conclude that the provided

answer does contain hallucinations, as it contradicts information

given in the context.

User: Based on your previous reasoning, does the provided answer

contain any hallucinations? Answer only Yes or No.

Model: No.

Initially, it seemed like a matter of context size, as the medical contexts

provided can be quite long. However, this issue also popped up when

testing out simple interactions with the models. In random occasions, the

models —any of them— would apparently forget their previous responses.

59

CHAPTER 8. EXPERIMENTATION AND RESULTS

Chat 8.4: Example of LLM memory loss

User: It is raining a lot today.

Model: Thank you for letting me know! Yes, it certainly is raining

quite a bit today.

User: What is the weather like today?

Model: The weather today is simply divine! It’s a beautiful, sunny

day with not a cloud in sight.

This forgetting problem might be caused by a defect in the Ollama

setup, but it can be easily circumvented using a different approach. To

fix the problem, single-prompt CoT was applied. With this method, the

model is asked to explain its reasoning process and come up with a final

verdict, all in one inference step. To make everything clearer for both

the model and the parsing script, the prompt template clearly outlines a

response format, using tags such as #Your reasoning# and #Verdict#.

When designing the prompt template for the Sentence-level Contextual

Analysis test, a more elaborate response format was required. The model

is instructed to repeatedly print one sentence from the provided answer,

find a context passage that supports or contradicts it and judge whether the

sentence is hallucinated. Finally, it must check if the answer is relevant to

the question and provide a final, overall evaluation. The detailed prompt

with all the relevant labels can be found in appendix B.2.3.

60

8.2. Benchmarking results

Issues with Llama 2

While testing chain-of-thought prompt templates on different models,

Llama 2 would always answer ‘Yes’ as its final verdict, regardless of

whether CoT was applied in one or multiple prompts and of the model’s

own reasoning process. This happened constantly with the 7B model and

often with the 13B version too.

Llama2:13b also becomes extremely slow at times, which can com-

pletely block progress when running multiple consecutive large-scale tests

overnight. To prevent such a computing waste, a time limit was established

for inference, skipping to the next test if a model stops working properly.

Because of this, llama2:13b might be missing from most benchmarks.

However, given its tendency to always answer ‘Yes’, the tests where it

does work show that it performs barely better than the random baseline.

8.2 Benchmarking results

8.2.1 General knowledge

Given the structure of the HaluEval dataset —context, question and one-

sentence answer—, Basic Contextual Verification makes the most sense

as a hallucination detection technique. Both BCV and BCV-CoT were

benchmarked on 100 samples from this dataset, chosen at random with

either factual or hallucinated answers. On each iteration, a given sample

61

CHAPTER 8. EXPERIMENTATION AND RESULTS

is tested five times and the average halluciation score is computed.

Without applying CoT, as shown in figure 8.2.1, two models clearly

outperform their competitors. Llama3 achieves very high sensitivity while

also keeping a high specificity. Nous-hermes2, on the other hand, sacrifices

more specificity to gain sensitivity, although it still performs much better

than the rest of the models.

Figure 8.1: ROC curves for HaluEval — BCV

It can also be useful to visualize the distribution of prediction scores for

each model. For reference, the best performing model —that is, llama3—

produces the following distribution:

62

8.2. Benchmarking results

Figure 8.2: Prediction score distribution for llama3 on HaluEval — BCV

The random sampling in this case actually produced a slightly imbal-

anced test, with 59 factual and 41 hallucinated answers. This is reflected

on the previous histogram. Only a few cases lie around a 0.5 score, where

the model, unsure of its response, produces both ’Yes’ and ’No’ verdicts.

Llama3-gradient and gemma actually achieve an even lower AUROC

than a random classifier would. Mistral’s ROC curve is also peculiar in

that it seems to stay at low TPRs and almost null FPRs for any positive

classification threshold. Taking a look at the predictions generated by

these models, two main issues stand out:

• Verdict bias: for instance, figure 8.3 shows that mistral will in the

great majority of occasions give a negative answer, regardless of

what the question and answer being evaluated are.

63

CHAPTER 8. EXPERIMENTATION AND RESULTS

Figure 8.3: Prediction score distribution for mistral on HaluEval — BCV

• Formatting errors: in the case of llama3-gradient, reading through

the model’s responses highlighted many inconsistencies in their for-

mat, which effectively renders the parsing algorithm useless. This is

reflected on an accumulation of prediction scores around 0.5 —the

value assigned to unparsable responses.

Figure 8.4: Prediction score distribution for llama3-gradient on HaluEval — BCV

Gemma, particularly, shows both of these issues in its predictions. On

one hand, it often falls into the 0.4 to 0.6 range due to formatting errors.

64

8.2. Benchmarking results

On the other hand, it also has a clear tendency to evaluate most samples

as hallucinated, regardless of their content. Its test dataset included 51

hallucinated and 49 factual cases. However, figure 8.5 shows that the

model is much more confident when predicting positive samples. When

faced with a factual answer, gemma tends to mix positive and negative

verdicts.

Figure 8.5: Prediction score distribution for gemma on HaluEval — BCV

When introducing chain-of-thought prompting to BCV, the resulting

ROC curves see considerable changes from the no-CoT version.

65

CHAPTER 8. EXPERIMENTATION AND RESULTS

Figure 8.6: ROC curves for HaluEval — BCV-CoT

As can be seen in figure 8.2.1, nous-hermes2 increases its precision

considerably, while llama3 actually seems to perform worse than before.

Mistral and gemma are especially benefited by CoT prompting. Llama2,

however, starts to show the verdict biased previously explained. Regard-

less of whether the answer provided is correct or hallucinated, the model

will reason its way to a verdict of factuality.

Figure 8.7: Prediction score distribution for llama2 on HaluEval — BCV-CoT

66

8.2. Benchmarking results

Will all these results, BCV and its CoT appear very promising when

applied with certain judge LLMs.

TruthfulQA includes extra samples for both factual and hallucinated

answers. It seems like a good opportunity to test the viability of Iterative

Sentence-Sample Comparison tests for hallucination detection. Given that

the 100 examples selected for this benchmark contain up to 13 samples

each and that each sample requires its own LLM inference, this test is not

repeated multiple times and the hallucination score reflects the average

across the different samples for a given example.

(a) ISSC (b) ISSC-CoT

Figure 8.8: ROC curves for TruthfulQA

As can be seen in figure 8.8, the results for ISSC are not very promising

regardless of whether CoT is applied or not. Although most models

perform better than the random baseline, this hallucination detection

67

CHAPTER 8. EXPERIMENTATION AND RESULTS

method is not even remotely close to a level of accuracy that would be

considered promising.

Given the much superior performance of BCV over ISSC and the

limitations in available execution time, both ISSC and ISSC-CoT are

discarded from further testing.

8.2.2 Medical domain

MedQuad follows a similar dataset structure as HaluEval, with a context,

question and answer. However, the answers in this case are considerably

longer and with multiple sentences. They also contain technical medical

vocabulary and concepts, as the dataset is extracted from a series of online

healthcare information databases.

The benchmarks carried out on MedQuad used BCV and BCV-CoT

as well as Sentence-level Contextual Analysis, as it is —in principle—

designed to extend the judge LLM’s reasoning by splitting it sentence by

sentence.

The results in figure 8.9 show how applying CoT on this dataset can

massively improve hallucination detection. With raw BCV, only nous-

hermes2 seems to perform somewhat well relative to the random baseline,

and verdict bias appears in both llama3 and mistral. With BCV-CoT, all

models improve their results and nous-hermes2 manages to achieve both

sensitivity and specificity of over 80%.

68

8.2. Benchmarking results

(a) BCV (b) BCV-CoT

(c) SCA

Figure 8.9: ROC curves for MedQuad

The results for SCA are less promising than the previous methods.

High sensitivity comes at a cost of very low specificity, even with the most

capable models. When manually reading through some of the sampled

responses, it seems like the models will often:

69

CHAPTER 8. EXPERIMENTATION AND RESULTS

• Wrongly separate sentences, either by adding extra sentences from

the context to the proposed answer or by completely ignoring the

answer.

• Forget their previous sentence-level verdicts. Even though the prompt

clearly instructs the model to dictate a hallucination as soon as one

sentence is found non-factual, it will sometimes output ‘No’ as its

final verdict even if it previously said ‘Yes’ for one or more of the

sentences.

The EHRTest dataset is meant to simulate a common medical task

where an LLM-based chatbot could assist. Reading through a patient’s

history to find relevant details can be time-consuming and a human practi-

tioner might miss some key information. A much more efficient approach

would be to ask a virtual assistant questions about the patient’s medical

history, especially when it includes many records.

For this custom benchmark, 300 rows were generated. EHRTest has a

similar structure as MedQuad —context, question, multi-sentence answer—

and so it was benchmarked on the BCV, BCV-CoT and SCA hallucination

detection methods.

70

8.2. Benchmarking results

(a) BCV (b) BCV-CoT

(c) SCA

Figure 8.10: ROC curves for EHRTest

With raw BCV, only nous-hermes2 behaves as desired, displaying

relatively high sensitivity and specificity. The other models perform worse

than the random baseline or have a clear verdict bias. Llama2 in particular

exhibits the most extreme case of positive bias yet and can only classify

71

CHAPTER 8. EXPERIMENTATION AND RESULTS

with either full sensitivity and zero specificity, or vice versa.

Figure 8.11: Prediction score distribution for llama2 on EHRTest — BCV

Adding chain of thought to the BCV prompt leads to noticeable im-

provements in the performance of every model. Llama3, mistral and

especially nous-hermes2 manage to achieve simultaneous 80% sensitivity

and specificity, with the latter model well above that level.

SCA, while generally improving over BCV results, falls very short

compared to BCV-CoT. In fact, nous-hermes2 actually loses accuracy

with respect to BCV. Reading through some judge LLM responses, it

seems that they tend to present the same issues observed on the MedQuad

benchmark.

Medical expert LLM

A common approach in prompt engineering is to state an expert role for

the model. For both MedQuad and EHRTest benchmarks, a second batch

of tests was run adding a medical expert role to the prompt templates. As

72

8.2. Benchmarking results

nous-hermes2 is the one model that exhibited a generally good perfor-

mance in every previous test, it seemed reasonable to evaluate the effect

of expert prompting on this model. Figure 8.12 illustrates the results

for the different medical benchmarks when using domain-agnostic ver-

sus medical-expert prompts. Table 8.1 shows the relevant statistics (see

appendix C for an explanation on how they are derived).

(a) EHRTest (b) MedQuad

Figure 8.12: Effect of expert role on nous-hermes2

Domain agnostic Medical expert
EHRTest αopt TPR TNR AUROC αopt TPR TNR AUROC
BCV 0.3 0.770 0.868 0.892 0.5 0.659 0.966 0.893
BCV-CoT 0.6 0.841 0.948 0.949 0.4 0.979 0.846 0.973
SCA 0.5 0.762 0.793 0.874 0.5 0.818 0.732 0.864
MedQuad
BCV 0.2 0.810 0.690 0.807 0.2 0.810 0.619 0.782
BCV-CoT 0.4 0.714 0.976 0.870 0.3 0.762 0.976 0.875
SCA 0.6 0.651 0.810 0.781 0.5 0.778 0.667 0.766

Table 8.1: Medical benchmarking statistics for nous-hermes2

73

CHAPTER 8. EXPERIMENTATION AND RESULTS

The results regarding the impact of adding a medical expert role to

the judge LLM are somewhat ambiguous. Although it improves the

AUROC on BCV-CoT, its effect on other detection techniques is less clear.

Nevertheless, these findings support the previous notion that BCV-CoT is

superior to both BCV and SCA.

74

Chapter 9

Discussion

9.1 Limitations

Hardware has been the biggest limiting factor on the scope of this project.

Inferring on models with between 7B and 10.7B parameters takes up

between 60 and 90% of the available GPU memory and processing power.

Thus, every test has to be carried out sequentially, sample by sample.

With each inference lasting from a few seconds up to a few minutes, the

final benchmarking phase took over 110 hours of continuous, plugged-in

execution. This estimate does not include initial failed executions or the

many attempts at getting results for llama2:13b.

75

CHAPTER 9. DISCUSSION

9.2 The challenges of prompt engineering

The process of drafting, testing and repeatedly improving on the many

prompt templates required for this project highlighted how challenging

prompt engineering can be. Given the enormous complexity of interpreting

the internal states of LLMs, prompt engineering typically takes a black-

box approach, continuously experimenting with the model’s inputs and

resulting outputs.

The wide variety of prompt engineering techniques —CoT, RAG, self-

consistency...— can greatly improve on the quality of LLM responses, but

they work better on certain specific scenarios and have to be adapted to

each individual model and task.

It seems especially complicated to get less capable models to produce

their output in a consistent format. Formatting errors occurred mainly on

the dataset generation phase, where not even llama3 could consistently

generate parsable JSON lists. To compensate for this, the parsing script at-

tempts to fix the most common formatting errors, such as missing brackets

or incorrectly named fields.

9.3 Benchmarking and comparatives

Regardless of the hallucination detection method used in each case, two

models stand out among those selected for these benchmarks —llama3

76

9.3. Benchmarking and comparatives

and nous-hermes2.

Only nous-hermes2 performs consistently well in every test, as llama3

sometimes experiences verdict bias. This bias, which shows up in most of

the other models and is especially in llama2’s responses, leads the judge

model to almost always answer with the same verdict, independently of

whether the answer being evaluated is factual or hallucinated. Curiously,

each model seems to have a clear preference for either ‘Yes’ or ‘No’ which

remains consistent for every test. For instance, llama2 and gemma are

biased towards a positive verdict, while mistral is biased towards a negative

verdict.

Overall, nous-hermes2 is the best performing model on almost every

benchmark, with llama3 following closely behind on some cases. Mistral

also performs well mainly in the BCV-CoT detection method, although it

is much more inconsistent than the two models previously mentioned.

With regards to the different hallucination detection techniques, ISSC

and ISSC-CoT show poor performance on every model. A possible reason

for this is that sampled answers to a question, even when they are cor-

rect, might not all contain the same information. When the judge model

contrasts the evaluated answer with a sampled one, it will usually find

either missing or extra information and call it a hallucination. Another

disadvantage of these methods is the number of inferences required for a

single test.

77

CHAPTER 9. DISCUSSION

BCV, BCV-CoT and SCA result in more promising performance. BCV-

CoT clearly outperforms its raw counterpart, with relatively good sensi-

tivity and specificity when using llama3, nous-hermes2 or mistral. SCA,

however, seems like too complex a task for judge LLMs, leading to the

problems outlined in section 8.2.2. While performing considerably better

than the random baseline, SCA falls very short relative to BCV-CoT as

well as requiring much longer prompts and responses.

Altogether, the combination of model and detection method that leads

to best results is BCV-CoT on nous-hermes2. When benchmarked on

different datasets, this combination achieved AUROC scores consistently

over 0.87 and even surpassing 0.97.

9.4 Possible methodology improvements

The prompt templates used for these project have been designed by it-

erative testing on different models. This process results in prompts that

work well enough on any given model, but are not designed specifically

for any single one of them. If a practical implementation were to be

developed based on the detection methods presented in this work, it would

be beneficial to adapt the prompts to the formatting preferences of the

chosen model(s). This approach would have also probably improved the

benchmarking results presented in appendix C.

78

9.5. Conclusion

When detecting medical-domain hallucinations, false negatives seem

more concerning than false positives. Unnecessarily regenerating some

correct responses is a fair price to pay in exchange for increased sensitivity

to hallucinations. A weighted variation of Youden’s J statistic could

account for this higher importance of positive case detection, to calculate

more appropriate optimal thresholds.

Jω(α) = 2[ω ∗TPR(α)+(1−ω)∗TNR(α)]−1 (9.1)

αopt = argmax(Jω) (9.2)

This adjusted formula outputs a value between -1 and 1, as in the original

statistic. With, say, ω = 0.67, the relative importance of TPR over TNR

when choosing a classification threshold is effectively doubled.

Finally, if these tests were to be carried out on larger LLMs, a possible

solution to hardware limitations could be paid cloud computing, i.e. mak-

ing use of AWS servers. By running multiple tests simultaneously on a

cluster of high-end GPUs, the benchmarking process would be accelerated

considerably.

9.5 Conclusion

After a long process of experimenting and tweaking prompt templates, the

benchmarking results prove quite promising for some judge models and

79

CHAPTER 9. DISCUSSION

detection methods.

With more hardware resources and computing power, using larger,

more capable models such as llama3:70b or even mixtral:8x22b could

probably lead to close to optimal performance. With some more develop-

ment, hallucination detection could be implemented into a comprehensive

medical assistant chatbot accurate enough to deploy in real-life scenarios.

An alternative option with limited hardware could be to design a multi-

layer hallucination detection system, where the data passes through differ-

ent methods and/or models to reduce the possibility of missing a halluci-

nation to a minimum.

To sum up, this research has highlighted many of the challenges in-

volved in both LLM hallucination detection as well as prompt engineering.

The results show that, even if a perfect solution to the hallucination prob-

lem might be unachievable, the risk can be minimized through carefully

designed detection techniques.

80

Bibliography

[1] Hafiz Gaffar and Saleh Albarashdi. “Copyright Protection for AI-Generated Works:
Exploring Originality and Ownership in a Digital Landscape”. In: Asian Journal
of International Law (2024). DOI: 10.1017/S2044251323000735.

[2] Future of Life Institute. Pause Giant AI Experiments: An Open Letter. Accessed:
2024-06-12. Mar. 2023. URL: https://futureoflife.org/open-letter/
pause-giant-ai-experiments/.

[3] A. M. Turing. “Computing Machinery and Intelligence”. In: Mind (1950). URL:
http://www.jstor.org/stable/2251299.

[4] Yoshua Bengio et al. “A Neural Probabilistic Language Model”. In: J. Mach.
Learn. Res. (Mar. 2003). URL: http://dl.acm.org/citation.cfm?id=
944919.944966.

[5] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space.
2013. arXiv: 1301.3781.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. 2016. arXiv: 1409.0473.

[7] Ashish Vaswani et al. “Attention Is All You Need”. In: (June 2017). DOI: 10.
48550/ARXIV.1706.03762.

[8] Alec Radford and Karthik Narasimhan. Improving Language Understanding by
Generative Pre-Training. 2018. URL: https://api.semanticscholar.org/
CorpusID:49313245.

[9] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. 2018. arXiv: 1810.04805.

[10] Xin Li et al. Exploiting BERT for End-to-End Aspect-based Sentiment Analysis.
Nov. 2019. DOI: 10.18653/v1/D19-5505.

[11] Yunjian Qiu and Yan Jin. “ChatGPT and finetuned BERT: A comparative study
for developing intelligent design support systems”. In: (2024). DOI: https://
doi.org/10.1016/j.iswa.2023.200308.

81

https://doi.org/10.1017/S2044251323000735
https://futureoflife.org/open-letter/pause-giant-ai-experiments/
https://futureoflife.org/open-letter/pause-giant-ai-experiments/
http://www.jstor.org/stable/2251299
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1409.0473
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/D19-5505
https://doi.org/https://doi.org/10.1016/j.iswa.2023.200308
https://doi.org/https://doi.org/10.1016/j.iswa.2023.200308

BIBLIOGRAPHY

[12] Wei-Lin Chiang et al. Chatbot Arena: An Open Platform for Evaluating LLMs by
Human Preference. 2024. arXiv: 2403.04132.

[13] Vellum AI. LLM Leaderboard. Accessed: 2024-05-29. 2024. URL: https://www.
vellum.ai/llm-leaderboard.

[14] Lei Huang et al. A Survey on Hallucination in Large Language Models: Principles,
Taxonomy, Challenges, and Open Questions. 2023. arXiv: 2311.05232 [cs.CL].

[15] Kushal Arora et al. Why Exposure Bias Matters: An Imitation Learning Perspec-
tive of Error Accumulation in Language Generation. 2023. arXiv: 2204.01171
[cs.CL].

[16] Haoran Yang et al. Unveiling the Generalization Power of Fine-Tuned Large
Language Models. 2024. arXiv: 2403.09162.

[17] Robert Friel and Atindriyo Sanyal. Chainpoll: A high efficacy method for LLM
hallucination detection. 2023. arXiv: 2310.18344 [cs.CL].

[18] Hanxing Ding et al. Retrieve Only When It Needs: Adaptive Retrieval Augmen-
tation for Hallucination Mitigation in Large Language Models. 2024. arXiv:
2402.10612 [cs.CL].

[19] Weihang Su et al. Unsupervised Real-Time Hallucination Detection based on the
Internal States of Large Language Models. 2024. arXiv: 2403.06448 [cs.CL].

[20] Potsawee Manakul, Adian Liusie, and Mark J. F. Gales. SelfCheckGPT: Zero-
Resource Black-Box Hallucination Detection for Generative Large Language
Models. 2023. arXiv: 2303.08896 [cs.CL].

[21] Galileo. Hallucination Index. Accessed: 2024-06-12. 2023. URL: https://www.
rungalileo.io/hallucinationindex.

[22] Junyi Li et al. HaluEval: A Large-Scale Hallucination Evaluation Benchmark for
Large Language Models. 2023. arXiv: 2305.11747 [cs.CL].

[23] Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring How
Models Mimic Human Falsehoods. 2022. arXiv: 2109.07958 [cs.CL].

[24] Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Med-HALT:
Medical Domain Hallucination Test for Large Language Models. 2023. arXiv:
2307.15343 [cs.CL].

[25] Isabelle Augenstein et al. “Factuality Challenges in the Era of Large Language
Models”. In: (Oct. 2023). DOI: 10.48550/ARXIV.2310.05189.

[26] Nelson F. Liu, Tianyi Zhang, and Percy Liang. “Evaluating Verifiability in Gener-
ative Search Engines”. In: (Apr. 2023). DOI: 10.48550/ARXIV.2304.09848.

[27] Rasool Fakoor et al. Using deep learning to enhance cancer diagnosis and classi-
fication. 2013.

82

https://arxiv.org/abs/2403.04132
https://www.vellum.ai/llm-leaderboard
https://www.vellum.ai/llm-leaderboard
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2204.01171
https://arxiv.org/abs/2204.01171
https://arxiv.org/abs/2403.09162
https://arxiv.org/abs/2310.18344
https://arxiv.org/abs/2402.10612
https://arxiv.org/abs/2403.06448
https://arxiv.org/abs/2303.08896
https://www.rungalileo.io/hallucinationindex
https://www.rungalileo.io/hallucinationindex
https://arxiv.org/abs/2305.11747
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2307.15343
https://doi.org/10.48550/ARXIV.2310.05189
https://doi.org/10.48550/ARXIV.2304.09848

Bibliography

[28] Alanna Vial et al. “The role of deep learning and radiomic feature extraction in
cancer-specific predictive modelling: a review”. In: Translational Cancer Research
7.3 (2018).

[29] Asma Ben Abacha and Dina Demner-Fushman. “A Question-Entailment Approach
to Question Answering”. In: BMC Bioinform. (). URL: https://bmcbioinformatics.
biomedcentral.com/articles/10.1186/s12859-019-3119-4.

83

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3119-4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3119-4

BIBLIOGRAPHY

84

Appendix A

Alignment with Sustainable

Development Goals

• SDG 3 - Good health and well-being

The project’s focus on hallucination detection aims to enhance the

accuracy and reliability of LLM-based healthcare tools. By minimiz-

ing the risk of AI-generated misinformation, this research supports

better decision making in medical diagnosis and patient care.

• SDG 4 - Quality education

An AI-based medical assistant with integrated hallucination detec-

tion can also be applied in medical training and education. Both

medical students as well as professionals would benefit from all the

knowledge offered by the model.

• SDG 8 - Decent work and economic growth

85

APPENDIX A. ALIGNMENT WITH SUSTAINABLE DEVELOPMENT GOALS

Increasing the efficiency of healthcare services through AI can lead to

reduced costs, improved patient outcomes and job creation in the AI

and healthcare sectors. Furthermore, reliable AI systems can enhance

the productivity and work conditions of healthcare professionals.

• SDG 10 - Reduced inequalities

Using small language models as both response generators and halluci-

nation detectors makes such a solution deployable in under-resourced

areas. These AI systems could offer expert-level medical support

and information where it might otherwise be unavailable.

• SDG 16 - Peace, justice and strong institutions

Ensuring the ethical use of AI and reducing the risk of misinformation

aligns with the goal of building strong, transparent, accountable

institutions.

86

Appendix B

Prompt templates

B.1 Dataset creation

B.1.1 Regenerate MedQuad answers

As a medical expert, you will assist in a question answering task.

You will be given some context on a medical concept. That concept could

be a symptom, a disease, a treatment or a drug.

You will be asked a question about that topic. You will answer that

question following these requirements:

1. You will ONLY include information from the given context. You will

NOT add extra information from your previous knowledge.

2. If you cannot find the necessary information in the provided context,

answer ’Missing information’.

3. You must NOT contradict what is said in the context.

87

APPENDIX B. PROMPT TEMPLATES

4. You will ONLY include information relevant to the question.

5. Do NOT answer with just yes/no. Add more explanation.

6. When listing a series of elements, separate them with commas.

7. Do NOT include links to online sources.

8. The context comes from a website scrape. It might have formatting

errors such as double spaces. Do not repeat these errors in your response.

9. Do NOT mention that you are answering the question or referencing

the given context. Just answer the question.

#Context#: [ORIGINAL ANSWER]

#Question#: [QUESTION]

#Answer#:

B.1.2 Generate QA pairs from report

You will be given the contents of an anonymized medical report in JSON

format. You will generate ten questions related to the information in that

report. For each of the questions, you will generate both a correct answer

(aligning with the report) and a hallucinated answer (wrong but plausible

sounding).

Format your response as a json list of dictionaries like this:

[{“question”:“write here the first question”, “right answer”:“write here

the correct answer to the first question”, “hallucinated answer”:“write

88

B.1. Dataset creation

here the hallucinated answer”},

{“question”:“write here the second question”, “right answer”:“write here

the correct answer to the second question”, “hallucinated answer”:“write

here the hallucinated answer”},

{“question”:“write here the third question”, “right answer”:“write here

the correct answer to the third question”, “hallucinated answer”:“write

here the hallucinated answer”}]

All the fields should be formatted as strings, and do NOT include any extra

text before or after the square brackets.

#Report#:

[REPORT JSON]

#Your response#:

B.1.3 Generate hallucinated answer

I am researching hallucination detection on LLM-generated text, specifi-

cally in the medical domain. I need to create a dataset of questions with

both a correct answer and a wrong answer.

Given a medical question and its correct answer, you will choose between

one and three sentences from that answer. For those sentences, you MUST

either negate them OR replace a medical term with a different, unrelated

medical term. Keep everything else as in the original answer.

89

APPENDIX B. PROMPT TEMPLATES

ONLY use medical terms. Do NOT reference any fantasy themes. The

resulting modified answer should appear to respond to the question. Do

NOT highlight the non-factual information in any way.

#Question#: [QUESTION]

#Correct answer#: [CORRECT ANSWER]

Do NOT repeat the question or the correct answer. You will ONLY output

the modified answer, without any extra annotations or disclaimers.

B.2 Hallucination detection tests

In these prompt templates, the model’s role is defined as “I want you to

act as an answer judge”. An alternative version each prompt uses the role

statement “You are a medical expert acting as an answer judge”, as this

kind of expert role is common practice in prompt engineering. In this case,

other slight adjustments are made to the prompt, such as specifying that the

included context is medical. This variation includes adjustments to specify

medical context, allowing for comparison between a general-purpose and

medical-domain approach in hallucination detection methods.

B.2.1 BCV

#Context#: [CONTEXT]

#Question#: [QUESTION]

90

B.2. Hallucination detection tests

#Answer#: [ANSWER]

#Instructions#:

I want you to act as an answer judge. Given some context, a question and

an answer, your objective is to determine if the provided answer contains

non-factual or hallucinated information. You should give your judgement

based on the following hallucination types, the given context and the world

knowledge.

Hallucination types:

1. The answer misunderstands the question context and intention.

2. There is a factual contradiction between the answer and the provided

context or the world knowledge. Some information in the answer might

be fabricated or simply non-factual.

3. The answer is too general or too specific to answer the question at an

appropriate level of specificity.

4. The answer cannot be correctly inferred from the knowledge.

You should try your best to determine if the answer contains non-factual or

hallucinated information according to any of the above hallucination types.

Do NOT judge whether the error was intentional or not. The answer you

give MUST be Yes if there is hallucination/factual error or No otherwise.

Do not write any additional explanation.

Use this format when writing your response:

91

APPENDIX B. PROMPT TEMPLATES

#Verdict#: <Yes if you have found any hallucination, No otherwise>

B.2.2 BCV-CoT

#Context#: [CONTEXT]

#Question#: [QUESTION]

#Answer#: [ANSWER]

#Instructions#:

I want you to act as an answer judge. Given some context, a question and

an answer, your objective is to determine if the provided answer contains

non-factual or hallucinated information. You should give your judgement

based on the following hallucination types and the given context.

Hallucination types:

1. The answer misunderstands the question context and intention.

2. There is a factual contradiction between the answer and the provided

context. Some information in the answer might be fabricated or simply

non-factual.

3. The answer cannot be correctly inferred from the knowledge.

You should try your best to determine if the answer contains non-factual or

hallucinated information according to any of the above hallucination types.

Do NOT judge whether the error was intentional or not, or its severity.

92

B.2. Hallucination detection tests

Explain your reasoning process and how you are contrasting the informa-

tion in the given answer with the given answer.

Based on this reasoning, does the given answer contain hallucinations or

non-factual information? Answer ‘Yes’ or ‘No’ on a separate line.

Use the following format in your response:

#Reasoning#: <your reasoning process>

#Verdict#: <Yes/No>

B.2.3 SCA

#Context#: [CONTEXT]

#Question#: [QUESTION]

#Answer#: [ANSWER]

#Instructions#:

I want you to act as an answer judge. Given some context, a question and

an answer, your objective is to determine if the provided answer contains

non-factual or hallucinated information.

You will split the ANSWER into sentences. For each sentence in the

ANSWER, you will apply the following process:

1. Copy the sentence.

2. Contrast the sentence with the provided context:

93

APPENDIX B. PROMPT TEMPLATES

- If you find a passage in the context that conveys the same information as

the sentence, copy that passage.

- Otherwise, if you find a passage that contradicts the sentence, copy that

passage and explain how it is contradictory.

- If there is no passage in the context that conveys the information in the

sentence, highlight it.

3. If at some point you find a contradiction or some missing information,

you have found a hallucination. You can stop looking through the answer’s

sentences. Skip to the final step.

If every sentence conveys information that is present in the context and

there are no contradictions, you will finally check if the given answer is

relevant to the question. If it does not answer the question, you have found

a hallucination.

Based on all your reasoning, does the given answer contain ANY halluci-

nations or non-factual information? Answer ‘Yes’ or ‘No’ on a separate

line. Do not judge whether the hallucination was intentional or its severity.

Use the following format in your response:

#Sentence#: <first sentence in the answer>

#Context passage#: <the relevant passage, or None if not found>

#Hallucinated#: <Yes if there is a contradiction or if no relevant passage

is found, No otherwise>

94

B.2. Hallucination detection tests

#Reasoning#: <Explain why/why not there is a hallucination>

#Sentence#: <second sentence in the answer>

#Context passage#: <the relevant passage, or None if not found>

#Hallucinated#: <Yes if there is a contradiction or if no relevant passage

is found, No otherwise>

#Reasoning#: <Explain why/why not there is a hallucination>

<More sentences>

#Coherent with the question#: <Yes if the answer responds to the question,

No otherwise>

#Verdict#: <Yes if you have found any hallucination, No otherwise>

B.2.4 ISSC

#Context#: [SAMPLE RESPONSE]

#Sentence#: [SENTENCE]

Is the sentence supported by the context above? Answer only with Yes or

No.

B.2.5 ISSC-CoT

#Context#: [SAMPLE RESPONSE]

#Sentence#: [SENTENCE]

95

APPENDIX B. PROMPT TEMPLATES

Is the sentence supported by the context above?

Explain your step-by-step reasoning process.

Finally, taking into account your previous reasoning, is the sentence

supported by the context above? Answer only Yes or No.

Use the following format in your response.

#Reasoning#: <Your reasoning process>

#Verdict#: <Yes if it is supported, No otherwise>

96

Appendix C

Test results and statistics

For each model and test, the following metrics are computed:

• An optimal classification threshold (αopt), which maximizes Youden’s

J statistic. This metric aims to achieve a balance between maximum

sensitivity and maximum specificity.

J(α) = TPR(α)+TNR(α)−1 (C.1)

αopt = argmax(J) (C.2)

If the predicted value is greater than or equal to the threshold, a

hallucination is reported.

• The sensitivity (TPR) at the optimal threshold, which defines which

proportion of true (hallucinated) labels are correctly predicted.

TPR =
TP

TP+FN
(C.3)

97

APPENDIX C. TEST RESULTS AND STATISTICS

• The specificity (TNR) at the optimal threshold, which defines which

proportion of false (factual) labels are correctly predicted.

TNR =
TN

TN+FP
(C.4)

• The area under the ROC curve (AUROC), which evaluates the

balance between sensitivity and specificity at different threshold

values. As a baseline, the value obtained by a random classifier

would be 0.5.

The F1 score was also considered as it is a common metric in classification

problems. However, its main purpose is to compensate unbalanced test

datasets where one class has considerably more samples than the opposite

class, which is not the case with the datasets used in this project, as they

were generated with a 50% chance of hallucination.

C.1 General domain tests

BCV BCV-CoT
Model αopt TPR TNR AUROC αopt TPR TNR AUROC
llama3 0.4 0.902 0.915 0.937 0.8 0.794 0.848 0.856
llama3-gradient 0.6 0.421 0.710 0.489 0.5 0.660 0.760 0.729
llama2 0.6 0.686 0.585 0.640 0.9 0.812 0.423 0.621
llama2:13b - - - - - - - -
nous-hermes2 0.4 0.781 0.912 0.888 0.4 0.897 0.901 0.914
gemma 0.1 0.882 0.163 0.442 1.0 0.744 0.705 0.763
mistral 0.1 0.286 0.983 0.636 0.4 0.649 0.889 0.801

Table C.1: Test results for HaluEval - Basic Contextual Verification

98

C.2. Medical-domain tests

ISSC ISSC-CoT
Model αopt TPR TNR AUROC αopt TPR TNR AUROC
llama3 0.889 0.718 0.583 0.643 0.75 0.568 0.545 0.512
llama3-gradient 0.75 0.788 0.239 0.465 0.786 0.800 0.333 0.530
llama2 0.4 0.821 0.475 0.630 0.667 0.727 0.582 0.629
llama2:13b - - - - - - - -
nous-hermes2 0.6 0.571 0.703 0.596 0.667 0.585 0.763 0.673
gemma 0.8 0.692 0.650 0.650 0.75 0.605 0.684 0.653
mistral 0.625 0.667 0.722 0.662 0.7 0.647 0.788 0.723

Table C.2: Test results for TruthfulQA - Iterative Sentence-Sample Comparison

C.2 Medical-domain tests

BCV
Domain agnostic Medical expert

Model αopt TPR TNR AUROC αopt TPR TNR AUROC
llama3 0.2 0.437 0.925 0.682 0.2 0.310 0.908 0.613
llama3-gradient 1 0.032 0.989 0.368 1 0.071 0.943 0.414
llama2 1 0.976 0.029 0.502 inf 0.000 1.000 0.480
llama2:13b - - - - - - - -
nous-hermes2 0.3 0.770 0.868 0.892 0.5 0.659 0.966 0.893
gemma inf 0.000 1.000 0.234 inf 0.000 1.000 0.282
mistral 0.1 0.143 0.954 0.547 0.1 0.246 0.943 0.592

Table C.3: Test results for EHRTest - Basic Contextual Verification

BCV-CoT
Domain agnostic Medical expert

Model αopt TPR TNR AUROC αopt TPR TNR AUROC
llama3 0.3 0.825 0.799 0.876 0.3 0.754 0.776 0.832
llama3-gradient 0.4 0.571 0.540 0.525 0.6 0.250 0.766 0.493
llama2 1 0.738 0.443 0.597 1 0.822 0.400 0.621
llama2:13b - - - - - - - -
nous-hermes2 0.6 0.841 0.948 0.949 0.4 0.979 0.846 0.973
gemma 1 0.587 0.707 0.668 1 0.644 0.691 0.691
mistral 0.3 0.841 0.856 0.901 0.3 0.821 0.902 0.916

Table C.4: Test results for EHRTest - CoT Verification

99

APPENDIX C. TEST RESULTS AND STATISTICS

SCA
Domain agnostic Medical expert

Model αopt TPR TNR AUROC αopt TPR TNR AUROC
llama3 0.7 0.711 0.927 0.907 0.4 0.860 0.719 0.845
llama3-gradient - - - - - - - -
llama2 0.5 0.980 0.060 0.513 0.8 0.409 0.679 0.514
llama2:13b - - - - - - - -
nous-hermes2 0.5 0.762 0.793 0.874 0.5 0.818 0.732 0.864
gemma 0.5 0.581 0.614 0.615 0.8 0.324 0.818 0.575
mistral 0.2 0.710 0.644 0.748 0.2 0.702 0.849 0.786

Table C.5: Test results for EHRTest - Sentence-level Contextual Analysis

BCV
Domain agnostic Medical expert

Model αopt TPR TNR AUROC αopt TPR TNR AUROC
llama3 0.2 0.365 0.929 0.644 0.2 0.381 0.810 0.594
llama3-gradient 0.5 0.698 0.381 0.509 0.7 0.556 0.571 0.559
llama2 1.0 0.921 0.095 0.506 1.0 0.937 0.095 0.516
llama2:13b 0.8 0.556 0.643 0.616 - - - -
nous-hermes2 0.2 0.810 0.690 0.807 0.2 0.810 0.619 0.782
gemma 0.5 0.556 0.595 0.518 0.2 0.746 0.429 0.518
mistral 0.1 0.254 0.905 0.576 0.1 0.302 0.905 0.601

Table C.6: Test results for MedQuad - Basic Contextual Verification

BCV-CoT
Domain agnostic Medical expert

Model αopt TPR TNR AUROC αopt TPR TNR AUROC
llama3 0.8 0.508 0.929 0.802 0.4 0.698 0.881 0.844
llama3-gradient 0.5 0.667 0.667 0.706 0.5 0.603 0.738 0.698
llama2 1.0 0.333 0.857 0.617 0.9 0.794 0.333 0.562
llama2:13b - - - - - - - -
nous-hermes2 0.4 0.714 0.976 0.870 0.3 0.762 0.976 0.875
gemma 0.8 0.794 0.595 0.714 1.0 0.698 0.643 0.687
mistral 0.2 0.714 0.881 0.830 0.2 0.762 0.762 0.822

Table C.7: Test results for MedQuad - CoT Verification

100

C.2. Medical-domain tests

SCA
Domain agnostic Medical expert

Model αopt TPR TNR AUROC αopt TPR TNR AUROC
llama3 0.7 0.683 0.786 0.771 0.8 0.524 0.857 0.712
llama3-gradient - - - - - - - -
llama2 0.8 0.111 0.976 0.529 0.7 0.397 0.714 0.540
llama2:13b - - - - - - - -
nous-hermes2 0.6 0.651 0.810 0.781 0.5 0.778 0.667 0.766
gemma 0.3 0.841 0.571 0.781 0.4 0.810 0.595 0.756
mistral 0.3 0.429 0.929 0.713 0.2 0.540 0.881 0.709

Table C.8: Test results for MedQuad - Sentence-level Contextual Analysis

101

	Introduction
	Background knowledge
	Evolution of Natural Language Processing
	The transformer model
	Word embeddings
	Attention mechanism
	Encoder-decoder architecture
	Impact

	Large Language Models
	Key architectures
	Open models

	LLM hallucinations
	Types of hallucinations
	Causes of hallucination

	Advanced LLM techniques
	Fine-tuning
	Chain of thought
	Retrieval-augmented generation
	Quantization

	State of the art
	Domain-agnostic hallucination detection
	Detection techniques
	Benchmarks

	Hallucinations in the medical domain
	Benchmarks

	Motivation
	Addressing the limitations of LLMs
	AI in healthcare

	Project objectives
	Resources and tools
	Benchmarking datasets
	General knowledge
	Medical domain

	Tools
	Hardware limitations
	Scripting and libraries
	Choice of LLMs

	Methodology
	Preparing the benchmark datasets
	Pre-processing
	Generating hallucinations
	Sampling tests

	Implementing hallucination detection
	Customized detection methods
	Prompt engineering
	Parsing LLM responses

	Testing
	Small-scale tests
	Large-scale tests
	Analysis of results

	Experimentation and results
	Prompt engineering
	Findings and insights

	Benchmarking results
	General knowledge
	Medical domain

	Discussion
	Limitations
	The challenges of prompt engineering
	Benchmarking and comparatives
	Possible methodology improvements
	Conclusion

	Bibliography
	Alignment with Sustainable Development Goals
	Prompt templates
	Dataset creation
	Regenerate MedQuad answers
	Generate QA pairs from report
	Generate hallucinated answer

	Hallucination detection tests
	BCV
	BCV-CoT
	SCA
	ISSC
	ISSC-CoT

	Test results and statistics
	General domain tests
	Medical-domain tests

