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A B S T R A C T   

Modeling wildfire dynamics is complex and challenging due to the multiple scales involved in fire propagation, 
from physical–chemical processes to the interaction with topography and meteorological conditions. To provide 
reliable indicators of the risk of an ongoing wildfire, models aimed at informing policy-making should quantify 
the primary sources of uncertainty in their predictions. In this paper, we introduce a novel methodology built on 
top of Cellular Automata to assess the impact of uncertainty by implementing wildfire ensemble modeling using 
data from the Spanish National Forestry Data Repositories. Uncertainty is embedded in the model considering the 
±2σ deviations from the medians of linear regressions of the canopy stratum with LiDAR metrics as explainable 
variables. The relevance of dynamic meteorological conditions in contrast to static environment conditions is 
analyzed. Our results suggest that an accurate account of the fuel model, including time-dependent wind and 
moisture maps, is mandatory to provide reliable predictions. Using a real case study (Concentaina’s extreme 
wildfire), we also illustrate the importance of assessing the impact of the firefighters’ mitigation efforts.   

1. Introduction 

Wildfires in the Anthropocene era foster extreme events that surpass 
existing suppression resources (Bowman et al., 2020). Understanding 
their potential sources and researching their classification is necessary, 
as extreme wildfires are not isolated events (Oliveira et al., 2021). 
Nowadays, the likelihood of wildfire occurrence is estimated through 
indexes like the Fire Weather Index (FWI) (Canadian Forest Service 
Publications, 1978), which rates fire weather severity solely based on 
weather observations. Other indicators are commonly used in the 
context of wildfire risk assessment, such as the Keetch-Byram Drought 
Index (KBDI) (Keetch and Byram, 1968), the Fire Danger Rating System 
(FDRS) (Considine, 2006), or the Haines Index  (Haines, 1988). 

The complex dynamics of wildfire modeling are the outcome of many 
coupled physical–chemical processes (Liu et al., 2021; Sullivan, 2009a). 
They are addressed either by proposing detailed models that compute fire 
dynamics from fundamental principles (Wegrzynski and Lipecki, 2018; 

Pimont et al., 2009) or operational models, which rely on simplifications 
and empirical relationships between different fire behavior properties 
and the environmental conditions. Prominent examples of detailed 
models are the Wildland Urban Interface Fire Dynamics Simulator 
(WFDS) (Mell et al., 2007) and FIRETEC (Linn et al., 2002). 

Alternatively, operational models aim to provide timely simulations 
shorter than real-time events, enabling effective management planning 
and rapid emergency responses (Sullivan, 2009b). They comprise two 
different modules: fire behavior and fire growth. The fire behavior 
module comprehends the simplification of the complex physical and 
chemical processes involved in wildfire combustion into a set of 
empirical or semi-empirical formulations. These rely on carefully cali
brated environmental parameters based on laboratory-scale experi
ments. Besides, the fire growth module comprises a set of algorithms 
that propagates a given fire ignition over the spatial grid (Sullivan, 
2009c). Propagation is based on the local rate of spread derived from the 
fire behavior properties. Over heterogeneous terrains and diverse 
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meteorological conditions, it leads to the simulation of complex fire 
perimeters. 

However, their applicability is often limited to specific ranges of 
environmental conditions explored through experiments and observa
tions. A comparative study of models involving 1238 observations (Cruz 
and Alexander, 2013) concluded that a 35% error in estimating fire 
spread rates is a valid standard for model acceptance. Another study 
testing the validity of models in prescribed burning experiments on 
single fuel beds reports a poorer performance of operational models 
compared to physical detailed models (Weise et al., 2016). Nevertheless, 
the study highlights that minor fuel parameterization adjustments can 
improve operative models’ performance. 

The benefits of operational models in terms of scalability, ease of use, 
and flexibility may overcome their limitations if they are correctly 
combined with high-quality/large-volume sources of information. In 
particular, remote sensing techniques incorporate sources of data such 
as Laser Imaging Detection and Ranging (LiDAR) (White et al., 2017), 
satellite observations (Seydi et al., 2022), availability of extensive 
weather information databases (Guo et al., 2023), and forestry in
ventories (González-Ferreiro et al., 2017). 

However, the proper quantification of uncertainty in their pre
dictions is a shared problem of both types of models. Detailed models 
require massive computation to fine-tune their parameters to capture 
any potential scenario. Operational models combine diverse sources of 
information with different degrees of reliability or granularity. A clear 
benefit of modeling uncertainty is the ability to manipulate which var
iables are more prone to provide sensitive variations in the final results 
(Benali et al., 2016). 

In this regard, a potential solution is using the so-called ensemble 
modeling. This technique runs different simulations for a specific case 
study whose inputs are sampled from distributions. These distributions 
characterize the randomness present in different driver processes of the 
studied phenomena. In wildfire scenarios, the canopy structure of a 
forest (Kelly et al., 2017) or the meteorological conditions (Finney et al., 
2011) are some examples. The set of the different simulation results 
represents a distribution of the possible outcomes. This approach’s main 
advantage is the simplicity of generating confidence intervals from 
complex processes. In turn, these confidence intervals help to define new 
and more reliable indicators (Yousefi et al., 2020). 

The importance of uncertainty quantification in advanced statistical 
analysis is a valuable tool in reducing the impact of climate change. In 
other fields, several challenging works have contributed to the search for 
mitigation measures to reduce the flooding risk (Lama et al., 2021, 
2021b; Pirone et al., 2023), the assessment of soil sustainability by water 
erosion (Lense et al., 2023), the evaluation of land use and land cover to 
improve ecohydrology (Ray et al., 2023) or the use of different remotely 
sensed data to assess agricultural burned affected areas (Mohammad 
et al., 2023). Relevant to any ecological study, it is essential to highlight 
the value of both advanced experimental and modeling analysis of the 
prediction of natural phenomena (Lama and Crimaldi, 2021; Errico 
et al., 2019; Crimaldi and Lama, 2021). 

In this work, we aim to bring together the advantages of ensemble 
modeling, operational methods, quantifying uncertainty, and utilizing 
reliable open data sources. Our goal is to develop a unique approach 
using Cellular Automata (CA), focusing on reliability and accuracy. This 
approach is built on top of pre-existing validated models such as Flam
Map (Finney, 2006). A case study in Spain is used, the Concentaina 
wildfire, which is extensively documented and offers valuable scientific 
insights. This fire consumed a significant portion of the area within less 
than 24 h. Firefighting teams closely monitored the event, implementing 
suppression measures to contain its progression. Additionally, a simple 
modeling approach for incorporating suppression measurements is 
presented. The fire’s characteristics, including its wind-driven nature 
and ignition, along with documented immediate fire suppression actions 
and detailed forest fire reports can help us understand post-fire dy
namics. We chose this wildfire because the Spanish Mediterranean basin 

is at high risk of wildfires, which is expected to increase (Arca et al., 
2007). At the national level, Spain lacks the existence of an open public 
service that provides the necessary inputs for these models, in contrast to 
web services such as PREVINCAT for the region of Catalunya (González- 
Olabarria and Piqué, 2019) or LANDFIRE in the United States (Reeves 
et al., 2009). We compensate for this by proposing to the community a 
data processing framework to produce this information using sources 
such as a nationally coordinated LiDAR repository and forest inventory 
surveys. 

In Section 2, we provide a detailed explanation of our methodology, 
the sources of information used, the modeling framework, and its 
physical parameterization. Section 3 details the fire event of Cocentaina 
2012. Our findings are described in Section 4, and we conclude with a 
discussion of the potential benefits of our approach in Section 5. 

2. Materials and methods 

The methodology developed in this work aims to be flexible and 
straightforward to deploy, leveraging the availability of public data in 
the Spanish context. This section explains how the essential input 
magnitudes are derived from public information repositories. It also 
details the modeling techniques and processes used to capture un
certainties. Fig. 1 displays the elements that integrate the workflow of 
this research. 

2.1. Public data repositories 

Three major public forestry repositories are considered in this study. 
First, the LiDAR survey conducted under the Spanish National Orthophoto 
Program (PNOA) (Spanish National Geographic Institute IGN, 2008) 
provides valuable information on the forested areas. Second, the Spanish 
Forest Map (MFE) (MITECO, 2005) offers a comprehensive tessellation of 
soil use and categorization across Spain. Lastly, the public Spanish Na
tional Forest Inventory (IFN) (MITECO, 1997) contributes with detailed 
data on forest properties. Detailed information can be found in Appendix 
A. Geographical information present in the information from these da
tabases is processed and visualized in QGIS (QGIS Development Team, 
2021), a Geographical Information System (GIS) software. 

2.2. Cellular Automata: fire behavior and wildfire growth model 

Two operational models widely accepted are Prometheus (Tymstra 
et al., 2010) and FlamMap (Finney, 2006), created by the Canadian 
Forest Service and the US Forest Service, respectively. 

In particular, FlamMap Version 6.1 incorporates two different fire 
growth modules: Minimum Travel Time (MTT) (Finney, 2002) and Fire 
Area Simulator (FARSITE), based on Huygens’ Principle for fire front 
spread (Finney, 1998). MTT assumes background fire behavior condi
tions to be static. FARSITE accommodates time-varying environmental 
conditions and incorporates some dynamic features of fire behavior. 

Both approaches use the same fire behavior model, which follows 
Rothermel’s model (Rothermel, 1991). This theoretical framework dates 
back to the 1970s and is extensively used, constituting the core of most 
operational models. Subsequent improvements have been further intro
duced, such as modules that incorporate crown fire transition (Wagner, 
1977; Rothermel, 1991), crown fire rate of spread (Finney, 1998; Scott 
et al., 2005), fuel moisture modeling (Albini, 1976; Nelson, 2000), 
among others. 

However, the MTT and Huygens’ wavelet principle for fire perimeter 
expansion have some drawbacks. MTT does not allow variable envi
ronmental conditions, such as whenever the fire lasts longer than the 
time scale over which meteorological changes occur. On the other hand, 
Huygens’ principle allows dynamical conditions but presents mathe
matical artifacts when fire fronts overlap. This procedure introduces an 
extra source of computation time and fire growth uncertainties. Under 
constant conditions, MTT and FARSITE yield equivalent results (Finney, 
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1998), illustrating that fire growth algorithms can be diverse yet 
reproduce the same outcome. Both methodologies run faster than real- 
time events, taking minutes to simulate hours of fire. 

Another flexible propagating scheme is Cellular Automata, which, in 
the context of wildfire modeling, can be employed to simulate the spread 
of fire across a landscape (Purnomo et al., 2021; Mutthulakshmi et al., 
2020; Trucchia et al., 2020). One of the advantages of this methodology 
is that it easily allows coupling fire behavior models with other non- 
physical dynamics, such as fire suppression modelingAlexandridis 
et al., 2011). 

We introduce a CA model to maintain the robustness of MTT models 
and improve their flexibility. CA are dynamic frameworks that imply 
several advantages, such as:  

• They naturally accept time-varying landscapes by pre-computing the 
expected conditions at the times required.  

• Fire growth can be equivalent to MTT or Huygens’ principle by 
adequately embedding fire behavior into the interacting grid. 

• Fire front interactions are naturally tackled, with no extra re
quirements for mathematical artifacts.  

• The CA models fuel combustion by a series of discrete states. For 
instance, un-burned, burning and burned. Other states can be 
envisaged.  

• Computational costs increase with system size, the number of close 
neighbors, and the number of states of the grid elements, indepen
dently of the fire behavior modules considered. This makes it easier 
to make further improvements or changes. 

The proposed CA uses the fire behavior module in FlamMap to es
timate the fire spread rates. This semi-empirical model correlates the 
spread rate of a wildfire to critical environmental variables. These 

variables include wind speed, terrain slope, fuel particle size, moisture, 
and heat content. It is further related to the simple shape of a fire 
perimeter from point-source combustion. This shape is commonly 
approximated to be elliptical, following community consensus in the 
field. 

Our CA is a deterministic model, meaning its evolution from a spe
cific set of initial states is always similarly prescribed. The landscape is 
partitioned into a regular, squared lattice with cells of size s x s. These 
grid elements are characterized by un-burned and burning states, rep
resenting 0 and 1, respectively. The spread of fire from cell to cell is 
facilitated by the close neighbor structure prescribed by a Moore 
neighborhood. Under this schemet each cell (i, j) communicates with its 
eight nearest neighbors on the grid. At the domain limits, close boundary 
conditions are applied. To translate the fire spread rates, the first step is 
to consider that fire propagates in all directions, following an elliptical 
distribution of velocities over spatial directions. Therefore, spread rates 
projected on the directions connecting center-center cells from these 
ellipses are considered, given the lattice’s regular structure. This results 
in an interval of time Δt for fire to spread between cell centers, which is 
given by Δt(i, j) = si,j/k

(
θi,j

)
. A 

̅̅̅
2

√
factor is considered for diagonal 

distances due to the square geometry. This approach is illustrated in 
Fig. 2. 

In this study, the CA methodology involves pre-computing the time a 
fire front takes to spread from any given cell to its closest neighbors 
under static environmental conditions. For a grid lattice comprising n x n 
elements, the total number of interacting ”fire spread paths” is 
8⋅(n − 2)⋅(n − 2), 5⋅4⋅(n − 2), and 4⋅3 for inner cells, border cells, and 
corner cells, respectively. The time step Δt to integrate time is fixed in 
the model. The information that is tabulated and stored in memory when 
the simulation starts is the number of fixed time steps n that a fire front 
takes to spread from a cell i to another j, i.e., n(i, j) = Δt(i, j)/Δt. In this 

Fig. 1. Research flowchart. This work introduces a comprehensive methodology for modeling wildfire events in Spain using data from public repositories. The 
methodology results in an operational wildfire model integrating fire behavior and fire growth modules. Ensemble modeling techniques are applied to enhance 
predictive accuracy, allowing the presentation of results as confidence intervals. This approach involves modeling uncertainties in canopy variables sourced from 
forestry data. This framework considers dynamic environmental conditions and incorporates basic suppression modeling, ultimately leading to improved predictions 
of burned perimeters. 
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model, the non-burning cells constituting the boundary of the fire 
perimeter are the elements susceptible to ignite after a CA iteration. The 
CA integrates an amount of time t = t+nmin⋅Δt per iteration. The amount 
of time nmin⋅Δt is equivalent to the smallest number of fixed time steps 
the fire front takes to spread and ignite a subset of the non-burning 
boundary cells. The quantity nmin corresponds to the minimum of 
n(i, j) at the boundary of the fire perimeter. nmin can be shared among 
several fire-spreading paths, thus simultaneously igniting several cells at 
the burning front perimeter in a single CA iteration. Continuous fire 
front expansion is considered in the case it has not reached neighboring 
centers by initializing particular counters, n*(i, j) = n(i, j). After each CA 
iteration, the number of time steps required for fire to spread is updated 
to n*(j, i) = n*(j, i) − nmin⋅Δt. Together with the new susceptible cells to 
be burned, these values are examined for the next iteration and 
continuously updated until complete fire propagation. The value of Δt 
must be smaller than any of the intervals of time fire takes to traverse 
existing fire spread paths, i.e., Δt⩽minΔ(j, i). This is necessary to avoid 
physically inaccurate over-spreading. Fig. 3 illustrates this mechanism. 

2.3. Model parameterization 

Rothermel’s model estimates fire spread rates employing a set of 
variables easily interpreted from the environment. Scientists and 
stakeholders can retrieve this data over large areas using remote sensing 

techniques and process it into appropriate databases. The study area’s 
spatial characterization relies on raster layers, including:  

• Topographic information (elevation, slope, and aspect).  
• A fuel model map (combustible properties).  
• Canopy structure variables (canopy cover, stand height, canopy base 

height, and canopy bulk density).  
• Wind data (speed and direction). 

Moreover, accurate meteorological information is crucial for pre
conditioning the dead fuels’ humidity. 

This work completes the derivation of these magnitudes using three 
public data repositories specific to the Spanish context. While tailored to 
Cocentaina’s wildfire scenario, the approach can be adapted to other 
Spanish regions with coherent wildfire data. It is worth noting that the 
accuracy of forestry mapping may be compromised after a wildfire oc
curs in the same area. Likewise, data from different forestry databases 
may not match due to being updated unevenly after extensive periods of 
time. These inherent limitations and considerations are fundamental for 
wildfire modeling, requiring continuous evaluation and refinement. 

2.3.1. Topographic information 
Three topographic magnitudes are required to characterize the 

model: elevation, aspect, and slope. The elevation map corresponds to 
the Digital Terrain Model (DTM) of the wildfire scenario area, readily 
available from LiDAR information. In this study, point cloud data is 
derived from the first coverage of the PNOA (recorded in the year 2009), 
using data batches 3 (covering Castilla la Mancha, Murcia, Alicante) and 
8 (covering Valencia). These LiDAR datasets are publicly available from 
the Spanish National Geographical Institute (IGN). The LiDAR data is 
processed using LAStools (rapidlasso GmbH, 2021) and further analyzed 
using FUSION software (McGaughey, 2022). 

To this extent, the LiDAR cloud points that overlap the modeled 
wildfire area are processed into a 25× 25, m2 DTM of 321x321 elements 
(covering an area of 8 × 8 km2). This DTM is converted into raster in
formation ready to be implemented in the fire behavior module. Aspect 
and slope layers are estimated from the elevation raster map by the 
appropriate tools in QGIS. Fig. 4 shows LiDAR cloud points considered in 
this study within the province of Alicante, as displayed on a satellital 
map. 

2.3.2. Fuel models 
In the specific case of Alicante, the Department of Agriculture, Rural 

Development, Climatic Emergency, and Ecological Transition developed a 
fuel mapping based on Scott et al.’s fuel classification in 2019 (Scott 
et al., 2005). However, this information is available only after the 
wildfire event. Therefore, a fuel map is developed here by combining the 
Spanish Forest Map at scale 1:50000 (MFE50) land use information and 
LiDAR data descriptive statistical metrics, following the guidelines 
outlined in (Sánchez García et al., 2019). A more updated version of the 
Spanish Forest Map at scale 1:250000 (MFE25) is currently in devel
opment. However, the progress of MFE25 implementation varies across 
different provinces. While MFE50 is accessible for the entire Spanish 
geography, MFE25, for instance, is not yet available in Alicante. 

Concerning the MFE50 data, the vector file corresponding to the 
Community of Valencia, which includes the province of Alicante, un
dergoes processing in QGIS. Thus, the MFE50 polygonal information is 
intersected with a geometrical grid (25× 25, m2 grid: 321× 321, cells) 
representing the Cocentaina area modeled in this study. This intersec
tion retains the relevant information from the MFE tiles. 

A decision tree is employed to associate the fuel models (Fig. 5), 
which relies on two aspects. Firstly, on specific details from the MFE, 
cells are considered as: Non-Combustible (NC), dense Forests (F), 
Shrublands (S), and Grasslands (G). Secondly, on a set of structural 
descriptive metrics of the fuel stratum: total Vegetation Height (VH), 
Shrubland Height (SH) and Shrubland Cover (SC). 

Fig. 2. The time intervals that the deterministic CA takes to spread from a cell 
to its neighbors. Spread rates correspond to projections of the elliptical shape 
profile in the directions of the connecting neighbors. 

Fig. 3. CA iteration scheme. The precomputed Δt (a fire front spreads from a 
cell to its closest neighbors) is filtered only to include ignited cells fire spreading 
paths. The example shows ignited cells A, B, C and their fire spreading paths a1, 
a2, a3, b1, b2, b3, c1, c2. The same minimum number of steps is shared by b2, c1, 
and c2. The system iterates nmin time steps and ignites corresponding cells. For 
visualization purposes, diagonal interactions are omitted. 
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Fig. 4. Geographical surface of the area surrounding Cocentaina. The diamond marker on the map indicates the location of Cocentaina municipality. The grid 
polygon illustrates LiDAR data tiles from the PNOA employed as input variables to train the three canopy structure models. Circular markers correspond to the 
location of the IFN3 plots used as target variables in the canopy structure models. Inset map was created using geoBoundaries (Runfola et al., 2020). 

Fig. 5. Decision tree that assigns different Rothermel fuel models considering PNOA LiDAR metrics and soil use information from the MFE.  
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The vegetation structural descriptive metrics are associated with 
statistical metrics of the LiDAR cloud points normalized to the ground 
level defined by a DTM. This computation employs a DTM with a res
olution of 2 × 2 m2 to normalize LiDAR data within the 25× 25, m2 grid 
elements of the simulated region. Therefore, VH is associated with the 
90th percentile of the return cloud points from a LiDAR dataset that 
restricts the heights of these reflections from 0.5 to 40 m (40 m spans the 
whole vegetation height distribution). On the other hand, the shrub 
metrics consider a LiDAR dataset that restricts the heights of these re
flections from 0.5 to 2 m (a height range that approximately only in
cludes the shrub stratum). Then, SH is associated with the mean height 
of the return cloud points, and SC is related to the percentage of first 
returns above 0.5 m. These statistical metrics are computed using 
FUSION. 

2.3.3. Canopy structure 
The canopy structure encompasses the vertical fuel distribution 

above the surface fuel models, which are characterized in Section 2.3.2. 
Thus, canopy structure refers mainly to the biomass contribution of trees 
in the forest cover. Deriving relevant magnitudes is complex as the forest 
cover is heterogeneous in tree species, morphology, and spatial distri
bution. Moreover, conducting local measurements requires large in
vestments to comprehend large domains. As a more affordable 
approach, local in situ observations constitute the information to train 
regression models that extrapolate the canopy structure using data 
collected by remote sensing techniques. 

The methodology to characterize the canopy structure is based on 
(Wagner, 1977). Each grid element is assumed to have a homogeneous 
canopy structure. Four input layers to FlamMap’s fire behavior module 
are designed to represent this information and are ubiquitous in opera
tional models: Canopy Height (H), Canopy Base Height (CBH), Canopy 
Bulk Density (CBD), and Canopy Cover (CC). The average tree height 
estimates H, and the average tree surface-to-crown height estimates 
CBH. The resulting value from the average superficial density of aerial 
fuel biomass divided by the average crown height estimates CBD. The 
procedure to retrieve the CC layer is simpler as LiDAR data is a direct 
estimator of this magnitude (Arumäe and Lang, 2018), in particular the 
percentage of first returns above 2 m up to 40 m. 

There exist approaches that consider individual tree morphology to 
compute H, CBH, and CBD as in (Fidalgo-González et al., 2019). How
ever, they are less flexible due to the broad range of tree species and the 
lack of adequate allometric models to estimate tree biomass/geometry. 
Other inaccuracies arise because the PNOA LiDAR and IFN coverages do 
not overlap in time. Consequently, their information may not match or 
fully represent a wildfire as the time between data collection and the fire 
event is of the order of years. Similarly to the case of the most updated 
revision of the MFE, the 4th Spanish National Forest Inventory (IFN4) 
data for Alicante is still being updated and unavailable. Therefore, the 
3rd Spanish National Forest Inventory (IFN3) database is utilized for this 
study. The relevant information from this inventory comprehends the 
geographical position, tree species, tree heights, and trunk diameters. 
Major trees are referenced radially from the center of the plot up to a 
radius of 25 meters. 

Implementing the canopy structure involves the creation of regres
sion models using information from the IFN3 and LiDAR data from the 
first coverage of the PNOA as input values. 

Initially, only those IFN3 plots contained in the study area of the 
PNOA LiDAR coverage data are considered, as can be seen in Fig. 4. It 
resulted in a total number of 876 plots. Then, the MFE50 is used to 
extract the predominant tree species in the 8× 8, km2 grid that consti
tutes the simulated area of Cocentaina. Pinus Halepensis stands out as the 
predominant species. There is a minority presence of 4 other species: 
Pinus Pinaster, Populus (nigra x Canadensis), Juniperus Oxycedrus, and 
Quercus Ilex. Thus, restricting the initial set of IFN3 plots to those with 
these species, only 492 plots remain, as shown in Fig. 4. 

Next, the H, CBH, and CBD values that characterize the IFN3 plots 

are calculated. H is obtained directly by averaging the value of heights. 
Estimating CBH requires knowledge of allometric equations for the 
crown height or the surface-to-crown height of the trees. However, no 
appropriate models of the predominant tree in the Cocentaina Area 
(Pinus Halepensis) were found in the literature. In the absence of other 
models better suited to the fire context, the species Pinus Pinaster, which 
is phylogenetically close to Pinus Halepensis, is extensively characterized 
in (González-Ferreiro et al., 2017). Thus, its allometric expression for 
CBH from (González-Ferreiro et al., 2017) is implemented. The com
bined presence of Pinus Halepensis and Pinus Pinaster completely domi
nates the canopy. Thus, the contribution from the rest of the trees is 
neglected to compute the CBH. For the CBD layer, only the contribution 
of aerial biomass susceptible to burn in crown fires is considered. It 
includes particles of 2 cm diameter size or smaller, leaves, and needles, 
which agrees with the characteristic distribution of aerial fuel particles 
burning at the fire front (Stocks et al., 2004; Sando et al., 1972). Above- 
ground fuel biomass allometric models for species in Cocentaina as a 
function of tree diameter and height are reviewed in (Montero and Ruiz- 
Peinado, 2006). Dividing the sum of total biomass per plot by the area of 
the plot is an estimate of the crown fuel load (CFL) or surface density of 
aerial fuels. Finally, CBD consists of dividing CFL by the crown size es
timates of the plot (the difference H-CBH). 

Finally, the different LiDAR statistics are computed geographically 
restricted to the IFN3 plot areas. They are expected to be adequate es
timators of forest canopy since they are referred to the height distribu
tion of the LiDAR point clouds. The IFN3 LiDAR dataset presents high 
dimensionality since up to 41 height statistical metrics (this study ig
nores laser intensity metrics) returned by FUSION are considered 
descriptive variables of the canopy information. Moreover, many met
rics are redundant, so high collinearity is expected. On the other hand, 
the canopy magnitudes obtained from the IFN3 plots present a high 
noise level, given the uncertainties present in the data and the various 
allometric models used. 

2.3.4. Canopy uncertainty assessment 
A dispersion analysis in the canopy data shows it does not follow a 

Gaussian distribution, as shown in Fig. 6; so, heteroscedasticity in the 
fitting residuals is expected. In order to properly model the stochastic 
functional relationship between IFN3 data and estimated quantities, we 
need to address the heteroscedasticity problem and then calibrate the 
mathematical model. Therefore, the proposed modeling procedure is 
based on two decisions: First, a Box-Cox transformation on the target 
variables and a Yeo-Johnson transformation on the input variables are 
applied so that the distribution of the residuals is homoscedastic (Sakia, 
1992). Next, a linear Lasso regression is applied to mitigate the problem 
of collinearity in the input data, as it performs variable selection during 
fitting (Zou and Hastie, 2005). The regularization parameter is opti
mized using a grid search cross-validation scheme. Once the fitting is 
completed, observations beyond 3σ values are omitted to eliminate the 
influence of outliers. Then, the fitting process is repeated without them. 
The transformation of the variables and the linear fitting are imple
mented using the scikit-learn Python library (Pedregosa et al., 2011). 

Three linear regressions are performed after the Yeo-Johnson 
transformation for H, CBH, and CBD and the Lasso regression tech
nique identifies the following relevant features:  

• H as the predictor: minimum (light return) height, height variance, 
coefficient of variation, height kurtosis, 10th and 90th height return 
percentiles, and profile area.  

• CBD as the predictor: height variance, coefficient of variation, inter- 
quartile distance, skewness, kurtosis, median of the absolute de
viations from the overall median, 1st percentile value, 5th, 30th, 
70th, 90th, 95th, and 99th height return percentiles, percentage of 
first returns above the mean, percentage of all returns above the 
norm, and profile area. 
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• CBD as the predictor: minimum (light return) height, mode of the 
return distribution, variance, coefficient of variation, kurtosis, 5th, 
75th, and 80th height return percentiles, canopy relief ratio, per
centage of first returns above 2 m, and percentage of first returns 
above the mean. 

Extrapolating these regressions to the study domain requires 
applying the inverse transformation. Thus, a heteroscedastic uncertainty 
model of the forest cover layers is obtained based on the uncertainty 
associated with the available raw data. Besides, the extrapolation re
quires deriving the statistical metrics of the LiDAR return cloud points 
corresponding to the 8× 8, km2 grid surface elements that model the 
Cocentaina area. These specifications are required since the input LiDAR 
metrics need to be derived from a normalized point cloud with the exact 

resolution used for the input data processing. Regression results from the 
IFN3 data, along with uncertainty levels, are presented in Fig. 6. As 
shown, the method of transforming (Yeo-Johnson) regression and in
verse transforming captures the variability of the data across all values. 

With these calibrated models, we can now generate scenarios with 
different degrees of uncertainty and propagate that uncertainty into the 
fire model. Fig. 7 illustrates the methodology for deriving perturbed 
forest cover layers according to uncertainty levels compatible with the 
input data. 

2.3.5. Wind maps 
Fire behavior is significantly influenced by wind speed and direction. 

Fire spread predictions improve as more realistic wind fields are 
computed (Forthofer, 2007). Computational Fluid Models (CFD) can 
offer accurate approximations of the wind fields, as direct measurements 
are not readily available at the necessary level of resolution. Nonethe
less, their computational demands often exceed the requirements of fast- 
fire behavior modeling approaches. 

FlamMap incorporates the operative wind solver WindNinja 
(Wagenbrenner et al., 2016). The solver consists of a simplified tridi
mensional CFD model conceived to compute wind field maps involving 
simulation times of the order of minutes or less. Given a specific wind 
speed and direction observation, it reduces the modeling approach to be 
consistent with mass-conservation and topography. This integration 
enables a compatible and practical solution for operational wildfire 
spread modeling. It has to be mentioned that meteorological observa
tions in wildfire contexts are typically limited to specific stations or local 
monitoring. 

2.3.6. Live and dead fuel moisture 
Humidity is a relevant variable in fire behavior, with ongoing de

velopments in remote sensing techniques that aim to estimate its spatial 
distribution (Myoung et al., 2018). Here, humidity is modeled based on 
moisture dynamics. FlamMap integrates the estimation of dead fuel 
moisture values following the approach proposed by (Albini, 1976 and 
Nelson, 2000) (Fig. 9 right). The approximation uses preceding meteo
rological conditions (temperature, relative humidity, precipitation, and 
cloud coverage), topography, and tree canopy to precondition moisture 
in equilibrium with the environment. Moisture preconditioning takes 
place for each fire behavior map that is computed. The stream of 
meteorological data used for each update is the full-time series up to the 
instant of time of interest. Initial values for moisture ratios are required 
to solve this equilibrium. For reproducibility purposes, initial valid es
timates are indicated. For fuel models, these are assigned identically. 
Moreover, these depend on the time lag that different combustible 
particle sizes take to respond to environmental changes. 6% for 1 h, 8% 
for 10 h, 10% for 100 h (Fig. 8). The herbaceous fuel (125%), and live 

Fig. 6. H, CBH, and CBD magnitudes from the 492 IFN3 plots considered in this study versus the corresponding regression results. Regression estimates of the 
standard deviations at ±σ and ±2σ are plotted against data points. As can be seen, the deviations are not constant for the different ranges of values; therefore, it is a 
heteroscedastic model of the noise in the data. 

Fig. 7. Schematic diagram of the methodology to use LiDAR data-driven 
models of H, CBH, and CBD with uncertainty retrieval. Lasso regression is 
used to fit the model. This methodology enables a robust estimation of uncer
tainty and subsequent perturbation of the canopy input layers. Sampling values 
from the uncertainty distribution enables the implementation of ensemble 
modeling techniques. 
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woody fuels (100%) are also considered. In addition to surface fire 
spread modeling, crown fire modeling requires the specification of foliar 
moisture content. Foliar moisture content is set to 100%. This value is 
not subjected to moisture preconditioning. 

3. Case study: Cocentaina wildfire 

The case study refers to a well-documented wildfire on July 12th, 
2012, in the outskirts of Cocentaina, a small town in the province of 
Alicante, southeast Spain. 

The forested area corresponds to the natural protected area known as 
”Parque Natural de la Sierra de Mariola.” The dominant canopy species 
found are Aleppo Pine (Pinus Halepensis) and Oak (Quercus Ilex). The 
study area exhibits a typical Mediterranean landscape, with some 
resemblance to a continental climate due to the high altitude of the 
mountain range. Winters are cold, with temperatures dropping as low as 
− 15 ◦C at the highest peaks (around 1000 m of altitude). Summers are 
hot, with temperatures rising above 35 ◦C and occasionally reaching 40 
◦C. Rainfall ranges from approximately 350 mm to 900 mm annually 
and follows highly irregular patterns. 

The information presented here is compiled from post-fire reports 
available at the Integrated Forest Fire Management System of Generalitat 
Valenciana (SIGIF) (Soriano and Botella, 2015). As a significant contri
bution to this work, a comprehensive effort has been made to incorpo
rate suppression activities. They are compiled from the corresponding 

Forest Fire Report (PIF) according to the General Statistics on Forest Fires 
(EGIF) (MITECO, 2012), which is filled out by the firefighting author
ities after the wildfire event. Further modeling of the terrestrial mea
surements is implemented following detailed reports in press (Shakila 
et al., 2012). 

The wildfire started at 3:10 pm on July 12th and was entirely 
controlled by 8:15 am on July 16th. By 2:30 pm on July 13, the wildfire 
had already affected 90% of the final total burned surface. Wind pri
marily drove this wildfire and benefited from favorable upward topo
graphical alignments. Initially, the fire propagated upwards following 
the canyon called ”Barranco del Bou”. Then, as the wind direction 
shifted westwards, it contributed further to the fire spread. The ignition 
source of the fire was located in a chaparral area with a high fuel load. 
The bulk of the fire perimeter exhibited a heterogeneous distribution of 
fuels, including areas with adult trees experiencing crown fire activity. 
Surface firefighters arrived 40 min after the fire was spotted. During the 
following 24 h post-ignition, up to 20 aircraft and 200 personnel worked 
to reduce fire spread on different fronts. 

Meteorological conditions were recorded at the Agres Meteorolog
ical Station (CEAMET), located 8 km away from the fire site. At the start 
of the fire, temperatures were mild during the daytime (around 23 ◦C) 
and did not drop below 20 ◦C at night. The following day, temperatures 
increased to around 30 ◦C. Relative humidity varied between 60% and 
80% during the first day but abruptly dropped to values ranging from 
20% to 30% during the night (Fig. 9 left). The final fire perimeter 

Fig. 9. Left, meteorological data during the wildfire event. Records presented in this figure start at 1:10 pm on 12th July 2012, over 60 h. Relative humidity, 
temperature, wind speed, and wind direction are displayed (Soriano and Botella, 2015). Right, an example of dead fuel moisture computation over 70 h. This 
example illustrates a fuel composed of wood sticks. Moisture dynamics is presented for three different particle diameters. The legend denotes the diameter by their 
time lag in hours (h) to respond to environmental conditions. The smaller the diameter, the faster the fuel achieves stationary equilibrium with environmental 
conditions. Computation reproduced from (Nelson, 2000). 

Fig. 8. Aerial photos of the burned surfaces. Source (Soriano and Botella, 2015).  
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covered an area of 20.83 km with a total burned surface of 545.93 
hectares in the forestry area. There were no secondary ignitions, and no 
urban or industrial interfaces were affected. 

4. Results 

Half-hourly spaced information on temperature, relative humidity, 
wind speed, and wind direction recorded from July 9th to 14th at the 
nearby Agres Meteorological Station constitutes the meteorological time 
series data. Within the dynamic wind model configuration, the input 
wind speed and direction in WindNinja are derived from the average of 
wind observations recorded over two hours. In every simulation, mois
ture is preconditioned using data from July 9th to the actual time fire 
behavior is being computed. Fuel Models, canopy cover, elevation, 
slope, and aspect maps are static throughout the different simulations. 
The impact of uncertainty in the canopy structure is estimated using the 
confidence interval ±2σ concerning the median of the regression models 
of the three canopy layers H, CBH, and CBD. According to the model, 
this range encompasses 95% of the expected canopy layer deviations. 

The final burned area is measured in hectares. The over and under- 
predicted burned areas, expressed as percentages relative to the actual 
burned surface, are presented as wildfire model mismatch estimators. It 
is crucial that as time passes and weather changes, the CA must imple
ment these dynamics in an operational model, even though the effects of 
fire on local weather are neglected. Varying environmental conditions 
are considered by computing fire behavior maps at different times. The 
CA spreads the wildfire under constant conditions for each new fire 
behavior map for a certain number of time steps Δt. The temporal 
evolution of the landscape is simulated by utilizing the final state of the 
CA simulation as the initial condition for the subsequent set of envi
ronmental conditions. 

FARSITE, integrated within FlamMap, adopts the same approach for 
simulating fire spread. However, it introduces additional complexity 
compared to the CA dynamics by representing the fire perimeter as a 
collection of geometric points. These mechanisms require continuous 
self-evaluation of the growing burned rim to prevent spurious over
lapping. In contrast, the CA dynamics simulate burned surface growth 

without the need for self-evaluating mechanisms, as interactions be
tween cells are defined and pre-computed before the simulation starts. 

Fire suppression actuation is not part of the fire behavior module. Its 
appropriate modeling would require a detailed spatial and time distri
bution of their deployment. Press reports (Shakila et al., 2012) described 
where primary fire attacks occurred during day and night. Fire surface 
suppression is incorporated in the model by delimiting barrier elements 
on the grid where fire spread is not allowed. The extent of the coarse- 
inferred barriers is displayed from Fig. 10 to Fig. 13. Simulations pre
sented in these figures take the median H, CBH, and CBD values from the 
canopy model regressions as inputs to the fire behavior module. 
Numbers highlighted next to the barrier layouts represent the time 
sequence of their execution:  

• Barrier 1 was deployed at 15:45 (12th).  
• Barrier 2 was deployed at 19:30 (12th).  
• Barrier 3 was deployed at 21:30 (12th).  
• Barrier 4 was deployed at 02:15 (13th). 

According to the PIF and post-wildfire report, it took several days to 
completely control the fire, even though the burned perimeter remained 
relatively unchanged after 2:30 (13th). The fire spread mechanism does 
not incorporate natural fire extinguishing mechanisms. This introduces 
an extra layer of uncertainty in the modeling process. Thus, two fin
ishing scenarios are explored: at 2:30 and 6:30, representing 14 and 17 
h, respectively. Fire behavior is updated approximately at intervals of 
2 ∼ 3 h, and Δt = 40 s is used, which is optimized for this scenario ac
cording to subSection 2.2. 

In our case, we include four different fire behavior modifications: 

• The static case equivalent to FlamMap with moisture precondition
ing and WindNinja winds.  

• The scenario in which wind changes dynamically.  
• The scenario in which moisture preconditioning changes 

dynamically.  
• The complete scenario in which both moisture and wind change 

dynamically. 

Fig. 10. Comparison between the FlamMap MTT fire growth algorithm and the static CA fire perimeter predictions. At the left and bottom borders, both MTT and CA 
dynamics encounter the system boundaries. Barriers are not considered. Simulation time finishes at 6:30 am, 13th (17 h). 
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Table 1 displays the results for static and dynamic fire behavior 
models, also with the implementation of dynamic suppression barriers. 

The predicted burned area intervals indicate that the final perimeter 
is smaller as the canopy model becomes denser and more extensive. This 
aligns with the understanding that mid-flame wind magnitude, which 
enhances fire spread rate, diminishes in the presence of more compre
hensive and denser vertical fuel distributions (Andrews, 2012). 

MTT and the CA show equivalence in a scenario with no dynamic 
environment, but some discrepancies are present, as shown in Fig. 10. In 
the CA, fire spreads in discrete directions and distances, leading to an 
incremental expansion of the burned surface. A burning cell ignites its 
neighbors when the fire reaches the exact distance separating them. 
Consequently, the fire front may traverse neighboring cells during 
several CA iterations without setting them ablaze. This effect propagates 
throughout the simulation, resulting in larger predicted MTT burned 
areas. 

Despite identifying these differences, both static approaches display 
significant over-predicted percentages ranging from 202% to 356%. 
Without barriers, the CA only significantly improves when moisture and 
wind are dynamically updated based on weather data, as observed in 
Fig. 11. In this dynamic model, over-burned percentages indicate that 
fire growth follows a more realistic pace, reproducing the day-night 
weather cycle. While limiting wildfire growth, the over-predicted per
centages still vary broadly from 105% to 201%. Moreover, considering 
dynamic winds, canopy uncertainty substantially impacts this result. On 
the one hand, for thinner and lower canopy layers, the over-predicted 
burned percentages share values as high as those from the static 
models (226% to 312%). On the other hand, for denser and taller canopy 
structures, the over-predicted percentages diminish to 161% and 215%, 
improving the static results. Regarding the under-burned percentages, 
these suggest that all three dynamic models fail to burn large areas, up to 
38%-48% with dynamic moisture. This last observation states that dy
namic moisture has a great sensibility to the day-night cycle, strongly 
reducing the fire rate of spread. 

With the presence of barriers in the dynamic models, over-burned 
percentages decrease to 81% in the worst-case and 13% in the best 
result. The inclusion of barriers still validates the model that in
corporates both dynamic wind and moisture as the one predicting less 
excess in the burned surface. Similarly to the scenario without barriers, 
the model that only considers dynamic winds shows higher dispersion 
due to uncertainty in the canopy structure. Focusing on under-predicted 
burned percentages, deploying dynamic barriers in the models increases 
this magnitude in all cases. Again, when only dynamic moisture is 
considered for computing time-varying fire behavior scenarios, it 

Fig. 13. Results of the CA with dynamic wind and moisture, using eight pre-computed scenarios, without and with barriers. At the bottom border, CA dynamics 
encounter the system boundary. Simulation time finishes at 6:30 am, 13th (17 h). 

Table 1 
Model results are presented as the final burned area and percentages of over and 
under-burned final estimations. First, the static models, where the fire growth 
model does not consider varying environmental conditions (MTT and equivalent 
CA). Then, dynamic models without barriers and with dynamic suppression 
barriers. Results are given per attribute as a range comprising the 95% vari
ability confidence interval of the canopy structure regression model. Each model 
is presented for 14 h and 17 h completion simulated times.   

Model Real 
time 

Burned Area Over - 
burned 

Under - 
burned   

(h) [,]95%(Ha) [,]95%(%) [,]95%(%) 

Static MTT 14 [2091,1931] [287,258] [3,4]   
17 [2478,2346] [356,332] [2,2]  

CA 14 [1711,1582] [223,202] [10,12]   
17 [2079,1951] [286,264] [5,6]       

Dynamic Wind 14 [1685,1290] [226,161] [17,24]   
17 [2166,1625] [312,215] [15,17]  

Moisture 14 [1079,975] [145,127] [47,48]   
17 [1394,1304] [194,179] [38,39]  

Wind & 14 [1121,929] [133,105] [28,34]  
Moisture 17 [1546,1325] [201,160] [17,17]       

Dynamic 
& 

Wind 14 [695,516] [56,30] [28,36] 

Barriers  17 [839,640] [81,46] [27,28]  
Moisture 14 [441,376] [39,29] [58,60]   

17 [546,496] [49,42] [49,51]  
Wind & 14 [482,370] [27,13] [39,46]  
Moisture 17 [640,584] [46,36] [29,29]  
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displays the larger under-predicted burned percentages (49% to 60%). 
The situation in which only wind changes dynamically presents the 
lower under-predicted burned percentages. Winds consistently 
strengthen fire spread. Despite the results consistently exhibiting larger 
variability due to canopy in this setting, under-predicted burnt per
centages have smaller magnitudes. 

The relative change in over-predicted burned percentages is more 

remarkable than the increment of under-predicted percentages, along 
with the inclusion of barriers. Furthermore, over-predicted burned 
percentages intrinsically feature more variability than under-predicted 
percentages. It suggests the possibility of misclassified fuel models in 
the area, leading to lower fire spread rates. If variability in forest 
structure would introduce variability in over-burned percentages, dis
turbances should similarly impact under-burned percentages. 

Fig. 11. Comparison between the FlamMap MTT fire growth algorithm and the CA with dynamic wind and moisture, using eight pre-computed scenarios fire 
perimeter predictions. At the left and bottom borders, both MTT and CA dynamics encounter the system boundaries. Barriers are not considered. Simulation time 
finishes at 6:30 am, 13th (17 h). 

Fig. 12. Results of the CA with dynamic wind, using seven pre-computed scenarios, without and with barriers. At the bottom border, CA dynamics encounter the 
system boundary. Simulation time finishes at 2:30 am, 13th (14 h). 
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Fig. 12 and Fig. 13 present results of the different dynamic models 
considering as canopy layers the median H, CBH, and CBD values in the 
scenarios with and without barriers. Without barriers, these results 
illustrate that fire spread extends beyond the recorded final fire perim
eter in the southeast area. It has to be highlighted that the recorded 
ignition point lies approximately at the final burned surface perimeter. 
However, the local elliptical spread rate always predicts a non-negligible 
fire spread in the opposite direction to the actual final burned surface, 
regardless of wind conditions. The role of suppression tactics is inferred 
to cause this deviation between models and the actual final burned 
perimeter. In the models, while barriers 2 and 3 prevent the fire front 
from expanding beyond its borders, barrier 1 significantly affects the 
southeast direction of fire spread. Thus, initial fire attack efforts can 
explain how fire did not spread in that direction where urban areas 
sprawl. Barrier 3 notably prevents northward spread in all considered 
scenarios, as inferred from media reports and the final fire perimeter. As 
commented before, the fire initially spread upwards, turned west, and 
finally northeast. The model predicts that behavior reasonably well. 

Simulation completion times have different impacts on the final fire 
perimeter. Dynamic wind and moisture preconditioning yields better 
similarity to the final burned surface when the model iterates larger real- 
time intervals (17 h vs. 14 h). Conversely, when only wind is computed 
dynamically, the effect is the opposite. This result agrees with the fact 
that moisture conditioning mirrors the day-night cycle. Temperature 
and relative humidity fluctuate more than wind during this period. 
Moisture variability constrains fire spread rates. Fig. 12 and Fig. 13 
highlight these aspects, with dynamic wind displaying a simulation of 14 
real-time h and with moisture preconditioning simulating 17 real-time 
h. 

Computation times are registered to be about the order of minutes, 
validating this modeling framework as a viable operational tool. Ex
periments were run on a laptop computer with 16 Gb RAM, an Intel I7 
processor, and using a single core. 

As discussed in this work, operational wildfire models inherently 
display inaccuracies. Although this study enhances our comprehension 
of these phenomena, several key limitations need consideration: 

• The modeling of input uncertainties can be extended to other rele
vant variables, such as wind data and fuel mapping. A more 
comprehensive sensitivity analysis yields more accurate fire-related 
confidence intervals.  

• The fire growth model lacks environmental criteria such that under 
certain circumstances, fuels can be assumed to be virtually exhausted 
(a natural stopping criterion for fire growth). 

• Fire-Wind Feedback: The model does not account for the bidirec
tional relationship between fire and wind. This feedback mechanism 
plays a pivotal role in the chaotic dynamics of specific fires (Kartsios 
et al., 2021), and future operational fire models should endeavor to 
incorporate this phenomenon.  

• This study underscores the significance of human factors as relevant 
variables in fire dynamics. Other human-related activities can impact 
fire behavior at the Wildland-Urban-Interface (Wahlqvist et al., 
2021; Vacca et al., 2020; Katzilieris et al., 2022) or even cultural, 
political, and socioeconomic factors can influence fire risks (Canti
zano et al., 2022; De Diego et al., 2023). 

5. Discussion and conclusions 

Global warming has led to an increase in the size and frequency of 
wildfires. This serious problem requires accurate models that can predict 
their behavior and help prevent them. These models must consider both 

micro-level factors, such as physical models of fire propagation and local 
terrain features, and macro-level factors, such as wind patterns and 
firefighters’ interventions. By providing scientifically rigorous pre
dictions, these models can assist risk management processes and poli
cymakers strategies on the mitigation and impact of wildfires. 

Our work introduces a new methodology that utilizes advanced 
operational models incorporating physical fire propagation models, 
LiDAR databases, and real-time measurements of wind and humidity. 
This method enables us to identify the key factors that contribute to the 
spread of wildfires, such as detailed information on the intervention of 
firefighters and the local meteorological conditions. 

It has traditionally been considered safer to over-predict the spread 
of fires. However, we emphasize that models should be calibrated based 
on specific canopy structures and meteorological conditions rather than 
relying on summary indicators that do not capture the underlying 
dynamics. 

Modeling the spread of fire presents several challenges, including 
limitations and the inability to capture certain phenomena within cur
rent frameworks adequately. Determining simulation end times and 
assessing the extent of firefighters’ ability to influence wildfires are 
examples of the complexities that require attention. 

In this study, we found that wind is the primary factor shaping the 
pattern of a wildfire, followed by moisture preconditioning. Addition
ally, the structure of the canopy significantly impacts the predictions, 
particularly the extent of over-burned areas, highlighting its role in 
influencing the speed of fire spread over extended periods. While fuel 
models are classified according to a predefined scheme, there is always 
uncertainty and variability within this layer of information. However, 
the misclassification of fuel models is evident through the robustness of 
the under-burned percentage, indicating that certain areas’ fuel models 
may have needed to be accurately assigned. 

The lack of precise information can be mitigated by incorporating 
uncertainties derived from public data repositories. By accounting for 
these uncertainties, fire behavior models can better capture the inherent 
variability and improve their predictive capabilities. While this study 
does not aim to provide a comprehensive sensitivity analysis, it un
derscores the importance of considering and incorporating uncertainties 
to enhance the accuracy and reliability of fire spread modeling in similar 
contexts. 

Finally, we want to emphasize the versatility and accuracy of CA as a 
fire growth model. The static CA case deviates from the MTT algorithm, 
a well-accepted approach to wildfire modeling. Nevertheless, differ
ences due to spatial discretization fade away in complex scenarios 
encountered in Nature. Many works indeed aim to force CA to resemble 
more FARSITE and MTT. However, results claim this is unnecessary, at 
least within the scope of this studied wildfire. 
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Appendix A. Spanish public data repositories 

This Appendix explains the three public forestry repositories employed in this work in more detail. Fig. A.1 represents the type of available data 
from the different repositories.

Fig. A.1. Available data from public repositories. Left: LiDAR data is visualized using (McGaughey, 2022). Center: Spanish Forest Map is displayed using (QGIS 
Development Team, 2021). Right: visual representation of the Spanish National Inventory is taken from the online visualization tool (Vega-Gorgojo et al., 2022).  

A.1. Spanish National Orthophoto Program (PNOA) 

LiDAR is a remote sensing technique that captures detailed information about objects and vegetation in three-dimensional space. It operates by 
emitting laser pulses from a source and measuring the time it takes for the reflected pulses to return. This enables the creation of highly accurate and 
detailed maps of the surveyed area. The output of a LiDAR survey is a collection of point clouds. This technique is particularly well-suited for forestry 
inventories, as Airborne Laser Scanning (ALS) allows for efficiently characterizing large vegetated areas. The amount of countries that have invested in 
their public programs to conduct LiDAR surveys is limited, such as Canada, Switzerland, Finland, and Spain. In Spain, the national LiDAR dataset is 
part of the PNOA project, which aims to cover the entire country in a six-year cycle. The first coverage of the project was conducted between 2009 and 
2015, while the second coverage began in 2015 and was completed in 2021. Currently, the third coverage is underway, starting in 2023. These 
successive LiDAR coverages provide valuable data for various applications, including forestry analysis, land management, and environmental 
monitoring. 

A.2. Spanish Forest Map (MFE) 

Fuel model mapping is the basis for surface fire spread modeling. An up-to-date and comprehensive forest cartography mapping, which encom
passes vital information about soil utilization, vegetation status, and dominant forest species, is crucial. In Spain, the MFE serves as the national 
baseline for forest topography, offering a vector representation of forestry ecosystems across the country’s landscape, partitioned into homogeneous 
subdomains. This information is available from the Ministry for the Ecological Transition and the Demographic Challenge web in a vector file ready to be 
processed in GIS software. As part of a periodically updated survey, the versions valuable to this study are the MFE50 (1:50000 scale) and MFE25 
(1:25000 scale) maps. The MFE50 was developed between 1998 and 2007, while the MFE25 project commenced in 2007 and is currently ongoing. 

The databases describe the forest stands encompassing various fields relating to their ecological and structural features. For tree forest usage, 
MFE50 considers three distinct species, each with its corresponding stage of development (reforested, coppice, latizal, and fustal). Additionally, it 
includes the occupation percentage, representing the species’ coverage about the total number of trees, as well as the fraction of the total area covered 
by each of the species. The most recent forest map version MFE25 incorporates the Rothermel Fuel classification as an attribute associated with every 
tile. 

A.3. Spanish National Forest Inventory (IFN) 

A forest inventory involves systematically collecting forest data and information from precisely defined plot stands for assessment or analysis. The 
spatial distribution of these plots ideally aims to statistically represent the variables determining the forest structure in the surveyed area. 

Unlike the MFE, which relies primarily on remotely acquired data, forest inventories are exclusively recorded on-site by specialized personnel 
equipped with the necessary tools and instruments. There is no standardized methodology for characterizing forest geometrical structures using 
remote sensing techniques. 

In Spain, the IFN project carries out a comprehensive update of the inventory periodically every ten years, starting in 1966. The Fourth National 
Forest Inventory (IFN4) is the current iteration. 
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