
DEGREE IN TELECOMMUNICATION

TECHNOLOGIES ENGINEERING

Bachelor’s final project

GENERALIZATION OF CFR-RL

Author
Carlos Maŕı Noguera

Director
Amy Zhang

The University of Texas at Austin

Madrid
June 2024

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

GENERALIZATION OF CFR-RL

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2023/24 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos.

El Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha sido

tomada de otros documentos está debidamente referenciada.

Fdo.: Carlos Marí Noguera Fecha: 14/ 06/ 2024

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Amy Zhang Fecha: 14/ 06/ 2024

Carlos Man-

ACKNOWLEDGEMENTS
Texas Advanced Computing Center (TACC) The University of Texas at Austin

DEGREE IN TELECOMMUNICATION

TECHNOLOGIES ENGINEERING

Bachelor’s final project

GENERALIZATION OF CFR-RL

Author
Carlos Maŕı Noguera

Director
Amy Zhang

The University of Texas at Austin

Madrid
June 2024

Generalización de CFR-RL

Autor: Maŕı Noguera, Carlos.
Director: Zhang, Amy.
Entidades Colaboradoras: ICAI - Universidad Pontificia de Comillas, The Univer-
sity of Texas at Austin

RESUMEN DEL PROYECTO

Introducción

Las redes definidas por Software [1] son un planteamiento de arquitectura de red
emergente que separa el plano de control del dispositivo de red del plano de datos.
El controlador de red tiene un control centralizado de la red y actua como el sistema
operativo. Este planteamiento permite que la red sea controlada centralmente,
habilitando nuevas posibilidades de invesitgación en el ámbito de las SDN por
las siguientes razones. En primer lugar, debido a que el controlador tiene una
vista global de la red, este puede recolectar información sobre el estado de la red
a tiempo real, y esta información puede ser utilizada para optimizar diferentes
aspectos como el enrutado. En segundo lugar, el controlador es capaz de controlar
los recursos de red mediante la instalación de reglas de envio en los swtiches que
estan bajo su control [2].

Aunque se hayan abierto nuevas posibilidades para la optimización de red, esta
tarea no es trivial. Solucionar un problema de Ingenieŕıa de Tráfico (TE) en ter-
minos de rendimiento y retraso puede ser complejo. El objetivo de la Ingenieŕıa
de Tráfico es ayudar a los administradores de red y a los proveedores del servicio
de Internet (ISPs) a optimizar el rendimiento de la red mediante una asignación
de recursos y tráfico eficiente. Otros algoritmos como [3] basado en MultiProtocol
Label Switching (MLPS) son capaces de obtener un funcionamiento casi óptimo
mediante en reenrutado de la mayor cantidad de flujos posbiles, sin embargo es-
tas soluciones no tienen en cuenta resultados negativos como puede ser el retraso
punto a punto o paquetes desordenados. De otra manera métodos actuales basa-
dos en aprendizaje de máquina como [4] [5], son capaces de obtener resultados

iii

cuasi-óptimos sin impactar negativamente a la red, pero estos no son capaces de
generalizar a diferentes topologias de red.

Definición del proyecto

El objetivo del proyecto es el diseño e implementación de un modelo basado en
aprendizaje reforzado (RL), capaz de aprender una poĺıtica de selección de flujos
cŕıticos, posteriormente estos flujos cŕıticos seran reenrutados óptimamente medi-
ante la resolución de un problema de programación lineal. El objetivo del agente de
aprendizaje reforzado es optimizar la selección de los flujos cŕıticos con el propósito
de minimizar la máxima utilización de v́ınculo (MLU). Este proyecto diferirá del
modelo de CFR-RL [4], ya que el objetivo es el desarrollo de un modelo capaz de
generalizar a diferentes topoloǵıas de red y patrones de tráfico. La red neuronal
a utilizar, deberá ser ligera y la latencia obtenida debido al proceso de inferencia
deberá ser despreciable cuando es comparada con el retraso punto a punto. Los
resultados de este proyecto serán considerados positivos, si somos capaces de de-
sarrollar un modelo capaz de obtener mejores resultados que el algoritmo TOP-K
Critical en topologias y matrices de tráfico en las que no ha sido entrenado.

Se ha elegido un algoritmo basado en selección en vez de un algoritmo de
enrutamiento ya se cree que resultará más simple el aprendizaje de una poĺıtica de
selección capaz de generalizar, que el aprendizaje de una poĺıtica de enrutamiento.
En cada paso t, el modelo recibirá la matriz de tráfico en ese mismo instante
(TMt) y la topoloǵıa actual de la red y seleccionará K flujos cŕıticos que serán
reenrutados.

Descripción del problema

El desarrollo de este algoritmo de aprendizaje reforzado profundo tiene como obje-
tivo solucionar un problema de Ingenieŕıa de Tráfico, para eso se ha transformado
el problema de TE en un problema de aprendizaje reforzado mediante el uso de
una Cadena de Markov con estados, acciones y recompensas.

Definición del problema de aprendizaje reforzado

El uso de una cadena de Markov para describir el problema nos habilita el uso de
algoritmos de aprendizaje reforzado para solucionarlo. El problema de RL varia
del presentado en [4], ya que ha sido modificado para facilitar la generalización a
multiples topoloǵıas. La cadena de Markov es definida de la siguiente manera:

Estados: Los estados representan la entrada a nuestra red neuronal, este estado
debe contener toda la información necesaria para aprender la poĺıtica deseada.

El estado propuesto (st), estará formado por la matriz de tráfico en el instante t
(TMt) y la topoloǵıa de la red. Debido a la naturaleza continua de los elemtenos
de la matriz de tráfico, hay un número infinito de TMs, por esa razón se ha decido
que se usará una red neuronal para solucionar el problema.

Acciones: Para cada estado st, el modelo seleccionara K flujos cŕıticos. Hay un
total de N ∗ (N − 1) flujos en una red creado un espacio de acciones considerable-
mente grande. Debido a que se seleccionarán K accciones por paso, se ha decidido
utilizar el siguiente espacio de acciones A = {0, 1, ..., (N ∗ (N − 1))− 1} inspirados
por [6] y [4]. Por cada paso, se muestrearan K acciones diferentes (a1t , a

2
t , ..., a

K
t).

Se entrenará a nuestra red nueronal para proporcionar una distribución categórica
de la cual se muestreará.

Recompensas: Tras el muestreo, los flujos seleccionados serán enrutados de
manera óptima y se obtendrá la utilización máxima de v́ınculo (MLU). Para con-
seguir el objetivo de generalización se ha diseñado una nueva señal de recompensa.
Se ha optado por normalizar el valor del MLU mediante la comparación con el
resultado del algortimo TOP-K Critical.

r =
MLUTOPK

−MLU

MLUTOPK

+ 1 (1)

Esta recompensa se utilizará para actualizar la red neuronal.

Algoritmo: Para actualizar la red neuronal se ha optado por el algoritmo RE-
INFORCE [7] con el uso de una base. Se llevará un registro de las recompensas
obtenidas en cada estado y se computará la base V (St) como la media de las ex-
periencias previas en ese mismo estado. Se actualizará la red neuronal mediante
la siguiente función.

θt = θt−1 + α[δ + ϵH(π(At|St, θt−1)))]∇ ln [π(At|St, θt−1)] (2)

Donde

δ = G− V (St) (3)

H(p(x)) = −
∑

p(x) ln p(x) (4)

π(At|St, θt−1) =π(a1t |St, θt−1)× π(a2t |St, θt−1)×
...× π(aKt |St, θt−1)

(5)

La implementación base de REINFROCE ha sido modificada para tener en
cuenta la selección de multiples acciones y se ha añadido un pequeño bonus de
entroṕıa para favorecer la exploración. ϵ es un hiperparámetro, se ha elegido el
valor 0.01, el mismo que en [4] y otras opciones no han sido exploradas.

Red Neuronal

Para calcular las probabilidades, se ha decidido utilizar una red neuronal con-
volucional (CNN) [8] debido a la estructura 2D de las matrices de tráfico y de
adyacencia.

Figure 1: Red Neuronal Diseñada

Generación de Datos

Debido a precauciones de seguridad hay escasez de matrices de tráfico reales
públicas, esto ha llevado al estudio e investigación de la generación de matrices de
tráfico sintéticas. Se ha decidido generar datos sintéticos basandose en el modelo
de gravedad [9] que esta inspirado por el modelo gravitacional de Newton. Debido
a que el objetivo de este proyecto es evaluar la generalización se han utilizado
datos reales de la red de Abilene [10] para probar los resultados.

Resultados

Para evaluar los resultados de generalización del modelo, se ha comprobado el
rendimiento del modelo en una topoloǵıa y distribución de tráfico no presentes en
los datos de entrenamiento. Cabe destacar, que la topoloǵıa era similar a una de

las topologias en los datos de entrenamiento, con el cambio de un enlace, simulando
un fallo en la red. Para poder evaluar el rendimiento de el modelo se comparará
con los resultados obtenidos por el algoritmo TOP-K Critical que selecciona los
flujos más grandes de los nodos más congestionados.

Figure 2: Evaluación de los resultados

Se puede observar que el modelo muestra mejor rendimiento que el método
basado en reglas TOP-K Critical, en datos en los que no ha sido entrenado.

Conclusiones

Se ha desarrollado un modelo capaz de generalizar a diferentes distribuciones de
tráfico y topologias, modelos anteriores como CFR-RL no eran capaces de so-
brepasar métodos heuŕısticos con simplemente ser entrenados en datos sintéticos.
Se ha demostrado la utilidad de los datos artificiales y como estos pueden servir
para entrenar modelos de aprendizaje de máquina. Sin embargo, este modelo no
es capaz de generalizar a topologias completamente diferentes, solo es capaz de
vencer a métodos basados en reglas cuando ha sido entrenado en topoloǵıas simi-
lares. Recomendaciones de trabajo futuro incluyen intentos de sustituir el valor de
base utilizado en el algoritmo REINFORCE, ya que actualmente limita el número
de topoloǵıas diferentes en las que se puede entrenar.

Referencias

[1] Nick McKeown et al. “OpenFlow: Enabling Innovation in Campus Net-
works”. In: SIGCOMM Comput. Commun. Rev. 38.2 (Mar. 2008), pp. 69–

74. issn: 0146-4833. doi: 10.1145/1355734.1355746. url: https://doi.
org/10.1145/1355734.1355746.

[2] Sakir Sezer et al. “Are we ready for SDN? Implementation challenges for
software-defined networks”. In: IEEE Communications Magazine 51.7 (2013),
pp. 36–43. doi: 10.1109/MCOM.2013.6553676.

[3] Yufei Wang and ZhengWang. “Explicit routing algorithms for Internet traffic
engineering”. In: Proceedings Eight International Conference on Computer
Communications and Networks (Cat. No.99EX370). 1999, pp. 582–588. doi:
10.1109/ICCCN.1999.805577.

[4] Junjie Zhang et al. “CFR-RL: Traffic EngineeringWith Reinforcement Learn-
ing in SDN”. In: IEEE Journal on Selected Areas in Communications 38.10
(2020), pp. 2249–2259. doi: 10.1109/JSAC.2020.3000371.

[5] Yi-Ren Chen et al. “RL-Routing: An SDN Routing Algorithm Based on Deep
Reinforcement Learning”. In: IEEE Transactions on Network Science and
Engineering 7.4 (2020), pp. 3185–3199. doi: 10.1109/TNSE.2020.3017751.

[6] Hongzi Mao et al. “Resource Management with Deep Reinforcement Learn-
ing”. In: Proceedings of the 15th ACM Workshop on Hot Topics in Net-
works. HotNets ’16. Atlanta, GA, USA: Association for Computing Machin-
ery, 2016, pp. 50–56. isbn: 9781450346610. doi: 10.1145/3005745.3005750.
url: https://doi.org/10.1145/3005745.3005750.

[7] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-
troduction. Second. The MIT Press, 2018. url: http://incompleteideas.
net/book/the-book-2nd.html.

[8] Yann Lecun and Yoshua Bengio. “Convolutional Networks for Images, Speech
and Time Series”. In: The Handbook of Brain Theory and Neural Networks.
Ed. by Michael A. Arbib. The MIT Press, 1995, pp. 255–258.

[9] Matthew Roughan. “Simplifying the Synthesis of Internet Traffic Matrices”.
In: SIGCOMM Comput. Commun. Rev. 35.5 (Oct. 2005), pp. 93–96. issn:
0146-4833. doi: 10.1145/1096536.1096551. url: https://doi.org/10.
1145/1096536.1096551.

[10] Ying Zhang. Abilene TM. Online: cs.utexas.edu/ yzhang/research/AbileneTM/.

https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/MCOM.2013.6553676
https://doi.org/10.1109/ICCCN.1999.805577
https://doi.org/10.1109/JSAC.2020.3000371
https://doi.org/10.1109/TNSE.2020.3017751
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3005745.3005750
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1145/1096536.1096551
https://doi.org/10.1145/1096536.1096551
https://doi.org/10.1145/1096536.1096551

Generalization of CFR-RL

Author: Maŕı Noguera, Carlos.
Director: Zhang, Amy.
Collaborating Entities: ICAI - Universidad Pontificia de Comillas, The University
of Texas at Austin

ABSTRACT

Introduction

Software Defined Network (SDN) [1] is an emerging network architecture approach
that separates the control plane of the networking device from its data plane. The
SDN network controller has a centralized control of the network and can act as
the network’s operating system. This approach allows the network to be centrally
controlled, enabling the possibility of new research on network optimization due
to the following reasons. First, as the controller has a global view of the network,
it can collect live information of the network state, this information can be used to
optimize different aspects of the network such as routing. Secondly, the controller
is able to manage network resources by installing and forwarding rules in the
switches under its control [2].

Although new opportunities appear for network optimization, it is still not triv-
ial to solve a Traffic Engineering (TE) problem in terms of delay and throughput.
The goal of TE is to help network administrators and Internet Service Providers
(ISPs) optimize network performance and resource utilization by an efficient allo-
cation of traffic. Other traffic algorithms such as [3] based on Multiprotocol Label
Switching (MLPS) achieve near optimal performance via rerouting as many flows
as possible and do not take in mind negative results, such as packets out of order,
or end-to-end delay. On the other hand current Machine Learning based methods
such as [4] [5], achieve near optimal performance, while impacting the network as
little as possible, but are not able to generalize to different network topologies.

ix

Project Definition

The objective of the problem is the design and implementation of a Reinforcement
Learning based scheme that learns a selection policy and reroutes the selected
critical flows to minimize the maximum link utilization (MLU) of a given network.
This project will vary from CFR-RL [4] as the objective is to develop a model
that is capable of generalizing to different network topologies and traffic patterns,
as other approaches such as CFR-RL struggle if the topology or traffic pattern is
modified. The designed artificial neural network must be lightweight, and the la-
tency added by running inference on this model must be negligible when compared
to the total end-to-end delay. The results of this project will be considered suc-
cessful if the average MLU is lower than heuristic based methods such as TOP-K
Critical.

A selection based algorithm has been selected rather than a fully-fledged RL
routing algorithm as learning a policy capable of generalizing selection over mul-
tiple policies will not be as complex as learning a routing policy. At every time
step t, the model will receive the Traffic Matrix at that time step (TMt) and will
select K flows to be rerouted.

Problem Description

The development of this Deep Reinforcement Learning algorithm aims to solve a
TE problem, this Traffic Engineering problem has been transformed into a Re-
inforcement Learning problem by converting it to a Markov Chain with states
actions and rewards.

Reinforcement Learning Problem

By adapting the Markov Chain framework in the definition of the problem we
are capable of using Reinforcement Learning algorithms to optimize it. The RL
problem formulation from [4] has been modified to facilitate the generalization to
multiple topologies. The Markov Chain is defined in the following way.

States The state space represents the input of the neural network, this state
space must contain all the information needed to learn the desired policy, the
state (st), will be formed by the Traffic Matrix at time step t (TMt) and the
topology of the network. As there is an infinite number of observations due to the
continuous nature of a traffic matrix, an Artificial Neural Network will be used to
approach the problem.

Actions For every state st the model will select K critical flows. There is a
total of N ∗ (N −1) flows in a network creating a large action space. As the model
will select K actions per time step, the action space is defined in the following
way A = {0, 1, ..., (N ∗ (N − 1)) − 1} inspired by [6] and [4]. For every time step
K different actions will be sampled (a1t , a

2
t , ..., a

K
t). The ANE will be trained to

output a Categorical Distribution from which the actions will be sampled.

Rewards After the sampling the flows, the selected critical flows will be rerouted
and the maximum link utilization will be obtained (MLU). To accomplish the
generalization objective a different reward function will be defined. To account
for multiple topologies, the MLU utilization will be normalized by comparing it to
the link utilization obtained by the heuristic based method TOP-K Critical.

r =
MLUTOPK

−MLU

MLUTOPK

+ 1 (6)

This reward will be used to update the neural network.

Algorithm To update the neural network the REINFORCE algorithm [7] algo-
rithm with baseline will be used. A registry of state specific rewards will be kept to
compute a baseline V (St) based on the average the previously obtained rewards.
The policy will be updated via the following function:

θt = θt−1 + α[δ + ϵH(π(At|St, θt−1)))]∇ ln [π(At|St, θt−1)] (7)

Where

δ = G− V (St) (8)

H(p(x)) = −
∑

p(x) ln p(x) (9)

π(At|St, θt−1) =π(a1t |St, θt−1)× π(a2t |St, θt−1)×
...× π(aKt |St, θt−1)

(10)

The base REINFORCE implementation has been modified to account for mul-
tiple action selection and a small entropy bonus to encourage exploration. ϵ is
a hyperparameter with value 0.01, this value has been chosen as it was the final
value in [4], and it has not been tuned.

Artificial Neural Network

In order to calculate the probabilities in REINFORCE a Convolutional Neural
Network (CNN) [8] will be used. Due to the 2D structure of Traffic Matrices and
Adjacency Matrices it was believed that this would be the best approach.

Figure 3: Designed Neural Network

Data Generation

Due to security concerns there is lack of real traffic matrices, this has led to the
research of the generation of realistic synthetic traffic matrices. The training data
will be generated following the gravity model [9] which is inspired by Newton’s
gravity model. As the objective of this project is to test generalization, the testing
data of the experiment will originate from the Abilene network [10], one of the few
public traffic matrices datasets.

Results

To test the generalization capabilities of the designed model, the performance of the
model will be evaluated in a topology and traffic data not present in the training
datasets. However, this topology is a modification of a topology present in the
training dataset with the simulation of a link failure. To assess the performance of
the model, it will be compared to the TOP-K Critical approach, that selects the
biggest flows out of the congested nodes.

It can be observed that the developed model is able to outperform heuristic
based methods on a topology it had not seen before.

Figure 4: MLU Evaluation in generalization

Conclusions

This project has resulted in the development of a model capable of generalizing
to different types of traffic and topologies, previous selection based model such as
CFR-RL struggled when trained on synthetic data. With the obtained results the
usefulness of this synthetic data has been proved. However, this model is not able
to generalize to completely different topologies, it is only capable of outperforming
heuristic based methods when it has been trained in similar topologies. Future
work may include attempts to develop a model capable of generalizing in different
topologies, for this another baseline approach must be selected as the current one
limits the number of topologies being used during training.

References

[1] Nick McKeown et al. “OpenFlow: Enabling Innovation in Campus Net-
works”. In: SIGCOMM Comput. Commun. Rev. 38.2 (Mar. 2008), pp. 69–
74. issn: 0146-4833. doi: 10.1145/1355734.1355746. url: https://doi.
org/10.1145/1355734.1355746.

[2] Sakir Sezer et al. “Are we ready for SDN? Implementation challenges for
software-defined networks”. In: IEEE Communications Magazine 51.7 (2013),
pp. 36–43. doi: 10.1109/MCOM.2013.6553676.

https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/MCOM.2013.6553676

[3] Yufei Wang and ZhengWang. “Explicit routing algorithms for Internet traffic
engineering”. In: Proceedings Eight International Conference on Computer
Communications and Networks (Cat. No.99EX370). 1999, pp. 582–588. doi:
10.1109/ICCCN.1999.805577.

[4] Junjie Zhang et al. “CFR-RL: Traffic EngineeringWith Reinforcement Learn-
ing in SDN”. In: IEEE Journal on Selected Areas in Communications 38.10
(2020), pp. 2249–2259. doi: 10.1109/JSAC.2020.3000371.

[5] Yi-Ren Chen et al. “RL-Routing: An SDN Routing Algorithm Based on Deep
Reinforcement Learning”. In: IEEE Transactions on Network Science and
Engineering 7.4 (2020), pp. 3185–3199. doi: 10.1109/TNSE.2020.3017751.

[6] Hongzi Mao et al. “Resource Management with Deep Reinforcement Learn-
ing”. In: Proceedings of the 15th ACM Workshop on Hot Topics in Net-
works. HotNets ’16. Atlanta, GA, USA: Association for Computing Machin-
ery, 2016, pp. 50–56. isbn: 9781450346610. doi: 10.1145/3005745.3005750.
url: https://doi.org/10.1145/3005745.3005750.

[7] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-
troduction. Second. The MIT Press, 2018. url: http://incompleteideas.
net/book/the-book-2nd.html.

[8] Yann Lecun and Yoshua Bengio. “Convolutional Networks for Images, Speech
and Time Series”. In: The Handbook of Brain Theory and Neural Networks.
Ed. by Michael A. Arbib. The MIT Press, 1995, pp. 255–258.

[9] Matthew Roughan. “Simplifying the Synthesis of Internet Traffic Matrices”.
In: SIGCOMM Comput. Commun. Rev. 35.5 (Oct. 2005), pp. 93–96. issn:
0146-4833. doi: 10.1145/1096536.1096551. url: https://doi.org/10.
1145/1096536.1096551.

[10] Ying Zhang. Abilene TM. Online: cs.utexas.edu/ yzhang/research/AbileneTM/.

https://doi.org/10.1109/ICCCN.1999.805577
https://doi.org/10.1109/JSAC.2020.3000371
https://doi.org/10.1109/TNSE.2020.3017751
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3005745.3005750
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.1145/1096536.1096551
https://doi.org/10.1145/1096536.1096551
https://doi.org/10.1145/1096536.1096551

Contents

1 Introduction 1

2 State-of-the-art 5
2.1 Software Defined Networks . 6

2.1.1 OpenFlow Architecture . 7
2.1.2 Other Architectures . 8
2.1.3 Software Defined Networking Issues 9

2.2 Machine Learning Based Methods 10
2.2.1 Reinforcement Learning Based Methods 10
2.2.2 Traditional Machine Learning Methods 13

2.3 Heuristic based methods . 13
2.3.1 Traditional routing algorithms 14
2.3.2 SDN-Enabled routing algorithms 17

3 Description 21
3.1 Motivation . 22
3.2 Problem specification and objectives 23

3.2.1 Problem Specification . 23
3.2.2 Project Objectives . 25

3.3 Methodology . 28
3.3.1 Data . 28
3.3.2 Algorithm . 30
3.3.3 Linear Programming Problem 31
3.3.4 Artificial Neural Network . 33
3.3.5 Training . 38
3.3.6 Deployment . 40

3.4 Resources . 42
3.4.1 Datasets . 42
3.4.2 Computing Resources . 42
3.4.3 Software Tools and Frameworks 43

3.5 Market Analysis . 44

xv

4 Results 47
4.1 Architecture Results . 48
4.2 Training Results . 49

4.2.1 AE . 50
4.2.2 HAE . 51
4.2.3 HGIE . 53

4.3 Generalization Results . 54
4.3.1 AE . 55
4.3.2 HAE . 57
4.3.3 HGIE . 59

4.4 Result Analysis . 62
4.4.1 Training . 62
4.4.2 Evaluation . 64
4.4.3 Deployment . 66

4.5 Limitations . 67
4.5.1 Performance in Homogeneous Networks 67
4.5.2 Adaptability to significant topology change 68
4.5.3 Deployment considerations 68

5 Conclusions 71
5.1 Methodology Conclusions . 71

5.1.1 Data . 72
5.1.2 Algorithm . 72
5.1.3 Artificial Neural Network . 73

5.2 Results Conclusions . 73
5.3 Future study recommendations . 74

Bibliography 77

A Alignment with Sustainable Development Goals 83
A.1 SDG 9 . 83

A.1.1 Target 9.1 . 83
A.1.2 Target 9.5 . 84

A.2 SGD 12 . 84
A.2.1 Target 12.2 . 84
A.2.2 Target 12.a . 85

B Results and Reproducibility 87

List of Figures

1 Red Neuronal Diseñada . vi
2 Evaluación de los resultados . vii
3 Designed Neural Network . xii
4 MLU Evaluation in generalization xiii

3.1 Multilayer Perceptron . 35
3.2 Convolutional Neural Network . 35
3.3 Attention-Based Neural Network 36
3.4 Attention Block . 36
3.5 Abilene Network Topology . 43
3.6 Market Projection . 45
3.7 Market Share by end use . 45

4.1 Autonomous Exploration Reward 51
4.2 Autonomous Exploration Action Comparison 51
4.3 Heuristic-Assisted Exploration Reward 52
4.4 Heuristic-Assisted Exploration Action Comparison 52
4.5 Heuristic-Guided Initial Exploration Reward 53
4.6 Heuristic-Guided Initial Exploration Action Comparison 54
4.7 AE MLU Evaluation . 55
4.8 AE Delay Evaluation . 56
4.9 AE MLU Evaluation in different topology 57
4.10 AE Delay Evaluation in different topology 57
4.11 Heuristic-Assisted Exploration MLU Evaluation 58
4.12 Heuristic-Assisted Exploration Delay Evaluation 59
4.13 Heuristic-Guided Initial Exploration MLU Evaluation 60
4.14 Heuristic-Guided Initial Exploration Delay Evaluation 60
4.15 HGIE MLU Evaluation in different topology 61
4.16 HGIE Delay Evaluation in different topology 62

B.1 Attempt to replicate CFR-RL . 87
B.2 Actor Critic Algorithm . 88

xvii

B.3 Training in different topologies . 89
B.4 AC in different topologies . 90
B.5 Different amount of TMs per agent 90
B.6 Different Architecture Comparison 91

List of Tables

3.1 Specifications of a Compute Node from Frontera 43

4.1 Selected Architecture . 48

xix

Listings

2.1 TopK Algorithm . 18
2.2 TopK Critical Algorithm . 18
3.1 Weight initialization . 37
3.2 Training loop of an agent . 38
3.3 Training loop of the central agent 39

xxi

Chapter 1

Introduction

Software Defined Networking (SDN) [1] has emerged as a revolutionary network

architecture paradigm that decouples the control plane from the data plane in

networking devices. In an SDN environment, a centralized network controller acts

as the brain of the network, enabling intelligent and dynamic control over the

network resources. This centralized control opens up new avenues for network

optimization research due to several key advantages.

Firstly, the SDN controller has a global view of the network, being able to

collect real-time information about the state of the network. This comprehensive

network visibility enables the controller to make informed decisions and optimize

various aspects of the network such as routing. Secondly the controller has the abil-

ity to manage resources by installing and enforcing forward rules on the switches

under its control [2]. This control of the network facilitates efficient resource allo-

cation and traffic management.

However, despite all these opportunities presented by SDNs for network opti-

mization, solving Traffic Engineering problems (TE) in terms of throughput and

delay remains a complex challenge. The primary goal of TE is to aid network

administrators and Internet Service Providers (ISPs) in optimizing network per-

1

CHAPTER 1. INTRODUCTION

formance and resource allocation through efficient traffic allocation. Traditional

solution such as those based on Multiprotocol Label Switching (MPLS) [3], are

able to achieve near optimal performance by rerouting as many flows as possible.

However, these approaches often overlook the potential negative consequences such

as packet reordering or increased end-to-end delay.

On the other hand, recent advancements in Machine Learning (ML) have en-

abled new routing optimization techniques. ML-Bases methods, such as [4] and

[5], have demonstrated promising results achieving near-optimal performance while

minimizing the impact on the network. However, a significant limitation of these

approaches is their inability to generalize to different network topologies. They

often rely on memorizing network patterns, or external information such as day

of the week, and struggle to adapt to changes in traffic distributions or topology

modifications, such as link failures. For this reason, these models require retraining

whenever the network undergoes updates, making them impractical and expensive

to deploy in real-world scenarios.

To address this challenges, we propose the development of a Reinforcement

Learning (RL) based model based on the work of CFR-RL [4]. Our objective is to

create a model capable of generalizing to different topologies and traffic patterns,

overcoming the limitations of current state-of-the-art approaches. By enabling

the model to adapt to changes in the network environment without the need for

extensive retraining, we aim to make it more practical and cost-effective for real-

world deployment.

Our proposed solution relies on the fact that optimizing network routing in

terms of maximum link utilization can be formulated as a Linear Programming

(LP) problem. However, directly solving the LP problem can be computationally

expensive and not feasible for real-time decision-making. To avoid this issue, our

model will select K flows to be optimally rerouted and will receive a reward based

2

on the obtained MLU compared to heuristic approaches.

Through this project, we aim to develop an adaptable Reinforcement Learning

model capable of generalizing to unseen topologies and traffic patterns.

The remainder of this thesis is organized as follows: Chapter 2 provides an

overview of the related work on the field of Traffic Engineering, Chapter 3 will

contain the description of the problem as well as the methodology and available

resources. Chapter 4 will contain the obtained results and the analysis of this

result and Chapter 5 will contain the conclusion with an overview of the work and

possible research directions.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

State-of-the-art

The advent of Software Defined Networking (SDN) [1] [2] has started a new era of

network optimization and traffic engineering (TE). SDNs have revolutionized the

ways networks are designed, managed and controlled by decoupling the control

plane from the data plane. This architectural shift has opened up new areas

of research and innovation, enabling the development of advanced techniques for

network optimization and Traffic Engineering.

The centralized control and global network visibility provided by SDNs have

caused a significant increase in research efforts focused on exploring novel methods

for optimizing network performance and resource allocation. Researchers have

used the capabilities of SDNs to design and implement TE strategies that were

previously challenging or infeasible in traditional network architectures.

In this chapter, we will discuss the various approaches and methodologies pro-

posed in the literature for TE and routing optimization in the context of SDNs.

We will organize the discussion into three different sections, first there will be an

introduction to SDNs protocols and architectures, with emphasis on the Open-

Flow and ONOs protocols. Next we will discuss the current machine learning

approaches, which have gained popularity in the recent years, and lastly we will

5

CHAPTER 2. STATE-OF-THE-ART

focus on traditional routing algorithms and how these algorithms have changed

with the arrival of SDNs.

2.1 Software Defined Networks

Software defined networks introduced by McKeown et al. [1] in 2008 were designed

with the idea of proposing a major architecture change in network topology to al-

low researchers to run experiments in heterogeneous switches via the OpenFlow

architecture. SDNs were developed with the idea of allowing for new ideas in

computer networks to be tested and lowering the entry barrier for new ideas en-

couraging innovation. As at the time, most of the research carried out on networks

remained untested due to the lack of infrastructure. McKeown et al. designed a

new switch feature that extended its programmability with the goal of persuading

commercial equipment vendors and being able to install this switches in campus

networks to enable research.

To clarify the varied concept of SDNs, the ONF (Open Networking Founda-

tion) defined Software Defined Networks as the following ”In the SDN architecture,

the control and data planes are decoupled, network intelligence and state are logi-

cally centralized, and the underlying network infrastructure is abstracted from the

applications.” [11].

Since the release of the OpenFlow architecture many other approaches have

been proposed with their benefits and disadvantages, this includes Open Network

Operating System [12] or P4-Runtime [13] by the Open Network foundation, or

can be implemented via other broader protocols such as NETCONF by Huawei.

6

2.1. Software Defined Networks

2.1.1 OpenFlow Architecture

During their research [1] found that most modern Ethernet switches contain flow-

tables that run at line-rate and identified a common set of functions that run in

many switches and routers from different vendors. OpenFlow provides an open

protocol to program the flow tables found in switches and routers. Via this protocol

researchers are able to control their own flows, allowing them to try new routing

protocols, security models or even alternatives to IP, while not disturbing the

production traffic.

They define three main characteristics and OpenFlow switch must have, a Flow

Table (1) with an action associated with each flow entry, allowing the user to tell

the switch how to process the flow. A Secure Channel (2) connecting the switch to

a remote process (the controller), that allows communication between switch and

controller using the OpenFlow Protocol (3). This protocol provides a standard way

of controller-swtich communication through which researchers can define entries in

the flow table without programming or having direct access to the switch. Each of

these entries in the Flow-Table will have three fields, a packet header that defines

the flow, an action that will decide how this packet will be processed, and Statistics

which keep track of the number packets or bytes for each flow.

There is a distinction between different OpenFlow switches, a switch will be

defined as ”Type 0” when it is only able to perform the basic actions and only has

the required elements. The definition of a ”Type 1” switch was not and has not

(to the best of our knowledge) been specified yet, as it was left to the development

of third parties, some mentioned capabilities are rewriting portions of headers and

mapping packets to priority classes.

7

CHAPTER 2. STATE-OF-THE-ART

2.1.2 Other Architectures

Many other approaches, both open-source and proprietary, have been proposed for

managing Software Defined Networks. In this section we will primarily focus on the

Open Network Operating System (ONOs) architecture and protocol developed by

the Open Network Foundation (ONF). ONOs, along with the OpenFlow protocol,

is supported by a significant number of contemporary SDN switches.

ONOs, similar to OpenFlow provides the control plane functionality for SDNs,

enabling efficient network management. Due to its open-source nature, it has

served as a foundation for the development of many additional solutions. The

primary objective of ONOs was to create a practical abstraction that operates

across multiple servers in a distributed manner, enabling control plane scale-out

and fault tolerance while maintaining a global network view. This global network

perspective facilitates broader research opportunities that were not available with

OpenFlow alone.

The design of ONOs was guided by the following requirements.

• Throughput: Up to 1M request/second

• Latency: 10-100 ms event processing

• Size: Up to 1 TB of data

• Availability: 99.99% of service availability.

The ONOs protocol and architecture successfully achieved these goals, provid-

ing a more versatile and high level implementation of SDNs compared to alterna-

tive approaches like OpenFlow. By leveraging the global network view offered by

ONOs, researchers and network operators can gain a comprehensive understanding

of the network state and make informed decisions based on this knowledge.

8

2.1. Software Defined Networks

Our work will be built upon the assumption of utilizing the ONOs protocol

and architecture, allowing us to benefit from the global network view it provides.

This choice enables us to explore advanced network management techniques and

develop innovative solutions that leverage the capabilities of ONOs.

2.1.3 Software Defined Networking Issues

Software Defined Networks have emerged as a promising paradigm for controlling

modern networks. However, as SDNs gain popularity and are deployed in various

environments, they face several challenges than need to be addressed. Sakir et

al. [2], provide a comprehensive discussion of the current issues faced by SDNs,

which can be broadly grouped into two main areas: scalability and security. In

the following sections we will describe each of this issues in more detail, exploring

the impact on SDN performance and reliability, and discussing potential solutions

proposed in the literature.

Scalability Issues

SDNs were initially conceived as a research tool for campus networks, rather than

a comprehensive solution for handling all network traffic. As networks scale up

and the number of nodes increases, the communication between switches and con-

trollers can become problematic. These issues may arise due to latency or limited

channel capacity, hindering the efficient operation of the network. One potential

solution to address this scalability challenge is the deployment of multiple con-

trollers. However, this approach introduces a new set of complexities and requires

careful coordination among the controllers. In their work, the authors of [14] ex-

plore these and other scalability issues in depth, proposing a range of hardware

and software modifications to mitigate the problems. Their solution aims to en-

hance the scalability of SDNs, enabling them to handle larger networks and higher

9

CHAPTER 2. STATE-OF-THE-ART

traffic volumes without compromising performance or reliability.

Security Issues

The ability to control the actions of individual switches for each network flow is a

powerful feature that offers significant benefits for researchers. However, this capa-

bility also introduces potential security vulnerabilities. In the event of a malicious

attack, an adversary could exploit this control to render the network inoperable by

manipulating the flow of traffic. Furthermore, if the network traffic is not properly

encrypted, the attacker could gain unauthorized access to sensitive information,

leading to serious privacy concerns. By rerouting traffic as desired, the attacker

could intercept, monitor, or even modify the data transmitted across the networks.

This highlights the importance of implementing robust security measures in SDNs,

such as strong authentication mechanisms, encryption protocols, and access con-

trol policies, to prevent unauthorized access and protect the confidentiality and

integrity of network traffic.

2.2 Machine Learning Based Methods

With the growth in popularity of Machine Learning and Deep Learning, there has

been an uproar in methods based on this to optimize routing in networks. Because

of the nature of this paper we will classify these methods in Reinforcement Learning

based methods and non-Reinforcement Learning based methods.

2.2.1 Reinforcement Learning Based Methods

Routing has been historically one commonly researched topic in Reinforcement

Learning with algorithms such as [15] and [16] being published during the 1990s.

These methods, provided great theoretical results, but due to algorithm and net-

10

2.2. Machine Learning Based Methods

work limitations at the time and were only discussed on theoretical settings and

simulations, causing the initial uproar of research to decline. With the advance

of technologies and the development of software defined networks, many new ap-

proaches started emerging, as what was not able to be done before due to techno-

logical limitations now became possible. This led to the research of new approaches

to routing, we can find two main strategies on modern Traffic Engineering problem-

solving, selection and rerouting.

The first method selection will focus on selecting a small percentage of flows and

optimally rerouting this flows, it has been proven that if the selection of the flows

is correct near-optimal performance can be achieved with minimal network inter-

ference. One popular selection approach is Critical Flow Routing-Reinforcement

Learning (CFR-RL) [4].

The second method is the traditional routing problem, where a Reinforcement

Learning agent will focus on rerouting each individual flow, when this approach

is successful it can achieve great results in transfer speed, a popular method that

uses this approach is Reinforcement Learning-Routing (RL-Routing). [5].

Reinforcement Learning-Routing

Reinforcement Learning-Routing (RL-Routing) [5] by Chen et al. approaches the

TE problem with a rerouting approach optimizing in terms of throughput and delay

presented as an alternative to Open Shortest Path First (OSPF) [17] and Least

Loaded [18] routing algorithms. The scalability issue is addressed by deploying one

agent per every switch, in some previous works more than one agent was required

per switch causing scalability issues. This approach introduces novel terms to their

state space such as link trust level, switch throughput rate, and link-to-link switch

rate. With the introduction of this state space they achieved 2.5× and 2.11×

speedups over OSPF and LL on average.

11

CHAPTER 2. STATE-OF-THE-ART

This method however also includes the day of the week and part of the day in

its state space, this causes this method to be highly reliant on memorizing traffic

patterns of the network and making it unsuitable for generalization.

RL-Routing provides a clear example on why selection methods have been

chosen for our attempt in routing generalization, rerouting methods depend on

memorization obtaining excellent results in one network, and we believe it would

result harder to train a rerouting method to be able to generalize.

Critical Flow Rerouting-Reinforcement Learning

Critical Flow Rerouting-Reinforcment Learning (2020) is a selection algorithm that

trains a Deep Reinforcement Learning model on a single topology traffic matrix

obtaining near-optimal results. This model focuses on selecting only around 10%

of flows and will optimally reroute them via the solution of a Linear Programming

(LP) Problem. This method is capable of achieving near-optimal performance in

terms of minimizing MLU running inference in traffic matrices it has not been

trained on and unlike many other traditional routing models it has no significant

impact on the end-to-end delay This model does not have access to any network

information aside from the traffic matrices and needs to be fully retrained if there

is a slight change on the traffic topology or traffic patters of the network as it

heavily relies on memorization of traffic patters and the effects each flow has on

the network. We have carried out tests on this method changing the traffic patterns

and the results obtained were not much better than the base routing algorithm

(ECMP), proving the memorization of traffic patterns carried out by the model.

Zhang et al. also designed a Linear Programming Problem through which they

could optimally reroute the selected flows in terms of minimizing maximum link

utilization. We will be using this same formulation, and will be explained later in

the methodology section.

12

2.3. Heuristic based methods

2.2.2 Traditional Machine Learning Methods

Software Defined Networks have also enabled research on non-RL settings, ap-

proaches such as [19], explored energy efficient routing algorithms in Wireless Sen-

sor Networks. Tcherak et al., presented a novel routing algorithm Näıve Bayes for

Software-Defined Wireless Sensors (NB-SDWSN) based on the conditional proba-

bility theorem. Via the use of this algorithm, the controller will choose the best

neighboring node towards the end node based on variable parameters such as the

battery level or previous results. Via this approach, NB-SDWSN was able to out-

perform Dijkstra’s shortest path routing algorithm in terms of lower packet loss

and higher throughput.

Different alternatives have been proposed, Barletta et al. [20] proposed the

use of a Random Forest Classifier to predict the bit rate error of non-established

light paths in fiber optic communication obtaining an improvement over previous

methods on synthetically generated data.

Shen et al. [21] explored the combination of the Least Loaded algorithm [18]

with a light assistance from a Machine Learning model. Via including a super-

vised Näıve Bayes classifier based on historical network snapshots that attempt

to predict potential circuit blocking. This approach allowed to reduce the block-

ing probability of service connection requests outperforming LL and Shortest Path

(SP) algorithm, while also providing a parallel computing framework to implement

parallel learning in the network.

2.3 Heuristic based methods

Aside from the use of neural networks and machine learning to learn a policy

or optimize routing, there is still research carried out from an algorithmic and

mathematical background on network optimization and routing.

13

CHAPTER 2. STATE-OF-THE-ART

2.3.1 Traditional routing algorithms

Before the advent of Software Defined Networks, the routing problem was ap-

proached with limited information, some of the most common and widely used

routing algorithms are Open Shorted Path First (OSPF) [17] Least Loaded [18]

and Border Gateway Protocol [22]. ECMP [23] will also be discussed due to its

relevance in this project.

Equal-Cost Multi-Path

[23] Equal-Cost Multi-Path (ECMP) routing is a widely adopted technique in

modern network infrastructures to achieve load balancing and improve network

performance. ECMP allows routers to distribute traffic across multiple paths of

equal cost, effectively utilizing network resources and reducing congestion.

In other approaches, routers typically select a single best path to forward traffic

towards a destination. However, ECMP introduces the ability to leverage multiple

paths simultaneously, as long as they have the same cost or metric. By employing

ECMP, network administrators can take advantage of the available bandwidth

across multiple links and enhance overall efficiency of the network.

Open Shortest Path First

The Open Shortest Path First (OSPF) protocol, designed for medium and large-

scale network routing, has become a widely adopted standard in the field of network

communication. OSPF-enabled routers exchange link state information, allowing

each router to maintain a comprehensive understanding of the network topology.

One of the most significant features of OSPF is its ability to partition a network

into multiple areas while ensuring connectivity through a central area known as the

backbone. This hierarchical structure allows for efficient routing and scalability,

14

2.3. Heuristic based methods

making OSPF particularly suitable for large and complex networks.

In the context of inter-domain routing, OSPF plays a crucial role in connecting

different Autonomous Systems (AS). An AS refers to a group of networks under

a single administrative domain, often managed by a single entity such as an In-

ternet Service Provider (ISP) or a large organization. Each AS may employ its

own internal routing protocols, tailored to their specific requirements and network

characteristics. However, to communicate and facilitate communication between

different AS, OSPF serves as a common protocol for exchanging routing informa-

tion.

Border Gateway Protocol

The Border Gateway Protocol (BGP) has emerged as the predominant external

routing protocol in the Internet ecosystem. BGP views the Internet as a collection

of interconnected Autonomous Systems, each identified by a unique 2-byte number.

This protocol employs a distance metric to determine the optimal route between

AS, ensuring efficient and reliable communication across the global network.

One of the key features of BGP is its ability to exchange routing information

between AS. When a BGP router sends a message to its neighboring routers, it

includes an additional field that records the AS traversed along the path. This

information enables routers to build a comprehensive view of the network topology,

facilitating informed routing decisions and improving the overall performance and

stability of the Internet.

BGP routers continuously monitor the network for any updates or changes.

Whenever a router detects a modification in the network state, such as link fail-

ure or the introduction of a new AS, it quickly communicates information to its

neighboring routers using TCP messages. This proactive approach ensure that

routing tables are kept up to date, allowing for quick convergence and minimizing

15

CHAPTER 2. STATE-OF-THE-ART

the impact of network distributions.

Least Loaded Routing Algorithm

The Least Loaded (LL) Routing Algorithm emerged as a dynamic and adaptive

approach to load balancing in modern network systems. This algorithm aims to

efficiently distribute traffic across multiple servers or paths based on their current

load or capacity, ensuring optimal resource utilization and minimizing the risk of

overloading any single server or path.

The core principle behind the LL Routing algorithm is to route incoming re-

quests or traffic to the server or path that is currently handling the least amount of

load. By continuously monitoring the load levels of each server or path, the algo-

rithm can make informed decisions and dynamically adjust the routing strategy to

maintain a balanced distribution of traffic. Via directing traffic to the least loaded

server or path the algorithm helps prevent bottlenecks and ensures all resources

are utilized effectively. This load balancing approach improves the overall system

performance, reduces response times and increases the user experience.

Another advantage of this approach is its scalability. As the network grows and

the number of servers and paths increases, the algorithm can seamlessly adapt

and continue to provide efficient load balancing. This scalability is particularly

important in large-scale systems where the demand for resources can fluctuate

over time.

The model to be developed will resemble LL Routing in some aspects, as it will

select a number of flows to reroute to reduce the maximum link utilization of the

system, while penalizing longer routes.

16

2.3. Heuristic based methods

2.3.2 SDN-Enabled routing algorithms

This section includes traditional routing algorithms that have been enabled by

the invention of Software Defined Networks, as for the Reinforcement Learning

based methods we can divide this section into two clearly defined sections routing

algorithms and selection algorithms with the same distinction as in the previous

section.

Multiple routing techniques have been presented since the introduction of SDNs

[24] [25], Bin et al. presented a Resource Scheduling algorithm for ForCES (For-

warding and Control Element Separation) networks [26] to meet flexibility, pro-

grammability and scalability demands in node resources. This algorithm relies on

the selection of a cost or a priority and then scheduling to meet the demands of

the user via an economic model.

Jain et al. presented B4 [27] a private WAN connecting Google’s data centers

across the planet, achieving near 100% link utilization via the use of the Open-

Flow model, in contrast to the average 30-40 % obtained in normal WANs due

to failures and re-routings. To achieve this they defined two main points to focus

their solution about, based around their unique requirements.

• Failures: Accepting failures as inevitable and common events.

• Central Control: Switch hardware that exports simple interfaces to pro-

gram forwarding table entries under central control.

Mart́ınez et al. designed a path computation element-based strategy for La-

bel Switched Paths re-optimization in Optical Networks [28] and many other ap-

proaches have been presented.

For simplicity reasons we will focus on the two heuristic selection algorithms

developed by Zhang et al. [4] in CFR-RL, as we will be comparing our results to

these approaches as they follow the same K item selection approach.

17

CHAPTER 2. STATE-OF-THE-ART

The TOP-K approach will select the biggest K numbers from the traffic matrix,

a simplified version of the algorithm is depicted below:

Listing 2.1: TopK Algorithm

def get topK f lows (tm) :
f = {}

We s t o r e a l l the i n d i x e s in a d i c t i ona r y
for idx , source , d e s t i n a t i on in pa i r s :

f [idx] = tm [soruce] [d e s t i n a t i on]

We so r t the l i s t
s o r t e d f = so r t (f)

We s e l e c t the cand ida te f lows ,
c f = []
for i in range (s e l f . max moves) :

c f . append (s o r t e d f [i])

return c f

The TOP-K Critical algorithm is an evolution of the previous algorithm, in

which the biggest flows of the congested links will be selected. This approach

however requires information on the ECMP distribution and the shortest paths of

the network.

Listing 2.2: TopK Critical Algorithm

def g e t c r i t i c a l t o pK f l ow s (tm) :
Get l i n k l oads o f ECMP and normal ize
l i n k l o a d s = s e l f . e cmp t r a f f i c d i s t r i b u t i o n (tm idx)
c r i t i c a l l i n k s = so r t (l i n k l o a d s / s e l f . l i n k c a p a c i t i e s)

c f p o t e n t i a l = []
for idx in range (num pairs) :

for path in sho r t e s t pa th [idx] :
i f path i n t e r s e c t s with c r i t i c a l l i n k s :

c f p o t e n t i a l . append (idx)

18

2.3. Heuristic based methods

break

return the topK f l ows o f the s e l e c t e d c r i t i c a l f l ow s
return s e l f . g e t topK f lows (c f p o t e n t i a l)

19

CHAPTER 2. STATE-OF-THE-ART

20

Chapter 3

Description

In this chapter, we will provide a comprehensive description of the project, con-

taining its objectives, methodologies and implementation strategies. We begin by

clearly defining the problem that our project aims to address and highlight the

significance of finding a solution.

We will first state the purpose of this project and the motivations behind it

and state the problem we aim to solve. Then we will define the Reinforcement

Learning problem and the formulation of the Traffic Engineering problem as a

Markov Chain, defining the state and action space and the rewards, as well as

discussing the different choices.

After establishing the problem, we will continue setting specific and measurable

objectives that we seek to accomplish. These objectives will serve as guide to

evaluate the success and effectiveness of our defined approaches.

To tackle the problem, we will explore various approaches, and will define the

different neural network architectures that have been used through the project,

and state the positives and negatives of each of the approaches.

Next we will discuss one of the main problems in traffic engineering, the lack

of reliable data and will discuss the different approaches used for generating real-

21

CHAPTER 3. DESCRIPTION

istic and representative network traffic data. This will involve exploring current

datasets as well as different traffic and topology generation models.

Finally, we will discuss the Reinforcement Learning algorithm, and the mod-

ifications that have been carried out to the update and discuss the different at-

tempted approaches and define the Linear Programming Problem used through all

our project to find and re-route critical flows.

3.1 Motivation

With the raise of Software Defined Networks there has been an increasing number

of publications on the optimization of routing on large scale networks and data-

centers as described in the previous section. All this prior research has focused on

the optimization of a single network achieving near-optimal performance.

We can define the term of optimal performance as Optimal Routing, in terms

of Maximum Link Utilization (MLU), can be achieved via solving a Linear Pro-

gramming (LP) Problem. This solution, is not suitable for deployment as the time

and compute needed to solve the LP problem are greater than those required in

SDN Controllers and the latency caused by the process would not be insignificant

when compared to the end-to-end delay.

Most current research avoids optimizing routing on a generalized case, which

can be useful for both datacenters and large scale networks, as they may experience

link failure or update links capacities, while also benefitting smaller networks that

may not have enough resources to train a Deep Reinforcement Learning model in

their network.

The development of a model that is capable of generalizing to multiple net-

works, would greatly benefit network administrators and would also include a

reduction in power consumption as there would be no need to retrain a model

22

3.2. Problem specification and objectives

from scratch every single time there is an update on the network.

3.2 Problem specification and objectives

This section defines the problem we aim to solve and the objectives to be met

by the end of the project. Additionally, we introduce the Markov Chain used to

formulate this problem as a Reinforcement Learning problem.

3.2.1 Problem Specification

The primary objective of this project is to optimize routing in Software Defined

Networks (SDNs) by minimizing the Maximum Link Utilization (MLU). To achieve

this, we will develop a Deep Reinforcement Learning (DRL) model capable of

optimizing routing across multiple network topologies. In order to convert the

routing problem into a Reinforcement Learning we will proceed to define a Markov

Chain.

States

In a Markov Chain, the state captures the relevant information at each time-step

and must adhere to the Markov Property, which stipulates that the future state

only depends on the current state and not on the trajectory of the current episode.

The state of the designed approach will be formed by two components a Traffic

Matrix and the network topology.

The traffic matrix represents a snapshot of a network at a given time-step,

showing all the ongoing flows and their source, destination and size. By including

the traffic matrix to our state, we will ensure that our model has access to all the

information about the current flows of the network.

23

CHAPTER 3. DESCRIPTION

However, the traffic matrix does not provide a complete picture of the network

environment as it has no information about the topology. To allow our model to

make informed routing decisions and achieve generalization capabilities, we will

need to provide information about the underlying network topology. We will in-

corporate the network topology into the state space, which will include information

about the links connecting the nodes and their different capacities.

Actions

The actions space of our model has been inspired by the approach presented in [4].

At each state st, the model selects K critical flows to optimize. However, as the

number of flows grows quadratically with the number of nodes in the network, the

action space becomes significantly large. This large action space poses a challenge

in our case as we need to perform multipole actions per time-step, and creating

combined actions would only increase the problem.

To tackle this issue, we adopt a strategy inspired by [6] and define the actions

space as A = {0, 1, ..., (N × (N − 1) − 1)} where N represents the number of

nodes in the network. Instead of considering all possible combinations of actions

we will sample K distinct actions (a1t , a
2
t , ..., a

K
t) from this action space without

replacement. By sampling from the same distribution, we can effectively address

the large action space issue while avoiding the computational complexity associated

with combined actions.

This approach, at least in theory, would allow us to handle large-scale networks

with a significant number of flows. It is worth noting that the choice of K, the

number of critical flows to be rerouted is an important hyperparameter in our

model, and it should be carefully tuned to strike a balance between optimization

and the overhead of rerouting too many flows, and the other effects this may have

such as end-to-end delay.

24

3.2. Problem specification and objectives

Rewards

After executing each action, the model will receive a reward signal that is used

as feedback for the learning process. In our defined environment, the model will

optimally route the selected flows and obtain the resulting Maximum Link Utiliza-

tion (MLU). However, using the MLU value directly as a reward has limitations,

as the quantities can vary significantly between different networks or even within

the same network at different time points. To address this issue, we designed a

new reward that provides a more consistent feedback signal.

We decided to compare the obtained MLU with the MLU achieved by the

heuristic method described in the previous chapter TOP-K Critical. We will com-

pare our obtained MLU with the MLU obtained by the heuristic method TOP-K

Critical (MLUTOPK
).

The reward is defined by the following equation:

r =
MLUTOPK

−MLU

MLUTOPK

+ 1 (3.1)

This reward offers several advantages, it provides a normalized measure of

the model’s performance compared to heuristic methods. By adding 1 to the

reward we accelerate the learning process by having positive and negative numbers,

theoretically this should not matter in the long term due to the presence of a

baseline, but we will still observe a speedup during the training. With this reward

we are also able to quickly assess the performance of the model during training.

3.2.2 Project Objectives

To evaluate the effectiveness and practicality of our solution for optimizing routing

in SDNs, it is crucial to establish clear and measurable objectives. These objectives

will serve as benchmark to assess the performance of our model and determine its

25

CHAPTER 3. DESCRIPTION

suitability for real-world deployment. In this section, we identify and define the

key objectives that we aim to achieve by the end of the project.

Our primary focus is the design of a model that not only minimizes the MLU

but also exhibits strong generalization capabilities and operates efficiently in terms

of computational resources. By setting these objectives, we ensure that our so-

lutions addresses the key challenges and requirements of optimizing routing in

diverse environments.

In the following subsections, we will explain each objective in detail, explaining

their significance and criteria for determining their successful completion.

Generalization Capability

The primary objective of our project is to develop a model that demonstrates

strong generalization capabilities. We aim to create a model that can effectively

optimize routing in various network topologies given a fixed number of nodes.

Achieving this goal would validate that the model is not merely memorizing specific

traffic patterns but rather learning to make intelligent routing decisions based on

the given information of the network.

It is important to note that memorizing traffic patterns is not inherently neg-

ative. In fact, it can be positive in scenarios where there the network exhibits

consistent and predictable behaviour and in cases where we just want to adapt

to a single network topology. However, our focus is on generalizing, for which we

want to avoid memorization.

We will consider our generalization to objective to be achieved when our model

is capable of outperforming TOP-K Critical on data not seen before during the

training, this can be achieved in different manners.

• Only Traffic: The model being capable of generalizing in never seen before

traffic on topologies it has been trained on.

26

3.2. Problem specification and objectives

• Traffic and Topology The model being capable of generalizing in never

seen traffic in never seen topologies.

It is important to note, that for both, we will require the model to be able

to perform in multiple topologies. For the second objective, we would also in-

clude being able to perform on modifications of topologies seen before to test for

adaptability of topology updates or link failure.

Negligible Delay and memory usage

Another crucial objective of our project is to develop a model that ca be seam-

lessly integrated into real-world scenarios without introducing significant delays

or consuming excessive memory resources. In practical SDN deployments need

to operate efficiently on SDN controllers, ensuring it does not affect the overall

performance of the network.

To achieve this objective, we will focus on designing a compact neural network

architecture. By minimizing the size of the neural network, we can reduce the

computational overhead and memory requirements associated with running the

model on SDN controllers. A smaller model also translates to faster inference

times, which is critical for real-time routing optimizations.

It is important to acknowledge that the real world performance of the solution

may vary on factors such as the value of K, or the size of the network. As the

network scales and the value of K increases, the computational complexity and

requirements of the Linear Programming Problem will grow.

To define a success criterion for this objective, we will aim for our model to

perform inference in less that half the time it takes to solve the designed LP

Problem, which will be showed in the following sections. This benchmark ensures

that the model does not introduce significant delay into the overall routing process.

27

CHAPTER 3. DESCRIPTION

Optimizing the model’s architecture implementation will be a key focus to meet

this objective, for deployment some techniques such as pruning [29] or quantization

[30] may be explored and considered an option as long as they do not cause any

other issues or worsen the performance of the model.

3.3 Methodology

This section will contain details about the tools and techniques that are to be used

in order to obtain a model that will attempt to meet the established objectives. We

will proceed to explain the techniques used for data generation, the approach to

be used to design a neural network and possible optimizations for the deployment

of this network.

3.3.1 Data

One of the biggest challenges in the topic of Traffic Engineering is the lack of

realistic data, due to security concerns almost no network shares information about

their traffic matrices and topology. Due to this reason there has been discussion

on the generation of synthetic data and how well it represents realistic data. Prior

research such as CFR-RL and RL-Routing does not mix the usage of real and

synthetic data, when trained on real data it is tested on real data, and when

trained on synthetic data it will be tested on synthetic data. In this project we

will attempt to train on synthetic data in our case we will use the Gravity method

[9], to generate our synthetic traffic matrices. This method is still being used on

state-of-the-art research [31] and is the one that best represents the real data that

we have access to from the Abilene network [10].

28

3.3. Methodology

Gravity Model

The gravity traffic model is based on Newton’s law of gravitation. In this approach

the traffic from each source to each destination is modelled as a random process

and assumes independence between flows. In the ideal case we assume that the

sum of the traffic leaving nodes and the traffic entering nodes it is equal 3.2. For

simplicity reasons we will assume we are only generating one traffic matrix (TM).

The value at TMi,j shows the traffic from node i that has node j as final destination

(inside the network), and it does not represent the next jump.

T total =
n∑

i=1

T in
i =

n∑
i=1

T out
i (3.2)

Where T in
i is the traffic that will ingress node i and T out

i is the traffic that

will egress node i. This equation only states that there is no packet that exits the

network.

The gravity model is defined in the following way

T (ni, nj) = T total T in(ni)∑
k T

in(nk)

T out(nj)∑
k T

out(nk)
(3.3)

Which can be simplified via the use of matrices in the following way:

P = T × pinp
T
out (3.4)

This way we have simplified the synthesis of traffic matrices, as we will only

have 2N random variables instead on N2, we will generate the ingress and egress

values of every node via sampling from an exponential distribution.

Tn = λe−λx (3.5)

No importance has been given to the parameter of the exponential as long as

29

CHAPTER 3. DESCRIPTION

it is the same value for every node, for simplicity reasons we chose to stick with 1.

There is only one value to be discussed, the total amount of traffic, this value

is not important for the algorithm per se as the values will be normalized, the

importance of this value falls in the scale of the maximum link utilization, but

as this value is also normalized we have chosen to simply choose this value, so

it resembles the distribution in the only real data we had access to, the Abilene

Network, the distribution of this was a uniform distribution, which we copied in

mean and limits.

Topology generation

While the number of real topologies freely available online is much greater than

the number of traffic matrices, synthetically generated topologies are being used

as there has been no evidence of this performing better or worse than real network

topologies as far as there is a diverse enough dataset. We have focused on generat-

ing three different types of topologies, resembling autonomous-systems (AS) [32],

modifications of the Abilene topology to test link failure robustness and random

topologies.

3.3.2 Algorithm

In order to solve the Reinforcement Learning problem proposed previously a mod-

ified version of the REINFORCE algorithm [7] has been chosen, this was the

algorithm used previously on [4] and our early testing results were positive, for

which no few approaches have been discussed.

REINFORCE is a policy-gradient algorithm, where we learn a policy instead of

a state-value function, via learning this policy we attempt to simplify the learning

of our DRL model. The algorithm 3.6 is a modified version of REINFORCE with

the objective of adding a baseline, the entropy and multiple action selection per

30

3.3. Methodology

step. Our policy will be updated via performing gradient ascent on the following

equations.

θt = θt−1 + α[δ + ϵH(π(At|St, θt−1))]∇ ln [π(At|st, θt−1)] (3.6)

δ = G− V (st) (3.7)

H(p(x)) = −
∑

p(x) ln p(x) (3.8)

π(At|st, θt−1) =π(a1t |St, θt−1)× π(a2t |St, θt−1)×

...× π(aKt |St, θt−1)
(3.9)

Where the value of the function V (st), equates to the average of the reward

of all previous experiences in the given state st, the ϵ is a hyperparameter which

determined the importance of the entropy, we have chosen 0.01 as stated by [4],

we believe this value has little importance in the end results.

There was an attempt of using actor-critic methods [7] with little success due

to the complexity of learning a value function in these scenarios. An actor-critic

method may still be a considerable approach in other solutions where there is an

infinite amount of data, as there would be no need of keeping a baseline value for

every traffic matrix of every topology.

3.3.3 Linear Programming Problem

In order to evaluate the performance of the performance of our results we will

compare the obtained results with the optimal solutions. The mathematical for-

31

CHAPTER 3. DESCRIPTION

mulation of this solution originates from the CFR-RL paper, [4] where the idea of

using the optimal solution to evaluate the problem comes from. We will start by

the explanation of the used nomenclature.

Nomenclature

G(V,E) Network with V nodes and E directed edges.

ci,j The capacity of link (i, j) (i, j) ∈ E

li,j The traffic load on link (i, j) (i, j) ∈ E

Ds,d The traffic demand from source to destination (s, d) ∈ V, s ̸= d

σs,d
i,j The percentage of traffic demand from source s (s, d) ∈ V, s ̸= d

to destination d routed on link ⟨i, j⟩. (i, j) ∈ E, ⟨s, d⟩ ∈ fK

fK The selected critical flows.

U Maximum Link Utilization

Algorithm

By the default the traffic will be routed using the ECMP algorithm and the route

the selected flows fK will follow will be defined by conducting an explicit routing

optimization for the selected critical flows < s, d >∈ fk. Given a network G(V,E)

with the set of traffic demands Ds,d for all selected critical flows (∀⟨s, d⟩ ∈ fK) and

the background link load {l̂i,j} contributed by the links routed via ECMP obtain

the explicit routing ratios {σs,d
i,j } for each critical flow, so that the maximum link

utilization U is minimized. To search for all possible under-utilized paths the

routing problem is formulated as the following optimization:

minimize U + ϵ×
∑

⟨i,j⟩∈E

∑
⟨s,d⟩∈fK

σs,d
i,j (3.10)

subject to:

32

3.3. Methodology

li,j =
∑

⟨s,d⟩∈fK

σs,d
i,j ×Ds,d + l̂i,j i, j : ⟨i, j⟩ ∈ E (3.11)

li,j ≤ ci,j × U i, j : ⟨i, j⟩ ∈ E (3.12)

∑
k:⟨k,i⟩∈E

σs,d
k,i −

∑
k:⟨i,k⟩∈E

σs,d
i,k =

−1 if i = s,

1 if i = d

0 otherwise.

i ∈ V, sd : ⟨s, d⟩ ∈ fK (3.13)

0 ≤ σs,d
i,j ≤ 1 s, d : ⟨s, d⟩ ∈ fK , i, j : ⟨i, j⟩ ∈ E (3.14)

Via the solution of this optimization problem designed by Zhang et al. [4]

we are able to optimally reroute the selected flows minimizing link utilization.

According to their paper ”the epsilon term in equation 3.10 is needed to avoid

optimal solutions that will include unnecessary long paths to avoid congested links,

where ϵ (ϵ > 0) is a sufficiently small constant to ensure the minimization of U

takes higher priority” [33].

This LP problem will be solved by the use of the LP solver Gurobi [34] and

the SDN controller will receive the selected actions for the different flows.

3.3.4 Artificial Neural Network

It was decided to use an Artificial Neural Network to solve this Reinforcement

Learning problem, due to the nature of traffic matrices and their continuous na-

ture, the use of the Reinforce Algorithm instead of a state-value method and the

complexity of the problem inclined the balance in favour of DRL. Due to the de-

33

CHAPTER 3. DESCRIPTION

ployment objectives established in previous sections we are limited in the number

of parameters and Floating point operations (FLOPs). For this reason it was de-

cided that the designed model must be smaller than 100 MB prior quantization,

using 32 bit precision this equates to 25 million parameters.

This number may seem big, but both pruning [29] and quantization [30] may be

performed to reduce the size of this model substantially while achieving a similar

performance.

Neural Network Architectures

There have been multiple architecture design approaches in order to find an appro-

priate architecture to solve the problem. Three major approaches were considered,

using a Convolutional Neural Network [8], using a traditional Multilayer Percep-

tron (MLP), or using an architecture based on attention blocks [35].

The use of regularization techniques such as layer normalization [36] has been

found to have little to no effect in the convergence rate of the agent, experiments

with and without layer normalization were performed, and we found no significant

differences.

Multilayer Perceptron The Multilayer Perceptron represents the original ap-

proach to deep learning, this neural networks consist of fully connected layers,

where each layer will contain a specified amount of neurons. In a fully connected

network, every single neuron of the first layer will be connected to every single

neuron of the second layer, normally followed by non-linear activation functions,

for this experiment Gaussian Error Linear Units (GELUs) [37] provided the best

results. The Multilayer perceptron designed for this task can be seen in figure 3.1

Convolutional Neural Network Convolutional Neural Networks were devel-

oped to address the scaling problems of MLPs. The problems were caused due

34

3.3. Methodology

Figure 3.1: Multilayer Perceptron

to the large number of parameters required to analyze images, for this reason the

CNN architecture was defined with images in mind. The weights of a CNN do not

scale with the size of the input, this scale with the size of the kernel. A kernel

can be imagined as a shape, normally squared that gets convoluted with the im-

age, this approach allows locating features in an image, specially if features are in

proximal. To attempt to solve our problem we defined a CNN that can be seen in

figure 3.2, the two inputs could have been configured as channels, but this caused

worse results.

Figure 3.2: Convolutional Neural Network

Attention Attention models have recently gained traction due to their uses in

Natural Language Processing and Computer Vision tasks with surge of foundation

35

CHAPTER 3. DESCRIPTION

models. This models can have billions of parameters and can fully benefit from

the advantages of the transformer architecture. This architecture focuses on com-

puting some approximate of the correlation between two different parts, in NLP

the parts could be words or tokens, while in computer vision parts could be single

pixels or a patch pixels as presented in the Visual Transformer (VIT) [38]. Due

to the low scale of our input (12x12x2) we decided that each single value could be

the equivalent of a token and designed the following architecture 3.3.

Figure 3.3: Attention-Based Neural Network

Figure 3.4: Attention Block

36

3.3. Methodology

Previous work had been carried out on the use of transformers in planning,

obtaining better results than the A* algorithm, [39]. Due to this we believed that

this problem could have benefited from an attention-based architecture.

Weight initialization

Reproducibility is a major known issue in Reinforcement Learning, specially in

DRL [40]. Completely different learning curves may arise from slight changes

such as different seeds, different trajectories or in this case weight initialization.

When attempting to replicate the results obtained in the CFR-RL paper [4], the

reported results could not be matched even when the environment seeds and neural

network were identical, the only difference being the library used to generate the

neural network. Pytorch [41] and Tensorflow [42] use different weight initialization

techniques, causing different results in DRL problems. For this reason the weights

are initialized in a customized way [43] [44], which has been found to be useful in

most cases. The algorithm for weight initialization is as follows:

Listing 3.1: Weight initialization

def we i g h t i n i t () :

”””Custom weigh t i n i t f o r Conv2D and Linear l a y e r s . ”””

i f l a y e r i s l i n e a r :

i n i t . o r thogona l (m. weight . data)

b i a s = 0

e l i f l a y e r i s conv :

b i a s = 0

mid = shape // 2

gain = nn . i n i t . c a l c u l a t e g a i n (’ r e l u ’)

i n i t . o r thogona l (m. weight [: , : , mid , mid] , ga in)

37

CHAPTER 3. DESCRIPTION

3.3.5 Training

To maximize the efficiency of the training we have followed a classical Reinforce-

ment Learning approach were multiple agents are collecting experiences interacting

with the environment and a central agent is updating the weights and distributing

them across the different agents. A simplified version of the training loop of a

normal agent and the central agent can be found next.

Listing 3.2: Training loop of an agent

def run agent () :

Load the we i gh t s from cen t r a l agent

model weights = model weight queues . get ()

model . l o a d s t a t e d i c t (model weights)

run idx = 0

while True :

Get exper i ence

s t a t e = game . g e t s t a t e ()

a c t i on s = model (s ta te , mat)

reward = game . s tep (a c t i on s)

run idx += 1

i f run idx == 10 :

Share exper i ence

exper i ence queue . put (expe r i ence)

38

3.3. Methodology

Load we i gh t s from cen t r a l agent

model weights = model weight queues . get ()

model . l o a d s t a t e d i c t (model weights)

run idx = 0

There were some experiments during which the action selection was overriden

during the early stages of training and there was a chance of carrying out the

action selected by TOP-K Critical. This led to some beneficial results but also to

bigger variance in the results, this will be portrayed in detail in the results section.

Listing 3.3: Training loop of the central agent

def c en t r a l a g en t () :

a lgor i thm = Re in fo r ce ()

for s tep in range (t r a i n i n g s t e p s) :

Share the we i gh t s

model weights = model . g e t we i gh t s ()

model weight queues . put (model weights)

Co l l e c t exper i ence from agents

expe r i ence = expe r i ence queue s . get ()

Update the we i gh t s

model . update (expe r i ence)

Note that this code is not equal to the one in the GitHub repository and some of

its complexity has been abstracted for clarity reasons.

This training is being executed on a distributed manner, where every agent

equates to one thread of the CPU, due to hardware limitations most agents have

been trained with 15 agents, which also equates to 15 topologies

During most runs the number of traffic matrices assigned to every agent varied

39

CHAPTER 3. DESCRIPTION

between 200 and 1000, we believe that the lower the number is the better unless we

start overfitting to our traffic matrices. By keeping the number of traffic matrices

low, we can keep the baseline updated and speed up the training.

3.3.6 Deployment

In this section possible approaches for deployment will be discussed, as stated

above in the objectives we are aiming to develop a model that can be deployed

in SDN controllers, for this reason the designed neural networks all attempt to be

as simple as possible. We will proceed to discuss possible approaches on how we

may adapt the model further after training, some of this approaches may require

further fine-tuning to adapt to the results.

Quantization

Quantization is a technique used to reduce the precision of the weights in a machine

learning model, typically the weights are converted from floating-point numbers to

integers with lower bit-width [30]. The primary motivation behind quantization

is to reduce the memory footprint and computational complexity of the model,

while maintaining its performance and accuracy. Quantization could provide us

with the following benefits:

• Memory Efficiency: By transforming our weights from 32-bit floats to

8-bit integers we are able to reduce by 4 the memory footprint of our model.

• Faster Inference: Fixed point operations are faster than floating point

operations.

• Energy Efficiency: Most of the power consumption of neural networks is

caused by moving weights between different memory types, by reducing the

size we are able to reduce the consumption.

40

3.3. Methodology

By adapting quantization we would be able to reduce the memory footprint of

our model and reduce the inference time of this model. This approach should be

considered for the final results and evaluation.

Pruning

Pruning is a technique used to reduce the size and complexity of a machine learning

model by removing the redundant or less useful components, such as weights,

neurons or entire layers [29]. The goal of pruning is to create a more compact

and efficient model while preserving its performance. The process of pruning can

be divided into two different categories: Structured Pruning and Unstructured

pruning.

Structured Pruning Structured pruning is a technique that aims to reduce the

complexity of the model by removing entire structures, for example removing full

channels from a convolutional layer. This approach does not allow for as much

pruning as the unstructured pruning approach, but it does not need specialized

hardware. However, this approach can still be challenging, and we may not be

able to obtain as much performance as we expect.

Unstructured Pruning Unstructured pruning involves removing individual

weights or connections from the model based on certain connections, normally

their magnitude. This approach results in a sparse model with irregular connec-

tivity. Due to the irregular connectivity this approach would require the use of

specialized hardware, which would not be optimal for our use case.

41

CHAPTER 3. DESCRIPTION

3.4 Resources

The development of the project will rely on a diverse set of resources, including real-

world datasets, computing infrastructure, and software tools to ensure efficiency,

reproducibility, and practicality for our proposed solutions.

3.4.1 Datasets

To validate the effectiveness of our approaches in real-world scenarios, we will

utilize the ABILENE network dataset [10]. The ABILENE network is a high

performance backbone network that connects various educational and research

institutes across the United States 3.5. This dataset provides a rich collection

of traffic matrices (TMs) that captures real-world traffic patterns and dynamics

observed in the network. By using this dataset, we can evaluate the performance

of our model under realistic network conditions and demonstrate the applicability

of our solution.

In addition to the Abilene dataset, synthetic traffic data will be generated

following the gravity definition described on the previous section. This synthetic

datasets will allow us to explore a greater amount of topologies and traffic matrices,

and by training on synthetic data and testing on real data we can potentially prove

the usefulness of this data.

3.4.2 Computing Resources

To support the computational demands of our project, we will utilize a combination

of personal and high-performance computing resources. For local development and

evaluation, a personal laptop will be used for its accessibility.

However, to handle more computationally intensive tasks, such as long training

42

3.4. Resources

Figure 3.5: Abilene Network Topology

Model Intel Xeon Platinum 8280 (”Cascade Lake”)
Hardware threads per core: 56 cores on two sockets
Hardware threads per core: 1

Clock rate: 2.7 GHz nominal
RAM: 192GB (2933 MT/s) DDR4

Cache:

32KB L1 data cache per core;
1 MB L2 per core;

38.5 MB L3 per socket
Each socket cache up to 66.5 MB (L2 + L3)

Local storage: 144GB /tmp partition on a 240GB SSD.

Table 3.1: Specifications of a Compute Node from Frontera

runs or multiple agents running in parallel, the Frontera Supercomputer from the

Texas Advanced Computing Center will be used. Frontera is currently one of

the world’s most powerful academic supercomputers, offering a massive amount

of computing power and parallel processing capabilities. By using this system, we

are able to do an in-depth exploration of different models and approaches.

3.4.3 Software Tools and Frameworks

To facilitate the development and evaluation of our models, we will employ a range

of software tools and frameworks. The primary machine learning framework for

43

CHAPTER 3. DESCRIPTION

this project will be PyTorch [41], as it offers a flexible and intuitive interface for

building and training neural networks.

In addition to Pytorch Tensorflow [42] will be used to observe and reproduce

the CFR-RL results, as they shared a codebase using tensorflow.

For real-time visualization of training results, Weights and Biases (wandb) will

be used [45], as it will allow us to remotely view the live results of training runs,

useful when training on a server such as Frontera.

Finally, for version control and code sharing we will use GitHub, all the code

and training data will be publicly available at the GitHub repository. Git allows

us to keep track of the different updates of the code.

By using these technologies, we aim to develop a robust and practical solution

for network optimization in Software Defined Networks. The combination of these

resources will allow us to conduct experiments, validate our approaches and test

the efficacy of our approach in realistic scenarios.

3.5 Market Analysis

Software Defined Networking has emerged as a transformative technology in the

networking industry, gaining significant traction in recent years. The global SDN

market has experienced substantial growth, and it is expected to continue upward

in the following years.

Talk about the data center market, the number of SDN switches being sold

every year, amount of data sent per second/hour/day in a datacenter, importance

of datacenters. [46] at USD 28.2 billion in 2023 and projected to reach USD 120.5

Billion by 2032, with a projected Compound Annual Growth Rate (CAGR) of 17%

during the specified period. The increasing demand for automation, scalability and

simplified network management is driving the adoption of SDNs across various

44

3.5. Market Analysis

industries.

Figure 3.6: Market Projection

The Software Defined Networking market can be segmented on the components,

controllers, switches and services. Across this the controllers hold the largest

market share due to their crucial role in orchestrating the network resources.

In terms of end-users, the SDN market serves a wide range of industries, in-

cluding telecommunications, cloud service providers and enterprises, being the

enterprises’ industry the largest adopter of SDN technology.

Figure 3.7: Market Share by end use

45

CHAPTER 3. DESCRIPTION

Geographically North America hold the largest share of the SDN market, fol-

lowed by Europe and the Asia-Pacific region. This last region is expected to

witness the highest growth during the following years, driven by the increasing

adoption of cloud computing and datacenter consolidation in countries like China,

India or Japan.

The major players in the SDN market include Arista Networks, Cisco Sys-

tems, Dell Technologies, Huawei Technologies, IBM, Intel Corporation and Oracle

Corporation among others.

Currently, the most popular solution comes by the hand of Cisco-Meraki in

Software Defined-Wide Area Networks (SD-WAN) and non-enterprise products

are lacking.

46

Chapter 4

Results

In this section, we present the results of our study on Generalizing Critical Flow

Rerouting-Reinforcement Learning. We conduct a series of experiments to evaluate

the performance of our proposed approach under various exploration strategies,

including Autonomous Exploration, Heuristic-Assisted Exploration and Heuristic-

Guided Initial Exploration. With these strategies we aim to research different

ways of adding domain knowledge in the exploration of our agent through defined

heuristic algorithms and how this domain knowledge affects the convergence speed

and generalization capabilities of the agent.

Another aspects of generalizing are also explored, some of these aspects are the

effects of training on synthetically generated traffic matrices, training on different

alterations of the same topology, training on completely different topologies in

all cases the evaluation and generalization results will be on unseen traffic data,

and the cases where the testing topology was present on the training data will be

clearly indicated. This is being tested as in cases where we want to train for link

failure inside a network it makes sense to train on the real topology as well as the

topology with some failures.

For clarity, we will divide the results into three different sections, the archi-

47

CHAPTER 4. RESULTS

tecture results, which will contain information about the final neural network and

relevant data about it, the training results where we will share the learning curves

of different approaches and the testing results where we will compare the results

of our model against an optimal model.

Finally, we will continue with an in-depth analysis of the obtained results and

a discussion on the current capabilities of the model, and explore the viability of

the proposed model.

The training and evaluation results sections will be divided into the different

approaches for exploration.

In detail results will be provided in the appendix B.

4.1 Architecture Results

This section contains the results of the explored architecture. In order to choose

between the different architectures we trained each of the different architectures in

different settings. The ConvNet architecture brought the best results, the results

of the other architectures will be displayed in the appendix B. The specifications

of the different architectures can be seen in table 4.1.

Model Parameters Size (32-bit) Size (8-bit) Average Time (ms)
ConvNet 19,074,892 76.3 MB 19 MB 1.27

SimpleMLP 1,374,620 5.5 MB 1.3 MB 0.08
Attention 5,361,540 21.2 MB 5.3 MB 0.52

Table 4.1: Selected Architecture

The average time shown in the table are prior quantization and on a laptop

CPU, if the model was quantized and compiled for the final architecture we expect

to see better results.

48

4.2. Training Results

It must be noted that for the Attention model we attempted more deep ar-

chitectures with a bigger number of parameters, and we were not able to match

the results of the Convolutional Neural Network approach, even with these results

we think that there is some attention based architecture that has not been found

capable of matching the results of the CNN.

4.2 Training Results

This section will contain all the training results. We explored different approaches

for training to see capabilities for adaptability to link failure, capability of train-

ing in multiple topologies and also different Reinforcement Learning approaches

such as different approaches (baseline vs no baseline) or different neural network

architectures. For each approach we will provide with two different graphs, the

first one will be the average reward against the update steps, each of the update

steps equates to 10 training steps, as the agents take 10 steps before sharing their

experience with the central agent. The second figure will include three different

variables in the y-axis, the part of actions that were better than the TOP-K Ap-

proach, the part of actions that was worse, and the amount of actions that was

equal (in MLU) to the TOP-K Critical approach, two different actions may still

provide the same MLU. As these quantities are normalized they will add up to 1.

Additionally, all the graphs have been smoothed for clarity reasons. As a reminder

to the reader, the reward function 3.1 will be equal to 1 when the resulting MLU

is equal to the TOP-K Critical MLU, it will be smaller than 1 when it is worse,

and greater than 1 when it is better.

A factor to keep in mind is that the designed reward is not centered in 0, as

the maximum link utilization can be infinitely worse but only 100% smaller, with

this last case not being realistic. For this reason, we may have a better performing

49

CHAPTER 4. RESULTS

model that has an average reward close but smaller than 1. For this reason we

have added the second graph, to be able to really assess the performance during

training.

4.2.1 Autonomous Exploration

Autonomous exploration is the most intuitive approach to the problem, not giving

any information to the agent on what policies it should learn, by using this ap-

proach we expect the learning process to be slower than the rest of methods, but we

expect our agent to be able to find a more diverse policy. This non-guided explo-

ration can be clearly seen on AlphaGo Zero [47], that was only trained in self-play

and used no human data, in contrast to AlphaGo that was trained on a dataset of

games by expert. The model that was trained only on self-play (AlphaGo Zero)

was able to beat the AlphaGo model 100-0 in 100 games.

To speed up the process we will divide the training into two parts, the first part

takes approximately 25,000 steps where the agent will train normally updating the

baseline. For the second part of the training we will generate new traffic matrices

(same topologies), which also equals to deleting the baseline. We will force the

agent to adapt to those newly generated traffic matrices. For clarity reasons we

will only include the second part of the training in the graph, the first part will be

included in appendix B.

The results of this approach can be seen in figures 4.1 and 4.2, we consider the

obtained results positive, as the obtained reward is higher than one and the per-

centage of actions that are better than the heuristic method is almost approaching

half of the actions.

In the generalization subsection we will evaluate the true performance of this

approach and how it really compares to an assisted exploration.

50

4.2. Training Results

Figure 4.1: Autonomous Exploration Reward

Figure 4.2: Autonomous Exploration Action Comparison

4.2.2 Heuristic-Assisted Exploration

To address exploration vs exploitation problem one of the selected approaches was

that during all the training, the agent would have a chance of being updated by

the TOP-K Critical result and a chance of being able to select its own action. The

training results of this approach can be seen on figures 4.4 and 4.3.

These results were obtained training on different versions of the Abilene traffic

matrix on synthetic data generated via the gravity model, five hundred traffic

51

CHAPTER 4. RESULTS

Figure 4.3: Heuristic-Assisted Exploration Reward

Figure 4.4: Heuristic-Assisted Exploration Action Comparison

matrices were generated for each of the different 15 agents that were running.

We can observe that the model is able to in a good part imitate the actions of

the TOP-K Critical algorithm, and in very few occasions obtain better or worse

results. The obtained results are not negative per se, and the generalization results

will be needed to decide on the capabilities of this model.

52

4.2. Training Results

4.2.3 Heuristic-Guided Initial Exploration

To address the issues found in the Heuristic-Assisted Exploration method, we

adopted this approach, in which the agent will have a chance of taking the same

action as the Top-K Critical Method, this chance however will decrease or disap-

pear after a given number of steps. The specified number of steps has been decided

by trial and error, and we found it to be extremely complex to estimate due to the

stochasticity of gradient based methods in reinforcement learning, as it depended

on the run.

Figure 4.5: Heuristic-Guided Initial Exploration Reward

This method was guided for the first 5,000 updating steps (50,000 training

steps), in which it had a chance of updating with the heuristic action. It can be

observed in figures 4.5 and 4.6, that this seemed successful as for approximately

the first 25,000 updating steps the model kept updating and improving, however

after that it suffered from some sever catastrophic forgetting and was not able to

improve any further. This catastrophic forgetting has been present in all of our

attempts of HGIE, even when the chance of taking the action is slowly decreased.

We believe that with further exploration on ways to implement this method the

53

CHAPTER 4. RESULTS

Figure 4.6: Heuristic-Guided Initial Exploration Action Comparison

issue could be solved, but we have not been able to do so.

4.3 Generalization Results

In this section the results of the previous exploration methods will be tested for

their different generalization capabilities defined previously in this thesis; their

capability to work on not seen before data, whether this is traffic data or topology

data will be signaled in the traffic. For either of those, it is important to note that,

previous methods such as CFR-RL struggled when trained on synthetic traffic data

and tested on real traffic data, let alone a different topology. We will divide our

results in the same sections as the previous section, but on top of that we will

divide each of those parts into two different parts, each addressing a different type

of generalization.

For each evaluation we will have two different graphs, the first graph will show

the normalized maximum link utilization of the approach, and the maximum link

utilization of TOP-K Critical, the scale of this graph is different from the one

shown in training, for this graph the value of 1 will equate to the optimal solution

54

4.3. Generalization Results

in terms of MLU, the second graph will show the normalized delay, where 1 is the

value obtained via a solution focusing on optimal delay, the higher the value is the

better.

For topology generalization we will test our results in a graph generated by

the Newman-Watts-Strogatz approach [48]. We generated a graph connected to

its two closest neighbors and a 0.3 chance of connection.

4.3.1 Autonomous Exploration

We expect this approach to present the best results, as we have been the model

has been able to produce a non-guided policy without any influence.

Traffic Generalization

To test traffic generalization we are going to test the performance of the model

trained without any guidance on data from the Abilene topology.

Figure 4.7: AE MLU Evaluation

As it can be observed in figures 4.7 and 4.8, this model is able to surpass the

55

CHAPTER 4. RESULTS

Figure 4.8: AE Delay Evaluation

heuristic method. We consider the results obtained in this section a success as

we have been able to outperform the heuristic based method in both delay and

maximum link utilization.

Topology Generalization

To test the topology generalization capabilities of this model, we will modify the

Abilene topology by removing a link, this modification was not present in the

training dataset, by removing this link we can assess the performance of our model

in cases of link failure.

The results of this approach can be observed in figures 4.10 and 4.9, with these

results we confirm that our agent has been able to adapt to topologies it has not

been trained on, in comparison with the results of the previously discusses models

[4] and [5], we have created an agent that is not only able to adapt to a different

distribution of traffic matrices in a network, but also adapt to different topologies.

However, this agent is still not able to adapt to completely different topologies.

56

4.3. Generalization Results

Figure 4.9: AE MLU Evaluation in different topology

Figure 4.10: AE Delay Evaluation in different topology

4.3.2 Heuristic-Assisted Exploration

This method consisted on having a chance of selecting a TOP-K option during the

complete training process. Unlike with other methods, by being able to choose

a TOP-K Action during all the training process it made assessing the true per-

57

CHAPTER 4. RESULTS

formance of this method difficult, as we were not aware of how the model would

perform when it was not guided.

Traffic Generalization

In this example we tested this approach on the Abilene topology (it was on the

training data) on real traffic (it was only trained on synthetic data). The results

of ECMP were included for comparative reasons.

Figure 4.11: Heuristic-Assisted Exploration MLU Evaluation

As it can be seen in the results, this approach did not result in positive results,

we believe that the policy was highly unstable, and if a part of autonomous ex-

ploration was added these issues may be solved. As the results obtained in this

section are already negative, the topology generalization section will be skipped,

as we believe it would be a waste of compute resources, as the task of generalizing

to different topologies in significantly more complex than the task of adapting to

different traffic patterns.

58

4.3. Generalization Results

Figure 4.12: Heuristic-Assisted Exploration Delay Evaluation

4.3.3 Heuristic-Guided Initial Exploration

For this section we will include the results of the better checkpoint we have had

access to, later checkpoints suffered from the catastrophic forgetting providing

significantly worse performance in terms of MLU minimization.

Traffic Generalization

For this traffic generalization we will test the performance of a model trained on

synthetic traffic on the Abilene topology and modifications of this topology in the

Abilene topology with real traffic, a positive performance in this part would signify

that we have developed a model capable of adapting to new traffic patterns.

As it can be observed in figures 4.14 and 4.13, the obtained results are close

to the ones obtained by the heuristic method. It can be observed that at the last

500 evaluation steps there is an apparent difference, however in this evaluation

scenarios the non-Normalized values are significantly smaller than in the rest of

the graph, so the difference may not be as apparent when deployed. Regarding

59

CHAPTER 4. RESULTS

Figure 4.13: Heuristic-Guided Initial Exploration MLU Evaluation

Figure 4.14: Heuristic-Guided Initial Exploration Delay Evaluation

delay, we also find really similar performance. Via this experiment we have proven

that training on synthetically generating data can be useful, at least for the Abilene

Network, to make a broader statement more networks would need to be explored

and compared.

However, we believe there is still room for improvement as we are really similar

60

4.3. Generalization Results

to the heuristic method, and still relatively far from optimal performance. We

believe that for this slight difference, training a reinforcement learning model would

not be practical, and we would still prefer using the heuristic method.

Topology Generalization

Given the slightly positive results obtained in the previous section, we will proceed

to evaluate the performance of the model in topology generalization, a priori, we

would not expect this to be better than heuristic method, as it has only been

trained on topologies similar to the Abilene traffic matrix, and we will now proceed

with a randomly generated topology.

Figure 4.15: HGIE MLU Evaluation in different topology

As it can be observed in figures 4.15 and 4.16, the obtained results are worse

than the ones obtained by TOP-K Critical, we believe these results were caused

due to only training in topologies that were modifications of the Abilene topology.

However, the results obtained regarding MLU are better than expected, as for the

first part the results are really similar and are closer to TOP-K Critical than they

61

CHAPTER 4. RESULTS

Figure 4.16: HGIE Delay Evaluation in different topology

are to the base method ECMP. We believe that can signify that with a better

training dataset the agent may be able to perform in different topologies.

4.4 Result Analysis

This section will contain the discussion on the results obtained in the previous

section, we will divide this analysis into three different subsections, the discussion

results obtained on the training data, and how this results compare to other ap-

proaches, we will then discuss the results obtained on generalization, and finally

we will discuss the results relevant to deployment such as end-to-end delay and

the latency of our model. On this first section we will also provide details about

the training process.

4.4.1 Training

For training, we are measuring how well our approach is adapting to the training

data, and how quickly it learns a policy. When comparing our results to the CFR-

62

4.4. Result Analysis

RL paper [4], we can see that our approach takes more time, approximately 4

times more steps, to learn a policy that is able to outperform heuristic methods.

This is expected as the previous model was only learning information about one

topology and one traffic distribution, whereas we are training a model to be able

to be usable in different topologies and distributions.

In terms of the quality of the trained policy, via this approach or model is

slightly worse than CFR-RL on training data, we do not think these results are

important as it only happens on the training distribution, where CFR-RL obtains

near-optimal results for every traffic matrix. In any case this shows that there is

still room for improvement for our model and the obtained results can be improved.

To obtain the final model, we have trained different models for approximately

1000 hours, 500 hours in the Frontera supercomputer and 500 hours in personal

computers, most of this exploration has been focused on testing different architec-

tures, testing the replicability of the results and different approaches. The final

model was trained on a personal computer (M3 Pro MacBook Pro), for a total of

twenty hours, making this experiment replicable as long as one has a minimum

amount of compute.

Due to the small batch size and dimensionality of the input, all training has

been performed on the CPU, as the overhead of moving the data to the GPU was

greater than the benefits, so in systems where there is a separate VRAM and RAM

using the CPU for training would still be recommended.

During our attempts at autonomous exploration, we found that our model

started to plateau somewhere between 0.85 and 0.9 average reward and accidentally

found that stopping the training when all the advantages are zero, (the model is no

longer updating), and restarting the training with new traffic matrices, did result

in achieving better models. We believe this problem could have been addressed

with another approaches such as a different learning rate schedule. However, we

63

CHAPTER 4. RESULTS

believe that a better model could be achieved by designing a better baseline.

There were attempts on training an actor critic model [7], but the attempts were

not successful.

4.4.2 Evaluation

In this section we will discuss the performance of the model on tasks that it had

not been trained on, we will mainly focus on the performance of the Autonomous

Exploration approach as it was the approach that obtained the better results.

The results obtained in traffic generalization and topology generalization will be

discussed in different section, a comparison to the capabilities of other approaches

will also be provided.

Traffic Generalization

To test the generalization capabilities of the model, we run will run inference on

a different distribution of data that it had been trained on. To train the model,

we generated synthetic data based on the gravity model, shown on equations 3.2

3.3. With this approach we can also assess the usefulness of using synthetic data

to train Reinforcement Learning models in traffic engineering.

The traffic generalization results can be observed in figure 4.7. These results

prove that the developed model is able to generalize to different traffic patterns,

and it is not memorizing current patterns. One of the main problems of CFR-RL

[4] was its inability to perform when the slightest change to the traffic distribution

was performed. It is important to note that when trained on real traffic data from

the Abilene network, and assessed on other types of real traffic data the model

showed some deterioration regarding results but still was able to outperform the

TOP-K Critical approach in most approaches. We believe that these results are

caused by the cyclical nature of real network data, same reason as approaches

64

4.4. Result Analysis

such as RL Routing [5] work at all, the traffic data tends to be really similar when

comparing different days or different weeks. This memorization of patterns but

said methods however are also the reason for which they are unable to adapt to

other types of traffic, even when the gravity model is the model that resembles

Abilene the most, said methods perform better than heuristic methods when they

are trained on this distribution and tested on the real distribution or vice versa.

Topology Generalization

We will proceed to discuss the results on topology generalization. This task is more

complex than traffic generalization, as to be able to adapt to different topologies

the designed neural network must be able to have some understanding of the

underlying topology, and how each of the flows of the traffic matrix correlates to

the links of the topologies, and not only that it must also be able to differentiate

the different links of the network depending on their capacity.

To test the capabilities we ran inference of the model on different topologies,

one of them is an adapted version of the Abilene topology, present in the network,

the other one is a randomly generated topology following the approach presented

in [48], in which we defined that every node must have at least two neighbors and

a 30% probability of having more links. This topology is similar to small scale

networks.

Our solution was able to adapt to the modified topology and obtain similar

results as it had obtained on its training data, and was capable of outperforming

heuristic based methods. This can be seen in figure 4.9, where our approach

performs better than the heuristic method in most of the evaluation.

When we tested our solution in a completely different topology, it was not able

to perform as well as TOP-K Critical, we believe that a better model could be

achieved if a more diverse set of topologies was added to the training data. For this

65

CHAPTER 4. RESULTS

to happen a different approach should be considered for the baseline, as currently

the number of topologies is equal to the number of threads available in order to

keep track of the baseline.

In conclusion, we were able to develop a with some topology generalization

capabilities, as it is currently able to adapt to link failure or link addition events.

This model can still be useful for single networks in datacenters due to its fault

tolerance.

4.4.3 Deployment

We will proceed to discuss the results obtained in our approach regarding deploy-

ment, this results include model latency, introduced end-to-end delay and how

it compares to other methods, model dimensions and the floating point opera-

tions required. We will focus on the results obtained by the Convolutional Neural

Network, which has been the architecture that achieved the reported results.

As it can be seen in table 4.1, the CNN model is capable of running inference

in approximately 1 ms, as it was stated in the objectives, this time is negligible

when compared to the time it takes to reroute the flows, for this reason we can

consider that we have met the objective. The results have been obtained on a

M3-Pro MacBook Pro, running on CPU without any optimization, quantization

or compilation. For this reason we believe that if this model were to be compiled

for the controllers’ architecture we could achieve better or similar performance

than the results obtained here.

Another important aspect is the memory, currently the quantized model is

expected to fit in less than 20 MB, this would make it easily deployable in most

modern systems and in the strange case in which the model could not be deployed

in the controller it could be deployed in some small capacity microcontroller at the

cost of adding some latency to our model.

66

4.5. Limitations

4.5 Limitations

While our proposed model has demonstrated promising results in optimizing rout-

ing in SDNs, it is important to acknowledge and discuss its limitations. This sec-

tion will highlight the scenarios where our model may not provide improvements

over existing heuristic methods.

4.5.1 Performance in Homogeneous Networks

One notable limitation of our model is its performance in homogeneous networks,

where all the links have the same capacity. In such cases, the TOP-K Critical

approach, has been observed to achieve near-optimal results. Consequently, inde-

pendently of our model’s performance, there is little reason to use another method.

The performance of our model becomes more evident in heterogeneous net-

works, even if a single link presents a different capacity than the rest our model

should be capable of outperforming the TOP-K Critical approach. Heterogeneous

networks are not uncommon, an example of these types of networks is the Abilene

network, exhibiting different capacities among links. For this reason, we believe

that the developed model is still useful, as heterogeneous networks are real and

common.

There may be the case where our model is capable of significantly outperform

heuristic models in a homogeneous networks, however we believe these cases are

few and uncommon, normally caused by obscure topologies which would not reflect

real world networks.

67

CHAPTER 4. RESULTS

4.5.2 Adaptability to significant topology change

Another limitation of our model lies in its ability to adapt to significant changes

in the network topology. Our model has been primarily trained and evaluated

on networks that are similar to the ones found in the training phase. While it

has shown improved performance in these networks, its adaptability to completely

different networks remains a challenge.

If a network undergoes substantial modifications, such as the addition or re-

moval of numerous links, our model may struggle to maintain its performance

advantages.

In conclusion, the network is able to generalize to similar topologies, the model

will be able to continue performing as expected in case of link failure or updates

to the network or simply traffic distribution changes, however if there is a major

network disturbance that modifies the topology of the network significantly, the

model will not be able to respond as expected. For cases like this, having a system

that detects network outages may be encouraged, with the presence of a system

like this, the controller could change from our model to a heuristic approach in

extreme cases.

4.5.3 Deployment considerations

It is important to consider the practical aspects of deploying a model in real-world

SDN environments. While our model has shown promising results in simulations

and experiments, the performance of this model may vary in real scenarios when

there are others aspects to keep in mind, for example the sample rate, how often

will we choose critical flows?

Other aspects such as real world latency need to be studied, how fast will the

controller be able to install this forwarding rules in the different switches.

68

4.5. Limitations

For reasons like this, the deployment of theoretical models such as this one

need to be carefully evaluated in real world scenarios before deploying it in pro-

duction environments. Moreover, the integration of our model with existing SDN

controllers and networks systems may require additional development efforts and

compatibility considerations. Even if this model provided optimal results in sim-

ulations, it would be useless if it was not possible for it to be seamlessly deployed

in current network solutions.

69

CHAPTER 4. RESULTS

70

Chapter 5

Conclusions

In this chapter, we present the conclusions drawn from our research on optimiz-

ing routing inn Software Defined Networks (SDNs) using a Deep Reinforcement

Learning approach. We will reflect on the methodology employed, the key findings

and results obtained and potential implications of our work. Furthermore, we pro-

vide recommendations for future studies highlighting areas that warrant further

investigation and exploration.

Through this thesis, we have explored the challenges associated with routing

optimization in SDNs and proposed a novel DRL-based solution to address the

challenges. By using DRL, our model has been able to make intelligent decisions

that minimize network congestion and improve overall network performance.

We will first begin by going over the methodology, continue with the results

and finalize with future study recommendations.

5.1 Methodology Conclusions

In this section we will summarize the conclusions drawn from our methodology and

approach to solving the routing optimization problem in SDNs. We will divide this

71

CHAPTER 5. CONCLUSIONS

section onto the sections of our methodology that we believe are worth mentioning

and carefully explain our thoughts on the approach and things that could have

been done better.

5.1.1 Data

Data started as one of the major problems of this project, multiple approaches at

data generation where attempted with the gravity model being the most successful

one. With this approach we have been able to obtain positive results, and we have

not seen a case where we have gotten negative results (on traffic generalization),

however in order to be sure, approaches where there are multiple ways of generating

data could be explored.

We expected to need a higher complexity model in order to be able to generalize

to multiple topologies, however we did not expect how different topologies can

bring really different results, and in some cases just changing the capacity of a

single link of a network can cause completely different results, for better or for

worse. Regarding topology, it would have been better to be able to train on a large

quantity of topologies at the same time, also generated by different approaches.

5.1.2 Algorithm

The REINFORCE algorithm provided surprisingly positive results, this algorithm

was used for the results it provided in CFR-RL. Some attempts were made at

training an actor-critic method to get rid of the baseline, this approaches how-

ever did not bring positive results. The actor-critic method consists on having a

separate neural network that gives a score to every state and could be used as a

replacement for the baseline.

Most of the problems with our approach originate from this baseline, this base-

line currently limits the number of topologies we can train at the same time with

72

5.2. Results Conclusions

the CPU threads, as there is a need to keep track of the experience.

5.1.3 Artificial Neural Network

Due to the complexity and characteristics of the problem, the use of a neural

network was not really a choice. The final architecture was based on a combination

of convolutional layers and fully connected layers. We believe that there must be

a simpler architecture that is capable of obtaining better results. Aside from

the study of different architectures, there was no further exploration on different

architectures, the use of different activation functions, different optimizers or the

use of different learning rate schedulers remain unexplored. Further exploration

may benefit from the use of Neural Architecture Search (NAS) [49], to evaluate

and compare different architecture approaches.

The current architecture was initialized as a modified version of the architecture

presented in [4] and was increased in complexity as it was required. We believe

that this model could benefit from graph neural network models to obtain a better

representation of the underlying network topology and its characteristics.

5.2 Results Conclusions

This section will contain insights on the obtained results, what were the obtained

results and the completion status of the established objectives.

Our initial objective was the development of a model capable of generalizing

to different network topologies as we deemed this research could bring potential

benefits to the field of SDN routing, up to the point, most of the current research on

the uses of RL had focused on the development of a model capable of outperforming

heuristic based methods in single network topologies. However, there was little to

no evidence of how a model that was trained on synthetic data would perform on

73

CHAPTER 5. CONCLUSIONS

real scenarios, the few topologies that had available data, used part of that data

from training as it resulted on better results on the testing phases, and in the cases

where there was no real data, most research just trained and tested on the same

distribution (not the exact same data, but similar) of data.

We can identify two main contributions of this project. The first, we have

proved the usefulness of synthetic data, and how, at least on our case, this data

can be used to train Deep Reinforcement Learning models, and secondly the de-

velopment of a DRL model capable of outperforming heuristic based methods on

a set of similar topologies and capable of adapting to network events such as link

failure or adding new links. This model may not be as useful as a model that is

capable of generalizing to any topology.

While it is true that our model, is able to generalize to small subset of topolo-

gies, as they must have the same number of nodes and be similar, we believe it is

a step in the right direction.

5.3 Future study recommendations

This section will contain suggestions for future studies based on the experience of

this project, such as training suggestions, approach suggestions or general ideas.

Firstly, the model is currently being trained completely on the CPU of the

device, we found some issues while attempting to move part of the training to

the GPU, no importance was given to these issues as there was not a significant

speedup, so decided to train on CPU. However, if a larger model with more agents

and bigger agents were to be deployed, the use of GPU would be recommended,

some approach such as A3C [50], would be recommended, where the agents are

collecting experience on CPU and the central agent is simply updating the models

on GPU.

74

5.3. Future study recommendations

Another topic that may be explored is a variable value of K, currently the

selected K corresponds to around a 10% of the network flows, however in some

occasions this may be too much or too little, it may be a good idea to train a

model capable of selecting different values of K for different situations, for this a

penalty penalizing a high number of K should be included to avoid just selecting

every single flow.

Another area that may provide some positive results, is the use of a baseline

different from the average of previous experiences, we had no positive result in-

corporating a different baseline on multiple topologies, but in CFR-RL, the AC

method was able to produce positive results, slightly worse than REINFORCE.

We think that using a neural network to predict the value of the state would be

the best approach, as this would allow using as many topologies as desired, as

there would be no need to keep track of all previous experiences and could just

generate different topologies dynamically. We think that this approach would be

required to train a model capable of generalizing to any desired topology.

Finally, a part that has been only mentioned slightly is the topology size, we

would recommend the use of some different neural network such as a Variational

AutoEncoder (VAE) [51] formed by only convolutional layers, with this approach,

we would be able to train on a much larger amount of network topologies, we have

no idea if this approach would result successful, but it is one of the few approaches

that would allow to create a model capable of generalizing in topologies of different

sizes.

75

CHAPTER 5. CONCLUSIONS

76

Bibliography

[1] Nick McKeown et al. “OpenFlow: Enabling Innovation in Campus Net-
works”. In: SIGCOMM Comput. Commun. Rev. 38.2 (Mar. 2008), pp. 69–
74. issn: 0146-4833. doi: 10.1145/1355734.1355746. url: https://doi.
org/10.1145/1355734.1355746.

[2] Sakir Sezer et al. “Are we ready for SDN? Implementation challenges for
software-defined networks”. In: IEEE Communications Magazine 51.7 (2013),
pp. 36–43. doi: 10.1109/MCOM.2013.6553676.

[3] Yufei Wang and ZhengWang. “Explicit routing algorithms for Internet traffic
engineering”. In: Proceedings Eight International Conference on Computer
Communications and Networks (Cat. No.99EX370). 1999, pp. 582–588. doi:
10.1109/ICCCN.1999.805577.

[4] Junjie Zhang et al. “CFR-RL: Traffic EngineeringWith Reinforcement Learn-
ing in SDN”. In: IEEE Journal on Selected Areas in Communications 38.10
(2020), pp. 2249–2259. doi: 10.1109/JSAC.2020.3000371.

[5] Yi-Ren Chen et al. “RL-Routing: An SDN Routing Algorithm Based on Deep
Reinforcement Learning”. In: IEEE Transactions on Network Science and
Engineering 7.4 (2020), pp. 3185–3199. doi: 10.1109/TNSE.2020.3017751.

[6] Hongzi Mao et al. “Resource Management with Deep Reinforcement Learn-
ing”. In: Proceedings of the 15th ACM Workshop on Hot Topics in Net-
works. HotNets ’16. Atlanta, GA, USA: Association for Computing Machin-
ery, 2016, pp. 50–56. isbn: 9781450346610. doi: 10.1145/3005745.3005750.
url: https://doi.org/10.1145/3005745.3005750.

[7] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-
troduction. Second. The MIT Press, 2018. url: http://incompleteideas.
net/book/the-book-2nd.html.

[8] Yann Lecun and Yoshua Bengio. “Convolutional Networks for Images, Speech
and Time Series”. In: The Handbook of Brain Theory and Neural Networks.
Ed. by Michael A. Arbib. The MIT Press, 1995, pp. 255–258.

77

https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/MCOM.2013.6553676
https://doi.org/10.1109/ICCCN.1999.805577
https://doi.org/10.1109/JSAC.2020.3000371
https://doi.org/10.1109/TNSE.2020.3017751
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3005745.3005750
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

BIBLIOGRAPHY

[9] Matthew Roughan. “Simplifying the Synthesis of Internet Traffic Matrices”.
In: SIGCOMM Comput. Commun. Rev. 35.5 (Oct. 2005), pp. 93–96. issn:
0146-4833. doi: 10.1145/1096536.1096551. url: https://doi.org/10.
1145/1096536.1096551.

[10] Ying Zhang. Abilene TM. Online: cs.utexas.edu/ yzhang/research/AbileneTM/.

[11] Gunjan P Tank, Anmol Dixit, and Alekhya Vellanki. “Software Defined
Networks: The New Norm for Networks”. In: 2017. url: https://api.
semanticscholar.org/CorpusID:53052362.

[12] Pankaj Berde et al. “ONOS: towards an open, distributed SDN OS”. In: Pro-
ceedings of the Third Workshop on Hot Topics in Software Defined Network-
ing. HotSDN ’14. Chicago, Illinois, USA: Association for Computing Machin-
ery, 2014, pp. 1–6. isbn: 9781450329897. doi: 10.1145/2620728.2620744.
url: https://doi.org/10.1145/2620728.2620744.

[13] Pat Bosshart et al. “P4: programming protocol-independent packet proces-
sors”. In: SIGCOMM Comput. Commun. Rev. 44.3 (July 2014), pp. 87–95.
issn: 0146-4833. doi: 10.1145/2656877.2656890. url: https://doi.org/
10.1145/2656877.2656890.

[14] Soheil Hassas Yeganeh, Amin Tootoonchian, and Yashar Ganjali. “On scala-
bility of software-defined networking”. In: IEEE Communications Magazine
51.2 (2013), pp. 136–141. doi: 10.1109/MCOM.2013.6461198.

[15] Justin Boyan and Michael Littman. “Packet Routing in Dynamically Chang-
ing Networks: A Reinforcement Learning Approach”. In: Advances in Neural
Information Processing Systems. Ed. by J. Cowan, G. Tesauro, and J. Alspec-
tor. Vol. 6. Morgan-Kaufmann, 1993. url: https://proceedings.neurips.
cc/paper_files/paper/1993/file/4ea06fbc83cdd0a06020c35d50e1e89a-

Paper.pdf.

[16] Shailesh Kumar and Risto Miikkulainen. “Dual Reinforcement Q-Routing:
An On-Line Adaptive Routing Algorithm”. In: 1997. url: https://api.
semanticscholar.org/CorpusID:10985533.

[17] John Moy. OSPF Version 2. RFC 2328. Apr. 1998. doi: 10.17487/RFC2328.
url: https://www.rfc-editor.org/info/rfc2328.

[18] Ling Li and A.K. Somani. “Dynamic wavelength routing using congestion
and neighborhood information”. In: IEEE/ACM Transactions on Network-
ing 7.5 (1999), pp. 779–786. doi: 10.1109/90.803390.

[19] Amine Tcherak, Samia Loucif, and Mohamed Ould-Khaoua. “On Efficient
Routing for SDN-Based Wireless Sensor Networks”. In: 2023 24th Interna-
tional Arab Conference on Information Technology (ACIT) (2023), pp. 1–6.
url: https://api.semanticscholar.org/CorpusID:268542830.

78

https://doi.org/10.1145/1096536.1096551
https://doi.org/10.1145/1096536.1096551
https://doi.org/10.1145/1096536.1096551
https://api.semanticscholar.org/CorpusID:53052362
https://api.semanticscholar.org/CorpusID:53052362
https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1109/MCOM.2013.6461198
https://proceedings.neurips.cc/paper_files/paper/1993/file/4ea06fbc83cdd0a06020c35d50e1e89a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/4ea06fbc83cdd0a06020c35d50e1e89a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/4ea06fbc83cdd0a06020c35d50e1e89a-Paper.pdf
https://api.semanticscholar.org/CorpusID:10985533
https://api.semanticscholar.org/CorpusID:10985533
https://doi.org/10.17487/RFC2328
https://www.rfc-editor.org/info/rfc2328
https://doi.org/10.1109/90.803390
https://api.semanticscholar.org/CorpusID:268542830

Bibliography

[20] Luca Barletta et al. “QoT estimation for unestablished lighpaths using ma-
chine learning”. In: 2017 Optical Fiber Communications Conference and Ex-
hibition (OFC). 2017, pp. 1–3.

[21] Gangxiang Shen et al. “Machine Learning-Assisted Least Loaded Routing to
Improve Performance of Circuit-Switched Networks”. In: CoRR abs/1804.08403
(2018). arXiv: 1804.08403. url: http://arxiv.org/abs/1804.08403.

[22] Yakov Rekhter, Susan Hares, and Tony Li. A Border Gateway Protocol 4
(BGP-4). RFC 4271. Jan. 2006. doi: 10.17487/RFC4271. url: https:
//www.rfc-editor.org/info/rfc4271.

[23] Christian Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC
2992. Nov. 2000. doi: 10.17487/RFC2992. url: https://www.rfc-editor.
org/info/rfc2992.

[24] Rashid Amin et al. “A Survey on Machine Learning Techniques for Routing
Optimization in SDN”. In: IEEE Access 9 (2021), pp. 104582–104611. doi:
10.1109/ACCESS.2021.3099092.

[25] Alaitz Mendiola et al. “A Survey on the Contributions of Software-Defined
Networking to Traffic Engineering”. In: IEEE Communications Surveys &
Tutorials 19.2 (2017), pp. 918–953. doi: 10.1109/COMST.2016.2633579.

[26] Zhuge Bin et al. “Resource scheduling algorithm and ecnomic model in
ForCES networks”. In: China Communications 11.3 (2014), pp. 91–103. doi:
10.1109/CC.2014.6825262.

[27] Sushant Jain et al. “B4: experience with a globally-deployed software de-
fined wan”. In: Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM. SIGCOMM ’13. Hong Kong, China: Association for Computing
Machinery, 2013, pp. 3–14. isbn: 9781450320566. doi: 10.1145/2486001.
2486019. url: https://doi.org/10.1145/2486001.2486019.

[28] R. Mart́ınez et al. “Experimental validation of active frontend — Backend
stateful PCE operations in flexgrid optical network re-optimization”. In:
2014 The European Conference on Optical Communication (ECOC). 2014,
pp. 1–3. doi: 10.1109/ECOC.2014.6963969.

[29] Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A Survey on Deep
Neural Network Pruning-Taxonomy, Comparison, Analysis, and Recommen-
dations. 2023. arXiv: 2308.06767 [cs.LG].

[30] Amir Gholami et al. A Survey of Quantization Methods for Efficient Neural
Network Inference. 2021. arXiv: 2103.13630 [cs.CV].

79

https://arxiv.org/abs/1804.08403
http://arxiv.org/abs/1804.08403
https://doi.org/10.17487/RFC4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://doi.org/10.17487/RFC2992
https://www.rfc-editor.org/info/rfc2992
https://www.rfc-editor.org/info/rfc2992
https://doi.org/10.1109/ACCESS.2021.3099092
https://doi.org/10.1109/COMST.2016.2633579
https://doi.org/10.1109/CC.2014.6825262
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1109/ECOC.2014.6963969
https://arxiv.org/abs/2308.06767
https://arxiv.org/abs/2103.13630

BIBLIOGRAPHY

[31] Leon Poutievski et al. “Jupiter Evolving: Transforming Google’s Datacenter
Network via Optical Circuit Switches and Software-Defined Networking”. In:
Proceedings of ACM SIGCOMM 2022. 2022.

[32] Ahmed Elmokashfi, Amund Kvalbein, and Constantine Dovrolis. “On the
Scalability of BGP: The Role of Topology Growth”. In: IEEE Journal on
Selected Areas in Communications 28.8 (2010), pp. 1250–1261. doi: 10.
1109/JSAC.2010.101003.

[33] Yufei Wang, Zheng Wang, and Leah Zhang. “Internet traffic engineering
without full mesh overlaying”. In: Proceedings IEEE INFOCOM 2001. Con-
ference on Computer Communications. Twentieth Annual Joint Conference
of the IEEE Computer and Communications Society (Cat. No.01CH37213).
Vol. 1. 2001, 565–571 vol.1. doi: 10.1109/INFCOM.2001.916782.

[34] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2023. url:
https://www.gurobi.com.

[35] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762
(2017). arXiv: 1706.03762. url: http://arxiv.org/abs/1706.03762.

[36] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normal-
ization. 2016. arXiv: 1607.06450 [stat.ML].

[37] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs).
2023. arXiv: 1606.08415 [cs.LG].

[38] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV].

[39] Lucas Lehnert et al. Beyond A*: Better Planning with Transformers via
Search Dynamics Bootstrapping. 2024. arXiv: 2402.14083 [cs.AI].

[40] Peter Henderson et al. Deep Reinforcement Learning that Matters. 2019.
arXiv: 1709.06560 [cs.LG].

[41] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. 2019. arXiv: 1912.01703 [cs.LG].

[42] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: https:
//www.tensorflow.org/.

[43] Denis Yarats et al. Improving Sample Efficiency in Model-Free Reinforcement
Learning from Images. 2020. arXiv: 1910.01741 [cs.LG].

[44] Lechao Xiao et al. Dynamical Isometry and a Mean Field Theory of CNNs:
How to Train 10,000-Layer Vanilla Convolutional Neural Networks. 2018.
arXiv: 1806.05393 [stat.ML].

80

https://doi.org/10.1109/JSAC.2010.101003
https://doi.org/10.1109/JSAC.2010.101003
https://doi.org/10.1109/INFCOM.2001.916782
https://www.gurobi.com
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2402.14083
https://arxiv.org/abs/1709.06560
https://arxiv.org/abs/1912.01703
https://www.tensorflow.org/
https://www.tensorflow.org/
https://arxiv.org/abs/1910.01741
https://arxiv.org/abs/1806.05393

Bibliography

[45] Lukas Biewald. Experiment Tracking with Weights and Biases. Software
available from wandb.com. 2020. url: https://www.wandb.com/.

[46] Global Market Insights. “Software defined networking market size & share
report”. In: (2023). url: https : / / www . gminsights . com / industry -

analysis/software-defined-networking-sdn-market.

[47] David Silver et al. Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm. 2017. arXiv: 1712.01815.

[48] M.E.J. Newman and D.J. Watts. “Renormalization group analysis of the
small-world network model”. In: Physics Letters A 263.4 (1999), pp. 341–
346. issn: 0375-9601. doi: https://doi.org/10.1016/S0375-9601(99)
00757-4. url: https://www.sciencedirect.com/science/article/pii/
S0375960199007574.

[49] Colin White et al. Neural Architecture Search: Insights from 1000 Papers.
2023. arXiv: 2301.08727.

[50] Mohammad Babaeizadeh et al. Reinforcement Learning through Asynchronous
Advantage Actor-Critic on a GPU. 2017. arXiv: 1611.06256.

[51] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes.
2022. arXiv: 1312.6114.

81

https://www.wandb.com/
https://www.gminsights.com/industry-analysis/software-defined-networking-sdn-market
https://www.gminsights.com/industry-analysis/software-defined-networking-sdn-market
https://arxiv.org/abs/1712.01815
https://doi.org/https://doi.org/10.1016/S0375-9601(99)00757-4
https://doi.org/https://doi.org/10.1016/S0375-9601(99)00757-4
https://www.sciencedirect.com/science/article/pii/S0375960199007574
https://www.sciencedirect.com/science/article/pii/S0375960199007574
https://arxiv.org/abs/2301.08727
https://arxiv.org/abs/1611.06256
https://arxiv.org/abs/1312.6114

BIBLIOGRAPHY

82

Appendix A

Alignment with Sustainable

Development Goals

Our research on optimizing routing in SDNs using DRL techniques aligns with

several Sustainable Development Goals (SDGs). By developing intelligent and

efficient routing strategies, our work contributes to the following SDGs.

A.1 9 - Industry, Innovation and Infrastructure

This SDG focuses on building resilient infrastructure, promoting inclusive and

sustainable industrialization and fostering innovation. We believe our solution, is

aligned with this objective for the following reasons:

A.1.1 Target 9.1

The target 9.1 of this SDG states Develop quality, reliable, sustainable and re-

silient Infrastructure, including regional and transborder infrastructure, to support

economic development and human well-being, with a focus on affordable and equi-

table access for all.

83

APPENDIX A. ALIGNMENT WITH SUSTAINABLE DEVELOPMENT
GOALS

Our research focuses on optimizing network infrastructure, to ensure reliable

and efficient data transmission. By improving the network performance and re-

ducing congestion, our work contributes to the development of sustainable and

resilient communication Infrastructure.

A.1.2 Target 9.5

The target 9.5 states Enhance scientific research, upgrade the technological ca-

pabilities of industrial sectors in all countries, in particular developing countries,

including, by 2030, encouraging innovation and substantially increasing the number

of research and development workers per 1 million people and public and private

research and development spending.

Our approach focuses on improving the technological capabilities of SDNs,

which are increasingly being used in different sectors. By improving the capabilities

we can encourage growth of industrial sectors.

A.2 12 - Responsible Consumption and Produc-

tion

The twelfth sustainable development goal, focuses on ensuring sustainable con-

sumption and production patters, and reducing the carbon footprint of developed

countries. Our research aligns with this development goal in the following manner.

A.2.1 Target 12.2

The target 12.2 states By 2030, achieve the sustainable management and efficient

use of natural resources.

Our approach aligns with this target as it follows a trend in research of making

84

A.2. SGD 12

models generalizable, instead of training a model for every single topology as it was

previously being done, we developed a model that can be trained only once and

deployed on multiple topologies, reducing the carbon footprint of the approach.

A.2.2 Target 12.a

The target 12.a states Support developing countries to strengthen their scientific

and technological capacity to move towards more sustainable patterns of consump-

tion and production

Our research aligns with this target, as with previous approaches such as CFR-

RL, a different model had to be trained for every single network topology, if indus-

try from developing countries wanted to adopt this approach it would have needed

to train a model for every single network. With our approach, they may be able

to use pretrained models, or if they have the capabilities train a model on their

own for the desired topologies.

85

APPENDIX A. ALIGNMENT WITH SUSTAINABLE DEVELOPMENT
GOALS

86

Appendix B

Results and Reproducibility

This section will contain the results of experiments that were not relevant enough

to be part of the thesis. More than 300 training runs were performed and this

section will not contain the results of all runs, but only the ones that are considered

relevant.

Figure B.1: Attempt to replicate CFR-RL

The first experiments were based around replicating the results obtained by

CFR-RL, the TensorFlow results are the ones obtained by the code provided in the

87

APPENDIX B. RESULTS AND REPRODUCIBILITY

GitHub repository, the ones in PyTorch are the ones that were obtained replicating

their experiment. Replicating the results resulted challenging, as PyTorch provided

us with really inconsistent results, after careful experimentation we discovered

that the weight initialization used in PyTorch and the weight initialization used in

TensorFlow are different, when that issue was addressed we were able to replicate

their results.

Once the results of the paper were replicated we decided to attempt some other

approach by using an actor-critic algorithm.

Figure B.2: Actor Critic Algorithm

It can be observed that even if this approach peaks higher than the REIN-

FORCE approach it quickly deteriorates and provides worse results. Keep in mind

that this results are not testing any sort of generalization and are just attempts

at CFR-RL.

When we were conceded access to the Frontera supercomputer, we started the

training of longer runs on different topologies, the following graph will present the

first results of training in different topologies. The reward was defined slightly

different to be scaled between -1 (ECMP) and 1 (TOP-K), this approach was later

88

avoided due to rounding issues.

Figure B.3: Training in different topologies

The obtained results were somewhat positive, but we were not able to obtain

a model capable of surpassing 0.8 reward.

After obtaining this results, we tested the Actor-Critic approach with multiple

topologies.

The results are significantly worse than the results obtained in the REIN-

FORCE algorithm, for this reason we decided to discard the AC algorithm and

focus on REINFORCE. In hindsight, we should have explored more this approach

as it could have brought some capabilities not present in a different approach.

We proceeded to explore having a different number of traffic matrices per topol-

ogy, in the following graph you will see the results of each approach, having 500,

1000, 3000 and 4000. Previous tests were performed with 2000, so it was ignored

in this experiment.

We continued by comparing the different architectures presented previously

in this thesis, the MLP architecture, the transformer architecture and the Conv

architecture.

89

APPENDIX B. RESULTS AND REPRODUCIBILITY

Figure B.4: AC in different topologies

Figure B.5: Different amount of TMs per agent

All the models until this point were trained on the old reward, this is the case

for it being limited at 0.8, we discovered a rounding error in our reward function

that caused this the reward to be lower than expected in some cases. After solving

this issue we continued with the Convolutional model and obtained the results

found in the Results section.

90

Figure B.6: Different Architecture Comparison

91

APPENDIX B. RESULTS AND REPRODUCIBILITY

92

	Introduction
	State-of-the-art
	Software Defined Networks
	OpenFlow Architecture
	Other Architectures
	Software Defined Networking Issues

	Machine Learning Based Methods
	Reinforcement Learning Based Methods
	Traditional Machine Learning Methods

	Heuristic based methods
	Traditional routing algorithms
	SDN-Enabled routing algorithms

	Description
	Motivation
	Problem specification and objectives
	Problem Specification
	Project Objectives

	Methodology
	Data
	Algorithm
	Linear Programming Problem
	Artificial Neural Network
	Training
	Deployment

	Resources
	Datasets
	Computing Resources
	Software Tools and Frameworks

	Market Analysis

	Results
	Architecture Results
	Training Results
	AE
	HAE
	HGIE

	Generalization Results
	AE
	HAE
	HGIE

	Result Analysis
	Training
	Evaluation
	Deployment

	Limitations
	Performance in Homogeneous Networks
	Adaptability to significant topology change
	Deployment considerations

	Conclusions
	Methodology Conclusions
	Data
	Algorithm
	Artificial Neural Network

	Results Conclusions
	Future study recommendations

	Bibliography
	Alignment with Sustainable Development Goals
	SDG 9
	Target 9.1
	Target 9.5

	SGD 12
	Target 12.2
	Target 12.a

	Results and Reproducibility

