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Abstract

As Machine Learning (ML) and Deep Learning (DL) models continue to permeate various aspects
of society, there is an increasing demand for interpretability and transparency in their decision-
making processes. This demand is fueled by the need to understand, trust, and effectively use
these complex, black-box models, particularly in high-stake applications where decisions can
have far-reaching consequences. Furthermore, the advancement of interpretability techniques is
critical to adhere to the emerging ethical and legal requirements concerning the use of Artificial
Intelligence (AI) systems.

Explainable Artificial Intelligence (XAI) has emerged as a promising solution to the opacity of
complex models, offering techniques to make their decision-making processes understandable
and transparent. Nevertheless, most existing XAI techniques face limitations concerning
assumptions on data relationships, computational cost, the trade-off between interpretability
and accuracy, and their ability to provide local and global explanations. To address these
issues, this thesis introduces novel XAI methods based onpartial derivatives. Unlike existing
methods, these techniques provide detailed, local to global level explanations without making
assumptions about the relationships between inputs and outputs.

The main contributions of this thesis reside in three newly developed methods: Sensitivity
Analysis, α-curves, and the application of the Interaction Invariant designed in Alfaya et al.
(2023) to ML models, all of which leverage the partial derivatives to offer interpretability of
differentiable ML models. Sensitivity Analysis estimates the influence of input variables on the
ML model output, offering insights into the most impactful variables. α-curves provide a detailed
view of sensitivity variation across the input space, assisting in identifying average and localized
high-sensitivity regions. Lastly, Interaction Invariant focuses on detecting interactions between
input variables, revealing complex relationships within the data that may influence the model’s
decision-making process. Collectively, these methods offer a comprehensive understanding of
ML models, enhancing the transparency and trustworthiness of AI systems.

The utility and effectiveness of these methods were validated through three real-world use
cases including predicting NOx emissions, parkinson disease progression, and turbofan engine
Remaining Useful Life (RUL). These applications illustrated how the developed methods can
reveal nuanced insights into model behavior, surpassing commonly used XAI techniques by
providing coherent and relevant information about the inner workings of the models.
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Resumen

A medida que los modelos de Aprendizaje Automático (ML, por su nombre en inglés Machine
Learning) y Aprendizaje Profundo (DL, por su nombre en inglés Deep Learning) continúan
permeando diversos aspectos de la sociedad, existe una creciente demanda de interpretabilidad
y transparencia en sus procesos de toma de decisiones. Esta demanda está alimentada por la
necesidad de comprender, confiar y utilizar eficazmente estos complejos modelos de caja negra,
particularmente en aplicaciones de alto riesgo donde las decisiones pueden tener consecuencias
de gran alcance. Además, el avance de las técnicas de interpretabilidad es fundamental para
adherirse a los emergentes requisitos éticos y legales concernientes al uso de los sistemas de
Inteligencia Artificial (IA).

La Inteligencia Artificial Explicable (XAI, por su nombre en inglés Explainable Artificial
Intelligence) ha surgido como una solución a la opacidad de los modelos complejos, ofreciendo
técnicas para hacer comprensibles y transparentes estos modelos. Sin embargo, la mayoría
de las técnicas existentes de XAI enfrentan limitaciones con respecto a las suposiciones que
deben hacer sobre las relaciones entre los datos, el costo computacional, la compensación entre
la interpretabilidad y la precisión, o su capacidad para proporcionar explicaciones locales y
globales. Para abordar estos problemas, esta tesis introduce nuevos métodos de XAI basados
en derivadas parciales. A diferencia de los métodos existentes, estas técnicas proporcionan
explicaciones detalladas, desde un nivel local hasta global, sin hacer suposiciones sobre las
relaciones entre las entradas y las salidas.

Las principales contribuciones de esta tesis residen en tres métodos recién desarrollados:
Análisis de Sensibilidad, curvas−α y la aplicación del Invariante de Interacción diseñado en
Alfaya et al. (2023) a modelos de ML, todos los cuales aprovechan las derivadas parciales para
ofrecer interpretabilidad de los modelos de ML diferenciables. El Análisis de Sensibilidad estima
la influencia de las variables de entrada en la salida del MLP, ofreciendo información sobre las
variables más importantes. Las curvas−α proporcionan una visión detallada de la variación de la
sensibilidad a través del espacio de entrada, ayudando a identificar regiones localizadas de alta
sensibilidad. Por último, el Invariante de Interacción se centra en la detección de interacciones
entre las variables de entrada, revelando relaciones complejas en los datos que pueden influir en
la predicción del modelo. En conjunto, estos métodos ofrecen una comprensión integral de los
modelos de Aprendizaje Automático, mejorando la transparencia de los sistemas de IA.

La utilidad y efectividad de estos métodos se validaron a través de tres casos de uso del
mundo real, que incluyen la predicción de emisiones de NOx, la progresión de la enfermedad
de Parkinson y la vida útil restante de motores turbofan. Estas aplicaciones evidenciaron cómo
los métodos desarrollados pueden mostrar información detallada sobre el comportamiento
del modelo, superando las técnicas más utilizadas de explicabilidad de IA al proporcionar
información coherente y relevante sobre el funcionamiento interno de los modelos.
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1
Introduction

When you are inspired by some great
purpose, some extraordinary project,
all your thoughts break their bonds.

Patanjali (1th Century BC)

This first chapter introduces the rationale behind this thesis as well as its main objectives.
In addition, it provides the reader with a general overview of the organization and the
outline of the dissertation in order to make it easier to follow.

1.1. Motivation
In recent years, Machine Learning (ML) and Deep Learning (DL) have gained significant
attention in the field of Artificial Intelligence (AI). ML, as a subfield of AI, focuses on developing
algorithms that can learn patterns from data without explicit programming. It encompasses
various approaches such as supervised learning, unsupervised learning, and reinforcement
learning (Goodfellow et al., 2016). Deep Learning (DL), a subset of ML, utilizes artificial neural
networks (ANNs) to mimic the learning abilities of the human brain, enabling the modeling
of complex relationships and achieving remarkable performance in various domains (LeCun
et al., 1998). The success of ML and DL models has led to their widespread adoption across
different domains, demonstrating superior performance in tasks such as object detection in
images (Ghasemi et al., 2022), natural language processing (Lauriola et al., 2022), or predictive
maintenance (Serradilla et al., 2022). The primary allure of NNs lies in their ability to learn and
model intricate patterns and nonlinear relationships in large and high-dimensional datasets,
thereby offering superior predictive performance. NNs, particularly those with multiple hidden
layers or Deep Neural Networks (DNNs), are notably powerful, exhibiting an unparalleled
ability to perform highly sophisticated tasks (LeCun et al., 1998).

The complexity that affords NNs their remarkable capabilities, however, also contributes to
their principal limitation: the black box problem. Black box refers to systems where the internal
workings are not understandable or interpretable by human users. In the context of NNs, this
means that while we can input data and obtain outputs from the network, understanding
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Chapter 1. Introduction

the internal decision-making process—how the network arrived at a particular output from a
given input—is not straightforward. This opacity is due to the intricate inner structure of the
network. As of now, there is no definitive method to explain these models, and often several
methods are required to understand the model inner processes. This lack of interpretability is
a significant hurdle to their widespread use in many sectors, especially those where decision
transparency is crucial, such as healthcare (Miotto et al., 2017), finance (Mirestean et al., 2021),
and cybersecurity (Pereira and Thomas, 2020). The ability to interpret and understand the
decision-making process of these models is paramount in building trust and allowing human
users to appropriately use and manage AI systems.

Explainable Artificial Intelligence (XAI) has emerged as a vital research area aiming to
address the interpretability challenge in ML and DL models. XAI techniques provide insights
into the decision-making process of complex models, making them more transparent and
interpretable. These techniques have been successfully applied for various applications in
different fields. For example, in healthcare, XAI has been utilized to interpret the predictions of
disease diagnosis models, facilitating doctors to understand the reasoning behind the model’s
diagnosis decisions, and thus, enhancing trust in these models (Caruana et al., 2015). In
finance, XAI techniques are used to elucidate credit scoring and financial fraud detection
models. By providing understandable and intuitive explanations, these techniques assist
financial institutions in understanding the reasoning behind credit decisions or identifying
potential fraudulent transactions (van den Berg and Kuiper, 2020). As for cybersecurity, XAI
techniques play a critical role in interpreting the decisions made by intrusion detection systems.
They help security analysts to understand the rationale behind the alerts generated by these
systems, facilitating the process of threat identification and mitigation (Srivastava et al., 2022).
In these ways, XAI techniques contribute to enhancing trust, improving transparency, and
facilitating better decision-making across diverse domains.

While existing XAI methods have significantly improved the interpretability of ML and DL
models, they face several limitations that hinder their effectiveness and broad application. The
challenges associated with these techniques include high computational costs, inconsistency,
a lack of robustness and difficulty in handling high-dimensional inputs (Molnar, 2022;
Lipton, 2018). For example, local approximation methods such as LIME may produce
varying explanations due to different perturbations used in the process (Ribeiro et al., 2016).
Additionally, they often grapple with the curse of dimensionality, failing to deliver meaningful
interpretations for high-dimensional inputs or even unfeasible to be applied in large datasets
(Molnar, 2022).

These persistent challenges often cost the practitioner the opportunity to use complex models,
such as Neural Networks, in their business applications, often deriving to simpler models such
as Linear Regression or Logistic Regression models. These models are highly interpretable and
are already accepted by the regulators in critical sectors, but they lack the modeling capacities
of NN models (Lipton, 2018). In this context, even designing new XAI methods to explain the
simplest NN model, the Multi-Layer Perceptron (MLP), and overcoming existing limitations
would be a valuable contribution. Explaining MLP models with enhanced XAI methods would
facilitate their adoption in critical sectors by providing regulators with the interpretability they
require without sacrificing the modeling power of NNs. Therefore, there is a need for new XAI
methods that overcome these limitations while retaining the benefits of existing techniques.
Based on the review of existing literature (Nielsen et al., 2021; Arras et al., 2022), the analysis
of partial derivatives of the output variables with respect to the input variables of ML models
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offers a promising direction for new XAI methods. These methods, with their light-weight
calculation, are expected to maximize the information retrieved from the model, thus improving
both the quality and efficiency of the explanation process.

This dissertation, therefore, aims to contribute to the field of XAI by proposing novel methods
based on partial derivatives that provide robust, coherent, and accurate explanations for ML
and DL models. These techniques are designed to give detailed insights into the influence of
individual input features on model predictions, thereby enhancing the interpretability of ML
and DL models. By developing and employing these new XAI methods, we aim to outperform
existing approaches in terms of explanation quality and applicability to real-world applications,
without compromising the model’s predictive performance.

1.2. Thesis objectives
The primary objective of this thesis is to contribute to the development of Explainable Artificial
Intelligence (XAI) methods that can facilitate comprehensive understanding of Neural Network
(NN) models, focusing primarily on Multi-Layer Perceptron (MLP) models. The choice of the
MLP model is driven by its widespread use in diverse domains due to its ability to model
complex, non-linear relationships, and the potential generalizability of the insights gained
from this model to other types of NN models. Our research endeavors to derive explanations
that provide nuanced insights into the relationship between inputs and outputs, reveal feature
importance, and detect feature interactions in MLP models. The developed methods aim to offer
both global and local interpretability, while ensuring computational feasibility, thus enabling a
higher degree of transparency, trust, and informed decision-making in AI systems. Hence, the
specific objectives pursued in this dissertation are summarized below:

• Development of analytical calculations of first, second and third partial derivatives of
a commonly used NN model, the Multi-Layer Perceptron (MLP) model. This approach
aims to reduce computational resources and time required, making the XAI methods more
practical for real-time applications.

• Development and introduction of novel XAI methods based on partial derivatives that meet
the key requirements outlined above. These methods will be designed to reveal intricate
details about the input-output relationships, feature importance, and feature interactions
in ML models. Special attention will be devoted to ensuring that these methods provide
both global and local interpretability. The developed methods should address the need for
more comprehensive, nuanced, and computationally efficient explanations in the domain
of XAI.

• Validation of the proposed methods by applying it to different real-world datasets obtained
from different fields. The performance of the proposed methods must be compared against
other reference XAI methods found in the literature, highlighting the improvements made
by the techniques developed in this thesis when applied to real-world problems.

1.3. Dissertation outline
This dissertation consists of six chapters including this first introductory one.

In Chapter 2, the focus is on thoroughly exploring the current landscape of Explainable
Artificial Intelligence (XAI) techniques, with a specific emphasis on post-hoc explainability
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methods for Multi-Layer Perceptron models. This chapter not only aims to familiarize the reader
with key concepts in XAI and highlight existing methods, but also provides a comprehensive
understanding of the need for these techniques. By delving into the motivations behind XAI, the
chapter elucidates the critical role played by explainability in addressing the black-box nature
of Neural Network models. Moreover, it investigates the limitations of current techniques,
thereby setting the stage for the proposal of novel approaches that are more efficient, scalable,
and aligned with specific needs. Through a thorough exploration of the taxonomy of XAI
and factors guiding the selection of appropriate techniques, this chapter lays the foundation
for the subsequent chapters, which build upon the development of advanced methods in the
field.

Diving into the main developments of the research, Chapter 3 aims to introduce and
thoroughly explain the novel methods proposed in this thesis for enhancing the explainability
of ML models, focusing on the MLP models. In this chapter, three new methodologies
are comprehensively described: Sensitivity Analysis, α−curves, and the application of the
Interaction Invariant developed in Alfaya et al., 2023 to ML models. By detailing each method,
discussing its strengths, and acknowledging its limitations, the chapter seeks to equip the
reader with tools that provide a more granular understanding of model behaviour. The use of
synthetic datasets to validate these methods further anchors their practical applicability and
effectiveness.

The goal of Chapter 4 is to illustrate the practical utility of the novel methods proposed in
this thesis through real-world case studies. It seeks to validate the efficacy of these methods and
demonstrate their advantage over traditional XAI techniques in three use cases: predicting NOx
emissions in the Boston dataset, forecasting parkinson disease progression, and estimating the
Remaining Useful Life (RUL) of turbofan engines using the CMAPSS dataset. The chapter aims
to showcase how the developed methods—Sensitivity Analysis based on Partial Derivatives,
α−curves, and Interaction Invariant—can provide nuanced insights into model behavior,
uncovering intricate relationships and feature interactions that commonly used methods may
overlook. The overarching objective is to demonstrate that these novel methods can improve the
understanding and interpretability of ML models in practical scenarios, enabling more informed
and reliable decision-making.

Finally, Chapter 5 provides the concluding remarks of the dissertation, summarizing the
contributions and future developments.
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2
Explainable Artificial

Intelligence (XAI) for Neural
Networks: State-of-the-art

Give me six hours to chop down a tree
and I will spend the first four

sharpening the axe.

Abraham Lincoln (1842—1865)

This chapter explores Explainable Artificial Intelligence (XAI) in machine learning, with
a focus on Multi-Layer Perceptron (MLP) models. It presents a comprehensive XAI
taxonomy, different post-hoc explainability techniques, and an in-depth analysis of
various XAI methods.

2.1. Introduction
Machine Learning (ML) and Deep Learning (DL) models have been successfully applied in
several applications. Consequently, understanding the foundations upon which these models
make predictions becomes a crucial aspect of AI solution development. Users must have
confidence in the model’s performance on real data, based on meaningful metrics; otherwise,
the model should not be utilized (Ribeiro et al., 2016). The process of interpreting how the
model works is investigated in a research field called Explainable Artificial Intelligence.

Explainable Artificial Intelligence (XAI) refers to the development of Artificial Intelligence
(AI) and ML models that generate transparent and interpretable results to enable humans to
understand, trust, and manage the decisions made by these models (Gunning and Aha, 2019).
With the increasing adoption of AI and ML systems in various domains, including healthcare,
finance, and criminal justice, the demand for explainability has become more critical (Miller,
2019).

As AI and ML models become more complex and increasingly integrated into critical decision-
making processes, the need for XAI techniques continues to grow. This section collects the result
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of an extensive review of the state of the art of XAI methods for NN. Along the section, the
terms "Artificial Intelligence Model" and "Machine Learning Model" are used indistinguisable in
order to provide a more comprehensive reading. However, it must be noted that the literature
differs in the definition of both "Artificial Intelligence" and "Machine Learning", being the latter
an application of the former (Ghahramani, 2015).

2.2. Introduction to Machine Learning
Artificial Intelligence (AI) is a branch of computer science that focuses on the creation of
intelligent agents or systems that have the ability to perform tasks that usually require human
intelligence (Russell and Norvig, 2009). This encompasses capabilities such as learning,
reasoning, problem-solving, perception, and language understanding. Machine Learning (ML),
a subset of AI, is defined as the study of computer algorithms that improve automatically
through experience (Mitchell, 1997). Unlike traditional algorithms or Expert Systems (Jackson,
1986) that follow a determinisaatic set of hand-coded rules, Machine Learning algorithms learn
patterns from data and make predictions or decisions based on those patterns.

Machine Learning encompasses three main types of learning:

• Supervised Learning: This approach is guided by a known set of output values. It
includes tasks such as:

– Regression: In regression, the goal is to predict a continuous output variable.
Examples include predicting housing prices (Kaggle, 2016) or stock prices (Akita et
al., 2016).

– Classification: In classification, the goal is to predict a categorical output variable.
Examples include predicting whether an email is spam or not (Metsis et al., 2006),
or whether a patient has a certain disease or not (Esteva et al., 2017).

– Forecasting: In forecasting, historical data is used to predict future trends or events.
Examples include predicting electrical demand (Hong and Fan, 2016) or weather
patterns (McGovern et al., 2017).

Some of the most common supervised learning algorithms are Linear Regression (Bishop
and Nasrabadi, 2006), Decision Trees (Quinlan, 1986), and Support Vector Machines
(SVM) (Cortes and Vapnik, 1995).

• Unsupervised Learning: This method discovers the inherent structure in the data without
any explicit output guidance. It includes tasks such as:

– Clustering: In clustering, the goal is to group similar instances together. Examples
include grouping customers based on their purchasing behavior (Irani et al., 2016)
or grouping documents based on their topics (Blei et al., 2003).

– Dimensionality reduction: In dimensionality reduction, the goal is to reduce the
number of features in the data while retaining as much information as possible.
Examples include Principal Component Analysis (PCA) (Bro and Smilde, 2014) and
t-distributed Stochastic Neighbor Embedding (t-SNE) (Van der Maaten and Hinton,
2008).

– Anomaly detection: In anomaly detection, the goal is to identify instances that
are significantly different from the rest of the data. Examples include detecting
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fraudulent transactions (Maniraj et al., 2019) or detecting faulty equipment in a
manufacturing process (J. Liu et al., 2018).

Algorithms like K-means (MacQueen, 1967), Hierarchical Clustering (Sibson, 1973), and
Principal Component Analysis (PCA) (Bro and Smilde, 2014) are frequently used in
unsupervised learning.

• Reinforcement Learning: In this paradigm, the agent takes actions in an environment
and receives feedback in the form of rewards or penalties. Reinforcement learning has
been successfully applied in domains such as robotics, game playing, and recommendation
systems. One notable example is AlphaGo, a computer program developed by DeepMind
that used reinforcement learning to defeat the world champion in the ancient Chinese
board game Go (Sutton and Barto, 2018; Mnih et al., 2015).

Among the various models used in Machine Learning, Artificial Neural Network (ANN)
models stand out as one of the most prominent and widely recognized (Goodfellow et al., 2016).
An ANN is composed of layers of interconnected nodes, also known as neurons. Each neuron
receives input from other neurons, processes the input using a mathematical function called
an activation function, and produces an output that is passed on to other neurons in the next
layer. The weights associated with the connections between neurons are adjusted during the
learning phase of the model to optimize the network’s performance on a given task. One of the
key features of ANNs is their ability to approximate complex functions, including non-linear
ones, enabling end-to-end learning and superior performance on complex tasks. This is possible
because ANNs can learn non-linear transformations of the input data through the composition
of multiple non-linear activation functions. The Universal Approximation Theorem, first proven
by George Cybenko in 1989, states that a feedforward neural network with a single hidden
layer containing a sufficient number of neurons can approximate any continuous function
on a compact subset of Euclidean space to arbitrary accuracy (Cybenko, 1989). Moreover,
several studies have investigated the approximation power of ANNs, including the recent work
by (Montufar et al., 2014), which showed that deep rectifier networks can approximate any
continuous function on a compact subset of Euclidean space to arbitrary accuracy, regardless
of the number of hidden layers or neurons. Other researchers have explored the relationship
between the depth of the network and its approximation properties, with some suggesting that
deeper networks may have advantages over shallower ones (Bengio et al., 2013).

One of the most common ANN architectures is the Multilayer Perceptron (MLP) model. A
MLP is a feedforward neural network composed of multiple layers of interconnected perceptron
units. It consists of an input layer that receives the input data, one or more hidden layers that
apply non-linear transformations to the inputs, and an output layer that produces the final
output. Despite the advent of more complex neural network architectures for specialized tasks
(such as Convolutional Neural Networks (CNNs) (Yamashita et al., 2018) for image data or
Recurrent Neural Networks (RNNs) (Sherstinsky, 2018) for sequential data), MLP remains
highly relevant due to its simplicity, effectiveness, and wide applicability (Car et al., 2020; Desai
and Shah, 2021; Xu et al., 2022). This is even more relevant in tabular data, where the MLP
architecture requires less computational resources to obtain an optimal model while retaining a
comparable level of accuracy compared to other DL architectures (Brownlee, 2022; Borisov et
al., 2022). MLP models trained on tabular data find applications in numerous fields, such as
predict electrical demand (Lorencin et al., 2019a) or predictive maintenance (Lorencin et al.,
2019b).
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Despite the successful implementation of this type of model in the previously mentioned
fields, Explainable Artificial Intelligence (XAI) in the context of ANNs is particularly needed due
to the inherent opacity and black-box nature of these models. This is specially relevant when
using ANNs in critical applications such as credit scoring (Pandey et al., 2017; Riffi et al., 2020),
where it is crucial to understand the factors that contribute to the model’s predictions and
ensure transparency and fairness in the decision-making processes. Therefore, interpretability
is an indispensable property for these systems to be reliably integrated into decision-making
processes.

2.2.1. Interpretability vs Performance trade-off

In Machine Learning, the pursuit of high-performance predictive models often leads to models
that are complex and opaque. These models, although achieving excellent predictive accuracy,
can be described as black boxes due to their inherently complex and non-transparent structures.
On the other hand, simpler models with lower predictive performance often allow for easier
interpretability (see section 2.3.1).

The compromise between model performance and interpretability is a common dilemma
in the field of Machine Learning. On one hand, we have models like linear regression and
decision trees which are straightforward to understand and interpret but may not yield the best
performance. On the other hand, we have highly accurate models like deep neural networks,
which are notorious for their lack of transparency and difficulty to interpret.

The dilemma between model performance and interpretability aligns with the bias-variance
trade-off, another central concept in Machine Learning. Bias refers to the simplifying
assumptions made by a model that can result in error due to incorrect assumptions
in the learning algorithm. High-bias models, such as linear regression, may overlook
the nuanced relations between features and target outputs, leading to underfitting and
suboptimal performance. However, these models are often easier to interpret because of
their simplicity.

Variance, on the other hand, arises from a model’s sensitivity to small fluctuations in the
training set. High-variance models tend to capture even the noise from the training data,
leading to overfitting. While these models typically perform well on the training data, they may
not generalize well to new, unseen data. Complex models, such as deep neural networks, are
prone to overfitting due to their capacity to capture intricate relationships in data, which in turn
makes them harder to interpret.

Thus, the quest for high performing and interpretable models is intrinsically tied to navigating
the bias-variance trade-off successfully.

Figure 2.1 shows where are different ML models in the interpretability vs performance
trade-off. The X-axis represents the interpretability of the model and the Y-axis represents the
performance of the model. As we move towards more complex models, the interpretability
decreases while the performance increases.

Understanding and navigating this trade-off is crucial. However, the importance of
interpretability versus performance can vary depending on the application at hand. For tasks
where the consequences are significant, such as medical diagnoses, financial risk assessment, or
any other decisions where human lives and well-being are at stake, the need for interpretability
and transparency might outweigh the desire for the highest possible predictive performance.
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Figure 2.1. Interpretability vs Performance Trade-off. Source: (Arrieta et al., 2020)

Meanwhile, in applications where the consequences of errors are less severe and high predictive
performance is paramount, the balance may swing towards more complex, less interpretable
models.

The challenge is to find the right balance between interpretability and performance. One
potential approach is to create models that are both performant and interpretable, though this
remains an active area of research. The ultimate goal is to achieve trustworthy AI, where the
model’s decisions are both highly accurate and understandable to humans.

XAI methods strive to bridge the gap between performance and interpretability. They aim
to make complex models more understandable, which allows for a decrease in the opacity
of models without compromising their performance. With the help of XAI, we might be
able to mitigate the trade-off, moving towards models that offer both high performance and
interpretability.

2.2.2. Importance of XAI

The importance of model accountability has been underscored in numerous contexts, with
various incidents highlighting the repercussions of AI decision-making processes not being
fully understood or interpretable (Diakopoulos, 2016; Miller, 2019). These incidents have
underscored the need for robust strategies to rectify such issues, thereby ensuring the ethical,
safe, and accountable application of AI (Mittelstadt et al., 2019).

Understanding the basis of a model’s decisions is essential to ensure its reliability and
effectiveness. Blindly trusting models can lead to incorrect or undesirable outcomes, as they
may base their decisions on irrelevant features, noise, or background information (Selvaraju
et al., 2017). The key to addressing these challenges is developing methods for generating
explanations, which can help uncover the reasoning behind a model’s decisions (Gunning, 2017).
By making AI systems more explainable, we can improve their trustworthiness, reliability, and
usability in a wide range of applications (Holzinger, 2016). This leads us to the importance of
Explainable Artificial Intelligence, which aims to address these concerns and make AI systems
accountable.

As AI and ML models become more integrated into various aspects of our lives, ensuring
their decisions are interpretable is crucial. XAI techniques play a key role in order to achieve
the following goals:
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1. Enhancing trust and user acceptance: By offering comprehensible explanations for AI
decisions, users’ trust in these systems is improved. This elevated trust not only propels
wider adoption of AI technology but also facilitates its utilization across a myriad of
domains (Mittelstadt et al., 2019). For instance, when a medical diagnosis AI system
provides a result, if it can also explain its reasoning in a manner that a doctor can
understand, the doctor is more likely to trust and use the system in clinical settings.

2. Promoting Effective Human-AI Collaboration: XAI serves as an interface that encourages
efficient collaboration between human experts and AI systems. By offering insights into
each other’s reasoning processes, it cultivates a mutual understanding, leading to improved
decision-making, particularly in intricate domains (Gunning, 2017). In the finance field,
an AI system that predicts stock market trends can collaborate more effectively with
financial analysts if it can elucidate the factors influencing its predictions, allowing
analysts to combine their domain expertise with the AI’s insights.

3. Guaranteeing Regulatory Compliance: Legal frameworks, such as the European Union’s
General Data Protection Regulation (GDPR), mandate AI systems to provide explanations
for their decisions, especially when impacting individuals. XAI techniques can facilitate
compliance with such regulations, helping AI systems to legally operate within stipulated
boundaries (Wachter et al., 2017). For example, in online lending platforms, if an AI
system denies a loan application, the GDPR mandates that the applicant has the right to
know the reason. XAI can provide clear explanations, ensuring that the platform remains
compliant with regulatory requirements.

4. Debugging and Validation of AI Models: Explainable AI serves as a critical tool in
identifying, understanding, and correcting errors or biases in AI models. By offering
insights into the underlying model logic, it can contribute to the development of superior-
performing, more accurate, and equitable models (Ribeiro et al., 2016). To illustrate this
point, consider a facial recognition system. If it consistently misclassifies individuals from
a particular ethnic background, XAI can help pinpoint the reasons for this bias, allowing
developers to address and rectify the issue.

5. Reliability / Robustness: The goal is to ensure that minor variations in input variables
do not drastically influence the prediction output. XAI strives to assure that ML systems
are resilient against issues such as noisy inputs, domain shifts, and adversarial attacks,
thereby promoting robustness and reliability (Alvarez Melis and Jaakkola, 2018). As an
example, in autonomous driving, it’s vital that slight changes in environmental conditions
(like light or rain) don’t drastically alter the AI’s decisions. XAI can help in understanding
and ensuring the model’s consistent performance across varied conditions.

These goals may not be shared by the ML systems being interpreted. For example, in health
care, the end goal of the ML system might be to predict accurately if a given patient has a
specific illness. This end goal might be in conflict with generating interpretable decissions.
Highly interpretable models, such as linear regression and decision trees, are generally easier to
understand and explain; however, they may not always provide the best performance, especially
in complex tasks with high-dimensional data (Molnar, 2022). On the other hand, more complex
models, like Deep Learning, can achieve state-of-the-art performance in various domains, but
their decision-making process is often difficult to interpret (Goodfellow et al., 2016).

This trade-off between interpretability and performance raises an important dilemma: should
we prioritize the development of highly accurate models, even if they are less transparent and
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harder to understand? Or should we focus on more transparent models, despite the potential
loss in performance? This dilemma is particularly relevant in critical applications, such as
healthcare, finance, and criminal justice, where the consequences of incorrect decisions can be
severe and far-reaching (Arrieta et al., 2020). Consider the domain of criminal justice, where
an ML model might be used to assess the likelihood of recidivism among inmates. A complex
machine learning model might promise unprecedented predictive accuracy, aiding judges in
making informed decisions about parole and sentencing. However, if this model operates as a
"black box" without XAI techniques, it could inadvertently introduce gender or race bias into its
predictions. Without transparent explanations of its decision process, biased outcomes might go
undetected, perpetuating unjust disparities in the justice system. This underscores the urgent
need for interpretable AI to ensure not only accuracy but also fairness and accountability in
critical decision-making processes.

2.2.3. Difference between Transparency, Explainability and Inter-
pretability

Transparency, explainability, and interpretability are closely related concepts in the context
of XAI. Although the three terms are often used interchangeably in the context of Artificial
Intelligence and Machine Learning, they refer to distinct concepts with different implications
for the understanding and trustworthiness of AI systems:

• Transparency refers to the extent to which the internal mechanisms and processes of a
model are open and visible to inspection. A transparent model provides clear visibility
into its architecture, parameters, and calculations (Molnar, 2022).

• Explainability focuses on providing the reasoning for the predictions or decisions made
by a model. It involves the ability to articulate why a particular outcome was produced by
the model and to present the factors or features that influenced that outcome (Arrieta et
al., 2020). For a model to be explainable, it must be able to provide explanation for its
predictions or an additional method can be applied to retrieve these explanations.

• Interpretability relates to the ease with which a model’s predictions or behaviors can be
understood and interpreted by humans (Molnar, 2022). An interpretable model enables
users to grasp the underlying logic, relationships, or patterns that the model has learned
from the data.

The three terms are crucial aspects of AI systems, as they help users build trust, validate
model decisions, and ensure the responsible and ethical use of AI technologies across various
domains. Let’s consider an example using a medical diagnosis AI system that uses a complex
Deep Learning model to predict the probability of a patient having a certain disease based on
various health indicators.

In terms of transparency, it pertains to how comprehensible the internal mechanisms and
operations of the model are to external scrutiny. A transparent model would offer insights into
its intricate architecture, reveal the values of its parameters, and elucidate the computational
steps it undertakes. However, due to the complexity of the Deep Learning model, direct access
to its parameters or operations might not inherently provide valuable interpretive information
to users.

When it comes to explainability, the Deep Learning model should not merely produce
predictions, but also offer clear reasoning for those predictions. For instance, if the system
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predicts a high probability of a patient having a certain disease, explainability would involve
articulating why this prediction was made. This might involve highlighting that the prediction
was influenced by a peak glucose level of 130 mg/dL or emphasizing the significance of
triglyceride levels as a key contributing factor.

The concept of interpretability within the context of the Deep Learning model concerns the
degree to which users can comprehend the model’s predictions and underlying patterns. An
interpretable model enables users to grasp the rationale behind predictions and ubderstabd how
specific health indicators contribute to the outcome. In the context of our medical diagnosis AI
system, interpretability might involve users understanding why a glucose level of 130 mg/dL
indicates a higher probability of the disease, or comprehending how the model has learned to
relate triglyceride levels to disease progression.

XAI methodologies have an important role in addressing the challenges of transparency,
explainability, and interpretability in ML models. Regarding transparency, XAI approaches can
retrieve information about the inner workings of ML models or design new inherent transparent
model architectures with greater prediction capabilities than current transparent models. When
it comes to explainability, XAI methods can generate justifications for the model’s outputs,
enabling users to analyze the model behavior. Lastly, regarding interpretability, XAI techniques
can facilitate the translation of model outputs into a more intuitive and user-friendly format.
By simplifying the prediction results or providing visualizations, they help users, even those
without technical backgrounds, to comprehend the results and the model’s behavior more
easily.

2.3. XAI taxonomy
In this section, we delve into the diverse landscape of Explainable Artificial Intelligence (XAI) by
exploring its rich array of taxonomies found in the state of the art. As the need for interpretability
in AI systems becomes increasingly significant, numerous taxonomies have emerged (Miller,
2019; Arrieta et al., 2020; Speith, 2022; Chuang et al., 2023), each offering a unique perspective
on the classification and categorization of XAI methods. These taxonomies provide valuable
frameworks for understanding and organizing the wide range of methods and techniques
available under the XAI umbrella. By examining and synthesizing the existing taxonomies,
this research aims to establish a comprehensive understanding of the different dimensions and
classifications within the field of XAI. This knowledge base serves as a solid foundation for
selecting the most appropriate method or technique to address a specific problem, effectively
bridging the gap between the complexity of AI systems and the demand for interpretable
explanations. XAI methods can be broadly categorized based on the following aspects:

1. Model Transparency Level: The level of transparency in models plays a crucial role
in determining the interpretability of AI systems. Transparent models, such as linear
regression or decision trees, inherently offer high interpretability, as the functional
relationships they utilize to make predictions are readily understandable (Lipton, 2018).
However, such models might lack sophistication required to model complex data patterns.
Conversely, opaque models, typically associated with Deep Learning architectures, excel
in capturing these complex patterns but do so in ways that are not easily interpretable
due to their ’black-box’ nature.

2. Type of Data: This criterion focuses on the type of data used by the AI model and how
it influences the explainability of the model’s decisions. It considers whether the AI
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Figure 2.2. XAI objectives and taxonomy criteria described in this document.

system operates on structured data, such as tabular data with well-defined features, or
unstructured data, including text, images, audio, or video. For structured data, techniques
like Layer-Wise Relevance Propagation or Local Interpretable Model-Agnostic Explanations
(LIME) can providing explanations for individual predictions (Rios et al., 2020; Ribeiro et
al., 2016). For unstructured data, methods such as feature visualization or saliency-based
approaches can highlight relevant regions or segments in the input data that contribute to
the model’s decision (Simonyan et al., 2013; Olah et al., 2017).

3. Post-hoc Explainability: this criteria refers to the retrospective analysis of a Machine
Learning model’s decision-making process after it has been trained. Some methods,
like LIME, aim to create simpler models that approximate the local behavior of the
complex ones. Others, like feature relevance explanation techniques, provide explanations
by ranking features based on their importance in the decision-making process. Visual
explanations, on the other hand, use visual aids to convey how a model arrived at its
decisions (Ribeiro et al., 2016).
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4. Portability: Portability refers to whether an explainable Artificial Intelligence (XAI)
method is tailored to a specific model or can be applied across different models. Model-
specific techniques are designed for particular types of models and leverage their unique
characteristics to generate explanations. For instance, DeepLIFT is an example of a model-
specific technique that focuses on neural network models and examines neuron activation
relative to a baseline value to provide explanations (Shrikumar et al., 2017). On the other
hand, model-agnostic techniques are not specific to any particular model type, offering
greater flexibility but potentially providing less precise explanations (Lundberg and Lee,
2017). Partial Dependence Plots (PDP) is a widely used model-agnostic technique that
analyze how the model’s output responds to variations in a single input (Friedman, 2001),
without information about the model’s inner processes.

5. Locality: XAI techniques can provide either local or global explanations. Local
explanations aim to clarify the predictions made for individual instances, as done by
methods like anchors (Ribeiro et al., 2018). Global explanations, on the other hand,
aim to explain the model’s overall behavior, as done by techniques such as permutation
importance (Altmann et al., 2010).

6. Reference: XAI methods can be contrastive, providing explanations in relation to a specific
reference point, or non-contrastive, providing standalone explanations. DeepLIFT, for
instance, is a contrastive method as it provides explanations by comparing the neuron
activation with a baseline value (Shrikumar et al., 2017). LIME, on the other hand,
provide explanations for specific samples without the need of a reference point (Ribeiro et
al., 2016).

In the following sections, a detailed explanation is provided for each of the criteria
listed.

2.3.1. Transparent vs. Opaque models

Transparent models offer comprehensible information of their inner workings and the decision-
making processes by design. Linear regression, decision trees, and rule-based systems exemplify
such transparent models, with their calculations and operations being easy to trace and
understand (Lipton, 2018). On the other hand, opaque models, commonly complex Machine
Learning algorithms like deep neural networks, are more challenging to interpret. The decision-
making process in these models is intricate and not directly observable, thereby forming a
so-called "black box" (Ribeiro et al., 2016). While they often achieve superior performance, the
lack of transparency in these models necessitates the use of post-hoc explainability techniques
to understand and interpret their decisions.

2.3.1.1. Transparent models: Level of transparency

In the context of XAI, transparent models exhibit different degrees of interpretability. These
degrees can be categorized into three levels: simulatability, decomposability, and algorithmic
transparency (Doshi-Velez and Kim, 2017; Arrieta et al., 2020). Each level provides distinct
insights into the model’s inner workings, aiding in understanding and interpreting the model’s
decisions.

1. Simulatability: Simulatability refers to the ability of a human to mentally simulate the
steps and calculations performed by the algorithm, thereby understanding how the model
arrives at its output (Doshi-Velez and Kim, 2017). In this category falls, for example,
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shallow decision trees and simple rule-based systems. For instance, consider a decision
tree model used to predict whether a person would go for a walk based on weather
conditions, including Outlook, Humidity, and Wind. The decision tree can be represented
as follows:

If Outlook = Sunny

If Humidity <= 75

Decision: Yes (Go for a walk)

If Humidity > 75

Decision: No (Don't go for a walk)

If Outlook = Rainy

If Wind = Weak

Decision: Yes (Go for a walk)

If Wind = Strong

Decision: No (Don't go for a walk)

In this example, we observe that the decision tree model predicts a person would go for a
walk if it is sunny and not too humid, or if it is rainy and there is weak wind. However, it is
important to note that deep decision trees or extensive rule-based systems fall outside this
category, as humans are unable to visualize the entire decision process of these complex
models.

2. Decomposability: Decomposability refers to the ability to break down a model into
its constituent parts or components, enabling separate explanations for each element
(Molnar, 2022). In the context of decomposable models, the contribution of individual
features, parameters, or components to the final output of the model can be clearly
identified and comprehended. This granular understanding facilitates the detection of
potential biases, issues, or areas for enhancement within the model’s decision-making
process. Generalized Additive Models (GAMs) serve as a notable example of decomposable
models (Hastie and Tibshirani, 1987). GAMs are flexible regression models that allow
for the modeling of non-linear relationships by combining multiple smooth functions
of the input features. The individual smooth functions in a GAM provide explainable
contributions to the model’s predictions, enabling a breakdown of the model’s behavior
into comprehensible components. For instance, consider a GAM model trained using a
dataset following the expression y = 2 · x1 + sin(x2) + x3 + ε. Figure 2.3 shows plots
illustrating the effects of individual predictors on the output in this GAM model. Analyzing
these plots allows users to extract information on the relationship between the output
and input variables, providing a breakdown of the "black-box" model’s behavior into
explainable components.

3. Algorithmic Transparency: Algorithmic transparency refers to the clarity of the overall
process that a model follows to generate its output from the input data (James et
al., 2013). In models with high algorithmic transparency, users can comprehend the
sequence of steps, calculations, and transformations that the model performs to arrive
at its decision. This understanding allows users to assess the model’s rationale and
identify potential weaknesses or vulnerabilities in the model’s decision-making process.
Algorithmic transparent models must be completely understandable through mathematical
analysis and techniques. An example of an algorithmic transparent model is linear
regression (Montgomery et al., 2021). Let’s consider a specific example where we want to
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Figure 2.3. Example of plots of individual predictors effect on the output in a GAM model

predict a student’s exam score based on the number of hours studied and the amount of
sleep obtained the night before the exam. The linear regression model can be expressed
as exam_score = β0 + β1 · hours_studied + β2 · hours_slept, where β1 represents the
expected change in the exam score for each additional hour of study, and β2 indicates the
expected change for each additional hour of sleep. Although the user may not be able to
simulate the mathematical calculations of the expression, analyzing the coefficients of the
linear regression model provides insights into the model’s behavior and the impact of the
input variables on the predicted exam score.

2.3.2. Types of data

Different data types require specialized XAI methods to effectively explain a given model. Some
of the most common data types are:

• Tabular Data: Tabular data is the most common type of data in Machine Learning and
includes structured data with rows and columns (Witten et al., 2016). This type of data
encompasses numerical, categorical, binary, and ordinary (ordered) data. Some of the
most common methods to analyze tabular data models are LIME and SHAP, which are
explained with greater detail in section 2.4.

• Text Data: Text data consists of natural language text, which requires specialized XAI
techniques that consider the unique properties of language (Ribeiro et al., 2016). Common
approaches include attention mechanisms in neural networks (Vaswani et al., 2017), Layer-
wise Relevance Propagation (Bach et al., 2015), and visualization of word embeddings
(Wang et al., 2018). a

• Image Data: Image data requires XAI techniques that can handle high-dimensional data
and spatial information (Zeiler and Fergus, 2014). Techniques for explaining image models
include saliency maps (Simonyan et al., 2013) and Layer-wise Relevance Propagation
(Rios et al., 2020), which help visualize the importance of different regions within an
image.

• Graph Data: Graph data represents relationships between entities as nodes and edges in
a graph (Goyal and Ferrara, 2018). XAI techniques for graph data include Graph Neural
Network Layer-wise Relevance Propagation (Schnake et al., 2020).
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2.3.3. Post-hoc Explainability Techniques: type of explanation

Post-hoc explainability techniques aims to retrieve information from a model after it has been
trained. They are commonly used in opaque models to explain their internal functioning and
decision-making process. However, they can be employed on both transparent and opaque
models to generate explanations (Vale et al., 2022; Arrieta et al., 2020). Several means may be
used to accomplish this task:

1. Explanation by Simplification: These techniques aims to elucidate the decision-making
mechanism of a complex model by constructing a simpler, interpretable model that closely
approximates the predictions of the original model. The simpler model can then be
inspected to provide insights into the decision-making process of the complex model
(Ribeiro et al., 2016).

2. Feature relevance: These methods aim to analyze the contribution of each feature to the
prediction of a specific instance or on average across all instances. This is often done by
computing variable importance scores or by analyzing the type of relationship between
input and output of the model (Lundberg and Lee, 2017). Feature relevance methods not
only provide insight into how the model uses the input features to predict the output, but
also enable the detection of potential bias in the model’s decision-making process.

3. Feature Interactions: These methods delve into understanding how different features
interact with each other to influence the model’s predictions. Specifically, they explore how
the joint behavior of multiple features affects the prediction, as opposed to considering
each feature’s effect in isolation. Such interactions are crucial in capturing complex
relationships and patterns in the data, which could be missed by only examining individual
feature relevance (Tsang et al., 2020). This analysis often involves computing partial
derivatives, interaction values, or employing decomposition techniques to dissect the
model’s behavior concerning interactions among features.

4. Visual Explanations: Visual explanations provide a way to understand the model’s
inner working using visual representation techniques. They offer a more intuitive and
comprehensive approach to interpreting complex models by visualizing data, features, and
model behavior. This category includes methods like Partial Dependence Plots (PDP) and
Individual Conditional Expectation (ICE) plots, which illustrate how individual features
in the model affect the predictions (Friedman, 2001).

A schematic view of each previously described post-hoc explainability techniques types can
be found in figure 2.4.

Each of the aforementioned methods has its own set of advantages and disadvantages.
Simplifying a complex model by generating a simpler one (or several simpler ones) allows
for a detailed analysis of the model’s behavior. However, this approach is typically effective
only within a specific subset of the data, where the simpler model accurately represents
the functioning of the complex model. Feature relevance explanations provide quantitative
information about the relationship between the model’s output and input variables, often across
the entire dataset, enabling easier comparisons between the contributions of each variable.
Nonetheless, these explanations often require a higher level of mathematical understanding to
interpret the provided information. Feature interactions methods offer a nuanced understanding
of how different features collectively contribute to the model’s predictions by examining
their synergies and interdependencies. This deeper insight is crucial for capturing complex
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Figure 2.4. Schematic diagram of post-hoc explainability techniques.

relationships within the data but may also demand a more sophisticated level of analytical
skill to interpret. Moreover, the analysis of feature interactions generally requires higher
computational resources compared to single variable analysis, due to the increased complexity
associated with examining multiple features simultaneously. Visual explanations, while intuitive,
may lack quantitative details, making it challenging to compare the effects of different input
variables. Ultimately, when choosing the type of explanation, it is important to consider the
objectives of the explanation (such as legal requirements for quantitative explanations) as well
as the characteristics of the intended recipients (where visually-oriented explanations might
be more accessible for less-educated users), in order to ensure effective communication and
understanding of the findings.

2.3.4. Model-specific vs Model-agnostic

Model-specific explanations are customized to particular types of models or algorithms. These
methods leverage the inherent structure, properties, or characteristics of the model to elucidate
its decisions. Due to their knowledge of the model’s internal representations and parameters,
these techniques generally offer more accurate insights into the model’s behavior. Common
examples of model-specific XAI methods include Garson’s (Garson, 1991) or Olden’s (Olden
et al., 2002) algorithms for calculating feature importance in Multi-Layer Perceptron (MLP)
neural networks.

In contrast, model-agnostic explanations are engineered to be universally applicable to any
Machine Learning model or algorithm. These methods view the model as a black box and
produce explanations based on the model’s input-output relationships, without information of
the model’s internal structure or parameters. A prominent example of a model-agnostic XAI
method is the Permutation Importance algorithm, which offers a practical way to quantify the
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importance of features by permuting them and observing the effect on the model’s performance
(Breiman, 2001).

2.3.5. Local vs. Global Explanations

Global explanations strive to provide a comprehensive understanding of the behavior of a
Machine Learning model across the complete input space (Saleem et al., 2022), providing
insights into its overall behavior rather than specific instances. This can involve understanding
how different features are generally weighted in the model’s decision-making process, or
identifying general patterns, trends, or rules that the model follows when making predictions.
However, when the model is complex or deals with a high-dimensional space, visualizing and
interpreting these global interactions can become challenging.

On the other hand, local explanations focus on specific instances or predictions made by
a model, revealing how the model arrived at a particular decision (Molnar, 2022). These
explanations involve analyzing a localized region in the input space surrounding a specific data
point. Local explanations can help users understand and validate individual decisions made by
the model, which is particularly valuable in applications where accountability and traceability
of predictions are crucial (Lundberg and Lee, 2017). However, one must take into account that
local data distributions may exhibit behavior that differs from global trends, so the information
retrieved shall not be extrapolated to other regions of the input space.

Figure 2.5. Diagram of XAI classification based on specific vs agnostic and local vs global explanation
criteria. In the figure, model-specific techniques are applied to a decision tree, while model-agnostic
are applied to a neural network. Global explanations are applied to a whole population, while local
explanations are applied to a single person. Source: (Visani, 2020).

2.3.6. Contrastive vs. Non-contrastive Explanations

Contrastive explanations offer insights into model decisions by comparing a specific instance
with one or more reference points, typically other data instances (Lundberg and Lee, 2017).
The purpose of these explanations is to shed light on the underlying reasons for the differences
in model predictions between the focal instance and the chosen reference points (Stepin et al.,
2021). For example, in image classification, a contrastive explanation may show how altering
certain features of an input image would lead the model to classify it as a different object.
Contrastive explanations help users understand the decision boundaries and key factors that
influence the model’s predictions by emphasizing the changes in outcomes.
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On the contrary, non-contrastive explanations do not hinge upon comparisons between
different instances. Instead, they aim to provide a holistic understanding of the model’s
decision-making process in relation to the specific characteristics of an instance or the model
itself (Lundberg and Lee, 2017). Non-contrastive explanations can take the form of feature
importance scores, attention maps, or other techniques that reveal the relative significance of
input features in influencing the model’s output. They help users gain a deeper understanding
of how the model processes the input data, without the need for explicit comparisons.

2.4. XAI for Artificial Neural Networks
As introduced in section 2.2, Artificial Neural Networks (ANNs) are a type of Machine Learning
model that mimic the structure and function of the human brain to learn patterns from data.
They have gained considerable attention in recent years and has proven to be highly effective in
various domains, including object detection in images (Ghasemi et al., 2022), natural language
processing (Devlin et al., 2018), or predictive maintenance (San Roque, 1996). This success is
largely due to the availability of large amounts of data and significant computational power
increase in the last decade.

In a relatively brief span of time, a multitude of methods and strategies have been developed
to provide explanations for non-transparent models such as ANNs (Samek et al., 2021). While
there are numerous studies and methods aimed at interpreting image or text-based Deep
Learning models (Walia et al., 2022; Pluciński, 2022); less attention has been paid to MLPs
using tabular data (Sahakyan et al., 2021). Therefore, the development of XAI methods
that tackles this specific model and type of data is a meaningful contribution to the field of
Explainable AI.

Figure 2.6 shows a categorization of post-hoc explainability techniques that can be applied to
MLPs trained on tabular data, considering the distinctions between local and global approaches,
as well as model-specific and model-agnostic criteria. The figure serves as an overview of
the methods available to users seeking to explain an MLP model. It considers two primary
factors that guide the selection of a particular method: the desire to explain a single prediction
(local) or the overall behavior of the model (global), and whether the method requires specific
information from the model (model-specific) or the method shall be compatible with other type
of models (model-agnostic). The categorization enables users to choose an appropriate XAI
technique based on their specific needs and preferences.

It is important to note that not all the methods depicted in Figure 2.6 will be discussed in
subsequent sections of this thesis. Our focus will be on explaining the techniques that directly
pertain to the advancements made within this research and would be later compared to the
methods developed in this thesis. Before the XAI methods are explained, a common ML use case
is presented to illustrate the application of these methods. At the end of the chapter, table 2.1
contains a classification of these methods based on the taxonomy criteria explained in previous
sections.

2.4.1. Use Case: Prediction of flights delay

The flights dataset from the nycflights13 R library provides an ideal use case for illustrating the
XAI techniques that will be explored in subsequent sections. This dataset contains information
on all domestic flights departing from New York City airports (JFK, LGA, and EWR) in 2013.
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Figure 2.6. Classification of post-hoc explainability techniques for MLP based on the local vs global and
model-specific vs model-agnostic criteria.

With 336,776 records and 19 variables, the dataset offers a rich source of information for
analysis and interpretation. Some of the variables included in the dataset are:

• Year, month, and day of the flight

• Scheduled departure and arrival times

• Actual departure and arrival times

• Carrier code and flight number

• Origin and destination airport codes

• Air time, distance, and hour of the day

• Flight delay status (arr_delay variable)

For simplicity, only flights from United Airlines will be considered. The objective of this use
case is to predict the arrival delay of the flights based on the distance of the flight (distance),
departure and arrival time (dep_time, arr_time), departure delay (dep_delay) and time on air
(air_time).

To demonstrate the various XAI techniques, we have created a Multilayer Perceptron (MLP)
model using this flights dataset. Given the complex nature of flight delays and the large number
of influencing factors, understanding the model’s predictions is crucial for various stakeholders,
such as airline operators and regulatory authorities. In the following subsections, the described
XAI techniques will be applied to the MLP to gain insights into its decision-making process.
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2.4.2. Local Surrogate (LIME)

LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al., 2016) is a model-
agnostic technique that generates local explanations by approximating the model’s behavior
around a specific instance using a simpler, transparent model (e.g., linear regression or decision
tree) that approximates the complex model’s behavior in the local vicinity of the instance to be
explained. The main steps are as follows:

1. Sampling: Being x(j) the jth sample in a given dataset the instance that we want to
explain, we generate a new dataset consisting of perturbed samples around x(j). The
perturbations could involve flipping binary features or sampling from a normal distribution
for continuous features.

2. Weighting: Each perturbed instance zi is assigned a weight according to its proximity
to the original instance x(j). The proximity metric can be computed using a distance
function, which we denote as πx(j)(zi).

3. Training: A simple model g is trained on the newly generated dataset. The output values
for this new dataset are obtained by using the complex model’s predictions. This simple
model is trained by minimizing a loss function L(f, g, πx(j)), that measures how unfaithful
g is in approximating f in the locality defined by πx(j) .

4. Interpretation: Explanations obtained from the simple model are then used to explain
the complex model, as the local behavior of both models is assumed to be similar.

Mathematically, the objective of LIME is to find and transparent model g that minimizes the
following objective function:

ξ(x(j)) = argming∈G (L(f, g, πx(j)) + Ω(g)) (2.1)

Where:

• f is the complex model to be explained.

• g is the simpler (transparent) model.

• G is the set of possible simple models.

• πx(z) is the proximity measure between the instance to be explained x and an instance
from the generated dataset z.

• L is a measure of how unfaithfully g approximates f in the perturbed samples zi.

• Ω(g) is a complexity measure of the model g, for example, the number of input variables.

• ξ(x(j)) is the model that minimises the loss of the unfaithfulness of the explanation
provided by g to the behavior of f for x(j) and the simpler model complexity Ω(g).

Advantages of LIME:

1. LIME can be applied to any black-box model, regardless of its architecture or underlying
learning algorithm (Ribeiro et al., 2016).

2. LIME provides explanations for individual samples, which can be more informative and
actionable than global explanations.
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3. LIME allows users to control the complexity of the local surrogate model, balancing the
interpretability of the explanation with its fidelity to the complex model.

Disadvantages of LIME:

1. Generating perturbed instances and training surrogate models can be computationally
expensive, particularly for large and complex datasets.

2. LIME’s explanations can be sensitive to the choice of perturbation method and kernel
function.

3. LIME’s assumes that the decissions taken by the complex model can be accurately captured
by a simpler model.

Figure 2.7. Example of plot obtained using LIME on a sample of the flights dataset. Attributions to
each feature are assigned base on the surrogated model.

Figure 2.7 shows the local explanations of a trained decision tree model using LIME for a
randomly chosen sample of the flights dataset. These explanations are the mean effect on the
output caused by each input variable for the sample being explained. It can be seen that for
the air_time value for the analyzed flight is the most influential variable, with a mean negative
effect to the prediction (i.e., the air_time of the flight determines that the arrival delay would
be reduced). Similar explanations can be obtained for the other input features.

2.4.3. Individual Conditional Expectation (ICE)

Individual Conditional Expectations (ICE) is a model-agnostic, post-hoc explanation technique
that provides instance-level explanations by analyzing the relationship between input features
and the model’s predictions (Goldstein et al., 2015). For each sample in the dataset, ICE plots
display how the prediction changes when a single feature is varied, ceteris paribus. For a dataset
with n instances, a predictive model f , and a feature xi, the ICE plot can be formulated as
follows:

Let x(j) represent the jth instance in the dataset (j = 1, ..., n), and x
(j)
\i represent the vector

of all features of the jth instance except xi. For a grid of values xi = x
(1)
i , ..., x

(n)
i for the feature

xi, the ICE plot is defined by the curve:

ICE(f, x(j), xi) = {f(x(1)i , x
(j)
\i ), ..., f(x

(n)
i , x

(j)
\i )} (2.2)

Explainable Artificial Intelligence (XAI) Techniques based on Partial Derivatives
with Applications to Neural Networks
Jaime Pizarroso Gonzalo

23



Chapter 2. Explainable Artificial Intelligence (XAI) for Neural Networks: State-of-the-art

For each instance j, this creates a curve that shows how the model prediction changes
when feature xi is varied, while keeping all other feature values the same as in the original
instance.

Advantages of ICE:

• Offers detailed, instance-level explanations, which can help users understand the behavior
of the model for specific data points (Goldstein et al., 2015).

• Can be used in conjunction with other explanation techniques, such as Partial Dependence
Plots (PDPs), to obtain a comprehensive understanding of the model (Friedman, 2001).

Disadvantages of ICE:

• ICE plots can become cluttered and difficult to interpret when dealing with a large number
of instances or high-dimensional feature spaces (Goldstein et al., 2015).

• ICE assumes that the features are independent, which may not always be the case,
potentially leading to inaccurate explanations (Friedman, 2001).

• ICE perturbates all features in the entire range, it may provide visual explanations for
unfeasible scenarios.

2.4.4. Partial Dependence Plots
Partial Dependence Plots (PDP) is a model-agnostic, post-hoc visualization technique that
illustrates the marginal effect of one or two input features on the predicted outcome of a
Machine Learning model (Friedman, 2001).

For each value of the chosen feature, the average predictions of the model are computed. Let
xi be a feature in a dataset and f be the predictive model. x\i represents all features excluding

xi. For a grid of values xi = x
(1)
i , ..., x

(k)
i for the feature xi, the partial dependence function is

defined by the average prediction over all instances j = 1, ..., n:

PDP (f, xi) =
1

n
{

n∑
j=1

f(x
(1)
i , x

(j)
\i ), ...,

n∑
j=1

f(x
(n)
i , x

(j)
\i )} (2.3)

This produces a curve (or surface in the case of two features) that shows the average effect
of feature(s) xi on the prediction.

These average predictions are then plotted against the corresponding feature values,
providing an overview of how the model’s predictions change as the feature of interest varies,
while accounting for the influence of other features. PDP plots help visualize the marginal effect
of a feature on the model’s predictions.

Advantages of PDP:

• Provides a global view of the model’s behavior, allowing users to understand the general
trends and patterns in the decision-making process (Friedman, 2001).

• Visual explanations offered by PDPs are readily comprehensible due to their depiction of
how output changes in response to incremental shifts in input features. This approach
allows for the straightforward identification of trends and patterns, ensuring intuitive
insights into the relationship between features and predictions.
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Disadvantages of PDP

• PDPs assume that the features are independent, which may not always be the case,
potentially leading to inaccurate explanations (Friedman, 2001).

• PDPs can be difficult to interpret when dealing with high-dimensional feature spaces or
complex interactions between features (Molnar, 2022).

• PDPs do not provide quantitative information, making comparing information for several
features not trivial.

• PDP perturbates all features in the entire range, it may provide visual explanations for
unfeasible scenarios.

Figure 2.8. Example of plot obtained using ICE and PDP on the flights dataset. Effects of each feature
can be analyzed based on the shape of the ICE and PDP curves.

Figure 2.8 shows the PDP and ICE curves obtained for the model trained on the flights

dataset. As expected, the greater the departure delay (dep_delay), the greater the expected
arrival delay. Moreover, the fact that all ICE curves have a similar shape suggests a linear
relationship between the departure and the arrival delay. A non-linear behavior is observed
in the air_time variable, where depending on the flight a greater value of air_time might
produce a greater arrival delay or might not have any effect at all.

2.4.4.1. Partial Dependence Plots for Two variables

A natural extension of the one-variable Partial Dependence Plots (PDP) is the two-variable PDP,
allowing the analysis of the combined effect of two features on the prediction (Friedman, 2001).
The two-variable PDP not only shows how individual features impact the model’s prediction but
also how the simultaneous combination between these two features affects the outcome.

Assuming two features xi and xj with corresponding grids of values xi = x
(1)
i , ..., x

(n)
i and

xj = x
(1)
j , ..., x

(n)
j , the two-variable PDP function is computed as follows:
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PDP (f, xi, xj) =
1

n
{(

n∑
k=1

f(x
(1)
i , x

(1)
j , x

(k)
\ij), ...,

n∑
k=1

f(x
(n)
i , x

(1)
j , x

(k)
\ij), ...,

n∑
k=1

f(x
(1)
i , x

(n)
j , x

(k)
\ij)...,

n∑
k=1

f(x
(n)
i , x

(n)
j , x

(k)
\ij))}

(2.4)

The result is a surface or a heatmap plot, providing a comprehensive view of how the
variation of both of xi and xj affects the model’s predictions. This is particularly useful when
there is a complex relationship between these two features that could not be captured by
examining one-variable PDPs independently. In order to identify interaction between input
variables using this plot, one must analyze how the level curves varies along the input space.
Let us define the presence of an interaction between inputs x1 and x2 in a model f(x1, x2) if f
can be decomposed as f = α(x1) + β(x2) + γ(x1, x2) where γ(x1, x2) represents the effect of
the interaction between the two input variables. If γ(x1, x2) = 0, i.e., there is no interaction
between the input variables, then the output of the model can be understood as a superposition
of the individual effects of the input variables. Therefore, the interaction between the two input
variables can be detected using this plot if, for two given points x

(1)
1 , x

(2)
1 in one of the input

variables, the magnitude f(x
(1)
1 , x2)− f(x

(2)
1 , x2) is not constant for different values of x2.

Figure 2.9. Example of a two-variable PDP plot showing the interaction of features dep_delay and
dep_time on the flights dataset. The color intensity indicates the magnitude of the predicted arrival
delay.

Figure 2.9 illustrates a two-variable PDP for dep_delay and dep_time. The color intensity
reflects the magnitude of the predicted arrival delay. This 2D plot allows us to observe the
combined effect of dep_delay and air_time, elucidating potential interactions between these
variables not discernible from their individual PDPs. In the example, with a dep_delay of 0, the
variation of the dep_time input might produce an air_delay from 0.1 to 0.45 (an increment of
0.35). However, with a dep_delay of 10, the variation of the dep_time input can only produce
an output between 0.8 and 0.9 (an increment of 0.1). This difference in the increments indicates
an interaction effect between both input variables.

However, the limitations of the one-variable PDP extend to the two-variable case. High
dimensional spaces and the potential violation of the feature independence assumption can

26 Explainable Artificial Intelligence (XAI) Techniques based on Partial Derivatives
with Applications to Neural Networks

Jaime Pizarroso Gonzalo



2.4. XAI for Artificial Neural Networks

lead to misleading results. As with single variable PDPs, the insights garnered from these plots
should be considered in the context of these limitations. Moreover, quantifying the degree of
interaction between both input variables

2.4.5. Friedman’s H-index
Friedman’s H-index is a model-agnostic, post-hoc technique used to detect and quantify feature
interactions in any type of predictive model (Friedman, 2001; Friedman and Popescu, 2008).
The method is based on the concept of partial dependence of a function with respect to an input
variable.

Retrieving the information of partial dependence as presented in the previous method, we
define f̂s as the partial dependence of function f with respect to a set of input variables xs in
the ith sample in the dataset as:

f̂s(xis) =
1

n

n∑
j=1

f(x(i)s , x
(j)
\s ) (2.5)

Given this definition of Partial Dependence function, the H-index of the interaction of two
variables xj and xk is defined as:

H2
jk =

∑N
i=1[f̂jk(xij , xik)− f̂j(xij)− f̂k(xik)]

2∑N
i=1[f̂jk(xij , xik)]

2
(2.6)

It measures the fraction of variance of f̂(xj , xk) not captured by f̂(xij) + f̂(xik) over the
data distribution. The H-statistic ranges from 0 to 1, where 0 indicates no interaction and 1
indicates a strong interaction.

Advantages of Friedman’s H-index:

• Applicable to any type of model, making it a versatile method for detecting and quantifying
feature interactions.

• Provides a measure of interaction strength, allowing for the identification of the most
important feature interactions in a model.

Disadvantages of Friedman’s H-index:

• Can be computationally expensive, especially for high-dimensional feature spaces or large
datasets, as the interaction strength must be calculated for all possible pairs of features.

• Provides global interaction scores, but does not offer instance-level explanations.

Figure 2.10 shows the interactions of the input features with the distance variable for the
trained model on the flights dataset. In this case, the greater interaction is detected between
the distance of the flight and the time in the air, which might suggests that longer flights would
have greater or lower arrival delays. Although the interaction is detected, information of the
effect of the interaction on the model’s prediction is not obtained.

2.4.6. Lek’s profile Method
The Lek’s Profile method is a model-agnostic, post-hoc explanation technique that generates
instance-level explanations by perturbing the values of all features simultaneously and assessing
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Figure 2.10. Example of plot obtained using Friedman’s H-index on the flights dataset. Interactions of
input features with distance input variable are shown.

the impact of these changes on the model’s predictions (Gevrey et al., 2003). The method
creates a series of instances by modifying the values of input features according to predefined
perturbation schemes, such as sampling from their distribution or applying predefined
transformations, and records the corresponding model predictions. The resulting profiles
visualize the model’s sensitivity to changes in the input features and offer insights into the
decision-making process for specific instances. A variation of this method was proposed in (Lek
et al., 1996), where the quartiles of each input variable are used as the instances to assess the
impact on the model’s prediction.

Advantages of the profile method:

• Offers a middle-point view between PDP and ICE, which can help users understand general
trends in the data while capturing more variability than PDP (Gevrey et al., 2003).

Disadvantages of the profile method:

• The method can be computationally expensive, especially for high-dimensional feature
spaces or large datasets (Gevrey et al., 2003).

• Profile plots do not provide quantitative information, making comparing information for
several features a not trivial task.

• Profile perturbates all features in the entire range, it may provide visual explanations for
unfeasible scenarios.

Figure 2.11 shows the Lek’s profile curves for the model trained on the flights dataset. The
information obtained is similar to the one of PDP and ICE curves. In this case, the fact of using
a subset of curves make it easier to obtain information of the type of relationship between input
and output variables. However, if a flight does not follow the general patterns shown in the
figure, Lek’s profile would not be able to retrieve that information, contrary to ICE.

2.4.7. SHAP

SHAP (SHapley Additive exPlanations) is a unified, model-agnostic, post-hoc explanation
technique that provides both global and instance-level explanations for the predictions of any
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Figure 2.11. Example of plot obtained using Lek´s profile on the flights dataset. Effects of each feature
can be analyzed based on the shape of the profile curves.

Machine Learning model (Lundberg and Lee, 2017). The method is based on the concepts from
cooperative game theory, particularly the Shapley value. The Shapley value is a widely accepted
method for fairly distributing gains among cooperating entities by calculating the average
marginal contribution of each entity to all possible coalitions (Shapley, 1997). It quantifies
the importance or impact of each feature by considering its interaction with other features in
different combinations.

The calculation of Shapley values involves evaluating the model’s output for every possible
subset of features, comparing the predictions with and without the inclusion of a specific feature.
This calculation is shown in equation 2.7.

ϕi(v) =
∑

S⊆p\{i}

|S|!(|p| − |S| − 1)!

|p|!
[v(S ∪ {i})− v(S)] (2.7)

where:

• The sum ranges over all subsets S of the player set N excluding the player i.

• |S| is the cardinality of the set S (i.e., the number of players in S).

• |p| is the total number of players.

• The terms |S|!(|N | − |S| − 1)! and |N |! represent the number of orderings that place the
ith player in a particular position, and all possible orderings, respectively. They are used
to give each player a fair share of the total payout.

• The expression in the square brackets gives the marginal contribution of player i when
added to subset S.

• v(S) is the characteristic function, which gives the payoff for a coalition S, where:

v(S) = E
[
f(X) | XS = xS , Xp\S = x∗p\S

]
(2.8)

– x is a random instance from your dataset.

– xS is the subset of features in x corresponding to the set S.

– xS is the subset of features in x corresponding to the set S.
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– x∗p\S represents the "baseline" values for the features not in S.

The Shapley value of player i is then the weighted average of these marginal contributions
across all possible coalitions.

In the context of interpretability, Shapley values can be used to explain the importance of
each feature for a specific prediction or output, interpreting the features as the players and
the prediction as the payout. SHAP uses the Shapley values for each individual feature as an
additive feature attribution method, i.e., a linear model. From the Shapley values definition
provided in 2.7, SHAP gives a local explanation for a sample as:

f̂(x(j)) = EX(f̂(X)) +
∑

ϕ
(j)
i · x(j)i (2.9)

where x(j) is the jth sample of dataset X that shall be explained, f̂(x(j)) is the prediction of
the model f for the jth sample, EX(f̂(X)) is the mean value of the predictions for all samples
in dataset X, ϕ(j)

i is the Shapley value associated to variable xi in the jth sample of dataset X
and x

(j)
i is the value of the ith variable in the jth sample of the dataset X. This method can be

applied to any type of model and has various efficient approximations for specific model classes,
such as TreeSHAP for tree-based models (Lundberg, Erion, et al., 2020).

Although Shapley values are obtained for an specific sample, if the Shapley values are
calculated for all the samples in a given dataset they can be used to obtain global information
from the model. For example, the mean of absolute Shapley values for a given variable provides
a feature importance measure of the variable.

Advantages of SHAP:

• Offers both global and instance-level explanations, providing a comprehensive under-
standing of the model’s behavior (Lundberg and Lee, 2017).

• Accounts for feature interactions and dependencies, offering more accurate and fair
explanations compared to other methods that assume feature independence (Lundberg
and Lee, 2017).

• Provides a theoretically grounded and consistent framework for attributing importance
values to features.

Disadvantages of SHAP:

• The method can be computationally expensive, especially for high-dimensional feature
spaces or large datasets (Lundberg and Lee, 2017).

• Assumes that the difference between the mean output of the model and the explained
prediction is a linear function of the input values, which may not always be the case.

• SHAP values may become difficult to interpret when dealing with a large number of
instances or high-dimensional feature spaces.

• Understanding the Shapley value concept and its connection to Machine Learning models
may require a relatively high level of mathematical background.

Figure 2.12 shows two types of plots that can be obtained using SHAP on the model trained
on the flights dataset. The first plot shows the input feature importance regarding their
contributions to the models’s predictions as the mean Shapley values for each variable in the
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(a) Feature importance (b) Feature effect

Figure 2.12. Example of plots obtained using SHAP on the flights dataset. (a) Importance of each
input feature (b) Effect of each input feature.

flights dataset. For this dataset, the departure delay is the most important feature to predict
the arrival delay. The second plot shows the Shapley value of each variable in each sample of
the dataset. A continuous color gradient for a variable indicates a linear relationship between
input and output, while a non-continuous gradient indicates a non-linear relationship.

2.4.8. Permutation Importance
Permutation Importance is a model-agnostic, post-hoc feature importance measurement
technique that quantifies the impact of each feature on the model’s predictions by assessing the
change in model performance when the values of a particular feature are randomly permuted
(Altmann et al., 2010). The method works by first computing the baseline model performance
using a chosen evaluation metric. Then, for each feature, the feature values are randomly
shuffled, and the model’s performance is re-evaluated. The difference between the baseline
performance and the permuted performance represents the importance of the feature. A larger
decrease in performance indicates a more important feature. Mathematically, the Permutation
Importance of a feature xi is given by PI(xi) = ρbaseline − ρpermutedi, where ρ is the performance
metric, and the permuted performance ρpermutedi

is calculated after randomly shuffling the
values of the feature xi in the dataset.

Advantages of Permutation Importance

• Applicable to any type of model, making it a versatile method for providing feature
importance measurements.

• Relatively simple to implement and understand, with no need for advanced mathematical
background.

• Accounts for feature interactions, as it directly measures the impact of a feature’s
perturbation on the model’s predictions (Molnar, 2022).

Disadvantages of Permutation Importance

• Can be computationally expensive, especially for high-dimensional feature spaces or large
datasets, as the model’s performance must be re-evaluated for each feature (Molnar,
2022).
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• Provides global feature importance scores, but does not offer instance-level explanations.

• Susceptible to noise or leakage in the data, as it evaluates the importance of a feature
based on its effect on the model’s performance, which may be influenced by noisy or
leaking features.

Figure 2.13 shows the permutation feature importance for the model trained on the flights

dataset. It must be noted that, although the information is similar to the one from figure 2.12
obtained using SHAP, the meaning of importance is different between the two methods. Using
permutation importance, the importance metric is correlated directly to the prediction error.
Using SHAP, the importance metric is correlated directly to the contributions to the model’s
prediction, not to the prediction error.

Figure 2.13. Example of plot obtained using permutation importance on the flights dataset.

2.4.9. Garson/Olden Importance
Garson and Olden Importance is a model-specific, post-hoc feature importance measurement
technique, specifically designed for Artificial Neural Networks (ANNs) (Garson, 1991), (Olden
et al., 2002). Olden’s method is usually considered an evolution of Garson Importance method.
Both methods calculate the importance of input features by analyzing the connection weights
between the input layer, hidden layers, and output layer of an ANN.

Garson’s method assigns importance to a feature xi, i = 1, . . . , p; based on the sum of the
absolute values of the weights wij , j = 1, . . . ,m connecting the input node i to each of the m

hidden nodes, multiplied by the absolute values of the weights wjk, k = 1, . . . , n connecting
each hidden node j to the output nodes k. The importance of feature xi, GI(xi), is calculated
as follows:

GI(xi) =

∑m
j=1

∑n
k=1 |wij | |wjk|∑p

i=1

∑m
j=1

∑n
k=1 |wij | |wjk|

(2.10)

Olden’s method, on the other hand, uses the actual values of the weights in the calculation,
allowing for negative contributions:

OI(xi) =

∑m
j=1

∑n
k=1wijwjk∑p

i=1

∑m
j=1

∑n
k=1wijwjk

(2.11)
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Advantages of Garson/Olden Importance:

• Relatively simple to implement and understand, with no need for advanced mathematical
background.

• Can be applied to any feedforward ANN architecture, offering a valuable tool for
understanding feature importance in these models.

Disadvantages of Garson Importance:

• Provides global feature importance scores, but does not offer instance-level explanations.

• Highly susceptible to the model weights value. This makes them susceptible to any factor
which leads to a different optimal set of weights during the model training (Beck, 2018).

• Does not take into account the value of the input variables, it only focus on the neural
network architecture.

Figure 2.14 shows the garson’s and olden’s importance for the model trained on the flights

dataset. The information retrieved using this method seems unintuitive, as the department
delay is assigned the lowest importance. However, it must be considered that the value of the
variable does not affect the importances assigned using these methods, which might influence
notably the effect of the input variables on the output.

(a) Garson’s importance (b) Olden’s importance

Figure 2.14. Example of plots obtained using Garson’s and Olden’s algorithm on the flights dataset.
Input importance in Olden’s also gives information about the effect of the feature input on the output.

2.4.10. Sensitivity Analysis based on Partial Derivatives

Y. Dimopoulos et al., 1995 present the concept of sensitivity of a model as the partial derivative
of the output with respect to the input:

ξ =
∂ŷ

∂x
(2.12)

where ŷ represents the output or predicted value of the model, and x represents the input or
feature of interest.

This partial derivative quantifies how the predicted value changes with incremental
modifications in the input feature. By evaluating these partial derivatives in all the points
in the training dataset (or an analog dataset), we obtain a distribution of partial derivatives of
the output with respect to each input variable. Sensitivity Analysis is a model-agnostic, post-hoc
method that calculate statistics about these distributions to retrieve information about the
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input-output relationships of the model (Y. Dimopoulos et al., 1995; Muñoz and Czernichow,
1998; I. Dimopoulos et al., 1999; White and Racine, 2001; Gevrey et al., 2003; Gevrey et al.,
2006; Zhang et al., 2022; Pizarroso-Gonzalo et al., 2022). In fact, Muñoz and Czernichow
(1998), White and Racine (2001) and Sobol’ and Kucherenko (2009) defend the mean of the
squared partial derivatives of the output with regard to the input as a valid statistic to determine
if an input is significant to predict the output. We provide a detailed description of this method
in section 3.3.

Advantages of Sensitivity Analysis based on Partial Derivatives:

• Relatively simple to implement and understand, requiring only basic calculus knowledge.

• Can be applied to any differentiable model, offering a valuable tool for understanding
feature importance in these models.

• Can provide information from local to global level depending on the dataset used to
calculate partial derivatives.

Disadvantages of Sensitivity Analysis based on Partial Derivatives:

• Input variables should be normalized when using this method, as otherwise the value of
the partial derivatives may depend on the scale of each variable and produce misleading
results.

Figure 2.15. Example of plot obtained using Sensitivity Analysis based on partial derivatives on the
flights dataset.

Figure 2.15 shows the sensitivity analysis results using one of the methods developed in
this thesis. This method provides information of the type of relationship between input and
output in the first plot and feature importance in the second plot. As this method is explained
in following sections, further explanations are not provided here.

2.4.11. Computational Time Analysis of XAI Methods

A critical factor to consider in the application of XAI methods is the computational time required
to derive the explanations. This is particularly important in scenarios where real-time or near
real-time explanations are required. To assess this, an empirical study was conducted using the
YearPredictionMSD dataset (Bertin-Mahieux, 2011). This dataset consists of 90 input variables
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and 515345 samples. The target of this dataset is the prediction of the release year of a song
from audio features. In this case, we are not interested in how good the model is able to
predict the output, but in how computationally intensive the XAI methods previously described
are.

In order to compare the computational resources needed to perform a given XAI method, we
propose to measure the computational time when varying the number of input variables and the
number of samples of the analyzed dataset, and the size of the hidden layer of a single hidden
layer MLP model. These variations allow us to understand the impact of model complexity, data
size, and dimensionality on the computation time of the XAI methods.

A MLP model was trained with a different configuration. The configurations tested
were:

• Number of neurons in the hidden layer of the MLP model: 10, 30, 50, 100

• Number of samples of the dataset: 1000, 5000, 10000

• Number of variables of the dataset: 5, 10, 15, ..., 70

These analysis have been performed on a computer with the following specs: processor
Intel(R) Core(TM) i5-6300HQ @ 2.30GHz, 32 GB of RAM memory, R version 4.3.0 (2023-04-21
ucrt), platform x86_64-w64-mingw32/x64 (64-bit) and running under Windows 10 x64 (build
19045).

For each model, all the XAI methods discussed in this chapter were applied, and the time
required for each method was logged. It should be noted that the computational time includes
the time to derive the explanations, but does not include any pre-processing or post-processing
time associated with the method (such as creating the plot in methods like ICE or PDP).

Figure 2.16 shows the computational time for each XAI method with the varying model and
data configurations. Some conclusions can be reached from this figure:

• Olden’s and Garson’s feature importance methods (implemented in the olden and garson
functions in the NeuralNetTools R package (Beck, 2018)), are the most efficient
techniques. They function by performing a sum of the weight matrices of the model,
rendering their computational time directly proportional to the size of the neural network
layers (input and hidden layers) rather than the number of samples.

• The Lek´s Profile (calculating 6 profiles using the lekprofile function from NeuralNetTools
R package) and the Sensitivity Analysis based on partial derivatives methods (using the
SensAnalysisMLP function from NeuralSens R package (Pizarroso-Gonzalo et al., 2022))
need of the similar computational times. It must be noted that Lek’s profile scales better
with the number of samples, as the number of profiles remains constant for all trained
models and increasing the number of predictions to compute the partial dependence
of each profile does not significantly increase the computational time. However, the
computational time required by Sensitivity Analysis based on partial derivatives remains
approximately constant for a given amount of samples no matter the number of input
variables analyzed. Lek’s method is severely affected by the number of input variables
because it needs to calculate 6 profiles for each new variable analyzed.

• The PDP, ICE and Friedman’s H-index method rely in the same concept - partial
dependence (using the Partial function from the iml package (Molnar et al., 2018)).

Explainable Artificial Intelligence (XAI) Techniques based on Partial Derivatives
with Applications to Neural Networks
Jaime Pizarroso Gonzalo

35



Chapter 2. Explainable Artificial Intelligence (XAI) for Neural Networks: State-of-the-art

(a) Computational time using 1000 training samples.

(b) Computational time using 5000 training samples.

(c) Computational time using 10000 training samples.

Figure 2.16. Computational time of the different sensitivity analysis methods with different number of
training samples (1000, 5000 and 10000 training samples), number of input variables (from 5 to 90
input variables) and number of neurons in the hidden layer (10, 30, 50 and 100 neurons).

However, as PDP only needs to compute the mean partial dependence curve for each
variable, it is noticeable faster than the other two methods. H-index requires almost twice
the time than PDP to compute, which makes sense as it computes the interaction between
two variables based on the mean partial dependence with respect to each variable and
the mean partial dependence with respect both variables, requiring to calculate the same
as the PDP method plus the each pair combination. ICE scales severely worse with respect
the number of samples than the other two, as it requires to calculate a partial dependence
curve for each variable and each sample.
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• The slowest function is the SHAP method (using the Shapley function from the iml R
package). It also is the worst scaling function with respect to the number of samples
analyzed, as it estimates the shapley value for each variable and for each sample. In case
that we only want to obtain local explanation from a subset of samples or variables, the
time required by the algorithm shall decrease drastically, as the operations performed by
SHAP depends on the cardinality of the set of variables analyzed and the samples that
each Shapley value is calculate for.

Alongside these findings, it is important to note that our analysis has been executed using a
model with a single output variable. XAI techniques employing matrix or tensor operations,
such as Garson’s, Olden’s, or Partial Derivatives methods, generate explanations for all output
variables through the same set of operations.

However, other methods like PDP and SHAP necessitate separate operations for each output
variable, subsequently leading to a proportional increase in computational time when generating
explanations for multiple outputs. This distinction is a significant consideration when dealing
with models with multiple output variables and can significantly influence the selection of an
appropriate XAI method.

2.5. Current Challenges
Despite the significant advancements in the field of Explainable Artificial Intelligence (XAI),
several challenges persist that need to be addressed:

• Interpretability of High-Dimensional Feature Spaces: Techniques like ICE can become
cluttered and difficult to interpret when dealing with a large number of instances or
high-dimensional feature spaces.

• Explanation of Unfeasible Scenarios: Some techniques, like ICE or PDP, perturb all
features in the entire range, which may provide explanations for unfeasible scenarios.
This is usually related to the assumption of feature independence, where each feature is
considered in isolation without considering potential dependencies or interactions with
other features.

• Balancing Interpretability and Computational Costs: The trade-off between the
information quality/quantity provided by an XAI method and the computational resources
required to execute the algorithm is a common consideration. Certain methods, such
as Garson’s, exhibit fast computation times, but they tend to provide only a quantity
of feature importance without the robustness offered by other techniques like SHAP. In
contrast, SHAP not only provides feature importance but also offers valuable insights into
the input-output relationship. However, the computational demands of SHAP make it
unfeasible for its application in high-dimensional datasets.

• Holistic Explanations for Global and Local levels: Current XAI strategies predominantly
cater to either local or global context, yet a pressing need exists for methodologies
that provide coherent explanations at both levels. Imagine a criminal justice system
deploying an AI model to predict recidivism rates. On a local level, comprehending why
a specific individual receives a high-risk prediction is crucial for just and transparent
decision-making. Simultaneously, understanding overarching patterns in the model’s
behavior across the entire incarcerated population provides actionable insights for policy
improvements. Bridging this analytical gap not only enhances model accountability but
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also empowers stakeholders at every level to make informed, ethical choices that align
with individual rights and societal needs.

These challenges highlight the need for further research and development in the field
of XAI to improve the interpretability and transparency of Machine Learning models. The
methodologies and advancements proposed in this thesis tackle these challenges by employing
partial derivatives as a tool to scrutinize the relationships between inputs and outputs based on
the dataset samples. This approach ensures more precise and practical explanations for intricate
models and datasets. Importantly, this method refrains from making presumptions about the
relationships between variables and inherently avoids unrealistic scenarios. It facilitates the
interpretability of high-dimensional feature spaces by implementing aggregation measures
on the derivatives and using vectorial operations to accelerate the derivatives calculation.
Furthermore, it provides explanations at an intermediate level by examining the partial
derivatives at varying levels of aggregation, thereby offering a more nuanced understanding of
the model’s behavior.

2.6. Conclusions
In conclusion, this chapter has provided an in-depth exploration of Explainable Artificial
Intelligence (XAI) techniques. The importance of these techniques in creating explanations from
AI models has been underscored, emphasizing their role in making AI decisions understandable
to humans. This is crucial in a world where AI is increasingly used in decision-making processes,
from healthcare to finance, and users need to trust and understand the decisions made by these
models.

We have provided a detailed taxonomy of XAI, which takes into account various factors such
as the explanation purpose, transparency levels of models, post-hoc explainability techniques,
types of data, model-agnosticism, local and global explanations, and contrastive and non-
contrastive explanations. Furthermore, this chapter has presented a detailed explanation of
various XAI methods, including LIME, ICE, PDP, Lek’s Profile, SHAP, Permutation Importance,
Garson Importance, Olden Importance, Sensitivity Analysis, and Friedman’s H-Index. Each of
these methods has its unique characteristics and computational resource requirements, making
them suitable for different types of data and explanation needs. This taxonomy aims to guide
researchers and practitioners in selecting the most suitable XAI techniques for their specific
requirements and contexts.

However, it is important to acknowledge that the XAI techniques discussed in this section
are not without limitations. Some of the most complete XAI methods, such as SHAP can be
computationally unfeasible for high-dimensional dataset. Other commonly used XAI techniques,
such as LIME, does not give quantitative importance measures, which make the comparisons
between variable a non-trivial challenge. Finally, permutation methods, such as PDP, might
analyze unrealistic scenarios and give misleading information to the user. Therefore, new XAI
methods must been designed to overcome this limitations and increase the applicability of XAI
in current ML applications.
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Table 2.1. Taxonomy of described XAI methods

Criteria
Type of

Explanation
Data Type

Local/
Global

Contrastive/
Non-contrastive

Comp.
Resources

LIME

Explanation by
Simplification,
Feature Relevance
Explanation

Tabular,
Text,
Image

Local Non-contrastive Medium

ICE Visual Explanation Tabular Local Non-contrastive High

PDP
Visual Explanation,
Feature Interactions

Tabular Global Non-contrastive Medium

Lek’s
Profile

Visual Explanation Tabular Global Non-contrastive Medium

SHAP

Feature Relevance
Explanation,
Feature Interactions,
Visual Explanation

Tabular,
Text,
Image

Both Contrastive High

Permutation
Importance

Feature Relevance
Explanation

Tabular Global Non-contrastive Medium

Garson
Importance

Feature Relevance
Explanation

Tabular Global Non-contrastive Low

Olden
Importance

Feature Relevance
Explanation

Tabular Global Non-contrastive Low

Sensitivity
Analysis

Feature Relevance
Explanation,
Visual Explanation

Tabular Both Non-contrastive Medium

Friedman’s
H-Index

Feature Interactions Tabular Global Non-contrastive Medium
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3
Development of XAI methods

based on Partial Derivatives for
Multilayer Perceptron

Success is walking from failure to
failure with no loss of enthusiasm.

Winston Churchill (1874–1965)

This chapter presents the main innovations developed during the thesis related to using
partial derivatives as a XAI method. It includes the rationale on how to apply XAI
methods based on partial derivatives and how to interpret their results.

3.1. Introduction
The study of Explainable Artificial Intelligence (XAI) for MLP through the lens of sensitivity
analysis and partial derivatives has been developed during the last decades. This section
emphasizes significant contributions that have established the groundwork for our present
research.

The seminal work by Zurada et al. (1994) introduced the concept of sensitivity as partial
derivatives of the output with respect to the inputs evaluated in the samples of the dataset. The
authors innovatively utilized the ratio of error divided by mean sensitivity to detect the most
important variables for a model. Their study also presented the first partial derivative formulas
for Multilayer Perceptron (MLP) networks with one hidden layer and one output variable.

Building on this foundation, Muñoz and Czernichow (1998) applied sensitivity analysis
based on partial derivatives for variable selection in feedforward and recurrent neural network
models. Their approach, which employs the mean of squared sensitivities as an indicator of
feature importance, marked a significant step forward in the field.

An innovative proposal was presented in White and Racine (2001), who devised a statistical
methodology based on the bootstrapped distribution of the mean of squared sensitivities. This
method allowed for detecting significant input variables in MLP models.
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Expanding the scope of partial derivatives, Gevrey et al. (2006) utilized the mean of the
absolute value of second partial derivatives to identify interactions between pairs of variables.
Their work, using 10 habitat characteristics to predict the density of brown trout spawning
redds, highlighted the practical implications of these theoretical advancements with the analysis
of the contribution profiles of each pair of variables. From the contribution profile patterns, it
was seen that the predicted density of redds closely corresponded to ecological reality. Moreover,
the contributions of the variables, which were not significantly differentiated with the first
partial derivatives, were revealed with the second partial derivatives.

Building on prior research, Zhang et al. (2022) employ the mean of squared second partial
derivatives as a technique for detecting interaction importance. They validate the effectiveness
of this method by applying it to several synthetic datasets with known pairwise input interactions.
Subsequently, they develop a new model, ParaACE, which utilizes the interaction knowledge
gained to train a transparent surrogate model. This surrogate model demonstrates comparable
performance across the tested datasets.

Our research uniquely contributes to the advancement of XAI methods by not only
contributing theoretically on the significant previous works in this field but also implementing
and presenting these advancements in a readily accessible manner. One important contribution
of our research has been the development of two software packages: the Python package
neuralsens and the corresponding R library NeuralSens. These packages embody the research
findings and methodologies detailed in this section and provide a practical interface for applying
these concepts in real-world scenarios.

We believe that our development and popularization of neuralsens and NeuralSens have
served to bridge the gap between complex theoretical advancements and their practical
implementations. This assertion is substantiated by the over 100, 000 downloads that the
packages have received at the time of writing, indicating a robust and growing interest within
the research community for accessible XAI tools. This remarkable number also reflects our
contribution in fulfilling the demand of researchers, practitioners, and enthusiasts for tools that
promote transparency and interpretability in machine learning models.

In this chapter, we begin by investigating the partial derivatives of activation functions,
followed by an in-depth exploration of the first, second, and third partial derivatives of Multilayer
Perceptrons (MLP) with an arbitrary number of hidden layer and output variables. Subsequently,
we present three novel algorithms that harness the power of these partial derivatives to provide
meaningful insights and enhanced interpretability of ML models. By carefully examining these
developments, we aim to push the boundaries of XAI techniques and offer a comprehensive
toolkit for practitioners and researchers alike to improve their understanding of complex neural
networks.

3.2. Calculation of the Partial Derivatives of the Multi-
Layer Perceptron (MLP) Model

In this section, we systematically explore the computation of partial derivatives in the context of
MLPs, providing a solid foundation for understanding the inner workings of our XAI techniques.
We begin by presenting the MLP model architecture and the nomenclature that will be used
in the rest of the chapter. Then, we continue breaking down the process of calculating partial
derivatives for each layer within the MLP, taking into consideration various activation functions
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and their respective properties. Subsequently, we delve into the first, second, and third-order
partial derivatives of the output with respect to the input in a MLP model. By dissecting these
calculations step by step, we aim to offer a comprehensive understanding of the MLP model’s
sensitivity to changes in input variables.

3.2.1. The Multi-Layer Perceptron (MLP)
A MLP is a fully-connected feed-forward Artificial Neural Network (ANN) that has one-way
connections from the neurons of one layer to all neurons of the subsequent layer. Each time the
output of one unit travels along one connection to another unit, it is multiplied by the weight
of the connection. At each unit the weighted inputs are summed and a constant, or bias, is
added. Once all the input terms of each unit are summed, an activation function is applied to
the result. Figure 3.1 shows the scheme of a neuron in a MLP model and represent graphically

Figure 3.1. Scheme of the kth neuron in the lth layer of a MLP model. ϕl
k represent the activation

function of the neuron, bl represent the bias of the lth layer, ol−1
j represent the output of the jth neuron

in the previous layer and wl
jk represent the weight of the connection between the neuron and the jth

neuron of the previous layer.

the operations in Equation 3.1.

For each neuron, the output olk of the kth neuron in the lth layer can be calculated by:

olk = ϕl
k

(
zlk

)
= ϕl

k

nl−1∑
j=1

wl
kj · ol−1

j + wl
k0 · bl

 (3.1)

where zlk refers to the weighted sum of the neuron inputs, nl−1 refers to the number of neurons
in the (l − 1)th layer, wl

kj refers to the weight of the connection between the jth neuron in the
(l − 1)th layer and the kth neuron in the lth layer, ϕl

k refers to the activation function of the
kth neuron in lth layer, bl refers to the bias in the lth layer and · refers to the scalar product
operation. For the input layer thus holds l = 1, y1−1

j = xj , w1
kj = 1 and b1 = 0.

Figure 3.2 can be treated as a general MLP model. A MLP can have L layers, and each
layer l (1 ⩽ l ⩽ L) has nl (nl ⩾ 1) neurons. n1 stands for the input layer and nL for the
output layer. As a common convention between ML practitioners, a neural network must have
more than two hidden layers to be called deep, hence the name Deep Learning for this type of
models. For each layer l ≥ 1 the input dimension is equal to the output dimension of layer
(l − 1). For a neuron i (1 ⩽ i ⩽ nl) in layer l, its input vector, weight vector and output are
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Figure 3.2. General multilayer perceptron structure with L layers. ϕi
j represent the activation function

of the jth neuron in the ith layer, bi represent the bias of the ith layer, xk represent the input variables
and yk represent the output variables.

ybl−1 =
(
bl, yl−1

1 , · · · , yl−1
nl−1

)
, wl

i =
(
wl
i0, w

l
i1, · · · , wl

inl−1

)⊤ and yli = ϕl
i

(
zli
)
= ϕl

i

(
ybl−1 ·wl

i

)
respectively, where ϕl

i : R → R refers to the neuron activation function and · refers to the matrix
multiplication operator. For each layer l, its input vector is ybl−1, its weight matrix is Wl =[
wl

1 · · ·wl
nl

]
and its output vector is yl =

(
yli, · · · , ylnl

)
= Φl

(
zl
)
= Φl

(
ybl−1 ·Wl

)
, where

Φl : Rnl → Rnl
is a vector-valued function defined as Φl(z) = (ϕl

1(z1), · · · , ϕl
nl(znl)).

Activation functions of neural networks can be basically divided into 2 types: Linear
Activation Functions and Non-linear Activation Functions. Non-linear Activation Functions are
the most common because neurons with these activation functions presents superior learning
capabilities and facilitate a complex modelling of the input-output relationship. The choice
of activation function depends on the specific problem and architecture being used. More
information about these activation functions can be found in section 3.2.2.

Weights in the neural structure determine how the information flows from the input layer to
the output layer. Identifying the optimal weights that minimize the prediction error is called
training the neural network. The process of finding the optimal weights can be seen as an
optimization problem, where the metric to minimize is given by a loss function. This loss
function shall provide a measure of how similar the predictions of the model are to the desired
values for the output (Bishop and Nasrabadi, 2006). A common optimization technique to
diminish the loss value is Gradient Descent (Ruder, 2016). The goal of this algorithm is to find
the local minimum of a given objective function. This is achieved by iteratively moving closer
to the minimum value by taking small steps in the direction indicated by the gradient of the
function. The gradient is calculated by determining the partial derivative of the cost function
with respect to the neural network’s weights. This is done using an algorithm called backward
propagation of errors (or backpropagation, for short), which uses the chain rule of calculus
to calculate the gradient backward through the layers of a neural network. The weights are
then updated simultaneously following equation 3.2 where W ∗ represents the updated weight
values, W represents the current weight values, α is the learning rate which determines how
big the steps the algorithm takes into the direction indicated by the gradient, and L represents
a loss function:

W ∗ = W − α
∂L

∂W
(3.2)
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The learning rate is a critical hyperparameter in the training process of neural networks, and
finding the optimal value can significantly impact the performance of the model. As depicted
in figure 3.3, a small learning rate may result in slow convergence, while a large learning rate
may cause the loss function to fluctuate or diverge. Therefore, selecting an appropriate learning
rate is crucial for achieving better accuracy and faster convergence in neural network training
(Bengio, 2012).

Figure 3.3. Evolution of loss metric during the training of a neural network with different values of
learning rate α.

While Gradient Descent is a popular optimization technique for neural networks, there
exist many other optimization algorithms that can be used to train a neural network. One
such algorithm is Stochastic Gradient Descent (SGD), which is a variant of Gradient Descent
that updates the weights after a batch of samples, rather than after computing the gradient
for all samples. Convergence analysis reveals that SGD often converges faster than the base
Gradient Descent algorithm due to its ability to make frequent weight updates based on batches,
effectively navigating through complex loss landscapes. However, SGD may exhibit more
oscillations and slower convergence in the final stages due to the inherent noise introduced
by using a subset of the data for each update. Another Gradient Descent variant is Adam
(Adaptive Moment Estimation), which combines the benefits of both SGD and momentum to
achieve faster convergence. RMSprop is another optimizer that adapts the learning rate based
on the gradients of the past few iterations. Other optimizers, such as Adagrad, Adadelta, and
Nadam, each have their own unique approach to optimizing the weights of a neural network.
The choice of optimizer can have a significant impact on the training of a neural network, as
different optimizers have their own strengths and weaknesses, and may perform better or worse
depending on the specific problem being tackled. For more information about optimizers, we
refer the reader to the state-of-the-art reviews in (Sun, 2019; Heidari et al., 2020; Kastrati and
Biba, 2021).

Apart from the previous Gradient Descent variants, there are other optimizers that use
higher-order derivatives of the loss function. One of these optimization methods is BFGS
(Broyden-Fletcher-Goldfarb-Shanno). BFGS belongs to the family of quasi-Newton methods
and is known for its efficient convergence properties. Unlike the other gradient-based methods,
BFGS approximates the inverse Hessian matrix using gradient information and updates the
weights iteratively based on this approximation. This approach allows BFGS to effectively
navigate the optimization landscape and converge towards the optimal solution. BFGS has been
widely utilized in various domains, including neural network training (K. Liu et al., 2013; Maeda
et al., 2014)), and it has demonstrated favorable performance for both small and large-scale
optimization problems.
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One potential issue that can arise during the training of a neural network is overfitting,
where the model performs well on the training data but poorly on new, unseen data. This can
occur when the model becomes too complex and starts to fit to noise in the data rather than the
underlying patterns. To address this issue, a regularization technique known as weight decay
can be employed. Weight decay adds a penalty term to the loss function, which discourages
the weights from taking on large values (Goodfellow et al., 2016). This penalty term is usually
proportional to the square of the magnitude of the weights, and its coefficient is controlled by
a hyperparameter called the regularization strength. By adding this penalty term to the loss
function, the model is incentivized to use smaller weights, which in turn reduces the complexity
of the model and helps prevent overfitting.

Having now comprehensively explained the structure and function of the Multilayer
Perceptron (MLP) architecture, following sections describe how to calculate the partial
derivatives of the output variable with respect to the inputs that are used by the methodologies
developed in this thesis. The calculus of these partial derivatives is fundamentally tied to the
nature of activation functions employed within the MLP. Consequently, the following section
will delineate the calculation of partial derivatives of various activation functions.

Figure 3.4. Activation functions supported in neuralsens package.

3.2.2. Partial Derivatives of Activation functions

In this section, we provide the expressions to calculate the first, second, and third partial
derivatives of the output with respect to the inputs of the most common activation functions
used in artificial neural networks. All this derivatives are later used to calculate the first, second
and third partial derivatives of an MLP. The activation functions supported by our package are
the Sigmoid, Linear, Hyperbolic Tangent (tanh), Rectified Linear Unit (ReLU), and Softmax
functions. table 3.1 collects the expression and derivatives of the activation functions supported
by the neuralsens package, and figure 3.4 shows the output of each of these function for
different values of the input variable.
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Table 3.1. Summary of the expressions, first, second, and third partial derivatives of common activation
functions supported in the neuralsens package.

Activation
Function

Expression First Derivative

sigmoid σ(x) = 1
1+e−x σ′(x) = σ(x) · (1− σ(x))

Linear I(x) = x I ′(x) = 1

Tanh tanh(x) = th(x) = ex−e−x

ex+e−x th′(x) = 1− th2(x)

ReLU ReLU(x) = max(0, x) ReLU ′(x) =

{
1 if x > 0

0 otherwise

Softmax Softmax(x)i = Sf(x)i =
exi∑
exj

∂Sf(xi)
∂xj

={
Sf(x)i · (1− Sf(x)i) if i = j

−Sf(x)i · Sf(x)j if i ̸= j

Activation
Function

Second Derivative Third Derivative

sigmoid σ′′(x) = σ′(x) · (1− 2σ(x))
σ′′′(x) = σ′′(x) · (1− 3σ(x))

+ σ(x) · (σ(x)− 1)2

Linear I ′′(x) = 0 I ′′′(x) = 0

Tanh th′′(x) = −2 · th(x) · th′(x)
σ′′′(x) = 2 · (th2(x)− 1) · th′(x)

+ th′(x) + 4 · th(x) · th′′(x)
ReLU ReLU ′′(x) = 0 ReLU ′′′(x) = 0

Softmax Equation 3.3 with n = 2 Equation 3.3 with n = 3

For the softmax function, second and third partial derivatives are calculated using the
following formula for the nth partial derivative with n = 2 and n = 3 respectively:

∂nSf(x)i
∂x1∂x2...∂xn

=
∑

S⊆{1,2,...,n}
|S|=n

n∏
t=1

(δit − Sf(x)t)
∏
s∈S

Sf(x)s (3.3)

where S is a subset of indices of size n, δit is the Kronecker delta, and Sf(x)s denotes the
softmax function evaluated at xs.

When using the neuralsens package, all neurons in the same layer are supposed to use the
same activation function. However, custom activation functions can be used if the derivatives of
the activation function are passed to the methods of the neuralsens package. These derivatives
shall return arrays of the appropriate size for further operations. Being Φl : Rnl → Rnl

the
activation function of the lth layer where nl is the number of neurons in the lth layer of the
neural network as defined in section 3.2.1, we expect the output of the first, second and third
partial derivative function evaluated in the zl input of the lth layer to be an array defined
as:

1. First partial derivatives:

∇Φl

∇zl

(
zl
)
[nl×nl]

=

[
∇ϕl

1

∇zl

(
zl
)
, . . . ,

∇ϕl
nl

∇zl

(
zl
)]

[nl×nl]
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2. Second partial derivatives:

∇2Φl

∇2zl

(
zl
)
[nl×nl×nl]

=

[
∇2ϕl

1

∇2zl

(
zl
)
, . . . ,

∇2ϕl
nl

∇2zl

(
zl
)]

[nl×nl×nl]

3. Third partial derivatives:

∇3Φl

∇3zl

(
zl
)
[nl×nl×nl×nl]

=

[
∇3ϕl

1

∇3zl

(
zl
)
, . . . ,

∇3ϕl
nl

∇3zl

(
zl
)]

[nl×nl×nl×nl]

As long as the user-defined function return a suitable array, these functions can be handled
by the internal functions of the package and use the methods described in sections 3.3, 3.4 and
3.5. In the subsequent sections, the derivatives of the activation functions previously described
are used to compute the partial derivatives between different layers of a MLP model.

3.2.3. First Partial Derivatives

First partial derivatives of the output variables with respect to the input variables, also called
sensitivities, provide valuable insights into the sensitivity of a model’s output to changes in
its input variables. More information about how to exploit the information from first partial
derivatives is found in sections 3.3 and 3.4.

For a MLP model with L layers, first partial derivatives are defined as:

si,k
∣∣
xp

=
∂oLk
∂xi

(xp) (3.4)

where xp refers to the pth sample of the dataset used to perform the sensitivity analysis and
si,k
∣∣
xp

refers to the sensitivity of the output of the kth neuron in the output layer with regard to

the input of the ith neuron in the input layer evaluated in xp. We calculate these sensitivities
applying the chain rule to the partial derivatives of the inner layers (derivatives of Equation 3.1
for each neuron in the hidden layers).

The partial derivatives of the inner layers are defined following the next equations:

• Derivative of zlk (weighted linear input combination of the kth neuron in the lth layer)
with regard to ol−1

i (output of the ith neuron in the (l− 1)th layer). This partial derivative
corresponds to the weight of the connection between the kth neuron in the lth layer and
the ith neuron in the (l − 1)th layer:

∂zlk
∂ol−1

i

= wl
ki (3.5)

• Derivative of olk (output of the the kth neuron in the lth layer) with regard to zli (input of
the ith neuron in the lth layer):

∂olk
∂zli

∣∣∣∣
zli

=
∂ϕl

k

∂zli

(
zli

)
(3.6)
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where ∂ϕl
k

∂zli
refers to the partial derivative of the activation function of the kth neuron in

the lth layer with regard to the input of the kth neuron in the lth layer evaluated for the
input zli of the ith neuron in the lth layer.

Equations 3.5 and 3.6 have been implemented in the package in matrix form to reduce
computational time following the next equations:

W∗l
[nl−1×nl] =

∂zl
[1×nl]

∂ol−1
[1×nl−1]

=



∂zl1
∂ol−1

1

∂zl2
∂ol−1

1

· · ·
∂zl

nl

∂ol−1
1

∂zl1
∂ol−1

2

∂zl2
∂ol−1

2

· · ·
∂zl

nl

∂ol−1
2

...
...

. . .
...

∂zl1
∂ol−1

nl−1

∂zl2
∂ol−1

nl−1

· · ·
∂zl

nl

∂ol−1

nl−1


=


wl
11 wl

21 · · · wl
nl1

wl
12 wl

22 · · · wl
nl2

...
...

. . .
...

wl
1nl−1 wl

2nl−1 · · · wl
nlnl−1



Jl
l
[nl×nl]

=
∂ol

[1×nl]

∂zl
[1×nl]

=



∂ol1
∂zl1

∂ol2
∂zl1

· · ·
∂ol

nl

∂zl1
∂ol1
∂zl2

∂ol2
∂zl2

· · ·
∂ol

nl

∂zl2
...

...
. . .

...
∂ol1
∂zl

nl

∂ol2
∂zl

nl

· · ·
∂ol

nl

∂zl
nl


=



∂ϕl
1

∂zl1

(
zl1
) ∂ϕl

2

∂zl1

(
zl1
)

· · ·
∂ϕl

nl

∂zl1

(
zl1
)

∂ϕl
1

∂zl2

(
zl2
) ∂ϕl

2

∂zl2

(
zl2
)

· · ·
∂ϕl

nl

∂zl2

(
zl2
)

...
...

. . .
...

∂ϕl
1

∂zl
nl

(
zl
nl

) ∂ϕl
2

∂zl
nl

(
zl
nl

)
· · ·

∂ϕl
nl

∂zl
nl

(
zl
nl

)


where W∗l is the reduced weight matrix of the lth layer and Jl

l is the Jacobian matrix of the
outputs in the lth layer with regard to the inputs in the lth layer.

Following the chain rule, the Jacobian matrix of the outputs in the lth layer with regard to
the inputs in the pth layer can be calculated by:

Jl
p
[np×nl]

= Jl−1
p
[np×nl−1]

⊗W∗l
[nl−1×nl] ⊗ Jl

l
[nl×nl]

(3.7)

where ⊗ refers to the tensor product operation, 1 ⩽ p ⩽ (l − 1) and 2 ⩽ l ⩽ L.

Using equation 3.7 with l = L and p = 1, the partial derivatives of the outputs with regard
to the inputs of the MLP are obtained.

3.2.4. Second Partial Derivatives

The first order sensitivities give information only about the relationship between one output
and one input. In order to obtain information about the relationship between output and the
interaction of two input variables (or the curvature of the relationship between output and one
input variable), the partial derivatives method could be extended calculating the second partial
derivatives:

sij,k|xn =
∂2oLk
∂xi∂xj

(xn) =
∂

∂xj

(
∂oLk
∂xi

)
(xn) =

∂

∂xj

 nL∑
p=1

(
∂oLk
∂zLp

·
∂zLp
∂xi

) (xn)

(3.8)
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Using the product rule of the derivatives:
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(3.9)

These second derivatives can also be computed using the chain rule with the second derivatives
of the inner layers, using the Hessian (H) array, the Jacobian (J) and weight (W) matrixes.
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Applying the chain rule, the Hessian array of the outputs in the lth layer with regard to the
inputs in the pth layer can be calculated using:

Hl
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(3.10)
where ⊗a is the tensor multiplication operator applied to a n-dimensional array along the a axis,
1 ⩽ p ⩽ (l − 1) and 2 ⩽ l ⩽ L. Using equation 3.10 with l = L and p = 1 the second partial
derivatives of the output with regard to the inputs of the MLP are obtained.

3.2.5. Third derivatives

As stated in the previous chapter, the hessian array (H) can be used to detect interaction
between a pair of input variables. Further developments to detect interactions need the third
partial derivatives to be efficiently computed (see section 3.5). These third derivatives are
defined as:

sijm,k|xn =
∂3oLk

∂xi∂xj∂xm
(xn) =

(
∂

∂xm

(
∂

∂xj

(
∂oLk
∂xi
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(xn) (3.11)
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3.2. Calculation of the Partial Derivatives of the Multi-Layer Perceptron (MLP) Model

Using again chain rule and the product rule of the derivatives, the third partial derivatives can
be obtained:
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The third derivatives can be computed using the chain rule with the third derivatives of the
inner layers, using the Jerkian (K) and Hessian (H) arrays, and the Jacobian (J) and weight

(W) matrixes. We define the Jerkian array for a given layer as Kl
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Applying the chain rule, the Jerkian array of the outputs in the lth layer with regard to the
inputs in the pth layer can be calculated using:
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(3.14)

where ⊗ab is the tensor multiplication operation along the a and b axis of a n-dimensional
array1 ⩽ p ⩽ (l − 1) and 2 ⩽ l ⩽ L. Using equation 3.14 with l = L and p = 1 the third partial
derivatives of the output with red to the inputs of the MLP are obtained.

3.2.6. Comparison with automatic differentiation

In the course of examining the analytical computation of first, second, and third partial
derivatives of Multi-Layer Perceptron (MLP) models, a pertinent discussion emerges regarding
the feasibility and efficiency of employing automatic differentiation engines, such as Pytorch’s
autograd (Paszke et al., 2019), for this task. At a glance, automatic differentiation presents
a straightforward avenue for derivative computation. However, a closer inspection reveals
significant drawbacks, particularly when dealing with higher-order derivatives.

To furnish a clear comparison and substantiate the rationale behind opting for analytical
calculations over automatic differentiation, an empirical assessment was conducted. This
assessment entailed the computation of the first, second and third partial derivatives of an MLP
model, varying both the number of neurons in the hidden layer and the number of samples to
be analyzed. The objective was to gauge the computational times and thereby, the efficiency of
both methods under different configurations.

The configurations tested included:

• Number of inputs: The number of inputs to the model was varied from 5 to 35 in
increments of 5 inputs.

• Number of neurons in hidden layer: The configurations tested had 10, 30, and 50 neurons
in the hidden layer.

• Number of samples: The partial derivatives were calculated for 1000, 5000, and 10000
samples.

Figure 3.5 shows the computational time required to calculate the first, second and third
partial derivatives using autograd and the analytical methods developed in our research using
the neuralsens package. For the sake of clarity, it only shows the computational time of the
first, second and third partial derivatives for the configurations tested with 10000 samples. The
rest of the tested configurations can be found in Annex A.

Results unequivocally showcase the superior efficiency of analytical calculations, especially
as the complexity of the model escalated. Automatic differentiation, while adept at handling

52 Explainable Artificial Intelligence (XAI) Techniques based on Partial Derivatives
with Applications to Neural Networks

Jaime Pizarroso Gonzalo



3.3. Sensitivity Analysis

Figure 3.5. Comparative analysis of computation times for the calculation of first, second, and third
partial derivatives utilizing analytical calculations (neuralsens) and automatic differentiation (autograd)
amidst varying model complexities, with a constant sample size of 10000.

lower order derivatives, manifested a noticeable slowdown when confronted with higher-order
derivatives. This sluggish performance not only augments the computational times but can
potentially impede real-time analysis and timely decision-making, which is often crucial in
time-sensitive applications. Such delays may deter users from undertaking the analysis due to
time constraints, thereby impacting the overall utility and application of the model in practical
scenarios.

3.3. Sensitivity Analysis
First partial derivatives provide valuable insights into the sensitivity of a model’s output to
changes in its input variables. By examining the sensitivities of MLPs, we aim to uncover
deeper insights into the structure and function of these models, which will enable us to
enhance interpretability and ultimately improve the performance of these networks in real-
world tasks.

Once the first order sensitivity has been obtained for each variable and observation, different
measures can be calculated to analyze the model’s functioning. We propose the following
sensitivity measures to summarize the information obtained by evaluating the sensitivity of the
outputs for all the input samples X = {xj}Nj=1 of a given dataset:

• Mean sensitivity of the output of the kth neuron in the output layer with regard to the ith

input variable:

Savg
i,k =

∑N
n=1 si,k

∣∣
xn

N
(3.15)

where N is the number of samples in the dataset.
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• Sensitivity standard deviation of the output of the kth neuron in the output layer with
regard to the ith input variable:

Ssd
i,k = σ

(
si,k
∣∣
xn

)
;n ∈ 1, . . . , N (3.16)

where N is the number of samples in the dataset and σ refers to the standard deviation
function.

• Mean squared sensitivity of the output of the kth neuron in the output layer with regard to
the ith input variable Yeh and Cheng, 2010; Zurada et al., 1994; White and Racine, 2001:

Ssq
i,k =

√√√√∑N
n=1

(
si,k
∣∣
xn

)2
N

(3.17)

where N is the number of samples in the dataset.

In case there are more than one output neuron, such as in a multi-class classification problem,
these measures can be generalized to obtain sensitivity measures of the whole model as
follows:

• Mean sensitivity with regard to the ith input variable:

Savg
i =

∑nL

k=1 S
avg
i,k

nL
(3.18)

• Sensitivity standard deviation with regard to the ith input variable:

Ssd
i =

√√√√√∑nL

k=1

((
Ssd
i,k

)2
+
(
Savg
i,k − Savg

i

)2)
nL

(3.19)

• Mean squared sensitivity with regard to the ith input variable (Yeh and Cheng, 2010):

Ssq
i =

∑nL

k=1

√
Ssq
i,k

nL

2

(3.20)

3.3.1. Interpretation of Sensitivity Measures

In order to provide a better explanation of how the sensitivity measures can be applied, we
must review the relationship between linear regression and its derivatives. Let f(x) be a linear
regression model with β̂ the estimated coefficient for the continuous input variable x which
follows the next expression:

f(x) = ŷ = β̂1 · x+ β0 (3.21)

with input variable x. Derivative of the output with regard to the input is defined as:

f ′(x) =
∂ŷ

∂x
= β̂1 (3.22)
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which is constant for all points in the input space. This derivative value indicates how much
the predicted output changes for each unit change in the input variable x. In other words, the
partial derivative provides a constant measure that characterizes the linear relationship between
the input x and the output prediction ŷ. For instance, if f ′(x) = 2.5, it implies that for every
one-unit increase in the input x, the predicted output ŷ will increase by 2.5 units.

Figure 3.6. Linear model with equation f(x) = β̂ · x, derivative of linear model in orange. Derivative is
constant for all points in the input space.

Figure 3.6 represents a linear model with β̂ = 2 and its derivative with 4 different points
of the input space. If we apply the measures proposed in section 3.3 to the distribution of the
derivatives of the linear model obtained by evaluating the derivative in all the points of the
input dataset, we shall obtain:

Savg
1,1 = β̂ = 2; Ssd

1,1 = 0 (3.23)

Consequently, we shall expect that, for any MLP model with a linear relationship between an
output and an input variable, the proposed measures would have values in the form of:

Savg
1,1 = k; k ∈ R Ssd

1,1 ≈ 0 (3.24)

Following with the previous example, let f(x) be a non-linear regression model which
follows the next expression:

f(x) = y = β1 · x1 + β2 · (x2)2 + β0; k1, k2 ∈ R (3.25)

with 3 continuous input variables x1, x2 and x3, and k1 and k2 estimated coefficients during
the training process of the model. From the expression, we can conclude that x1 has a linear
relationship with the output, x2 has a non-linear relationship with the output and x3 has no
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relationship with the output. Derivatives of the non-linear regressor output variable with regard
to its input variables are defined as:

∂y

∂x1
= β1;

∂y

∂x2
= 2 · β2 · x2;

∂y

∂x3
= 0 (3.26)

for all points in the input space.

Figure 3.7. Non-linear model with equation f(x) = x2, derivative of non-linear model in orange.
Derivative depends on the value of x.

Figure 3.7 shows the output of a model with k2 = 1 for different values of x2 for a constant
value of x1. As can be seen in the figure, derivative with regard to this variable is not constant
along the input space. The consequences in the sensitivity measures we proposed can be
summarized as:

Ssd
2,1 >> 0 (3.27)

With regard to x1, the output of the model would be similar to figure 3.6 for a fixed value of
X2. Therefore, sensitivity measures with respect to x1 would be similar to the ones in equation
3.24. The only remaining relationship to analyze is with respect to x3. Equation 3.25 states
that there is no relationship between the output and x3, so a change in x3 shall not produce
any effect on the output. Hence, derivatives of the output with regard to x3 are 0 for the entire
input space, so the sensitivity measures for x3 are:

Savg
2,1 ≈ 0; Ssd

2,1 ≈ 0 (3.28)

To summarize, based on the Savg and Ssd for an input variable we can conclude:

• If both Savg
i,k ≈ 0 and Ssd

i,k ≈ 0, it indicates that the output is not related to the input,
because for all the input space the sensitivity of the output with regard to that input is
approximately zero.
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• If Savg
i,k ̸= 0 and Ssd

i,k ≈ 0, it indicates that the output has a linear relationship with the
input, because for all the input space the sensitivity of the output with regard to that input
is approximately constant.

• If Savg
i,k ̸= 0 , regardless of the value of Savg

i,k , it indicates that the output has a non-linear
relationship with the input, because the relation between the output and the input vary
depending on the value of the input.

Ssq
i,k retrieves a different kind of information from the relationship between input and

output. For a given input variable, it may be considered significant if its sensitivities si,k
∣∣
xj

are significantly different from zero, whether they are positive or negative. In other words, a
variable is considered to be significant when changes in the input variable produce significant
changes in the output variable of the model. White and Racine, 2001 conclude that the statistic(
Ssq
i,k

)2
is a valid indicator to identify if a variable is irrelevant following this criteria. Moreover,

Ssq
i,k is a measure of the changes in the output due to local changes in the input. Thus, Ssq

i,k can
be defined as a measure of the importance of the input variables from a perturbation analysis
point of view, in the sense that small changes in that input will produce larger changes in the
output.

3.3.2. Synthetic example

In order to show how sensitivity analysis is performed using the NeuralSens R library, we
use a simulated dataset to train an MLP model of class nn ( from the RSNNS library). The
dataset consists of a data.frame with 2000 rows of observations and four columns for three
input variables (X1, X2, X3) and one output variable (Y ). The input variables are random
observations of a normal distribution with zero mean and standard deviation equal to 1.

The output Y is created following Equation 3.29 based on X1 and X2:

Y = (X1)
2 − 0.5 ·X2 + 0.1 · ε (3.29)

where ε is random noise generated using a normal distribution with zero mean and standard
deviation equal to 1. X3 is given to the model for training and a proper fitted model would find
no relation between X3 and Y .

In order to test the functionality of the sensitivity analysis designed, a MLP model with 10
neurons in its hidden layer is trained using the previously described dataset. The sensitivity
analysis is performed on the model in the samples of the entire dataset. Upon completion, user
might retrieve information about the sensitivity measures proposed in 3.3:

Sensitivity analysis of 3-10-1 MLP network.

Sensitivity measures of each output:

$Y

mean std meanSensSQ

X1 -0.005406908 1.94524276 1.94476390

X2 -0.485564931 0.06734504 0.49021056

X3 -0.003200699 0.02971083 0.02987535

The results display sensitivity analysis of a 3-10-1 MLP network, revealing mean and standard
deviation values for each input variable (X1, X2, X3). These values denote:
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• X1 with mean sensitivity (Savg
i,k ) approximately 0 and standard deviation (Ssd

i,k) roughly 2.
This implies it has a non-linear effect on the output variable.

• X2 with Savg
i,k ≈ 0.5 and Ssd

i,k ≈ 0. This suggests it has a linear effect on the output variable.

• X3 with both Savg
i,k and Ssd

i,k near 0. This signifies it has no influence on the output variable.

User might also be interested in the raw value of the partial derivatives. NeuralSens also
provides methods to retrieve the partial derivatives of the output with respect to the input
variables:

Sensitivity analysis of 3-10-1 MLP network.

2000 samples

Sensitivities of each output (only 2 first samples):

$Y

X1 X2 X3

[1,] 2.08642384 -0.4462707 -0.044063158

[2,] -0.34976334 -0.3547381 0.014188363

While the ability to present sensitivities and sensitivity metrics in numeric format is valuable
for extracting information from a model, it becomes increasingly challenging to interpret this
data when the model have more than five input variables. To solve this, NeuralSens provide
plotting functionalities to show the sensitivity metrics in a user-friendly manner:

(a) SensitivityPlots() (b) SensFeaturePlot()

Figure 3.8. Example from the SensitivityPlots() and SensFeaturePlot() function. From figure 3.8(a),
first plot shows the relation between the mean and standard deviation of the sensitivities, the second
plot shows the square of the sensitivities and the third and fourth plots show the distribution of the
sensitivities. Figure 3.8(b) shows the value of the partial derivatives (in the x-axis) with respect to each
input variables in each sample of the dataset, colored by the value of each input in that sample.

Figure 3.8(a) shows an example of the plots we propose:

1. Scatter and label plot representing the relationship between Savg
i,k (x-axis) and Ssd

i,k (y-axis).
Input features with non-linear relationships with the output would be placed far from
the horizontal blue line which represents a Ssd

i,k value of 0. Input features with linear or
non-existent relationships with the outputs would be placed near the horizontal blue line,

58 Explainable Artificial Intelligence (XAI) Techniques based on Partial Derivatives
with Applications to Neural Networks

Jaime Pizarroso Gonzalo



3.4. α-curves as a XAI method

with the former being placed far from the vertical blue line (which represents a Savg
i,k of 0)

and the latter being placed near the vertical blue line.

2. Bar plot that shows Ssq
i,k for each input variable, related to the feature importance of each

input.

3. Density plot that shows the distribution of output sensitivities with regard to each input
(Muñoz and Czernichow, 1998):

• The narrow distribution of sensitivity values for X2 (corresponding to a constant
sensitivity) indicates a linear relationship between this input and the output of the
neural net.

• The wide distribution of sensitivity values for X1 (corresponding to a variable
sensitivity) indicates a non-linear relationship between this input and the output.

When the height of at least one of the distributions is greater than 10 times the height of
the smallest distribution, then an extra plot is created using the facet_zoom() function of
the ggforce package (Pedersen, 2019). These plots provides a better representation of
the sensitivity distributions.

In this case, the first plot of figure 3.8(a) shows that Y has a negative linear relationship with
X2 (Ssd

i,k ≈ 0 and Savg
i,k < 0), no relationship with X3 (Ssd

i,k ≈ 0 and Savg
i,k ≈ 0) and a non-linear

relationship with X1 (Ssd
i,k ̸= 0). The second plot shows that X3 barely affects the response

variable, being X1 and X2 the inputs with most effect on the output.

Figure 3.8(b) displays the value of the first partial derivative of the output with respect to
each input variable, with the color indicating the value of the input for every sample in the
dataset. This figure presents similar information to the first plot of figure 3.8(a). It reveals a
non-linear relationship with respect to X1 (where the partial derivative range varies from -5
to 5 depending on the value of X1), a linear relationship with respect to X2 (where the partial
derivative remains constant with a non-zero value for every sample of X2), and no relationship
with X3 (where the partial derivative remains constant and equal to 0 for every sample of
X3). However, this plot provides an opportunity to analyze how the partial derivatives are
influenced by the value of the input feature. In this case, the plot of X1 exhibits a quadratic-like
relationship between the output and X1, where lower values of X1 correspond to negative values
of the partial derivative and higher values of X1 correspond to positive values of the partial
derivative.

Analogous objects and plots can be created using the neuralsens python package. A
synthetic example in python can be found in the repository associated with the thesis in
https://github.com/JaiPizGon/NeuralSens.

3.4. α-curves as a XAI method
Measures from sensitivity analysis are useful to retrieve information from a ML model. The
main advantage of this method is that it provides feature importance measures together
with information about the relationship between the output and the input, requiring less
computational resources compared to other techniques.

However, the feature importance measures of Ssq
i,k give few information about the sensitivity

distribution along the input space. An input variable with low sensitivities in most of the input
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space but with high sensitivity in certain samples would be assigned a low average importance,
misleading the user. The α−curves method is an evolution of sensitivity analysis, providing a
metric interpretation of the partial derivatives distribution. This provides extra information by
not only giving the same feature importance measures, but also provides information about
how the sensitivity with respect to a variable is distributed in the input space. In this section, a
definition of α−curves as XAI method is presented. This definition rises from a more complete
explanation presented in Pizarroso et al., 2023, where it is demonstrated how the application of
metric theory on the sensitivities of a model derives to the α−curves method presented in this
section.

3.4.1. Definition of α-curves
A natural setup for a metric analysis on tabular data is to choose the involved metrics to be Lp

norms. Recall that for each p ∈ [1,∞), we define the Lp norm as:

∥(x1, . . . , xM )∥p =

(
M∑
i=1

|xi|p
)1/p

where x is the vector of values to which Lp norm is applied.

Taking the limit when p → ∞, we also have:

∥(x1, . . . , xM )∥∞ = max{|xi|}

Let f : Rn −→ R be a ML regression model with n input variables and 1 scalar output
variable, let X = {xi}Ni=1 be a dataset with xi ∈ Rn and let sj,1

∣∣
xn

denote the derivative of the
output of f with regard to variable Xj in the nth sample of X dataset as defined in equation
3.4. This motivates the following definition presented in Pizarroso et al., 2023. Let us define
the α-mean sensitivity of f with respect to variable xj on the dataset X as

msαX ,j(f) := Mα{sj,1
∣∣
x1
, . . . , sj,1

∣∣
xN

} = N−1/α · ∥(sj,1
∣∣
x1
, . . . , sj,1

∣∣
xN

)∥α

Then, define the sensitivity α-curve as the map

msX ,j(f) : [1,∞] −→ [0,∞)

α 7→ msαX ,j(f)
.

On the other hand, observe that the Generalized Mean Inequality implies that for each
0 ≤ α < β ≤ ∞ we have

Mα

{∣∣∣∣ ∂f∂Xj
(xi)

∣∣∣∣} ≤ Mβ

{∣∣∣∣ ∂f∂Xj
(xi)

∣∣∣∣}
and we know that

M∞

{∣∣∣∣ ∂f∂Xj
(xi)

∣∣∣∣} = lim
α→∞

Mα

{∣∣∣∣ ∂f∂Xj
(xi)

∣∣∣∣}
so we conclude that msX ,j(f) is an increasing bounded curve whose limit when α → ∞ is
ms∞X ,j(f). A representation of this curve, together with the asymptotic value ms∞X ,j(f), yields
an interesting visualization of the whole sensitivity analysis. We will call this representation the
sensitivity α-curve associated to f with respect to variable Xj over the dataset X .
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These α-curves are designed to study scalar regression data models by comparing the values
of the curves for different values of α. Thus, in order to analyze data with this method, the first
step is to build a representative data model f trained over the data. The α-sensitivity analysis
is always meant to study properties of the chosen model f and not necessarily on the data
which generated it. In order to have proper comparisons between variables when analyzing the
model, it is recommended that the variables of the dataset are normalized or have comparable
magnitudes before constructing the model f and performing the α-sensitivity analysis.

To facilitate the comparison of the α−curves values, Pizarroso et al., 2023 proposed the
α-curve plot. An α-curve plot is a 2-d plot in which we draw together, for each variable Xj , the
variation of the α-sensitivity of the model, msαX ,j(f), when α varies. By the Generalized Mean
Inequality, we know that each α-curve is increasing and bounded. As the curve can sometimes
increase very slowly as α increases, and the limit value α = ∞ is interesting for our analysis, we
will draw the curve up to a certain limit (Pizarroso et al., 2023 found that α ∈ [1, 16] is enough
in most experiments) and then add to the plot the asymptotic value ms∞X ,j(f) for each variable
Xj . An example of this plot can be found in figure 3.10.

3.4.2. Comparison of variables for a fixed α

For each value of α, the set of values msαX ,j(f) provides a measure of the sensitivity of the model
f with regard to each variable Xj . Thus, it can be used to compare which input variables are
more relevant for the output in the model on different scales.

It must be noted that, for α = 1 and α = 2, analogous metrics for Savg and Ssq as defined in
section 3.3 are obtained. In the literature, these metrics have been used as sensitivity metrics
White and Racine, 2001; Muñoz and Czernichow, 1998; Pizarroso-Gonzalo et al., 2022 and
utilized, for instance, for variable pruning Yeh and Cheng, 2010; Zeng et al., 2018.

Each vertical cut α to the α-curve plot can be used to compare the variables and draw
quantitative and qualitative conclusions about their relative relevance to the model. Any value
of α could, theoretically, be used for the sensitivity comparison task independently. Nevertheless,
analyzing the whole picture across all different α allows a deeper understanding of the behavior
of the model. Due to the properties of α-means, as α increases, the average value msαX ,j(f)

takes more into account the existence of regions in the dataset where the sensitivity with regard
to the variable is higher than average ("exceptionally sensitive" or "localized high sensitivity"
behavior). Lower values of α focus instead on the "average behavior" of the function with regard
to the variable.

The analysis of high values of α may be crucial for certain tasks like variable pruning. It is
possible that a variable has almost no impact on a regression problem if one looks at a generic
point in the phase space, but that there exists a mode change in the model making the variable
very relevant for the analysis when the inputs move inside a certain critical region (think, for
instance, in the case where there exist "activation" variables or states, which enable a different
variable to influence the result but otherwise disable it). A general pruning analysis with α = 1

or α = 2 could "discard" the variable as irrelevant for the model, whereas it might be the most
relevant variable for high α metrics.

The limit values ms∞X ,j(f) included in the plot help identify the extreme cases. They measure
the maximum sensitivity of f with regard to the input variable Xj that can be found at any
point in the dataset.
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3.4.3. Analysis of the variation of an α-curve
Due to the aforementioned properties of the α-means, studying the variation of the α-sensitivity
when α changes can give valuable information on the dynamics of the variables of the model f .
Let us study some examples.

3.4.3.1. Linearity analysis

By the Generalized Mean Inequality, the α-curve of variable Xj is constant if and only if f is of
the form

f(X1, . . . , Xn) = g(X1, . . . , Xj−1, Xj+1, . . . , Xn) + CXj

for some function g depending only on the rest of the variables.

By extension, the closer an α-curve is to be flat, the closer the dependence of f with respect
to Xj is to a linear dependence. For instance, when an α-curve starts almost flat and then
begins to increase at some alpha, this can mean that the derivative ∂f

∂Xj
has a low variation

through most of the input space of the dataset, but that there are one or more regions of the
input space where it varies notably, either due to its own non-linear behavior (like an activation
function, or function where the derivative increases close to a point, like a C2-approximation of
a square root), or due to an interaction with other variables.

3.4.3.2. Irrelevant variables

As a particular case of the previous analysis, f does not depend on a variable Xj if and only if
the α-curve is constantly zero. The closer a curve is to 0, the less important the variable is for
the model.

If a curve starts flat and close to 0 but increases afterwards, this indicates that the output of
the model has, in general, a low dependence on the variable, but that there exists a region in
the phase space in which the variable is indeed relevant for the model.

These properties can be used to improve the specificity of variable pruning methodologies. If
a variable presents a low value of ms∞X ,j(f) (and, thus, the whole α-curve is low) then it is not
important for the model and it can be safely removed. On the contrary, a variable presenting
higher values of the curve for some α (and thus, a higher ms∞X ,j(f)) should not be pruned
without a deeper analysis.

3.4.3.3. Detection of local regions with high sensitivity

As outlined before, it is possible for a variable to have low sensitivity for low α but high
sensitivity in higher α. This makes comparing its α-sensitivity with the α-sensitivity of other
variables depend heavily on α. When this happens and a variable is not sensitive for low α but
it becomes highly sensitive for high α, two things can happen.

• The variable shows a non-linear behavior on Xj which makes the partial derivative ∂f
∂Xj

increase only on certain values of Xj .

• There exists an interaction between the variable and a combination of other variables
which makes the derivative become high in a certain region of the phase space.

The higher the variation of the α-curve and the earlier this variation appears, the stronger and
more generalized the interaction or non-linear effect is across the dataset. If the α-curve starts
flat and then there is a sudden increase, it is more probable that the interaction or non-linear
input effect on the output is relevant only in certain bounded areas of the dataset.
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(a) (b) (c)

Figure 3.9. 3-D plots of partial derivatives of output Y with respect to inputs X1, X2 and X3 ((a), (b)
and (c) respectively) for square root synthetic dataset. X-axis follows X1 and y-axis follows X3 in the
three plots. X2 is not used as plot axis due to the irrelevance of this variable on the derivative plots.

3.4.4. Synthetic example

A synthetic dataset with known derivatives is used to illustrate the usefulness of the α-curves
to retrieve information about how the model uses the input variables to predict the output
variable. The dataset is composed by 8 input variables [X1, . . . , X8] and one output variable
Y ∈ R created as a function of the input variables, i.e., Y = f (X). Input variables X consist in
50000 samples drawn from a normal distribution with µ = 0 and σ = 1.

In this case, the output follows the next expression:

Y = (X1)
2 + 2 ·X2 +

1

10
· 3
√

X3 (3.30)

From figure 3.9, we can conclude that X2 has a linear relationship with Y as ∂Y
∂X2

is constant
and different from zero for all samples. X1 and X3 have a non-linear relationship with Y , as
∂Y
∂X1

and ∂Y
∂X3

are not constant for all samples. Furthermore, figure 3.9(c) shows that ∂Y
∂X3

= 0

for most samples, except for the samples where X3 is close to 0. In these samples, sensitivities
with respect of X3 are far higher than with respect to the other input variables, so changes of
X3 in this region of the input space shall provoke large changes on Y . This can be understood
as a local importance of X3, and it shall be detected by XAI methods.

Results of XAI analysis performed on equation 3.30 are presented in figure 3.10. Figure
3.10(a) shows the sensitivity plots as introduced in Pizarroso-Gonzalo et al., 2022. First plot
shows two sensitivity metrics: mean (x-axis) and standard deviation (y-axis). Second plot of
figure 3.10(a) shows the mean squared sensitivity for each of the input variables, which could
be used as a variable importance metric. According to these metrics, the following information
can be retrieved from figure 3.10(a):

• X2 variable has a linear relationship with the output.

• X1 variable has a non-linear relationship with the output.

• X3 is almost irrelevant to predict the output, with much lower importance than X1 and
X2, but greater than X4 −X8.

• The remaining variables have no relationship with the output.
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(a) Sensitivity plots of cubic root synthetic
dataset.

(b) α-curves of cubic root synthetic dataset.

Figure 3.10. XAI techniques plots of cubic root synthetic dataset.

Using the α−curves methodology described in section 3.4.3, previously obtained information
can be obtained from figure 3.10(b). However, it also shows that, apart from the non-linearities
presented in X1 and X3, there are regions where output Y is far more sensitive to X3 than to
X2. In fact, peak sensitivities in some samples are detected, as can be seen by the rapid increase
of msαX ,3(f) for α > 4. This information could not be retrieved using the sensitivity analysis
method, which assigned little importance to X3, due to the aggregation techniques used to
calculate importance of the input variables. Therefore, although sensitivity analysis suggests
to remove X3 from the model, it should be kept as input variable to model the relationship
between output and input correctly.

3.5. Interaction Detection
A limitation of the α−curves method presented in the previous section is that it is difficult to
distinguish between the increase in sensitivity produced by an interaction between variables
and a non-linear input effect (which can be thought of as a self-interaction of the variable). A
viable solution to this problem is to explicitly detect the interactions between variables with a
complementary method.

In the context of machine learning, interactions between variables play a crucial role in
understanding the behavior of complex models. An interaction occurs when the effect of one
variable on the output depends on the value of another variable.

Mathematically, we can say that a function f(x) has an interaction between variables x1 and
x2 if it can not be decomposed as:

f(x) = f1(x1,x\(1,2)) + f2(x2,x\(1,2)) (3.31)

where f1 and f2 are functions of x1 and x2 respectively. The term x\(1,2) represents all
variables in x excluding x1 and x2. If there exist a non-negligible interaction between x1 and
x2, the decomposition of f might be performed following:

f(x) = f1(x1,x\(1,2)) + f2(x2,x\(1,2)) + f12(x) (3.32)
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where f12 is a function that captures the interaction between x1 and x2.

Detecting and understanding these interactions is important as they can significantly
influence the output of a machine learning model. Ignoring these interactions can lead to
oversimplified models that fail to accurately capture the underlying data patterns.

As an initial approach, one could adopt the approach outlined in Gevrey et al. (2006)
and use second partial derivatives to detect interactions between a pair of variables. To
detect interactions between variables xi and xj in a machine learning model, we can compute
the second-order partial derivative ∂2f

∂xi∂xj
, where f(x1, x2, . . . , xn) represents the output of

the model with input variables x1, x2, . . . , xn. Then, using the mean of these second partial
derivatives

Savg
ij,k =

∑N
n=1 sij,k

∣∣
xn

N
(3.33)

we could obtain information about pairwise input interactions in the model as:

1. If Savg
ij,k is positive (i.e., ∂2f

∂xi∂xj
> 0), this indicates that the variables have a synergistic

interaction. In other words, when the values of both xi and xj increase, their combined
effect on the output is greater than the sum of their individual effects.

2. If Savg
ij,k is negative (i.e., ∂2f

∂xi∂xj
< 0), this indicates that the variables have an antagonistic

interaction. That is, when the values of both xi and xj increase, their combined effect on
the output is less than the sum of their individual effects.

3. If Savg
ij,k is close to zero (i.e., ∂2f

∂xi∂xj
≈ 0), this suggests that there is little or no interaction

between the two variables, and their effects on the output are independent of each other.

By calculating these second-order partial derivatives for all possible pairs of input variables,
we can identify the presence and type of interactions between them. This approach can be
complemented with the one adopted in Zhang et al. (2022), where the mean of squared second
partial derivatives:

Ssq
ij,k =

√√√√∑N
n=1

(
sij,k

∣∣
xn

)2
N

(3.34)

is used as an interaction importance measure. Using these two measures we obtain
an interaction analysis methodology similar to the sensitivity analysis presented in section
3.3.

3.5.1. Cancelling Interactions through Transformations

While interactions between variables can be identified through second partial derivatives, the
detection of interactions following this method presents a notable problem due to the nature of
data-related tasks. When detecting interactions between variables in a machine learning model,
it is important to consider the transformation that input or output space might suffer due to the
modelling process performed by the user.

Let us consider a model with output y = f(x1, x2) and input variables x1, x2. This model
can be represented as:

y = f(x1, x2) = α(x1) + β(x2) + fI(x1, x2) (3.35)
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with α, β and fI being functions modelling the effect of x1, x2 and the interaction between
x1 and x2 respectively. This nomenclature is the established and accepted in existing
literature (Friedman and Popescu, 2008; Caruana et al., 2015) to determine if a model
presents an interaction between input variables. Two situations are found considering this
nomenclature:

• No interaction: model f can be expressed without the term fI and only the individual
effects of x1 and x2 are needed to model the output. f is explained as a superposition
between the effects of x1 and x2.

• Interaction: model f can not be expressed without the term fI , where each input variable
changes how f responds to variations in the other.

Let us consider a model which follows the next expression:

y = f(x1, x2) = x1 · x2 (3.36)

Following the previous classification, this model present an interaction between the two
input variables x1 and x2 as the model f can not be expressed as a superposition of x1 and x2
individually.

Nevertheless, if we apply a change of variables:

x̃1 = log(x1) x̃2 = log(x2) ỹ = log(y)

Then we can model the transformed output ỹ using the transformed inputs x̃1 and x̃2
as:

ỹ = log(y) = log(x1 · x2) = log(x1) + log(x2) = x̃1 + x̃2

By taking the logarithm of both the input and output spaces, we can transform the
multiplicative interaction into an additive superposition of the individual effects of the input
variables. Now, the effects of xi and xj are additive in the transformed space and interaction
has vanished.

This effect is specially relevant considering that is a common practice to apply transformations
to the input variables (preprocess) previous to the training of the ML model. This transformation,
as the previous seen logarithm, can cause interactions to appear or disappear without being
detected by second partial derivatives, providing the user with misleading information.
Consequently, a more interesting information that might be retrieved from the model would be
the interaction effects between variables that do not vanish when a change of variables in the
input and/or output space is applied.

At this point, for a model y = f(x1, x2), three types of pairwise input interactions can be
defined:

1. No interaction: model f can be understood as a superposition of the effects of x1 and
x2 following the expression: f(x1, x2) = α(x1) + β(x2) for some α and β. Example:
y = f(x1, x2) = x2 + cos(y3).

2. Explicit interactions: interaction of variables can be detached if there exist a change
of variable γ : R 7→ R such that f can be expressed as: f(x1, x2) = γ(α(x1) + β(x2)).
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Model f can be understood as a superposition between the effects of x1 and x2 after an
appropriate change of variables. Example: y = f(x1, x2) = x1 · x2 with γ = exp() and
α = β = log().

3. Implicit interactions: interaction of variables can not be detached by any change of
variables γ : R 7→ R and f follows the expression: f(x1, x2) = α(x1) + β(x2) + fI(x1, x2).

As explicit interactions depends on the characteristics of the input and output space where
the model is evaluated, and existing literature already detects this type of interactions (see
Gevrey et al., 2006); the information that is interesting to retrieve should be about existing
implicit interactions in the model.

3.5.2. Implicit Interaction Detection using Interaction Invariant

The interaction invariant described in this section is specifically designed to detect implicit
interactions between a pair of variables by detecting the variation of the curvature of the
isovalue curves of a model´s output space. Alfaya et al. (2023) demonstrates mathematically
that this change in the curvature can only be produced by an implicit interaction between input
variables, and, therefore, this invariant is impervious to transformations of the input or output
space, i.e., non-linear changes of the input and/or output variables. A deep explanation of how
this invariant measures the variation of the curvature is out of the scope of this document. We
refer the reader to Alfaya et al. (2023), where the mathematical derivation of the invariant
expression is documented.

Let f(x1, x2) be a regression model such that ∂f
∂x1

and ∂f
∂x2

are nowhere zero for the input
space analyzed, and let be IL(f) be the local interaction function of f(x1, x2). IL(f) defined
as:

IL(f) =
fx1x1x2fx1f

2
x2

− fx1x2fx1x1f
2
x2

− fx1x2x2f
2
x1
fx2 + fx1x2fx2x2f

2
x1

f2
x1
f2
x2

(3.37)

where fx = ∂f
∂x , fx1x2 = ∂2f

∂x1∂x2
and fx1x2x3 = ∂3f

∂x1∂x2∂x3
. This local interaction function gives an

interaction measure for an specific point of the input space which is invariant to single-variable
linear transformations, i.e., to transformations of the form α(x) = a · x + b. A more general
"total amount of interaction" is obtained through the integration of |IL| in the input region of
interest.

Let Ω = [a, b] × [c, d] be any measurable set and let f : Ω −→ R be a regression model
such that fx and fy vanish nowhere on Ω. Then define the measure I(f) as follows. For each
measurable Ω0 ⊆ Ω, take

I(f)(Ω0) :=

∫
Ω0

|IL(f)|dx1dx2 (3.38)

We call I(f) the invariant interaction measure of f in Ω0 and we call I(f) := I(f)(Ω) the
total interaction invariant of f . These measures have two important properties:

• I(f) and I(f) are preserved by any nonlinear change of variables

• I(f) = 0 if and only if f(x1, x2) = γ(α(x1) + β(x2))

The previous local and global interaction measures are built on the assumption that the
function f has nowhere vanishing partial derivatives. The local interaction function IL(f) can
clearly become singular at points where either fx1 or fx2 vanish if the numerator does not vanish
simultaneously. The invariance computations are not affected, so the invariant interaction
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measure I(f) and the total interaction invariant I(f) are all still invariant with respect to the
action of a linear transformation, but the interaction measure I(f) may not be a finite measure
anymore in this case and I(f) might become infinite.

As vanishing partial derivatives for ML models are common, it is of utmost importance to
provide a “regularized” version Ĩ(f) of the invariant measure I(f) which approximates I(f)

away from the zeros of the partial derivatives fx1 and fx2 and is still a finite measure even for
functions whose partial derivatives vanish occasionally in Ω. This regularized invariant must
meet the following conditions:

• Ĩ(f) is a finite measure for all functions f , independently on the existence of zeroes of fx
or fy in Ω.

• Ĩ(f)(Ω0) ≈ I(f)(Ω0) when Ω0 does not contain zeroes of fx1 or fx2 . More precisely, the
relative error between Ĩ(f) and I(f) should be bounded.

• Ĩ(g · f)(g · Ω0) = Ĩ(f)(Ω0) for any linear transformation g.

• Ĩ(f) = 0 if and only if I(f) = 0.

As the singularity of I(f) comes from the existence of zeroes of the denominator f2
xf

2
y of the

expression of IL(f), a possible way to regularize IL would be to add an extra always positive
term r(f) to the denominator, yielding

ĨL(f) =
fx1x1x2fx1f

2
x2

− fx1x2fx1x1f
2
x2

− fx1x2x2f
2
x1
fx2 + fx1x2fx2x2f

2
x1

f2
x1
f2
x2

+ r(f)
(3.39)

Ĩ(f)(Ω0) =

∫
Ω0

ĨL(f)dx1dx2 (3.40)

In Alfaya et al. (2023), r(f) is defined as:

r(f) = w · e−
f2x1

f2x2
w (3.41)

with
w =

w0

|Ω|

∫
Ω
f2
x1
f2
x2
dx1dx2 (3.42)

where w0 is an strictly positive regularization parameter. If w0 is set to 0, the regularization
factor r(f) falls to 0 and the unregularizated formula for the invariant arise. It must be noted
that the greater w0 is, the greater the difference between Ĩ(f) and I(f). For most applications,
Alfaya et al., 2023 suggests that w0 ≈ 0.01 is sufficient to avoid vanishing derivatives when
calculating the interaction invariant, providing an analysis of the effect of w0 on the information
retrieved from the model.

3.5.3. Numerical Implementation of Interaction Invariant

The numerical implementation of the interaction invariant is a significant advancement in this
thesis, primarily due to its practical applicability in the analysis of neural network models. An
initial approach could be to symbolically calculate the interaction invariant from the model’s
expression, which is often unfeasible for MLP models with more than 2 neurons in the hidden
layer due to the computational requirements of symbolically calculating the partial derivatives.
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This limitation necessitates an alternative method to efficiently compute the interaction invariant
for complex MLP models.

The proposed solution leverages tensorial calculations to compute the Jacobian, Hessian,
and Jerkian arrays of the MLP model presented in previous sections. To analyze the interaction
between inputs x1 and x2 present in a MLP model f , the numerical calculation of the interaction
invariant is performed as follows:

1. Create a customizable rectangular grid along the axis determined by x1 and x2. The cells
of this grid are delimited by the minimum and maximum value of x1 and x2, creating
equidistant points in the axis determined by the number of points in each axis N1 and N2.

2. Calculate the Jacobian (JL
0 ), Hessian (HL

0 ) and Jerkian (KL
0 ) of the output of f with

respect to x1 and x2 in each vertex of each rectangle in the grid. These arrays have
[N1 ×N2] rows, corresponding to the number of vertex in the grid.

3. If ω0 ̸= 0, calculate the regularization of the interaction invariant r(f). As the partial
derivatives are calculated in a discrete set of points in the input space, equation 3.42 is
used performing trapezoidal integration on the values of f2

x1
f2
x2

in all vertex calculated in
the previous step, with |Ω| being the total area of the grid. If ω0 = 0, r(f) = 0 for all the
cells in the grid.

4. The local interaction function ĨL(f) is calculated in each vertex following equation
3.39. This operation is performed using standard tensorial operations by selecting the
corresponding vectors of the Jacobian, Hessian and Jerkian arrays. For example, fx1,x1,x2

is the column vector stored in Jerkian KL
0 in the index (1...N1 ×N2, 1, 2, 2).

5. For each cell of the grid, calculate the interaction invariant Ĩ(f)(Ω0) as defined in equation
3.40 using trapezoidal integration, with Ω0 being the analyzed cell. This result in a
[N1 ×N2] matrix with the value of Ĩ(f)(Ω0) for each cell.

A depiction of this process is illustrated in figure 3.11.

The fact that the invariant values Ĩ(f) are calculated for each cell allows for several
interpretations of the interaction between the two input variables:

1. via sum: summing the values of the invariant for all the cells considered gives a measure
of the total interaction between the two input variables in the analyzed input space.

2. via heatmap plot: the heatmap represents the value of the invariant along the cells of
the user-defined grid. Color of the heatmap depends on the invariant values, allowing to
detect regions with different level of interaction.

3. via 3-D scatter plot: similar to the heatmap, the cells analyzed are represented by
points in a 3-D space, where the x and y axis represents the user-defined grid and the z

axis represents the prediction of the model. Color of the points is given by the value of the
invariant in each cell. This representation allows not only to detect regions with different
level of interaction, but also the behavior of the model predictions in each region.

An example of the three interpretations is shown in the following section.
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(a) Create grid of x1 and x2 with user-defined
parameters N1 and N2

(b) Calculate the Jacobian (JL
0 ), Hessian (HL

0 ) and
Jerkian (KL

0 ) of f in each vertex of the grid

(c) Calculate the local interaction function ĨL(f)
in each vertex of the grid

(d) Calculate the interaction invariant Ĩ(f) in each
cell of the grid

Figure 3.11. Representation of the numerical approach to calculate the interaction invariant Ĩ(f)
between input variables x1 and x2 for a MLP model f .

3.5.4. Synthetic example

Two synthetic datasets with known derivatives are used to illustrate the usefulness of the
interaction invariant to detect implicit interactions between variables. The datasets are
composed by 2 input variables [X1, X2] and one output variable Y ∈ R created as a function of
the input variables, i.e., Y = f (X). Input variables X are 50000 samples drawn from a uniform
distribution U(−1, 1).

In these cases, the output follows the next expressions:

(1)Y = (X1 + 2) · (X2 + 2) + 0.1 · ε (3.43)

(2)Y = (X1 + 2) · (X2 + 2) + (X1)
2 + 0.1 · ε (3.44)
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Although both expressions are similar and seem to have an interaction between X1 and X2,
the interaction present in 3.43 is an explicit interaction which can be detached by applying a
logarithm transformation:

log(Y ) = log((X1 + 2) · (X2 + 2)) = log(X1 + 2) + log(X2 + 2) (3.45)

while the interaction present in 3.44 can not be detached by any transformation as far as the
authors are concerned.

A MLP model is trained for each dataset. All methods described in this chapter (Sensitivity
analysis, α−curves and interaction invariant) are applied to analyze the two models. The results
of each analysis are gathered below:

• Sensitivity analysis: Using sensitivity analysis with the first partial derivatives (figure
3.12), for dataset (1) both variables are equally important with similar effect on the
output. For dataset (2), X1 have a greater non-linear relationship with the output, as
expected due to the (X1)

2 term. Obtaining the sensitivity metrics for the second partial
derivatives (figure 3.13), interaction between X1 and X2 is detected in both datasets.

(a) Sensitivity Analysis (1) (b) Sensitivity Analysis (2)

Figure 3.12. Sensitivity analysis using the first partial derivatives for both synthetic datasets.

(a) Sensitivity Analysis (1) (b) Sensitivity Analysis (2)

Figure 3.13. Sensitivity analysis using the second partial derivatives for both synthetic datasets.

• α−curves: Following the α−curves methodology, both X1 and X2 variables have almost
identical sensitivity distributions for dataset (1). For dataset (2), X1 have a greater non-
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(a) α−curves analysis (1) (b) α−curves analysis (2)

Figure 3.14. α-curves analysis for both synthetic datasets.

linear relationship with the output variable, same information as the extracted using
sensitivity analysis.

• Interaction Invariant: Figure 3.15 shows the interaction invariant plot with regularization
parameter w0 = 0.01 for both datasets with a grid composed by 100 intervals for each
input variable. For dataset (1), no interaction is detected in any cell of the analyzed grid,
which suggests that a change of variables can be applied to y, x1 or x2 such that the
output can be expressed as a superposition of the effects of x1 and x2 (see equation 3.45).

For dataset (2), the points with a highest value of interaction invariant are on the diagonal
from (−1.5,−0.5) to (−1,−1.5). This suggest an implicit interaction from x1 and x2.
Outside of this region, the interaction of x1 and x2 can be detached using a change of
variables.

Comparing the numeric sum of the invariant, notable differences emerge. For dataset
(1), the sum of the interaction detected in all the cells of the grid yielded a value of
1,03. Dataset (2) exhibits a significantly higher interaction measure of 16,02. This
substantial difference indicates a much stronger level of interaction among the variables
in dataset (2) compared to dataset (1). These numeric results provide quantitative
evidence supporting the analysis of figure 3.15 made above, emphasizing the distinct
levels of variable interaction present in the two datasets.

3.5.5. Extending Interaction Invariant to Higher Dimensional Datasets

A key limitation of the interaction invariant, as previously discussed, is its necessity for a model
with only two input variables. This requirement is a significant drawback for data-related
problems, given that real-world datasets often encompass more than two variables. To address
this issue, Alfaya et al. (2023) propose three methods to extend the interaction invariant to
higher dimensional datasets: the full-mesh, the sparse, and the full-sparse method.

As explained in previous sections, the main idea of the interaction invariant is to analyze the
interaction between two variables in a grid defined by the user for the two input variables whose
interaction we are interested in. The full-mesh method is the natural extension of this idea but,
instead of creating a 2-d grid with size [N1 ×N2], a n-d grid with size [N1 ×N2...×Nn] shall
be created, where n is the number of input variables of the model. Then, the Jacobian, Hessian
and Jerkian arrays and the local interaction function ĨL(f) are calculated for each vertex of the
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(a) Interaction Invariant analysis (1) (b) Interaction Invariant analysis (2)

Figure 3.15. Interaction Invariant analysis for both synthetic datasets.

grid as described in section 3.5.2. At this point, any pairwise interaction can be analyzed with a
suitable projection of the local interaction function ĨL(f) on the ij plane defined by the xi, xj
variable; obtaining the value of ĨL(f) in the ij grid. With this projection, the ĨL(f) can then be
integrated in the ij grid to calculate the interaction invariant ĨL(f). The projection proposed in
Alfaya et al. (2023) is to take the maximum value of ĨL(f) for each cell of the ij grid.

The full-mesh method has the distinct advantage of being able to analyze the pairwise
interaction between all input variables using the same N -d grid by projecting the ĨL(f) onto
every plane determined by each pair of input variables. However, this method has a disadvantage
that may render it computationally unfeasible for high dimensional datasets: the number of
grid points for which partial derivatives must be calculated increases exponentially with the
number of input variables analyzed. To mitigate this, the sparse method proposes a lighter
approximation of the interaction invariant. Instead of creating an n-d grid, a 2-d grid of size
[N1 ×N2] is created for the variables xi and xj , as in the original method for 2 variables. Then,
to account for the effect of the other input variables,a total of N3 points are sampled from the
remaining variables, creating a [N1 ×N2 ×N3] grid. This grid is then used as in the full-mesh
method, yielding an approximation of the interaction invariant Ĩ(f) for the variables of interest
xi and xj .

The full-mesh and sparse methods offer interaction measures for models with more than
2 input variables, where the computation of the model’s partial derivatives is feasible for a
large number of points. However, if the calculation of the partial derivatives is computationally
intensive, the full-sparse method provides an even more efficient alternative than the sparse
method. In this method, only a 2-d grid is required for the input variables xi and xj , along
with a dataset where the model’s partial derivatives with respect to the input variables can be
calculated. After obtaining the Jacobian, Hessian, Jerkian, and ĨL(f) of the model at the dataset
points, each dataset point is assigned to the Ω0 cell of the ij grid containing that point. With all
the points assigned, the maximum of the calculated ĨL(f) in each cell Ω0 is taken as the local
interaction function of Ω0. The ĨL(f) value is then assumed to be constant for the entire cell,
and the interaction invariant Ĩ(f) is calculated as the value of ĨL(f) in Ω0 multiplied by the
cell’s area.

While these methods for extending the interaction invariant to higher dimensional datasets
have been designed, they are yet to be implemented and tested on real-world datasets. The
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next step in this research will be to develop software implementations of these methods and
evaluate their performance and utility in practice. This will involve testing the methods on
various types of datasets, including those with different numbers of variables, different types of
interactions, and different sizes. The results of these tests will provide valuable information
about the strengths and limitations of these methods, and will guide future improvements and
refinements.

3.6. Conclusions

The research herein comprehensively explores the facets of Explainable Artificial Intelligence
(XAI) applications that are focused on discerning and elucidating the Multi-Layer Perceptrons
(MLPs). Central to this exploration is the calculation of the first, second, and third partial
derivatives of the MLP. These calculations underpin three novel methods—Sensitivity Analysis,
α−curves, and the application of the Interaction Invariant—each offering distinct insights into
MLP operation and effectiveness.

Sensitivity Analysis utilizes these partial derivatives to estimate how input variables influence
MLP output. Through this process, it is possible to analyse the model’s sensitivity relative to
each input variable, thereby identifying the variables with the most significant impact. This
identification paves the way for model refinement and feature selection by highlighting the most
influential input variables. However, it is crucial to remember that the choice of input points
can significantly influence the interpretation. The analysis is also susceptible to overlooking
non-linear local effects due to the aggregation measures employed.

Meanwhile, the α−curves method provides a thorough understanding of the sensitivity
distribution across the input space, enabling a more in-depth analysis of model behaviour
concerning its input variables. Unlike traditional sensitivity measures, the α−curves method
offers a more comprehensive view of the sensitivity distribution, considering not only feature
importance but also the sensitivity distribution with respect to input variables. Additionally,
the α−curves method allows for the study of the model’s sensitivity behaviour at different
detail levels by varying the α value. This flexibility facilitates the detection of both average and
localized high sensitivity regions. Furthermore, the α−curves method aids in the identification
of variables that may be insignificant for most of the input space but exhibit high sensitivity in
particular regions. This capability is beneficial for more accurate variable pruning decisions.
However, these benefits come at the cost of added complexity, particularly for non-experts.
Additionally, the α−curves method faces challenges in distinguishing between the effects of
interactions between variables and the non-linear effects of a single variable.

Finally, the Interaction Invariant method calculates an interaction measure at each point in a
user-defined 2-d-grid, enabling the detection of input interactions. The Interaction Invariant
offers a clear measure of interaction between input variables, which might be visualized using a
heatmap or a 3-D scatter plot. This understanding enables the identification of regions with
strong or weak interactions, leading to a deeper insight of the inner process of the model. Also,
the interactions detected by this method remain unaffected by transformations applied to the
input or output space. However, this method’s limitations include its focus on pairs of input
variables, failing to capture higher-order interactions, and that is restricted to ML models with
only two input variables. While the full-mesh and sparse method solve the latter, they have yet
to be implemented and their functionality assessed.
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3.6. Conclusions

Collectively, the three methods developed in this chapter make a significant contribution to
our understanding and interpretation of ML models. While each method has its strengths and
limitations, their combined use can offer a comprehensive understanding of any given model.
By deploying these methods, researchers and practitioners can gain valuable insights into their
models, identify potential issues, and make informed decisions for refining and enhancing their
models.
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4
Application of proposed XAI

methods: Use cases

No man becomes rich without himself
enriching others.

Andrew Carnegie (1835–1919)

This chapter showcases the application of the proposed XAI methods in three use cases
of different domains. By employing the developed methods in this thesis and various XAI
methods, comprehensive interpretations of neural network model behavior are obtained.
Our methods outperform traditional techniques, offering insights into variable influences,
feature interactions, and local-level dependencies.

4.1. Introduction
In this chapter, we delve into the practical applications of the novel Explainable AI (XAI)
methods based on partial derivatives that have been developed throughout this thesis. These
novel methods are demonstrated within three varied use cases, each illustrating the adaptability
and versatility of our approach within different domains and for different prediction tasks.

Further, the application cases include the application of various other methods described in
the State-of-the-Art chapter (section 2.4). This juxtaposition not only serves to highlight the
efficacy of the methods we have developed, but also provides a comparative platform, enabling
a nuanced understanding of their respective strengths and potential areas of improvement. It
also underscores the compatibility of our methods with existing techniques.

The three application cases are as follows:

1. Case 1: Predicting Nitric Oxides Concentration in Boston - Using the Boston dataset
(Ripley et al., 2011), this case involves predicting the nitric oxides concentration based
on various housing data points. The partial derivative based method is applied to gain
insights into the factors influencing air quality.
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2. Case 2: Predicting Parkinson Disease Progression - This case involves the prediction
of the evolution of parkinson disease in patients, with a quantitative measure of disease
progression one year after the baseline Efron et al., 2004. The predictive model is
developed using physiological variables of each patient.

3. Case 3: Predicting Remaining Useful Life (RUL) of Turbofan Engines Saxena et al.,
2008 - In this case, we apply our methods to predict the Remaining Useful Life (RUL) of
turbofan engines using sensor information from the CMAPSS dataset.

Each case is analysed in a dedicated section, where the problem is introduced, the solution
approach is outlined, and the results are discussed. These diverse cases not only affirm the
wide applicability of the methods developed in this thesis but also exemplify their potential
in gaining insights into various fields. The chapter concludes with a synthesis of the insights
derived from these applications and their implications for the future of XAI methods based on
partial derivatives.

4.2. Case 1: Predicting Nitric Oxides Concentration in
Boston

The first application case involves the Boston Housing dataset from the MASS package Ripley et
al., 2011, a well-known dataset within the machine learning community. This dataset contains
506 instances, each representing different subsections of the Boston residential area. In this
study, we focus on five attributes to predict the nitric oxides concentration:

• zn: This represents the proportion of residential land zoned for lots over 25,000 sq.ft.

• rad: This is an index of accessibility to radial highways.

• lstat: This feature indicates the percentage of lower status of the population.

• indus: proportion of non-retail business acres per town.

• age: proportion of owner-occupied units built prior to 1940.

The task at hand is to predict the nitric oxides concentration (nox), a measure of air quality,
based on the other housing and demographic attributes. We trained a Multilayer Perceptron
(MLP) model to solve this regression task, making it an ideal problem for the application of our
developed XAI methods.

Explainable AI (XAI) plays a critical role in this context. Understanding the influence
of these housing and demographic attributes on air quality can offer valuable insights for
policy-making and urban planning. It allows us to decipher how changes in zoning laws,
improvements in public transportation, or socio-economic shifts could impact the air quality in
a region. The methods developed in this thesis aim to offer these insights in an interpretable
and accessible manner, paving the way for more informed decision-making processes. To
understand the influence of selected features (zn, rad, lstat, indus, age) on the predicted nitric
oxides concentration, we applied several interpretability methods, each providing a different
perspective and level of insights.

The first method applied was sensitivity analysis based on partial derivatives as described
in Section 3.3. We used this method to compute the gradients of the MLP model’s output with
respect to its inputs, which provided an understanding of how small changes in each feature
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can influence the prediction. By analyzing the distribution of these partial derivatives, we can
understand the relationships between the input features and the output.

The second and third methods employed were Individual Conditional Expectation (ICE)
and Partial Dependence Plots (PDP). ICE and PDP, as outlined in their respective sections
2.4.3 and 2.4.4, gave us both a local (instance-level) and a global (overall model behavior) view
of the model’s function. They allowed us to visualize how changes in a single feature, while
keeping the other features constant, can affect the predicted nitric oxides concentration.

The fourth method applied was the Lek’s Profile method. As detailed in its respective section
2.4.6, this method creates instance profiles by modifying all feature values simultaneously and
visualizes the model’s sensitivity to these changes. The application of Lek’s Profile offered
further instance-level insights into the MLP’s decision-making process.

Finally, we applied the Garson’s Importance and Olden’s Importance methods. These
methods, outlined in section 2.4.9, are specifically designed for Artificial Neural Networks
and calculate feature importance by analyzing the connection weights in the network. They
provided a global measure of the importance of each feature in the MLP’s predictions.

Each of these methods individually offered unique perspectives into the MLP model’s behavior
and the influence of the input features on the predicted nitric oxides concentration. The
results from each method were compared and analyzed to draw a robust and comprehensive
understanding of the model’s decision-making process.

The data preparation involved standardizing the selected features to have a mean of 0 and a
standard deviation of 1. Standardization ensures that each feature contributes to the model’s
predictions proportionally, preventing features with larger scales from dominating the others
and produce misleading analysis.

To create our training and testing datasets, we randomly selected 70% of the dataset
instances for training and left the remaining 30% for testing. The training set is used to train
the model, i.e., it is the data on which the model learns to make predictions. The test set, on
the other hand, is used to evaluate the model’s performance on unseen data. This split allows
us to check whether our model has learned the underlying patterns and can generalize well to
new, unseen data.

We trained a Multilayer Perceptron (MLP) model with a single hidden layer consisting of
5 neurons and sigmoid activation function. The model’s performance was evaluated using
two metrics: Root Mean Square Error (RMSE) and the coefficient of determination (R2 or
R-Squared).

• RMSE is a commonly used metric for regression models and it provides a measure of the
prediction error. Lower RMSE values indicate better model performance.

• R2 statistic provides a measure of how well observed outcomes are replicated by the
model, based on the proportion of total variation of outcomes explained by the model.

Metric Train set Test set
RMSE 0.39 0.41

R2 0.85 0.83

Table 4.1. Evaluation metrics of MLP model with 5 neurons to predict the nitric oxides concentration in
the Boston train and test dataset.
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Table 4.1 shows the evaluation metrics for the trained MLP model. The high R2 values
indicate that our model explains a large proportion of the variance in the nitric oxides
concentration, and the similar values for training and test set of the evaluation metric indicate
that the model can generalize well on new data.

Figure 4.1 shows the results of several XAI methods applied to the MLP model trained on
the Boston dataset. According to Garson’s Importance (figure 4.1(c)), the most influential
variable is indus, followed by zn, rad, age, and lstat. This indicates that the proportion of
non-retail business acres per town and the proportion of residential land zoned for lots over
25,000 sq.ft. are the most influential in predicting nitric oxide concentrations. This makes
sense since areas with higher industrial activity (indus) would logically have higher nitric oxide
emissions and areas with larger residential lots (zn) are likely to have less emissions. The less
significant impact of lstat can also be explained by it being a more indirect socioeconomic
factor.

Olden’s Importance suggests similar results (figure 4.1(d)), but zn appears to have a negative
impact on the nitric oxide concentration. Olden’s Importance also highlights the importance
of rad, age, and lstat, and the direction of the relationships matches the logical expectations.
The counterintuitive result is the indus variable having the least feature importance, as a
neighbourhood with a higher proportion of non-retail business shall be related to higher nox
emissions.

The Sensitivity Analysis based on Partial Derivatives (figure 4.1(a)) reveals that indus
and zn have a highly non-linear relationship with the target variable, age and rad exhibit a
non-linear relationship, while lstat demonstrates an almost-null relationship. This is consistent
with our expectations, given that the impact of industrial activity (indus) and large residential
zones (zn) on nitric oxide emissions is likely to be non-linear and complex, while the influence of
lstat is probably less direct and significant. The age variable, assigned the third greatest feature
importance, might be related to the amount of nitric emissions due to older houses having less
efficient heating systems, which could potentially lead to higher nitric oxide emissions in areas
with older housing stock.

The Feature Plot of Partial Derivatives (figure 4.1(b)), in addition to corroborating the
information derived from figure 4.1(a), provides further insights into the relationship between
the output and the inputs. For the indus and rad variables, it reveals two distinct effects on the
output depending on the value of the input variable.

• For indus, the plot indicates that a high value of indus corresponds to a more negative
effect on the output. This reflects the observation that the value of residential houses
tends to decrease when non-retail businesses are present in the area. For lower values of
indus, the effect on the output is ambiguous (it could be either positive or negative) and
may depend on other variables.

• For rad, the plot shows a similar relationship, where higher values of rad are associated
with lower output values and vice versa. However, this relationship appears to be
quadratic, as most negative values of the partial derivatives correspond to higher values
of rad, and all positive values of partial derivatives correspond to lower rad values. This
suggests that both very high and very low accessibility to radial highways impact on the
concentration of NOx.
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Regarding the zn variable, it exhibits a non-linear relationship with the output. Specifically,
higher values of zn appear to have little to no effect on the output, as evidenced by the near-zero
values of the partial derivatives. Conversely, lower values of zn have a pronounced non-linear
impact on the output. This suggests that the proportion of residential land zoned for larger lots
can significantly influence the output, particularly when this proportion is low.

For the age and lstat variables, there appears to be a minimal effect on the output for most
samples. However, it’s worth noting that higher values of age generally have a positive impact
on the NOx concentration, probably due to the lower efficient heating instalations. Conversely,
lower values of age generally have a positive impact, indicating that newer houses tend to
produce less exhausting gases. As for the lstat variable, its effect on the output appears to
be negligible for most samples, with a few exceptions showing a positive effect on the output.
This suggests that the lstat variable may not be a significant predictor of NOX concentration
in most cases, but there could be specific contexts or neighborhoods where it plays a more
substantial role.

Lek’s Profile indicates a similar understanding (figure 4.1(e)), suggesting a more linear
relationship for age, lstat, and zn variables and a non-linear relationship for rad and
indus. The PDP and ICE methods (figure 4.1(f)) also provide results that align with our
expectations. Both methods suggest similar relationships to those observed in the Lek’s Profile,
strengthening the evidence for our understanding of how these features influence nitric oxide
concentrations.

Overall, these results suggest that the model relies most heavily on the indus and zn

features to make its predictions, while lstat appears to contribute least. It must be noted
that, although the information retrieved from the model is similar along the different XAI
methods, the sensitivity analysis developed in this thesis is the only method which provides
feature importance and input-output relationship information at the same time. Moreover, the
information retrieved using this method is coherent with what could be expected based on the
description of the use case variables.
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(a) Sensitivity Analysis based on Partial Derivatives

(b) Feature Plot of Partial Derivatives

(c) Garson’s Feature Importances

(d) Olden’s Feature Importances

(e) Lek’s profile

(f) Partial Dependence Plots and Individual Conditional
Expectation curves

Figure 4.1. Visual representation of results obtained from the different XAI methods: 4.1(a) sensitivity
analysis plots based on partial derivatives of the neural network model using the NeuralSens package,
4.1(b) feature plot of partial derivatives using the NeuralSens package, 4.1(c) Garson’s importances of
the input features, 4.1(d) Olden’s importances of the input features, 4.1(e) Lek’s profile method from the
NeuralNetTools package, 4.1(f) PDP (red) and ICE (black) methods from the pdp package.
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4.3. Case 2: Predicting Parkinson Disease Progres-
sion

The second use case involves predicting the progression of Parkinson’s Disease in patients using
a dataset from UCI that comprises different patient details, including various vocal fundamental
frequency measurements and medical information (Tsanas and Little, 2009). The objective of
this dataset, known as the Parkinson’s Disease Voice Dataset, is to explore the potential of vocal
biomarkers as indicators of Parkinson’s Disease progression.

Parkinson’s Disease is a neurodegenerative disorder that affects movement and speech,
among other functions. One of the notable symptoms of Parkinson’s Disease is a change
in speech characteristics, which can manifest as tremors in the voice, slurred speech, or
other vocal abnormalities. By analyzing the vocal measurements and other pertinent medical
information contained in the dataset, it is aimed to build a predictive model that can estimate the
progression of Parkinson’s Disease in patients, thereby providing a non-invasive, cost-effective,
and potentially early indicator of disease progression.

The dataset contains a total of 5875 instances, with 22 baseline variables.:

• Jitter(%): The percentage of jitter, which represents the short-term variability of the
fundamental frequency.

• Jitter(Abs): Absolute jitter, representing the absolute differences in consecutive periods,
measured in seconds.

• Jitter:RAP: Relative Amplitude Perturbation, a measure of the variability in the amplitude
of vocal fold vibration.

• Jitter:PPQ5: Five-point Period Perturbation Quotient, a measure of the variability in pitch
period size over five pitch periods.

• Jitter:DDP: Dimensionless Drift Parameter, a composite measure derived from RAP.

• Shimmer: A measure of the amplitude variability of the vocal fold vibration.

• Shimmer(dB): The logarithmic measure of shimmer, expressed in decibels.

• Shimmer:APQ3: Three-point Amplitude Perturbation Quotient, a measure of the
variability in amplitude over three pitch periods.

• Shimmer:APQ5: Five-point Amplitude Perturbation Quotient, a measure of the variability
in amplitude over five pitch periods.

• Shimmer:APQ11: Eleven-point Amplitude Perturbation Quotient, a measure of the
variability in amplitude over eleven pitch periods.

• Shimmer:DDA: A composite measure derived from APQ measures.

• NHR: Noise-to-Harmonics Ratio, a measure of the ratio of noise to tonal components in
the voice signal.

• HNR: Harmonics-to-Noise Ratio, a measure of the ratio of tonal components to noise
components in the voice signal.
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• RPDE: Recurrence Period Density Entropy, a non-linear measure that quantifies the
predictability and complexity of a signal.

• DFA: Detrended Fluctuation Analysis, a method for determining the statistical self-affinity
of a signal.

• PPE: Pitch Period Entropy, a measure of the regularity and stability of the pitch.

• Sex: The gender of the individual, which can impact the manifestation of Parkinson’s
Disease symptoms.

• Age: The age of the individual, which could be a significant factor in the progression of
Parkinson’s Disease (not used in this analysis).

• Motor UPDRS: Unified Parkinson’s Disease Rating Scale; Motor section score, a measure
of motor function (not used in this analysis).

• Total UPDRS: Unified Parkinson’s Disease Rating Scale; Total score, a comprehensive
measure of disease progression (used as the target variable).

The target variable, in this case, is the Total UPDRS, a quantitative measure of disease
progression. Predicting this output based on the selected input variables is an important task
for proactive healthcare and disease management, enabling timely interventions that could
potentially slow down the disease progression or manage the symptoms more effectively. The
importance of explainable AI methods in this context is to provide a clear understanding of
which factors are contributing most to the prediction of disease progression, and how they are
doing so. This will aid medical professionals in devising the most suitable treatment plans for
their patients.

Before training the model, it is crucial to understand the inter-relationships among the
input variables. A widely used tool for this purpose is the correlation matrix, which provides a
numerical and visual representation of how variables interact with each other.

The correlation matrix was computed for all the variables present in the Parkinson’s Disease
Voice Dataset. Each cell in the matrix represents the correlation coefficient between two
variables, ranging from -1 to 1. A correlation coefficient close to 1 implies a strong positive
correlation, while a coefficient close to -1 implies a strong negative correlation. A coefficient
near 0 indicates no linear relationship between the variables.

Figure 4.2 showcases the correlation matrix of the dataset variables. The color-coded matrix
makes it visually intuitive to identify the relationships. For instance, a darker color indicates a
stronger correlation.

From the correlation matrix, it was observed that some variables exhibited high collinearity,
which may lead to multicollinearity issues in the model. For example, the sets of Jitter
and Shimmer variables were highly correlated among themselves. To mitigate this, only
one representative from each set, namely Jitter(Abs) and Shimmer, were retained for the
analysis.

Additionally, the Age variable was excluded from the model as it acted as an identifier for
the patients: its values remained constant during the trials, hence providing information to
the model that is not expected to be present in unseen data. This removal is in alignment with
the best practices of data preprocessing to ensure that the model generalizes well to new data,
rather than overfitting to idiosyncrasies in the training data.
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Figure 4.2. Heatmap of the correlation between features in the Parkinson’s Disease Voice dataset.

Regarding the XAI methods used in this case, the first method applied on this use case was
sensitivity analysis based on partial derivatives, which was explained in the previous use
case. In order to extract a deeper information of how the model is using the input variables to
predict the output, the second method developed in this thesis, α−curves, was used to analyze
the partial derivatives distributions of the model.

Secondly, we applied SHAP (Section 2.4.7). This approach applies concepts from cooperative
game theory to quantify the contribution of each input feature to the model’s prediction for
an instance. By evaluating all possible combinations of features and calculating their average
marginal contribution to the prediction, SHAP values are obtained, providing a comprehensive
understanding of the role of each feature in the model’s decision process.

Lastly, Permutation Importance was performed (Section 2.4.8). This method quantifies
the importance of each feature by evaluating the impact on the model’s performance when the
feature values are randomly shuffled. The change in performance serves as an indicator of the
feature’s importance: the larger the decrease in performance upon shuffling a feature’s values,
the more important the feature is considered to be.

As in the previous use case, the variables are standardized to have a mean of 0 and a
standard deviation of 1. The dataset was randomly split into a training set and a test set, with
80% of the data used for training the model and the remaining 20% reserved for testing. The
model trained was a Multilayer Perceptron (MLP) with 15 neurons in the hidden layer.

Table 4.2 shows the evaluation metrics for the trained MLP model. Although the metrics
might appear suboptimal when compared to other use cases, they are typical in the realm of
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Metric Train set Test set
RMSE 0.17 0.18

R2 0.41 0.33

Table 4.2. Evaluation metrics of MLP model with 5 neurons to predict the parkinson disease progression
indicator in the Parkinson Disease train and test dataset.

medical datasets. The nature of medical data often encompasses a high degree of variability and
noise owing to the myriad of factors that can influence health outcomes (El Khatib et al., 2022).
Moreover, medical datasets are frequently characterized by a lack of large sample sizes due
to the challenges in collecting such data, which further compounds the difficulty in achieving
higher predictive accuracy (Faber and Fonseca, 2014). Despite this, even modest predictive
accuracy in medical contexts can hold significant value, enabling healthcare providers to glean
insights and make better-informed decisions in patient care and treatment planning (Nguyen et
al., 2019).

Following the methodology for sensitivity analysis, figure 4.3(a) reveals a non-linear
correlation among all variables in predicting Parkinson’s Disease (PD) progression. The most
crucial variables identified are the patient’s sex (sex), absolute jitter (Jitter (Abs)), and Pitch
Period Entropy (PPE), followed by Shimmer. Conversely, DFA and the noise-related variables
NHR, HNR and RPDE are deemed less significant, with DFA being the most significant by a little
margin. According to literature, Azadi et al. (2021) determines that jitter emerged as a pivotal
parameter for differentiating PD patients due to its capability to measure frequency changes
from cycle to cycle in speech signals. It also highlights the sex of the individual (sex) as a
crucial variable in this analysis. They found the substantial differences in speech characteristics
between men and women, thus necessitating a segregated analysis for male-only and female-
only populations. It was observed that the values of the extracted jitter and shimmer features
varied distinctly between male and female subjects when compared between PD patients and
healthy individuals. This implies that the sex of the individuals significantly impacts the acoustic
parameters being studied, hence influencing the diagnostic accuracy. Vizza et al. (2019) found
that the amplitude variability of the vocal fold vibration, represented by Shimmer, exhibit
significant variations in PD patients compared to healthy controls. This correlates with the
importance in the Shimmer variable to diagnose PD based on voice recordings. Regarding PPE,
Little et al. (2008) found that this measure provides a nuanced assessment of abnormal pitch
variations, distinguishing PD-induced dysphonic variations from natural pitch variations. By
analyzing pitch on a perceptually-relevant, logarithmic scale, PPE more accurately captures the
non-Gaussian fluctuations in pitch period variation associated with PD-related dysphonia. This
methodological shift offers a more precise tool for analyzing voice disorders in PD, enhancing
the diagnosis of the disease. Regarding HNR, NHR and RPDE variables, Lahmiri (2017) defends the
potential of discerning PD progression through noise-associated variables. Yet, newer studies
(Upadhya and Cheeran, 2018; Romero Arias et al., 2023) suggests that these metrics are not
as significantly influenced by the disease compared to the Jitter, Shimmer, or PPE measures
derived from the patients’ voice recordings. In the case of DFA, Minamisawa et al. (2009) and
Kirchner et al. (2014) found DFA to be a suitable indicator of PD, although Miranda et al. (2022)
found this variable not as important as Jitter regarding model performance.

Although results from sensitivity analysis are coherent with the literature reviewed, more
information can be retrieved using the α−curves methodology presented in this paper. Figure
4.3(b) shows that, on a global scale, sex is the variable with the highest importance. Nonetheless,
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(a) Sensitivity Analysis based on Partial
Derivatives

(b) α−curves analysis

(c) SHAP Values (d) SHAP Feature Importance

(e) Permutation Importance

Figure 4.3. XAI techniques plots of parkinson disease progression dataset. 4.3(a) shows sensitivity
analysis from neuralsens package, 4.3(b) shows the α−curves analysis plot, 4.3(c) shows the shap
values for each sample of the dataset, 4.3(d) shows the shap feature importances and 4.3(e) shows the
input permutation importance.
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the variables Jitter (Abs) and PPE have nearly as much relevance as sex globally, yet they are
more important for specific cohorts of patients to determine the PD progression. Notably, by
α = 4, they are already the most influential variables, indicating their notable impact across the
majority of patients. This trend might be associated with different subtypes of PD, as elucidated
in Tsanas and Arora (2022), where distinct PD subtypes exhibited differential impacts on a
patient’s voice frequency. At a local level, both Jitter (Abs) and PPE markedly surpass the
rest of the variables in importance. Here, the α−curves could be highlighting those patients
for whom the PD subtype significantly influences the PPE and Jitter (Abs) variables. On the
contrary, the small slope of the α-curve of the sex variable denotes a comparatively consistent
impact of the patient’s gender on how PD progression affects the patient’s voice capabilities.
This is corroborated by Azadi et al. (2021), who found that even amidst the presence of gender-
specific PD symptoms, voice alterations attributable to PD maintained a consistency within each
gender group. With respect to Shimmer, its ascending curve reflects a low global-level relevance
of the variable, with a subgroup of patients where the importance of this variable is similar to the
sex variable. This potentially correlates once again with PD subtypes, where an specific group
of patients presents deeper symptoms of voice amplitude variability than others. Regarding the
rest of the variables, DFA, NHR, HNR, and RPDE all exhibit a lesser impact on the analysis. Among
these, the average impact of DFA, NHR, and HNR is similar to that of Shimmer, albeit slightly lower,
while RPDE demonstrates a significantly lower impact. Interestingly, DFA and NHR show a degree
of relevance in certain portions of the dataset, nearly as much as Shimmer or sex. The curves
of these two variables are almost identical and almost parallel to that of Shimmer, albeit lying
below it, suggesting that the magnitude of the regions (i.e., types of patients) where these
three variables are relevant for PD diagnosis might be similar. Conversely, HNR and RPDE are
less relevant than the others at any level of analysis, being the two least influential variables
in the dataset for PD diagnosis. Figure 4.3(e) shows the input permutation results. Among
these, the high negative importance associated with Jitter(Abs) is particularly noteworthy
as it contrasts with the reviewed literature, which often underscores the significant positive
role of jitter in differentiating Parkinson’s Disease (PD) patients. Similarly, DFA showcasing the
highest importance is not consistent with the revised literature (Miranda et al., 2022), where
this variable is often described as having lesser or varied importance across different studies.
On the other hand, the positive importance of Shimmer aligns well with literature (Vizza et
al., 2019), reaffirming its relevance in PD progression analysis. The lower importances of PPE
and sex hint at a possible oversight of their interactions with other variables or their nuanced
influence in PD progression which might not be fully captured in the permutation importance
analysis. Analyzing SHAP results presented in figures 4.3(c) and 4.3(d), it emphasizes the
importance of the Jitter (Abs) variable, with a substantial drop in importance for the Shimmer

variable, and virtually no significance attributed to the remaining variables. However, the
summary plot (4.3(c)) mainly showcases a non-linear relationship between all variables and
the output, without providing much more information. It does hint at a diverse level of variable
contributions across different patients, suggesting that certain variables may have a higher
impact on the output for some individuals. It shall be noted that the SHAP analysis operates
under the assumption of input variables’ independence and local linearity for each sample,
which might overlook potential interactions among variables .As a result, this could lead to a
scenario where some variables appear irrelevant, whereas their effects may only be discernible
when considered in conjunction with other variables.

Figure 4.3(e) shows the input permutation results. Among these, the high negative
importance associated with Jitter(Abs) is particularly noteworthy as it contrasts with
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the reviewed literature, which often underscores the significant positive role of jitter in
differentiating Parkinson’s Disease (PD) patients. Similarly, DFA showcasing the highest
importance is not consistent with the revised literature (Miranda et al., 2022), where this
variable is often described as having lesser or varied importance across different studies. On the
other hand, the positive importance of Shimmer aligns well with literature (Vizza et al., 2019),
reaffirming its relevance in PD progression analysis. The lower importances of PPE and sex hint
at a possible oversight of their interactions with other variables or their nuanced influence in PD
progression which might not be fully captured in the permutation importance analysis.

Both SHAP and Permutation importance analyses seemingly downplayed the importance
of the sex variable, a deviation which is not only contrary to the results from the α-curves
and sensitivity analysis but also discordant with the prevailing literature on the subject. To
delve deeper into this inconsistency, an alternative approach was adopted to determine the
importance of the sex variable. By deliberately inverting the values of the sex variable —
converting 1s to 0s and vice versa — a comparative analysis of the model’s output between the
original and modified sex values was performed.

Figure 4.4 show the absolute value of the difference, as percentage of the model’s output
range, in the model’s predictions between the original and the modified sex variable. The
model produce notably different predictions between the original and altered sex values,
underlining a pronounced sensitivity to this particular variable. This clearly suggests that the
sex variable, despite its understated importance in the SHAP and Permutation importance
analyses, holds notable significance in the prediction of Parkinson’s Disease progression based
on voice recordings metrics.

Figure 4.4. Difference, in absolute value, between model predictions for original versus modified sex
values as percentage of the model’s output range.

Based on the information retrieved from the previous methods, the only common information
is the relevance of the Shimmer variable to predict PD progression. Importance assigned for
the rest of the variables depends on the method used to analyze the model, being sensitivity
analysis and the α−curves method the most coherent with the reviewed literature.
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Figure 4.5. Structure of the physics-based simulation model of the C-MAPSS dataset.

4.4. Case 3: Predicting Remaining Useful Life (RUL) of
Turbofan Engines

The third use case centers on predicting the Remaining Useful Life (RUL) of turbofan engines
using the CMAPSS dataset. The dataset includes sensor information from these engines,
simulating real-world conditions where preventive maintenance and failure prediction are
crucial. The prediction task is to estimate the RUL, i.e., the number of operational cycles an
engine has left before it requires maintenance, which is a regression problem. As in the previous
cases, an MLP model was trained for this task, and our XAI methods were applied.

One area where machine learning has demonstrated substantial potential is in predictive
maintenance, where it can help to identify early signs of system degradation and facilitate
timely intervention. This is of paramount importance in fields such as aerospace, where the
failure of critical components can lead to catastrophic consequences.

The NASA Commercial Modular Aero-Propulsion System Simulation (CMAPSS) dataset
is a widely-used benchmark for developing and evaluating machine learning models for
predictive maintenance. This dataset contains sensor measurements and operational data
from jet engines, simulating various degradation scenarios and engine wear. Analyzing this
dataset can provide valuable insights into the factors influencing engine performance and
degradation, and ultimately help to prevent engine failures.

The objective of this study is to analyze the CMAPSS dataset using a MLP model to predict
the remaining useful life (RUL) of jet engines (Saxena et al., 2008), and subsequently apply
post-hoc explainability methods to identify the most important variables contributing to these
predictions. By doing so, we aim to provide a better understanding of the underlying factors
driving engine degradation, and to inform more effective maintenance strategies.

The C-MAPSS dataset is generated through a physics-based simulation model that represents
a particular type of turbofan engine, specifically a two-spool engine as depicted in figure 4.5.
With the same background model, data is recorded in run-to-failure scenarios (i.e., engines
operate normally in the beginning but develop a fault over time) under various conditions. To
replicate real-world scenarios, the data is also intentionally corrupted with noise from different
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sources. Data is stored in four different dataset of increasing complexity based on the simulation
conditions (see Table 4.3 for an overview of each dataset).

Table 4.3. Overview of turbofan datasets

Dataset
Operating
conditions

Fault
modes

Train size
(# of

engines)

Train size
(# of

samples)

Test size
(# of

engines)

Test size
(# of

samples)
FD001 1 1 100 20631 100 13096
FD002 6 1 260 53759 259 33991
FD003 1 2 100 24720 100 16596
FD004 6 2 248 61249 249 41214

The engines in the training sets are run to failure, while in the test sets the time series end
in an unknown timestep before failure. The goal is to predict the Remaining Useful Life (RUL)
of each turbofan engine in the last sample of the test set.

Each row of the datasets contains the following information:

• Engine unit number

• Operational cycle

• 3 operational conditions – altitude, speed and fuel usage.

• 21 Sensor readings from different locations in the turbofan engine Saxena et al., 2008K. Liu
et al., 2013. These sensor data are contaminated with sensor noise. Table 4.4 shows an
overview of these sensors.

Table 4.4. C-MAPSS Sensors Overview

Index Description Units
1 Total temperature at fan inlet ºR
2 Total temperature at LPC outlet ºR
3 Total temperature at HPC outlet ºR
4 Total temperature at LPT outlet ºR
5 Pressure at fan inlet psia
6 Total pressure in bypass-duct psia
7 Total pressure at HPC outlet psia
8 Physical fan speed rpm
9 Physical core speed rpm

10 Engine Pressure ratio -
11 Static pressure at HPC outlet psia
12 Ratio of fuel flow to Ps30 pps/ppia
13 Corrected fan speed rpm
14 Corrected core speed rpm
15 Bypass ratio -
16 Burner fuel-air ratio -
17 Bleed enthalpy -
18 Demanded fan speed rpm
19 Demanded corrected fan speed rpm
20 HPT coolant bleed lbm/s
21 LPT coolant bleed lbm/s
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The datasets are arranged in an n-by-26 matrix, where n corresponds to the number of samples
in the dataset. Each row corresponds to the value of each variable during an operational cycle
and each columns to a different variable. For the sake of simplicity, in this use case only the
dataset FD001 is analyzed to illustrate the methodology proposed. The FD001 dataset was
entirely simulated at sea level (1 operating condition) with High-Pressure Compressor (HPC)
degradation (1 fault mode). As this dataset only contemplates one operational condition,
the three variables related to this information are discarded. Furthermore, variables with
information of Sensors 1, 5, 6, 10, 12, 15, 16, 18 and 19 are discarded due to not vary along
the samples of the dataset.

For the output variable RUL, it is not provided in the training dataset. Consequently, user
must design a methodology to assign the output value for each of the samples provided. The
Remaining Useful Life (RUL) variable represents the number of operational cycles remaining
before an engine experiences a failure. However, it is standard practice to apply a saturation
point to the RUL variable to prevent unrealistic extrapolation. For this analysis, a saturation
point of 130 cycles was utilized. This means that any RUL exceeding 130 cycles is assigned
a value of 130. This truncation strategy limits the maximum observable RUL value, thereby
enhancing the model’s ability to generalize by attenuating the influence of extremely high
RUL values. Furthermore, it enhances the model’s prediction accuracy, particularly for more
imminent engine failures, which are generally the primary concern in predictive maintenance
applications.

Due to the high correlation among the input features, the CMAPSS dataset required a more
complex preprocessing phase. This high correlation was observed and verified through the
correlation matrix depicted in figure 4.6. In such cases, machine learning models might struggle
to extract meaningful information due to the redundancy in the input data, leading to poor
performance on unseen data.

Figure 4.6. Heatmap of the correlation between the input features in the CMAPSS dataset.

To address this issue and enhance the model’s learning capability, we employed Principal
Component Analysis (PCA), a well-established technique for dimensionality reduction and
alleviating multicollinearity issues. PCA was applied to all variables except Sensors 9
(Phys_core_speed) and 14 (Corr_core_speed) due to their almost null correlation with the
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other variables. The high correlation between Sensors 9 and 14 force us to choose only one as
input variable. After some initial tests, Sensor 14 was chosen as it produces the most accurate
model. The first Principal Component (PC1), which captures the largest variance in the data,
was selected as the primary input to the model. The weights associated with PC1 are shown
in figure 4.7. The interpretation of these weights, in terms of temperature, pressure, and

Figure 4.7. Loadings associated to each input variable of Principal Component 1 (PC1).

aircraft-related measurements, is as follows:

• Temp_LPC_out, Temp_HPC_out, Temp_LPT_out: These variables denote the temperature
outputs of the Low Pressure Compressor (LPC), High Pressure Compressor (HPC), and
Low Pressure Turbine (LPT), respectively. Their positive weights suggest that an increase
in these temperatures corresponds to an increase in the PC1 value. This is indicative of
higher engine performance or potentially elevated stress on the components.

• Dyn_press_HPC_out, Fuel_flow_ratio, HPT_cool_bleed, LPT_cool_bleed: These vari-
ables carry negative weights, implying that an increase in these variables leads to a
decrease in the PC1 value. Dyn_press_HPC_out represents the dynamic pressure output of
the HPC. A rise in dynamic pressure could suggest higher airspeed or potential pressure
irregularities. Fuel_flow_ratio, HPT_cool_bleed, LPT_cool_bleed are related to fuel
efficiency and the cooling of high and low pressure turbines. An increase in these
variables might hint at inefficiencies or over-utilization of cooling mechanisms.

• Phys_fan_speed, Stat_Press_HPC_out, Corr_fan_speed, Bleed_enthalpy, Bypass_ratio:
These variables exhibit positive weights, indicating that an increase in these variables
enhances the PC1 value. The variables Phys_fan_speed and Corr_fan_speed could be
indicative of the thrust generated by the engine. Stat_Press_HPC_out refers to the static
pressure output from the HPC, which could denote air density and the operating conditions
of the aircraft. The variables Bleed_enthalpy and Bypass_ratio could provide insights
about energy extraction and thrust efficiency of the engine.

These interpretations are indicative of how changes in these variables might influence the
PC1 value, which is designed to capture as much variation in the original data as possible. In
summary, a higher value of PC1 suggests an operating scenario with higher temperatures at
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the compressor and turbine stages, increased fan speed, higher static pressure output from
the High Pressure Compressor (HPC), and increased energy extraction and thrust efficiency.
Simultaneously, it would suggest reduced dynamic pressure output from the HPC, reduced fuel
efficiency, and potentially over-utilization of turbine cooling mechanisms.

In addition to PC1, Sensor 14 (Corr_core_speed) was also utilized as an input variable.
Despite its high correlation with Sensor 9, it was chosen over the latter due to the lower
correlation between this variable and the rest of the features.

This tailored methodology for the CMAPSS use case is expected to enhance the model’s
ability to generalize to new data by reducing multicollinearity and redundancy in the input
data while retaining the most significant predictors. Previous to training the model, all input
variables were scaled to have a mean of 0 and standard deviation of 1.

The dataset was randomly split into a training set and a test set, with 80% of the data used
for training the model and the remaining 20% reserved for testing. The model trained was a
Multilayer Perceptron (MLP) with 6 neurons in the hidden layer.

Metric Train set Test set
RMSE 19.73 18.95

R2 0.79 0.58

Table 4.5. Evaluation metrics of MLP model with 6 neurons to predict the Remaining Useful Life in the
CMAPSS FD001 train and test dataset.

.

In this use case, we applied three XAI methods to detect interactions present in the trained
MLP model, namely Partial Dependence Plots (PDP) for two variables, Friedman’s H-index and
the interaction invariant developed in the thesis.

As explained in section 2.4.4, Partial Dependence Plots (PDP) provide a visual interpretation
of the relationship between a set of features and the predicted outcome. In this case, we
employed PDP for two variables to capture and illustrate the interaction effect between the
selected features. This approach provides a clear visual representation of how changes in these
variables collectively impact the MLP model’s predictions.

Following PDP, we applied Friedman’s H-index, a technique used for detecting and
quantifying interactions between features in a predictive model. Described in detail in section
2.4.5, this method computes the strength of interaction between pairs of features by assessing
the improvement in the model’s prediction error when considering both features together
versus independently. A higher H-index value signifies a stronger interaction between the
features.

Lastly, we applied the Interaction Invariant method as described in section 3.5, which not
only quantifies the interactions between features, but also provides visualization techniques
similar to PDP.

Figures 4.8 and 4.9 shows the plots resulted from applying the previous mentioned
techniques on the trained MLP model.

Figure 4.8(a) shows the PDP analysis for both the PC1 and Corr_core_speed variable. In this
plot, it is shown that for lower values of both variables (yellow region), the RUL of the engine is
the highest. The RUL decreases as any of the input variables increase. In this case, the iso-level
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4.4. Case 3: Predicting Remaining Useful Life (RUL) of Turbofan Engines

(a) Partial Dependence Plot for 2 variables

(b) Friedman H Index

Figure 4.8. XAI techniques plots of CMAPSS dataset. 4.8(a) shows the 2 variable Partial Dependence
Plots, 4.8(b) shows the Friedman H interaction index.

curves suggest that the effect of one input variable depends on the value of the other, as it is not
the same the effect of the core accelerating when the turbine is cool (maximum RUL) or when it
is heated (minimum RUL). For example, when PC1 = 0, increasing Corr_core_speed from 8100
to 8150 results in a decrease of the output variable from 120 to 100. However, when PC1 = 3,
doing the same variation to Corr_core_speed leads to an increase of the output variable from
20 to 40. This indicates an interaction between both input variables as the effect of changes in
one of the inputs depends on the values of the other variable.

Figure 4.8(b) shows the values of Friedman interaction index for each one of the variables.
As this dataset only has two input variables, the only interaction term is between PC1 and
Corr_core_speed. It must be noted that this interaction term shall not be equal for both
variables, as it measures the extent to which the effect of two features on the predicted output
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Figure 4.9. Interaction invariant obtained on the mlp model trained on the CMAPSS dataset.

changes when they’re considered together, versus when they are considered individually. In this
case, the higher interaction term for Core_core_speed is due to the partial dependence with
respect to this variable being higher than the partial dependence with respect to PC1.

Figure 4.9 illustrates the interaction invariant as outlined in 3.5, along with the evolution
of RUL across the input space. It also quantifies the interaction measure as calculated by the
invariant. The Interaction Invariant analysis of the CMAPSS model uncovers an interaction
between PC1 and Corr_core_speed. The 3D plots provided by the interaction invariant plot
presents two distinct behaviors, forming a hill-like structure. The peak of the hill represents all
the samples with optimal health of the turbofan motor, while the lower points correspond to a
null Remaining Useful Life (RUL) of the turbofan motor. The hill exhibits two different slopes,
one influenced by the varying values of the Corr_core_speed variable and the other by the PC1

variable. On one slope, characterized by lower values of PC1, there is no implicit interaction
and the output value depends heavily on the value of the Corr_core_speed variable.

Before we delve deeper into the interpretation derived from the interaction invariant, it is
crucial to comprehend what the MLP model is accomplishing. The dataset being modelled is
obtained from a physical model which, based on a starting level of degradation of the HPC,
simulates the behavior of the turbofan motor and collect the sensor data. During this simulation,
the engine tries to maintain an specific level of speed even if the HPC is degrading and, therefore,
the overall efficiency of the motor is decreasing. As efficiency decreses, an increase in each
input variable might be triggered by the engine’s need to enhance fuel consumption and thrust
production to adhere to the prescribed speed command. This rise in input variables is reflected
in the sensor data, which we utilize to estimate the RUL of the motor during a simulated flight.
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Consequently, the MLP can be perceived as a tool to model the impact of degradation level on
the RUL of the motor based on the sensor data, with the degradation level acting as a hidden
variable resulting from a transformation of the sensor input variables.

Going back to figure 4.9, let us analyze the slope corresponding to low levels of PC1 variables.
This slope present no implicit interaction, where a suitable transformation of the input and
output space might detach the explicit interaction of the two input variables. We can understand
this region as a flight regime where, an increase in the Corr_core_speed or in the PC1 variable
(higher temperature/pressures), have an independent and additive relationship with the level
of degradation hidden variable. Moreover, this slope contains most of the simulated flights
where Corr_core_speed steadily increases. This regime might suggest a high-stress scenario
where the motor needs to constantly increase revolutions to follow the commanded speed. In
this regime, some of the increase revolutions might be substituted by an increase on the PC1

variable in order to maintain the produced thrust, given by the fact that the effect of each input
variable are independent.

The other slope, characterized by high levels of PC1 variable and low levels of Corr_core_speed
(in regions where Corr_core_speed ≈ 8120), presents an implicit interaction between both
input variables. This implicit interaction suggests that the effect of each input variable is not
independent and the hidden variable can not be modelled as a superposition of both effects.
Analyzing the Corr_core_speed values in this region, a speed of Corr_core_speed = 8120
appears to represent a nominal flight condition, being the starting speed for most flights with
an optimal motor health. The presence of implicit interaction in this region suggest that, near
this nominal core speed, the impact of the PC1 variable is not independent of the core speed,
unlike the other slope.

In conclusion, all three XAI methods detected the interaction between the two input
variables. The PDP analysis effectively demonstrated the independent effects of the PC1 and
Corr_core_speed variables on the RUL of the engine. While it illustrated the general behavior
of these variables, the PDP lacked in highlighting the complex interaction scenarios between
them. The Friedman H index, on the other hand, quantified the interaction between the two
variables but was limited in its ability to depict the complex interactive landscape over different
operational regimes. It provided a numerical measure of interaction but did not offer an explicit
visual intuition about the nature of these interactions. In contrast, the interaction invariant
method stands out for its capacity to visually represent and quantitatively measure complex
interactions between the variables. It successfully unveiled regions of distinct interaction
behaviors, allowing us to infer different flight regimes and the corresponding engine responses.
By identifying an absence of implicit interaction under high-stress scenarios and uncovering
implicit interactions near the nominal core speed, the interaction invariant method provided
the most comprehensive and detailed interpretation of the MLP model’s behavior.

4.5. Conclusions

This chapter explored the practical application of the methods developed in this thesis through
three distinct use cases, including the prediction of NOx emissions in the Boston dataset, the
prediction of parkinson disease progression measure, and the prediction of Remaining Useful
Life (RUL) in the CMAPSS FD001 dataset. Across each case, we implemented and assessed the
proposed Sensitivity Analysis based on Partial Derivatives, alpha−curves, and the interaction
invariant, juxtaposed with an array of existing XAI techniques.
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In the first use case, Sensitivity Analysis provided a valuable perspective to understand the
prediction of NOx emissions in Boston, revealing the influences of different variables and their
intricate relationships in driving the prediction. The comparison with traditional XAI methods
affirmed the superior capabilities of our method, enabling a comprehensive interpretation of
the model’s behavior.

The second use case focused on the prediction of parkinson disease progression measure. This
high-dimensional problem posed a more challenging task for traditional XAI methods, which
are often limited by feature independence assumptions and global explanation perspectives.
In contrast, our methods successfully analyzed the model’s inner processes, provided nuanced
understanding of the local-level dependencies, and yielded explanations consistent with existing
literature.

Lastly, in the third use case of predicting the RUL in the CMAPSS FD001 dataset, the
interaction invariant demonstrated their effectiveness in detecting feature interactions, yielding
more thorough and reliable insights than the other applied methods.

Overall, these use cases have underscored that while traditional XAI methods provide useful
insights, the techniques developed in this thesis not only match their performance but also offer
more profound explanations by detecting feature interactions and analyzing the relationship
between inputs and outputs from both global and local perspectives. Thus, the contributions of
this thesis enable a higher degree of understanding.
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5
Conclusions

Success doesn’t mean the absence of
failures; it means the attainment of

ultimate objectives. It means winning
the war, not every battle.

Edwin Bliss (1912—2002)

This last chapter summarizes the developments of this dissertation. The main conclusions
that can be drawn from the experiments carried out are set forth and the most original
contributions are highlighted. Finally, the open issues that have not been tackled in the
thesis, as well as possible future research lines, are discussed.

5.1. Summary and conclusions

The importance of the field of Explainable Artificial Intelligence (XAI) in recent years cannot
be overstated. As we are becoming increasingly reliant on artificial intelligence and machine
learning in various aspects of our lives, the need for transparency and interpretability has grown
more crucial than ever. These complex models have the capacity to impact decision-making
in a plethora of fields, from healthcare and environmental science to finance and policy. Yet,
without the ability to understand and explain the reasoning behind their predictions, we risk
encountering ethical issues, lack of trust, and misuse of these powerful tools. Thus, the need
for XAI is driven not just by academic curiosity, but also by societal responsibility, ethical
considerations, and regulatory requirements.

This thesis has taken a deep dive into the current state of the art in XAI. We explored key
concepts in explainability and interpretability, the types of explanations that can be provided,
and important considerations such as model-specific vs. model-agnostic approaches, and local
vs. global explanations. Our discussion led us to present a comprehensive taxonomy of XAI,
providing a guideline for selecting suitable XAI techniques based on specific requirements. We
further delved into a range of commonly used XAI techniques, highlighting their strengths and
limitations, and the contexts in which they are most appropriate.
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The core of our contribution in this thesis is the development of XAI techniques based on
partial derivatives, tailored for understanding and interpreting Multi-Layer Perceptron (MLP)
models, but applicable to any model whose partial derivatives can be calculated. We have made
significant strides in the analytical computation of first, second, and third partial derivatives
for MLP models. The calculation of these derivatives is a critical step, as they represent the
rate at which the MLP output changes concerning changes in the input variables. These
advancements provide the groundwork for the three novel methods we introduce: Sensitivity
Analysis, α−curves, and the application of the Interaction Invariant designed in Alfaya et al.
(2023) to MLP models.

Sensitivity Analysis, our first method, leverages partial derivatives to estimate the influence
of input variables on the MLP output. This information is critical for model refinement and
feature selection. α−curves, our second method, provides a comprehensive view of sensitivity
distributions across the input space, enabling the analysis of feature importance and sensitivity
behavior at varying levels of detail. Lastly, the Interaction Invariant method helps identify
interactions between input variables and their impact on the model output, offering insights
into the more complex and non-linear relationships that an MLP model can learn.

To validate the performance and utility of our proposed methods, we conducted several
case studies, each showcasing the application of Sensitivity Analysis, α−curves, and Interaction
Invariant in different domains. This included predicting NOx emissions in the Boston dataset,
parkinson disease progression, and the Remaining Useful Life (RUL) of turbofan engines using
the CMAPSS dataset. Across these diverse scenarios, our methods consistently provided nuanced,
in-depth insights that went beyond traditional XAI techniques. These case studies highlighted
the superior capabilities of our proposed methods to retrieve information from machine learning
models, thereby offering a powerful tool for better model understanding.

While our proposed methods have shown superior capabilities in retrieving information from
MLP models, it is important to note that they do not render other XAI methods obsolete. Each
method, whether it’s a part of neuralsens or a traditional XAI technique, carries its own set of
advantages and disadvantages. The best method to use in a particular situation will depend on
the specific requirements of the use case, the type of data, and the complexities of the model. It
is essential that researchers and practitioners take these factors into account when deciding
on the most suitable method to use for explainability purposes. The ultimate aim is to build
a comprehensive understanding of the models we create, thereby fostering trust, promoting
ethical decision-making, and driving more accurate, reliable predictions.

5.2. Original contributions

Firstly, a central and impactful contribution of this thesis is the establishment of detailed
analytical calculations for the first, second, and third partial derivatives of a Multi-Layer
Perceptron (MLP) model. Previous work such as Gevrey et al., 2003 and Gevrey et al., 2006
describe how to calculate the first partial derivatives and second partial derivatives for MLP,
restraining the MLP architecture to a single hidden layer with sigmoid activation function and a
single output neuron. Moreover, the description developed in previous work do not optimize the
required computations leveraging matrix operations, which make the computation unfeasible
for highly dimensional datasets. Capable of handling an arbitrary number of hidden layers,
activation function and output variables; the approach developed in this thesis is not only
versatile but also computationally efficient for any MLP architecture. By swiftly and efficiently
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calculating these partial derivatives, we acquire detailed insights into the MLP model’s response
to shifts in input variables. This improved computational performance paves the way for the
implementation of the advanced XAI methods presented in this thesis.

Secondly, the development of the Sensitivity Analysis based on partial derivatives method
represents another important contribution. This technique, based on partial derivatives, offers
valuable perspectives on how the input variables influence the model output. Sensitivity
Analysis is particularly beneficial for highlighting the most impactful variables and aiding in
model refinement and feature selection. However, there is a potential risk of overlooking local
non-linear effects.

The third contribution lies in the creation of the α−curves method. This technique provides
a comprehensive understanding of sensitivity distributions across the input space, providing
a more detailed view compared to traditional sensitivity measures. By adjusting the alpha
parameter, users can scrutinize sensitivity at different detail levels, facilitating the detection of
both average and localized high-sensitivity regions.

Lastly, the application of the Interaction Invariant method in Machine Learning models
marks our fourth contribution. This technique focuses on detecting interactions between
input variables, enabling users to identify regions with interactions between a pair of input
variables. Its resilience to transformations of the input or output space makes it a robust tool
in interaction analysis. However, it’s important to note that this method primarily captures
pairwise interactions and may not fully account for higher-order interactions. Also, the size of
the grid where the invariant is calculated could influence the results and their interpretation,
indicating the need for careful grid design and mindful interpretation.

To ensure that the methods developed in this thesis reach the widest possible audience and
have the most substantial impact, we have made them available to the public through two
programming packages: neuralsens for Python and NeuralSens for R. This act of packaging
and publicly distributing the methods is of paramount importance for several reasons. It
empowers researchers and practitioners across disciplines to apply these methods without
the hurdle of having to code them from the ground up. In providing these tools in Python
and R, the most widely used languages for data analysis and machine learning, we ensure
broad applicability and foster a diverse user base. Moreover, this public availability invites
valuable peer scrutiny, potential improvements, and fosters a culture of open science and
collaboration, thus accelerating advancements in Explainable Artificial Intelligence. Ultimately,
it is our aspiration that these packages enable users to gain a deeper understanding of their
machine learning models, further transparency, and aid in constructing more reliable and fair
AI systems.

These methods are already being applied in the social science field. For example, Arroyo-
Barrigüete et al., 2023 examines the persistent gender gap in mathematics performance in
Spain’s education system. In this study, both a linear regression and an MLP model are trained
on the collected data to determine if the variables related to mathematical achievement are
significantly different between male and female students. The application of sensitivity analysis
to the MLP model developed in this thesis unveils non-linear relationships between the output
and certain input variables. Subsequently, the specification of the linear model is revised
based on insights gained from the sensitivity analysis. This adjustment refines the model’s
representation, leading to the identification of previously undetected associations that contribute
to a comprehensive understanding of the gender gap phenomenon. The seamless transition
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between the metrics proposed in the sensitivity analysis methods and the coefficients found in
the linear regression model facilitated this insightful exploration, ultimately highlighting the
practical applicability of the methods developed in this thesis in extracting meaningful insights
from complex data.

In other study, Lumacad et al., 2022 delves into the realm of online distance learning (ODL),
a pivotal extension of the distance learning paradigm introduced in response to the challenges
posed by the COVID-19 pandemic. Despite the benefits that online learning has introduced to
the education landscape, it remains critical to identify the key factors that significantly influence
learners’ online academic performance. A MLP model is trained to predict the academic
performance of junior and high school students in the Philippines, using the sensitivity analysis
method to discover the most important factors in the academic performance during the online
learning period in this region.

The research developed in the Explainable Artificial Intelligence field has been materialized
in the following journal publications and seminars:

Journal publications

• J. D. Alfaya, Pizarroso-Gonzalo, J. Portela, and A. Muñoz, Invariant Interaction Measure,
in edition.

• J. Pizarroso-Gonzalo, D. Alfaya, J. Portela, and A. Muñoz, Metric Tools for Sensitivity
Analysis with Applications to Neural Networks, (submitted to Expert Systems with
Applications, November 2023)

• J. Pizarroso-Gonzalo, J. Portela, and A. Muñoz, Neuralsens: Sensitivity analysis of neural
networks, Journal of Statistical Software, vol. 102, no. 7, pp. 1–36, February 2022.

Seminars

• D. Alfaya, J. Pizarroso-Gonzalo, J. Portela, and A. Muñoz, XAI methods based on partial
derivatives, GI2DA seminar, ICADE law school, Comillas Pontifical University, 29 June
2023.

• J. L. Arroyo-Barrigüete, J. Portela, J. Pizarroso-Gonzalo, A. Muñoz, and D. Alfaya,
Utilización del paquete NeuralSens (redes neuronales interpretables), Afi School, 28 June
2023.

• J. L. Arroyo-Barrigüete, J. Portela, J. Pizarroso-Gonzalo, and A. Muñoz, Utilización del
paquete NeuralSens (redes neuronales interpretables), Faculty of Commerce and Tourism,
Complutense University of Madrid, 2 March 2023.

• J. L. Arroyo-Barrigüete, J. Portela, J. Pizarroso-Gonzalo, and A. Muñoz, Abriendo la
caja negra de las redes neuronales: cálculo de sensibilidades con el paquete NeuralSens,
Foundation of the Autonomous University of Madrid, 23 February 2023.

• J. L. Arroyo-Barrigüete, J. Portela, J. Pizarroso-Gonzalo, and A. Muñoz, Abriendo la caja
negra de las redes neuronales: cálculo de sensibilidades con el paquete NeuralSens, Faculty of
Commerce and Tourism, Complutense University of Madrid, 10 November 2022.
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5.3. Future work
This dissertation has advanced in the development of Explainable Artificial Intelligence (XAI)
and its applications to neural network models, in particular, Multi-Layer Perceptrons. These
contributions lead to a number of future lines of research that could be explored. This section
summarizes some of them:

• Implementation of partial derivative calculation for other neural network architectures:
Extending the developed analytical methods for calculating partial derivatives to other
neural network architectures, such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). This extension involves adapting the developed
methods to the unique characteristics and inner workings of each of these models in order
to gain relevant information adapted to the task involved.

• Development of a statistical significance test for input variables in ML models based on
Sensitivity Analysis: Drawing inspiration from the statistical test designed by White and
Racine, 2001, future work could include developing a similar test that determines when a
variable is significant for predicting the output of a machine learning model. This would
offer a more formal and statistically robust way to identify influential variables.

• Adapting α-curves methodology for discrete input/output variables: The α-curves
methodology, which was initially developed for regression tasks, could be adapted to
classification tasks by modifying the metric applied to the discrete input or output variable.
This would enhance the applicability of this methodology across a broader spectrum of
machine learning problems.

• Expansion of Interaction Invariant methodology to capture higher-order interactions:
while the interaction invariant methodology is currently capable of capturing pairwise
interactions, there is scope for extending it to detect higher-order interactions. This
expansion would enable a more comprehensive understanding of complex relationships
between variables in machine learning models.
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A
Comparison with automatic

differentiation

In this annex, a thorough presentation of the computational times across different configurations
for the derivation of first, second, and third partial derivatives is provided. Enclosed are three
distinct figures, each delineating the computational times for each order of derivative, rendering
a comprehensive view of the time efficiency under varying scenarios. These computations were
conducted on a system equipped with 32 GB of RAM, an Intel Core i5-6300HQ processor, and a
NVIDIA GeForce GTX 950M graphics card.
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Appendix A. Comparison with automatic differentiation

Figure A.1. Comparative analysis of computation times for the calculation of first partial derivatives
utilizing analytical calculations (neuralsens) and automatic differentiation (autograd) amidst varying
model complexities and sample sizes.
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Figure A.2. Comparative analysis of computation times for the calculation of second partial derivatives
utilizing analytical calculations (neuralsens) and automatic differentiation (autograd) amidst varying
model complexities and sample sizes.
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Figure A.3. Comparative analysis of computation times for the calculation of third partial derivatives
utilizing analytical calculations (neuralsens) and automatic differentiation (autograd) amidst varying
model complexities and sample sizes.
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