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Real Higgs pairs and non-abelian Hodge

correspondence on a Klein surface

INDRANIL Biswas, Luis ANGEL CALVO, AND OSCAR GARCIA-PRADA

We introduce real structures on L-twisted Higgs pairs over a
compact connected Riemann surface X equipped with an anti-
holomorphic involution, where L is a holomorphic line bundle on
X with a real structure, and prove a Hitchin—Kobayashi correspon-
dence for the L-twisted Higgs pairs. Real G®-Higgs bundles, where
GR® is a real form of a connected semisimple complex affine alge-
braic group G, constitute a particular class of examples of these
pairs. In this case, the real structure of the moduli space of G-Higgs
pairs is defined using a conjugation of G that commutes with the
one defining the real form G® and a compact conjugation of G pre-
serving G®. We establish a homeomorphism between the moduli
space of real GR-Higgs bundles and the moduli space of representa-
tions of the fundamental group of X in G* that can be extended to
a representation of the orbifold fundamental group of X into a cer-
tain enlargement of G® with quotient Z/2Z. Finally, we show how
real GR-Higgs bundles appear naturally as fixed points of certain
anti-holomorphic involutions of the moduli space of G®-Higgs bun-
dles, constructed using the real structures on G and X. A similar
result is proved for the representations of the orbifold fundamental

group.
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1. Introduction

In recent years, much attention has been paid to the theory of Higgs pairs.
The study of these objects is primarily motivated by various moduli prob-
lems arising from gauge theory, algebraic geometry, symplectic geometry,
topology and mathematical physics. To recall the definition of a Higgs pair,
let X be a compact connected Riemann surface, G a connected reductive
complex affine algebraic group, V a complex vector space, p : G — GL(V)
a holomorphic representation and L a holomorphic line bundle over X. A L-
twisted Higgs pair (F, ¢) of type p is a pair consisting of a holomorphic
principal G-bundle E over X and a holomorphic section ¢ of V' ® L, where
V := E(V) is the holomorphic vector bundle over X associated to E via
p. In [GGMI], the notion of a-polystability for these pairs was introduced,
where « is an element of the center of the Lie algebra ¢ of a fixed maximal
compact subgroup K C G. The Hitchin—Kobayashi correspondence in
this context, also proved in [GGMI], has the following formulation:

Once we fix a Kéhler form w of X, a L-twisted Higgs pair (E, ) of type
p is a-polystable if and only if there is a reduction h of structure group of
the principal G-bundle E, to the maximal compact subgroup

K c @G,
that satisfies the Hermite—Einstein—Higgs equation
(1.1) AFy + pn(p) = —V—la,

where Fj, is the curvature of the unique connection, on the principal K-
bundle Fx C F corresponding to the reduction h, which is compatible with
the holomorphic structure of F, while A denotes the contraction of differ-
ential forms on X using the Kéhler form w, and uy is a moment map that
depends on h.
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The construction of the above-mentioned moment map py, requires fixing
a bi-invariant inner product B on the Lie algebra

t = Lie(K),

a K-invariant Hermitian product (, ) on V as well as a Hermitian metric Ay,
on L. Examples of twisted Higgs pairs are quiver bundles, Higgs bundles and
Hodge bundles among other objects (see [ABGl BrGP, BGGH| [GGMI| IGR]
and references therein for examples and more on Higgs pairs).

One of the main goals of this paper is to extend the above correspondence
to the context where all the objects are equipped with real structures. By this
we mean anti-holomorphic involutions ox and og on X and G, respectively,
an anti-linear involution oy on V such that the holomorphic representation
p is compatible with respect to og and oy, as well as an anti-holomorphic
involution o7, on L over ox, which is anti-linear on the fibers. A (ox,0¢, ¢)-
real structure on a holomorphic principal G-bundle E over X is an anti-
holomorphic automorphism og of E over the involution ox of X, such that
op(eg) = op(e)og(g) and 0% (e) = ec, for all e € E and g € G, where
c € Z3° NKer(p) with Z7¢ being the subgroup of the center Z(G) of G
consisting of all the elements of order two invariant under the involution
og. With these real structures in place, set

o = (O—X’ oG, C, 0L, OV, :l:) :

A o-real L-twisted Higgs pair of type pis a triple of the form (E, ¢, og),
where

e (E, p) is a L-twisted Higgs pair of type p,
e opisa (ox,0q,c)-real structure on E, and

e ¢ satisfies the condition (oy ® or)(¢) = Lok e, with oy being the
involution of V' = E(V) induced by o and oy.

A reduction of structure group Ex C FE of F to the maximal compact
subgroup K is said to be og-compatible if it is preserved by the self-map
op of E. We prove the following Hitchin—Kobayashi correspondence (see
Theorem 4.1):

Theorem 1.1. A o-real L-twisted Higgs pair (E, ¢, op) of type p is
polystable if and only if there is a og-compatible reduction h of the structure
group of E, from G to K, that satisfies equation (1.1)).



488 I. Biswas, L. A. Calvo, and O. Garcia-Prada

In order to prove Theorem 1.1, we first adapt the arguments in [GGMI]
to reduce the proof to the case of stable Higgs pairs. The main difficulty
here is to characterize the space of infinitesimal automorphisms for a stable
o-real L-twisted Higgs pair (F, ¢, og), taking into account our stability
condition that involves a condition on the adjoint bundle Ad(E). Once that
is achieved, we adapt the arguments in [BGM]| to prove the above theorem
in the stable case. This approach involves finding a minimizing sequence of
o p-compatible metrics for the integral of the moment map , converging
weakly to the solution we are seeking.

Now, let G® be a real form of a connected semisimple complex affine
algebraic group G. Let

H® c GF

be a maximal compact subgroup, and g® = h® @ m® be the Cartan decom-
position of g¥, the Lie algebra of G®, where bR is the Lie algebra of H® and
m® is its orthogonal complement with respect to the Killing form on g®. Let
H and m be the complexifications of H® and m® respectively.

A particular class of L-twisted Higgs pairs are the G*-Higgs bundles.
For a G®-Higgs bundle, the above line bundle L is the holomorphic cotangent
bundle Kx of X, the structure group is H, while p is the adjoint representa-
tion ¢ : H — GL(m). In other words, a G®-Higgs bundle is a pair (E, ¢),
where F is a holomorphic principal H-bundle on X and ¢ is a holomorphic
section of the holomorphic vector bundle F(m)® Kx. We recall that the
non-abelian Hodge correspondence for GR-Higgs bundles produces a homeo-
morphism between the moduli space M(GR) of polystable G®-Higgs bundles
on X and the character variety R(G®) of equivalence classes of reductive
representations of the fundamental group of X in G® (see [GGMI]).

Another main result of this paper is the extension of the non-abelian
Hodge correspondence to the context of real G®-Higgs bundles, where
G® is, as above, a real form of a connected semisimple complex affine al-
gebraic group G. For this set-up, we need to consider a real structure og
on G which satisfies the condition that it commutes with a fixed compact
conjugation 7 and the conjugation p of G defining the real form G®. Then
oq preserves H while dog preserves m. Moreover, ¢ is a representation com-
patible with o and dog. Real GR-Higgs bundles are o-real K x-twisted
Higgs pairs of type ¢, where oy = dog, while o, = ok, is the natural anti-
holomorphic involution of L = Kx induced by ox. Note that the case of real
G™®-Higgs bundles generalizes the case of real Higgs bundles for a complex
group studied in [BGHI], [BGH3| and [BHul, since a complex semisimple Lie
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group G can be viewed as a real form of G x G, where the anti-holomorphic
involution is (z, y) — (y, ).

To describe the other side of the non-abelian Hodge correspondence,
let I'(X, =) be the orbifold fundamental group of (X, ox) for a base point
x € X. Let

c € Z9°(H)NKer(t) N Z(G¥),
where Z(H) and Z(G®) are the centers of H and G® respectively, and

Z35°(H) is the subgroup of elements of order 2 in Z(H) invariant under
oag. Also, let

GR = @]i (0G,c)
be the group whose underlying set is G® x (Z/2Z) and the group operation

is given by the rule

e1+e2

(g1, €1)(g2, €2) = (g1(oaT2T2)(g2)c ™, e1 + €2).

A representation
p: (X, z) — G&

is called (ox,0q,c, £)-compatible if it is an extension of a representation
p: (X, ) — G fitting in a commutative diagram of homomorphisms

(1.2) 0——>m(X, 2) —>T(X, 1) —>7/2Z —>0
lp J{ﬁ lld
0 e, SN S 7/

where 7 and ¢’ are the inclusion maps and ¢ and ¢’ are the corresponding
projections.

Let R(G®, 0x,0q, ¢, £) be the variety consisting of GX-conjugacy classes
of (ox,0q, ¢, £)-compatible representations

p:T(X,z) — G&

whose restriction to m1 (X, x) is reductive, that is, its conjugacy class is an
element in R(G¥).
We prove the following (see Theorem 5.6):

Theorem 1.2. There is a canonical homeomorphism  between
R(GR,0x,0q,¢,£) and the moduli space M(G®,0x,0q,c,%) of polystable
(0x,0q,c,+)-real GR-Higgs bundles.
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The proof of Theorem 1.2 crucially uses Theorem 1.1 together with an
appropriate version of the Donaldson—Corlette theorem on the existence
of harmonic metrics. It may be mentioned that Theorem 1.2 could be the
starting point to identify higher Teichmiiller spaces in this real context, as
it is done in the usual theory of G®-Higgs bundles (see [GP] for a review).

We note that real GR-Higgs bundles appear in a natural way as fixed
points of the involutions — of the moduli space M(G®) of GR-Higgs bundles
— defined by

(1 3) LM<O—X7 O_G)i : M(GR> — M<GR)
' (E,9) +— (o%ocgE,+o%ocy).
The obvious forgetful map induces a map from M(G®, ox,0q,c, %) to
M(G®), and we prove the following (see Proposition 6.1):

Proposition 1.3. The image of M(G® ox,0¢,c,+) in M(G®) is
contained in the fized point set M(GR)M@x96)%  Fyrthermore, if
we restrict the involution LM(UX,UC;)jE mn to the subvariety of
M (GR) € M(GR), consisting of stable and simple GR-Higgs bundles, then
Mg (GRYr(0x:06)% s contained in the image in M(GR) of the union of mod-
uli spaces M(G®,0x,0G,c,£) parameterized by elements ¢ € Z3°9(H) N
Ker(v), where Z(H) is the center of H and Z3°(H) is the subgroup of ele-
ments of order two in Z(H) invariant under o¢.

We also prove a similar result for R(G®,ox,0q, ¢, ), where the involu-
tions of the character variety R(G®) of the fundamental group of X in G®
are given by

(1.4) iR(ox,06)": R(GF) — R(GF)
' p — o0goT2T20po(0x)«-
(See Proposition 6.2.)

When the group G® is complex, the moduli space M(G®) is a hyper-
Kahler manifold and the fixed point sets of the involutions in and
define branes, in the sense of [KW]. These branes have been studied in
[BS], [BCEGI, [BG], [FGOP], [GR], [GW] and [BGH2]. We note that their
importance stems from their close relation with mirror symmetry and the
Langlands correspondence.

In some sense, in this paper, we are considering doubly real Higgs bundles
since we are studying real structures on Higgs bundles whose structure group
is already real. This is perfectly possible since, although the group GF is a
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real form of a complex group G, G®-Higgs bundles are holomorphic objects
on X even if G® does not have a complex structure, and hence the reality
conditions can be defined by choosing another conjugation of G preserving
G® as well as a conjugation of X. As we have explained above, in the paper
we go beyond Higgs bundles, studying real structures on more general Higgs
pairs.

The article is organized as follows. First, we review in Section 2 the
notions of real structures for the main objects that will be used in the sub-
sequent sections, and we also analyze the Chern correspondence between
holomorphic structures and connections in the presence of real structures.
In Sections 3 and 4 we prove a Hitchin—-Kobayashi correspondence for o-real
L-twisted Higgs pairs (here we follow [GGMI] closely). Firstly, after defining
these pairs, we give some examples and recall the Hermite-Einstein—Higgs
equation. We then prove that a polystable o-real L-twisted Higgs pair that
is not stable admits a Jordan—Holder reduction and, as a consequence of it,
we reduce the proof to the stable case. Following that, we reformulate our
problem in terms of finding a metric on which the integral of the moment
map attains a minimum. Finally, we prove the converse which says that
the existence of solutions of the Hermite—Einstein—Higgs equation implies
polystability. In Section 5, we prove the non-abelian Hodge correspondence
for real G®-Higgs bundles, where G® is a real form of a connected semisim-
ple complex Lie group G. We start by proving a bijective correspondence
between M(G®,ox,0q,c,£) and the moduli space of triples consisting of a
real structure on a C™ principal H®-bundle, a compatible connection, and
a real Higgs field satisfying the Hitchin equations. We also prove an appro-
priate Donaldson—Corlette correspondence, showing the bijection between
the moduli space of solutions to Hitchin equations and the moduli space of
compatible reductive flat G®-connections, which in turn is in bijective cor-
respondence with R(G®, ox,0q, ¢, ). Finally, in Section 6, we describe the
relationship between the fixed-point of the involutions in and the mod-
uli spaces M(G®,0x,0q,c,£), where ¢ varies in Z3¢(H) N Ker(:). By the
non-abelian Hodge correspondence, proved in the previous section, with the
additional condition that ¢ € Z5¢(H) N Ker(¢) N Z(G®), we obtain a similar
description for the fixed points of the involutions in in terms of the
moduli spaces R(G®,o0x,0q,c¢,%).
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2. Real structures

2.1. Real structures on complex Lie groups and their
representations

We recall that a real structure or conjugation on a reductive complex
affine algebraic group G is an anti-holomorphic involution of G. We denote
by Conj(G) the set of conjugations on G, and also denote by Auty(G) the set
of holomorphic automorphisms of G of order two (and the identity map). In
Aute(G) and Conj(G) we define the equivalence relation o ~ ¢’ if and only if
there is some o € Aut(G) with the property that o/ = a~! o0 0 0 a. Cartan
proved in [Ca] that there is a bijection

Conj(G)/~ — Auta(G)/~

21) o] — [,

which is constructed as follows: Fix a compact conjugation 7 of G; now given
any

o € Conj(G),

there is an element ¢’ € Conj(G) such that ¢/ ~ o and the inclusion 6 :=
o' o1 € Auty(G) holds.

Proposition 2.1. Given any o € Conj(G), there is a mazimal compact
subgroup

Kcda
such that o(K) = K.

Proof. Given a compact conjugation 7, by the bijection in (2.1]) there is a
conjugation

o = a_loaoa,
for some o € Aut(G), such that the equality o’ o7 = (0’ o 7)~! holds, and
therefore we have

(2.2) Too =o' or,
because 7 and o are both involutions. Consider 7/ := ao7oa™!; then
K := G7 is a maximal compact subgroup of G. For any z € G, we have

(o(z)) = aotoatoaoco’ cal(z) = aoToo’ oa ! (x)
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= aoc’ oa! OaOToail(w) = U(T/(w))

using Equation . This implies that o(G™) = G7.

An alternative proof: Using the involution o of G, construct the semi-
direct product G x (Z/2Z). Let K be a maximal compact subgroup of G x
(Z/2Z). Then K N G is a maximal compact subgroup of G which is preserved
by o. O

Let G be a complex reductive affine algebraic group equipped with a
real structure o¢, and let V be a complex vector space equipped with a real
structure oy : V — V, that is, an anti-linear involution. A holomorphic
representation p : G — GL(V) is (0, ov)-compatible if for every g € G
and v € V, we have

av(p(9)(v)) = ploc(g))(ov(v)).

Example 2.2 (The adjoint representation). Let G be a complex group
equipped with a real structure og. Then the corresponding R—-linear auto-
morphism dog : § — g is evidently a real structure on the Lie algebra g
of G. Since the adjoint action Ad : G — Aut(G) commutes with the auto-
morphism og, it follows that Ad : G — GL(g) is a (0, dog)-compatible
representation.

Example 2.3 (The isotropy representation). Let G¥ be a real form
of a connected reductive Lie group G, and let 7 € Conj(G) be a compact
conjugation. Denote G™ by K. Let u € Conj(G) be a conjugation such that
the fixed point set (G)* is GR. A conjugation 0 € Conj(G) is called (p, 7)-
compatible if

1) copu = poo, and
2) ooT =ToO.

If o is a (p, 7)-compatible conjugation, then H® = G® N K is a maximal
compact subgroup of G® , whose complexification H is preserved by o.
Moreover, the Cartan decomposition gf = h® @ m® and its complexifica-
tion g = h @ m are preserved by do. The adjoint action of H® on m® (the
isotropy representation) extends to the complexification, giving a represen-
tation ¢ : H — GL(m) which is (o, do)-compatible.
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2.2. Real structures on Riemann surfaces and holomorphic
bundles

We recall that a real structure on a compact Riemann surface X is an
anti-holomorphic involution

ox : X — X.

The pair (X, ox) sometimes will be referred to as a Klein surface. We
note that such pairs were first studied in [KI] and [We|. A morphism of
Klein surfaces

f:(X,0x) — (X', 0ox)

is a holomorphic map f : X — X', suchthat foox = ox/ o f. A Kahler
form w on a compact Klein surface (X, ox) is called real if o w = —w. If
w is a Kéhler form on X, then w — o%w is a real Kéhler form on (X, ox)
(see [BGHIL p. 4]).

Let (X, o0x) be a Klein surface, and let V. — X be a holomorphic
vector bundle. A ox-real structure on V is a C* isomorphism oy : V. —
V such that the following conditions hold:

1) oy lifts ox, meaning that the diagram

L)

ov
SN

ox
e

is commutative,
2) oy is anti-holomorphic,
3) oy is C-anti-linear on the fibers of V', and
4) o = Idy.

Such a pair (V, oy) will sometimes be referred to as a real holomorphic
vector bundle. A homomorphism of real holomorphic vector bundles

foWViov) — (V' ov)
is an Ox-linear homomorphism f : V' — V' satisfying the condition that

fooy =oyof.
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Real holomorphic vector bundles were introduced by Atiyah in [At2], and
they were subsequently studied in [BCEGI, [BG|, [BHH], [LS], [ScI] and
[Sc2]. The topological classes of these real bundles are described in [BHH,
Section 4].

Let G be a reductive complex affine algebraic group equipped with a
real structure o¢, and let (X, ox) be a Klein surface. The center of G will
be denoted by Z. Let

Z3¢ C Z

be the subgroup of Z consisting of elements of Z of order two (and the
identity element) that are invariant under the involution og. Take any

c e Zy°.
Let E be a holomorphic principal G-bundle over X.

A (ox,0q,c)-real structure is a C* diffeomorphism op : £ — FE
such that the following four conditions holds:

I,

X 25 X,

1) the diagram

OEp
N

is commutative, or in other words og is a lift of ox,
2
3

4) 0% (e) = ce.

) og is anti-holomorphic,
)

op(eg) = op(e)og(g), foralle € E, g € G, and

A pair (E, og) satisfying the above four conditions will sometimes be
referred to as a (ox,0¢, ¢)-real holomorphic G-bundle.
A morphism of (ox, 0¢, c)—real holomorphic G-bundles

(B o) — (B, op)
is a holomorphic isomorphism of principal G-bundles f : E — E’ such
that
foog =opof.

In the literature, such bundles are known as pseudo-real principal bundles
(see [BGHI], [BGH3| and [BHu|] and references therein). In [BGH3|, Theorem
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3.9], there is a detailed description of all the topological classes of pseudo-real
principal bundles.

2.3. Chern correspondence and real structures

It will be of importance for us to think of a holomorphic principal bundle as
a O principal bundle equipped with a complex structure. To explain this
in detail, let G be a reductive complex affine algebraic group equipped with
a real structure og, and let (X, ox) be a Klein surface. Take any ¢ € Z5¢,
andlet 7 : E — X be a C* principal G-bundle over X. A (ox, 0, ¢)-real
structure o on E is a lift of ox to E

og : E — E

satisfying the conditions (1), (3) and (4) in the definition of a real structure
of a holomorphic G-bundle given above. An almost complex structure
on E is a G-invariant smooth section J of End(TE), where TE denotes the
real tangent bundle of the total space of E, such that

e J2 = —1d,
e droJ = Jx odm, where Jx is the complex structure of X, and

e the map E x G — E giving the action of G on E is almost holo-
morphic. This means that the differential of this map Ex G — E
commutes with the almost complex structures; the almost complex
structure of E x GG is given by J and the almost complex structure of

G.

It can be shown that an almost complex structure on E is automatically a
complex structure. Indeed, the obstruction to integrability of an almost
complex structure on E is an element of ng (ad(E)), and it vanishes iden-
tically due to the fact that ng = 0 as the complex dimension of X is one.
Let € (E) be the space of all complex structures on E. A complex structure
Jg € F(E) is called og-real if

(23) J[E o dO’E == —dO’E o JE .

We shall denote by ¢(E, og) the space of all complex structures on E that
are og-real. The following proposition is a straightforward fact.

Proposition 2.4. There is a bijection between € (E,or) and the space of
all equivalence classes of (ox,0¢q,c)-real holomorphic principal G-bundles
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(E, op) whose underlying smooth principal G-bundle is E, such that the
C isomorphism between E and E takes op to og. Two such (ox,0q,c)-
real holomorphic principal G-bundles (E, o) and (E', o';) are called equiv-
alent if the C° isomorphism of principal G-bundles E — E' given by the
identity map of E is holomorphic and takes o to o'.

Complex structures on E are closely related to connections on E. Let
m : E — X be a C* principal G-bundle (here G could be any Lie group).
Recall that a connection on E is a horizontal distribution H C TE such
that, for all e € E,

T.E = (VE). @ H.,

where VE := kernel(dr) is the vertical tangent bundle for the projection m,
and the subbundle H C TE is preserved by the action of the group G on
TE given by the action of G on E. This is equivalent to having a g-valued
1-form A on E (with values in g), that is, a smooth section of the bundle
T*E ® g; again we require this A to be invariant under the action of G,
acting by a combination of the given action on E and the adjoint action on
g (equivalently, the map TE — g given by A is G-equivariant). Also, A
should restrict to the canonical right-invariant g-valued 1-form on the fibers
of 7. For details, see [KN| Ch. II].
Let now

p: G — GL(V)

be a holomorphic representation of G on a complex vector space V, and let
V = E(V) be the associated smooth complex vector bundle. Recall that a
connection A on [E defines a covariant derivative on V, that is a C—linear
map

da : Q(X,V) — QYX,V)

that satisfies the Leibniz rule; here QP(X, V') denotes the space of all smooth
sections of V @ AP T*X.

Now, take G to be a reductive complex affine algebraic group equipped
with a real structure og, and let (X, ox) be a Klein surface; also fix an
element ¢ € Z3¢.

Given a smooth principal G-bundle E on X equipped with a (ox, 0g, ¢)-
real structure og, we can impose a reality condition for a connection on
E. A connection A on E is said to be og-compatible if the horizontal



498 I. Biswas, L. A. Calvo, and O. Garcia-Prada

distribution H C TE corresponding to A satisfies the condition
d(og)(He) = Hyy(e), forall e € E.

This is equivalent to the condition that the corresponding g-valued one-form
A : TE — g is (dog, dog)-real, meaning

dogoAodog = A.
Let o/ (E) be the set of all connections on E. We shall denote by
o (E,o5) C o(E)

the subset consisting of all og-compatible connections.
Let

K cd@

be a maximal compact subgroup of G preserved by the involution og (see
Proposition 2.1). Therefore, the involution og of E defines an involution
of the quotient space E/K. A C* reduction of structure group h : X —
E/K of the principal G-bundle E, from G to K, is called og-compatible
if the image of h is preserved by this involution of E/K. Note that h is
og-compatible if and only if the reduction of structure group of E to the
subgroup K

Ex C E

corresponding to h satisfies the condition og(Ex) = Eg.
Let

Ex C E

be a og-compatible reduction of structure group to the maximal compact
subgroup K of G. We denote by o, the restriction of the involution og
to Ex. The space of all connections on the principal K-bundle Ex will be
denoted by &7 (Eg). Let

%(EK, O‘]EK) C M(EK)

be the subset consisting of all og,-compatible connections. Recall that a
connection V € &/ (Ek) lies in &/ (Ek, o, ) if and only if the horizontal
distribution H(A) C TEg for A is preserved by the involution of TE given
by og, -
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There is a natural bijection between the space of complex structures
% (E) on E and the space of connections o/ (Ex) on Ex. This bijection is
given by the Chern map

(2.4) C: ¢[E) — o (Ex)

which is constructed in the following way. For a complex structure J €
% (E), the horizontal distribution on Ex defined by the connection C(J) is
given by

J(TEg))NTEx C TEg .

For details see [Atll pp. 191-192, Proposition 5] and [Sinl, p. 586].
If now E has a og-real structure, and Eg is a og-compatible reduction
of structure group, we have the following.

Proposition 2.5. The Chern map defines a bijection between € (E, og) and
A (Ex,om,).

Proof. Let J be a og-real complex structure on E. Let C/'Zj) C TEg be the
horizontal distribution for the connection C(J) on Ex, where C' is the map
in (2.4). So C(J) is the unique subbundle of TE satisfying the following
three conditions:

1) J(C(J)) = C(J), and

2) C(J) @ kernel(dn’) = TEg, where 7’ : Ex — X is the natural pro-
jection, and

—_~

3) C(J) is preserved by the action of K on Eg.

—~ —~

For any e € Eg, if Y € C(J),, then Y = J(Z), for some Z € C(J),.
By (2.3) we have

dog(Y) = dog(J(2)) = J(dog(—Z)) € J(Toye)(Ex)),

but we also have dog(Y) € T,,(e)(Ex). So dO’E(C/;(\j) .) is also preserved by
J(og(e)) € GL(T,,()E). Consequently, from the above uniqueness property

P

of C(J) it follows that

—_—~— e~

dog(C(J)) = C(J);

recall that J is preserved by the action of G on E. Therefore, we conclude
that C(J) € o (Ek,or,).
The converse is proved similarly. O
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Let X be a Riemann surface with complex structure Jx and equipped
with a real structure ox. Let G be a reductive complex affine algebraic
group equipped with real structure og, and let V be a complex vector
space equipped with real structure oy. Let p : G — GL(V) be a (o¢, ov)-
compatible holomorphic representation. Let E be a C* principal G-bundle
over X equipped with a (ox,o¢g, c)-real structure og as well as a complex
structure J. The associated vector bundle V' = E(V) is equipped with the
following structures:

e an involution oy, induced by o and oy, and
e a complex structure Jy whose Dolbeault operator is given by
_ de+ Jyodpo Jx

Dy = ,

for all p € Q% X,V) (considered as a map ¢ : X — V between
complex manifolds).

If the complex structure J on E is og-real, then 0 J, anti-commutes with
Jy, which is equivalent to the condition that (V, oy ) is a real holomorphic
vector bundle; see Proposition 2.4. If E is equipped with a og-compatible
reduction of structure group Ex C E to the maximal compact subgroup
K, then A := C(J) is a og,-compatible connection, defining a covariant
derivative d4 on V which is related to the Dolbeault operator by

5JVQO = 5,4(,0 = 7TO’1dA<p

for ¢ € Q(X, V), where %! is the projection of complex 1-forms to (0, 1)-
forms.

Example 2.6 (Compatible Hermitian metric). Let E be a C* princi-
pal GL(n, C)-bundle, and let V' := E(C") be the associated complex vector
bundle of rank n on X for the standard representation of GL(n,C) on C".
Let ogr(n,c) be the real structure on GL(n, C) that sends any matrix A to
its conjugate matrix A. Then a (ox, o¢ L(n,C)> c)-real structure oy on E cor-
responds to a ox-real structure oy on V. Giving a og-compatible reduction
on E to U(n) is equivalent to giving an Hermitian structure h : V. — v
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on V such that the diagram

(2.5) V—=V

o

VLU v

commutes, where oy - is the transpose of the conjugate of oy,. This condition
is equivalent to the condition that fiberwise oy is an isometry.

In this situation, the Chern correspondence defines a bijection between
the set of oy -compatible Dolbeault operators on V and the set of all oy-
compatible unitary connections on (V, h).

3. Real twisted Higgs pairs, stability and equations
3.1. Real twisted Higgs pairs

Let X be a compact connected Riemann surface, and let G be a connected
reductive complex affine algebraic group. Let V be a complex vector space
and p : G — GL(V) a holomorphic representation. Let E be a holomor-
phic principal G-bundle on X. We denote by V the holomorphic vector
bundle E(V) associated to E via p. Let L be a holomorphic line bundle
over X.

A L-twisted Higgs pair of type p is a pair (E, ¢) consisting of a
holomorphic principal G-bundle F over X and a holomorphic section ¢ of
the holomorphic vector bundle V' ® L, where the holomorphic vector bundle
V' is defined above.

Let ox and og be real structures on X and G, respectively. Let oy be a
real structure on V and p : G — GL(V) a (0¢, ov)-compatible holomor-
phic representation. This means that

(3.1) p(g9)(ov(v)) = (ploc(g)))(v)

forall g € G and v € V. Let o be a real structure on FE.
Let Z be the center of GG, and let

Z3¢ C Z
be the subgroup consisting of all t € Z, such that

e the order of ¢ is two (if ¢ is not the identity element), and
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° Ug(t) = t.

Take any ¢ € Z3¢(\kerp. Let (E, o) be a (0x,0¢, ¢)-real principal G-
bundle over (X, ox).

Consider the map E xV — E xV that sends any (e, v) to
(o0g(e), oy(v)). This map descends to an anti-holomorphic map

oy : V. —V,

because p satisfies . This map oy defines a real structure on the vector
bundle V', because ¢ € Ker(p). Let (L, o) be areal holomorphic line bundle
over (X, ox). The tensor product oy ® o7, : V® L — V ® L is clearly a
real structure on V ® L.

A (ox,0¢,¢,0r,0y,£)-real structure on a L-twisted Higgs pair (E, ¢)
of type p is an anti-holomorphic map op : E — E such that (F, op)
is a (0x,0q,c)-real holomorphic principal G-bundle over (X, o), and the
section ¢ € H°(X, V ® L) satisfies the equation

(3.2) oy ®or(p) = tpoox = oxe.

Denote by ¢ = (0x,0¢,¢,0r,0y,%). The triple (E, ¢,0r) will sometimes
be referred to as a o-real twisted Higgs pair of type p.
We give some concrete examples of real Higgs pairs.

Example 3.1. Let (G, og) be a reductive complex affine algebraic group
equipped with an anti-holomorphic involution. Let (L, or) = (Kx, 0ky)
be the canonical line bundle of X equipped with the anti-holomorphic invo-
lution induced by ox. Set (V, oy) = (g, dog). The adjoint representation
Ad : G — GL(g) is (0¢, oy)-real. In this case, o-real K x-twisted Higgs
pairs of type Ad are known in the literature as pseudo-real G-Higgs bun-
dles (see [BGHI|, [BGH3] and [BHul).

Example 3.2. Let G = GL(n,C), V = Sym?(C") and p the representa-
tion on V induced by the standard representation of GL(n,C) on C". Let L
be a holomorphic line bundle over the Riemann surface X. A L-twisted Higgs
pair of type p is an L-quadratic pair. They are also known in the literature
as conic bundles or quadric bundles (see, for example, [GGM2, [O]]). If we
equip G' and V with complex conjugations og(A) = A and oy(v) = ¥ re-
spectively, for all A € GL(n,C) and v € V, then pis a (og, ov)-compatible
representation, thus defining a real structure oy on V. Let o, be a real struc-
ture on L. Then o-real L-twisted Higgs pairs of type p are real L-quadratic
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pairs (V, ¢, oy); by this we mean that (V, oy ) is a real holomorphic vector
bundle of rank n, and ¢ : V — V* ® L is a real section, meaning that
pooy = a€/®aLocp.

Example 3.3. Let G = GL(n1,C) x GL(n2,C), V = Hom(C", C™), p
is the representation of G given by p(A, B)(T) = AoT o B~! and L is the
trivial holomorphic line bundle Ox over X. The L-twisted Higgs pairs of
type p are known in the literature as holomorphic triples (see, for exam-
ple, [BrGP]). We equip G and V with real structures o¢, oy respectively,
defined by og(A x B) = A x B and oy(T)v = Tv, for all A € GL(n1,C),
B € GL(n2,C), T € Hom(C™, C™) and v € C™. Then p is a (og, ov)-
compatible representation. We equip the trivial line bundle Ox with the
real structure induced by a real structure ox on X. The o-real Ox-twisted
Higgs pairs of type p are real holomorphic triples, that consist of two
real holomorphic vector bundles (Vi, ov,), (Va, oy,) and a real morphism
¢ (Vi,0v) — (Va, ov,).

3.2. Stability

Let K be a og-invariant maximal compact subgroup of a connected reductive
complex affine algebraic group G, and let

B € Sym*(g")“

be a K-invariant non-degenerate bilinear form on the Lie algebra g = Lie(G)
which is positive on £ = Lie(K). Let s be an element of v/—1 - ¢ we note
that the following objects are associated to s:

o P, :={g € G| e®ge " isbounded when t— oo} is a parabolic
subgroup of G,

Ls :== {g € Ps | Ad(g)s = s} is a Levi subgroup of the parabolic
subgroup Ps, where Ad : G — Aut(g) is the Adjoint representation,

ps = {x € g | Ad(e'®)z is bounded when t — oo} is the Lie algebra
of P,

o [, :={x € g| [z,s] = 0} is the Lie algebra of Lj,
o Vg := {v € V| p(e®v) is bounded when t — oo},
o VU := {v € V| p(e®v) = v forall t}, and
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e Y is the dual of s with respect to B, meaning that B induces an
isomorphism B : £ — £, using which we have x5 := B(s)

psNe-

Remark 3.4. A character of ps is a complex linear map ps — C that
factors through the quotient ps/[ps, ps]. Since B(s, [ps, ps]) = 0, the above
defined homomorphism Yy produces a strictly anti-dominant character of
ps. Conversely, given an anti-dominant character x of pg, we have yx €
(ps/[ps, Ps])* = (31.)%, where 3. is the center of the Levi subalgebra .
For s, = B71(x), we have s, € 37, C v/—1-¢E

We now recall the definition of the degree of a principal G-bundle F
with respect to an element s € y/—1 - ¢ and a holomorphic reduction o of
the structure group of E from G to Ps. Let Ep, C E be the holomorphic
principal Ps-bundle corresponding to o. By [GGMI, Lemma 2.4], there is a
rational number ¢ such that (ys)? lifts to a character X5 of Ps. Then Ep_(Xs)
is a line bundle. Now define the degree

1
(3.3) deg E(o, s) = 5dengs(§{5).

Let oG be a conjugation on G, and let (F, og) be a (0x,0q,c)-real
holomorphic principal G-bundle over X. We denote by Ad(E) the group
scheme E X aq G over X, which is associated to E via the adjoint action of
G on itself. The real structures o and og together define a real structure
oad(e) on Ad(E), because the homomorphism Ad : G — Aut(G) given
by the adjoint action is compatible with o (see Example 2.2).

The main change in the definition of stability for o-real L-twisted Higgs
pairs vis-a-vis the definition of stability of the underlying Higgs pairs is that
we must consider only holomorphic reductions Ep, C E of E from G to P
such that

(3.4) oad(e)(Ad(EP,)) = Ad(EP,).

More specifically, for any a € 3(¢), a o-real L-twisted Higgs pair (E, ¢, op)
is

e a-semistable if for every s € /—1¢ and for every holomorphic re-
duction of structure group o of E to Ps such that
1) the holomorphic principal Ps-bundle Ep, C E corresponding to o
satisfies the equation in , and
2) ¢ € HY(X, Ep,(Vs)® L),



Real Higgs pairs and non-abelian Hodge correspondence 505

the following inequality holds:
deg E(s,0) — B(s,a) > 0;

e a-stable if for every s € v/—1¢\ Ker(dp) and for every reduction o
of structure group of E to Ps satisfying (3.4)) as well as the condition
¢ € H'(X, Ep.(Vs) ® L), the inequality

deg E(s,0) — B(s,a) > 0

holds;

e a-polystable if it is a-semistable and furthermore, for every reduction
o of structure group of E to a parabolic subgroup P;s satisfying (|3.4])
as well as the two conditions ¢ € H(X, Ep, (Vs) ® L) and

deg E(s, o) — B(s, o) = 0,

there is a holomorphic reduction of structure group
(3'5) ELS C Eps

of Ep. to the Levi subgroup Ls; C P; such that

op(Er,) = Er,

and ¢ € HY(X, B, (V) ® L).
Remark 3.5. If the condition in (3.4) is dropped, then we obtain the usual
definition of stability for the L-twisted Higgs pair (E, ¢) underlying the
triple (E, ¢, og). The naive condition for o-real L-twisted Higgs pairs, con-
sidering only those parabolic subgroups Ps such that og(Ps) = Ps, is not
the right one for stability, since there are some cases (such as the compact

real form of ) for which there are no og-invariant parabolic subgroups and,
therefore, such a stability condition would be trivially satisfied.

Remark 3.6. Let (E, ¢, o) be a o-real L-twisted Higgs pair. If the
underlying Higgs pair (E, ¢) is a-stable (respectively, a-semistable), then
(E, ¢, op) is obviously a-stable (respectively, a-semistable).
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3.3. Hermite—Einstein—Higgs equation

Let G be a connected reductive complex affine algebraic group equipped
with a real structure og . Let K C G be a maximal compact Lie subgroup
preserved by the involution o (see Proposition 2.1). Fix a non-degenerate
G-invariant bilinear form

B € Sym*(g")“

which is
e positive on ¢ = Lie(K), and
e compatible with dog, meaning that (dog)*B = B.

Let (X, ox) be a compact Klein surface, and let w be a o x-real Kéhler form
on X. Let (L, or) be a real holomorphic line bundle over (X, ox). Fix a
or—compatible Hermitian metric Ay, on L. We denote by Fp, the curvature of
the corresponding Chern connection on L. Let V be a complex vector space
equipped with a real structure oy, and let

(3.6) p: G — GL(V)

be a (o¢, oy)-real holomorphic representation. Let hy be a K-invariant Her-
mitian inner product on the vector space V compatible with oy, meaning
hy(oy(v), oy(v')) = hy(v, V') for all v, v' € V.

As above, take a holomorphic principal G-bundle E on X equipped with
a real structure og. Let h be a og—compatible reduction of the structure
group of E from G to the subgroup K (see Section 2.3). The resulting real
K-bundle will be denoted by (Fk,op,). Let

Ah S JZ%(EK,UEK)

be the unique op,-connection on Eyx compatible with the holomorphic
structure of E (see Proposition 2.5). Let Fj, € Qb((Ek(€)) be the cur-
vature of Ay,

The associated holomorphic vector bundle V' := E(V) has a Hermitian
structure hy which is constructed using the reduction h and the Hermitian
structure hy on V. Since hy is K-invariant and compatible with oy, this
Hermitian metric hy is in fact oy —compatible, where oy is the real structure
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on V defined by o and oy. Note that the Hermitian structure
hver = hy @ hr

on V ® L is compatible with the involution oy ® 0. The representation p
in (3.6) induces a linear map

Q

" (dp)*

u(v) Iy

where u(V) C End(V) is the subalgebra consisting of the skew-Hermitian
endomorphisms. This homomorphism ) produces a homomorphism of vec-
tor bundles associated to the principal K-bundle Fg

Q : Ex(u(V))* — Eg(¥).
The pairing
trace : Fx(u(V)) ® Ex(u(V)) — X xC,
being nondegenerate, identifies Epx(u(V)) with the dual vector bundle

Er(u(V))*. Using this identification, the above homomorphism Q would
be considered as a homomorphism

(3.7) Q : Ex(uw(V)) — Ex(¥).
Now take any L-twisted Higgs field
p € H(X,VeL)
on E. It produces a C'°° section
¢ € CF(X, Eg(u(V)))
as follows: Consider the C'*° section
PpeC®X,VRL) =C®X,ValL).

Note that
pRp € (X, VL) @C®X, VL)
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produces a C*° section
(3.8) o eC®X,(VaV)®(L®L)).

Now, the Hermitian structure hy; on L identifies L with L* (it is a C™
isomorphism), and the Hermitian structure hy on V identifies V' with V*.

Therefore, using the natural pairing L ® L* — Ox, the C* section ¢’
in (3.8) produces a C* section

(3.9) o' e CX(X, VeV,

It is straightforward to check that the section ¢” is pointwise Hermitian
(same as self-adjoint), meaning ¢”(z) € End(V}) is Hermitian for all z €
X.

To see that the section ¢” is pointwise Hermitian, let W be a finite
dimensional complex vector space equipped with a Hermitian structure hyy.
Take any v € W. Note that v produces an endomorphism

F, € End(W) = W& W*

defined by
Fy(2) := hw(z, v)-v
for all z € W. Now for all z, w € W, we have

hw(Fy(2), w) = hw(hw(z, v) - v, w) = hw(z, v) - hy(v, w)

= hw(w, v) - hw(z, v) = hw(z, hw(w, v) -v) = hw(z, Fy(w)).
Consequently, F;, € End(W) is in fact Hermitian. This immediately implies
that the section ¢” in (3.9) is pointwise Hermitian, and therefore we conclude
that

(3.10) R ¢ € C®(X, Exu(V))).

V-1
2

To describe @ in (3.10)) more concretely, if ¢ is locally of the form ¢y ®
pr, where py and ¢, are locally defined C* sections of V' and L respectively,
then

R v—1
o(s) = Thv(& ev)hr(er, L) - v,

where s is any locally defined C* section of V. It is straight-forward to
check that the above expression of ¢ does not depend on the choice of the
local decomposition ¢ = v ® pr.
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Note that
(3.11) & =I5
for all ¢ € C.
Now define
(3.12) un(p) == Q(=9) € C=(X, Ex(¥)),

where @ is the homomorphism in (3.7). From (3.11)) it follows that

pn(ce) = |clun(p)

for all ¢ € C.

Let (E, ¢, op) be a o-real L-twisted Higgs pair of type p. The center of
the Lie algebra £ is denoted by 3(£). Take a central element o € 3(¢) such
that dog(a) = —a. A og-compatible reduction h of the structure group
of E from G to K is called Hermite—Einstein—Higgs if it satisfies the
equation

(3.13) AFp+pn(p) = —V-1a,

where A denotes the contraction of differential forms on X with w, and
pn is the function in (3.12). Note that we have A(F,) € Q°(Eg(€)), since
F, € QVY(Ek(®)).

4. Hitchin—Kobayashi correspondence for real Higgs pairs

The main result of the section, that we prove in the subsequent subsections,
is the following.

Theorem 4.1 (Hitchin—-Kobayashi correspondence). A o-real L-
twisted Higgs pair (E, ¢, o) is a-polystable if and only if (E, ¢, o) admits
a og-compatible Hermite—FEinstein—Higgs reduction.

Corollary 4.2. A o-real L-twisted Higgs pair (E, ¢, o) is a-polystable if
and only if the underlying Higgs pair (E, ) is a-polystable.

Proof of Corollary 4.2. If a L-twisted Higgs pair (F, ¢) is a-polystable then

(E, ¢, og) is a-polystable for any o-real structure op (see Remark 3.6).
For the opposite direction, in view of Theorem 4.1, it follows that the

a-polystability of a o-real L-twisted Higgs pair (F, p,0g) is equivalent to
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the existence of a og-compatible solution of the Hermite-Einstein—Higgs
equation . The existence of a solution of the Hermite—Einstein—Higgs
equation implies the polystability of the underlying L-twisted Higgs pair, by
the Hitchin—Kobayashi correspondence proved in [GGMI, Theorem 2.24].

O

4.1. Jordan—Holder reduction

Let G be a connected reductive complex affine algebraic group, V a complex
vector space and

(4.1) p: G — GL(V)

a holomorphic representation. Let G’ C G be a complex algebraic subgroup.
Let V' be a complex linear subspace of V such that the action of G’ on V,
obtained by restricting the action of G on V, preserves this subspace V. Let

PG — GL(V)

be the restriction of p.

Take any holomorphic reduction of structure group E' C FE to the sub-
group G’. Note that the two holomorphic vector bundles E(V) and E'(V)
are canonically identified. Therefore, E'(V’) is a holomorphic subbundle of
E(V).

Let (E, ¢) be a L-twisted Higgs pair of type p. A reduction of struc-
ture group of (E, ¢), from (G, p) to (G, p') is a L-twisted Higgs pair
(E', ¢') of type p/, where

e F’is a reduction of structure group of E, from G to G’, and

o ¢ ¢ HY(X, E'(V')® L) is sent to ¢ by the homomorphism
HYX,E'(V)® L) — H°X, E(V)® L)

induced by the above mentioned vector bundle injection
E'(V)——E(V).

Let og be a (ox,0q,¢,0L,0v,%)real structure on a L-twisted
Higgs pair (E, ¢). A reduction of structure group (E’, ¢') of (E, ¢),
from (G, p) to (G, p'), is og-compatible if the restriction op|p is a
(ox,0¢|¢r, ¢, 0L, 0v]y, +)-real structure on (E’, ¢).

The main result of this subsection is the following:
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Theorem 4.3 (Existence of a Jordan—H&lder reduction). Given a a-
polystable o-real L-twisted Higgs pair (E, ¢, o) that is not a-stable, there
is a og-compatible reduction of structure (E', ¢') of (E, ) from (G, p) to
(G, p), such that G' C G is a reductive complex algebraic subgroup, and
(E', ¢, op|p) is a-stable.

Theorem 4.3 will be proved after proving Proposition 4.7.

To prove Theorem 4.3 we shall follow the approach in [GGMI] Sections
2.9, 2.10, 2.11], checking that every construction done there is compatible
with real structures. First, we establish a relation between polystable o-real
L-twisted Higgs pairs, that are not stable, and a certain space of automor-
phisms. This will be elaborated below.

Let

ad(F) = E(g) = Exgg — X

be the holomorphic vector bundle associated to E for the adjoint action of
G on its Lie algebra g; so ad(F) is the adjoint vector bundle for E. Note
that the fibers of ad(FE) are Lie algebras isomorphic to g. More precisely, any
fiber E(g), is identified with g uniquely up to an inner automorphism of g.
Since the fibers of ad(E) are Lie algebras, the vector space H°(X, ad(FE))
has the structure of a complex Lie algebra.

The involution og of F and the involution dog of g together define an
anti-holomorphic involution

(42) Oad(E) * ad(E) — ad(E)

The space of infinitesimal automorphisms of a principal G-bundle Eg
is given by H(X, ad(E)). In other words, H°(X, ad(FE)) is the Lie alge-
bra of the group of all holomorphic automorphisms of E. Hence the set of
infinitesimal automorphism of a L-twisted Higgs pair (E, ¢) is given by

aut(E, ¢) = {s € H(X, ad(E)) | ((dp) ®1dL)(s)(¢) = 0}
c H'(X, ad(E)),

where dp is the homomorphism of Lie algebras associated to p in (4.1)); note
that dp induces a homomorphism of associated bundles. It is straightforward
to check that aut(E, ¢) is a complex Lie subalgebra of HY(X, ad(E)).

Let

(4.3) Oaut : aut(E, ) — aut(E, @)
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be the conjugate linear involution defined by

Uaut(s)(UX (55)) ‘= Oad(E) (8($))

for every s € aut(E, ) and z € X, where o,4(p) is the anti-holomorphic
involution of the adjoint bundle ad(FE).

Note that given a section s € H°(X, ad(E)), there is a unique Jordan
decomposition

(4.4) s = s 45",

where

o 5°°(z) € ad(F), is semisimple for all + € X while s™(z) is nilpotent,
and

e 5°°(z) and s"(x) commute for all x € X.

(See [BBN1], [BBN2]). Let
aut®*(E, ¢) C aut(E, @)

be the subspace consisting of all s; € aut(E, ¢) such that si(x) € ad(E),
is semisimple for all x € X. Therefore, we have

% € aut®*(E, @),

where 5% is the section in (4.4)). In fact, if s € aut(F, ¢) with gaui(s) = s,

then we have 5% € aut®(E, ¢) with oau(s%) = s%.

Consider the Lie algebra aut(E, ¢). Let
(4.5) C C aut(E, ¢)
be a Cartan subalgebra such that

oaut(C) = C,

where o,y is constructed in (4.3]). Note that we have C C aut®(E, ).
This complex subalgebra C in (4.5)) produces a Levi subgroup L(P) C P
of a parabolic subgroup P C G, together with a holomorphic reduction of
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structure group of
E Lp) C E

to the Levi subgroup L(P) [BP, p. 55, Proposition 1.2] (see also [BBNIJ,
[BBN2]). We briefly recall below the construction of the above pair
(L(P), Eyp)).

Take any element s € C such that the complex subgroup of Aut(FE)
generated by {exp(ts)}iec coincides with the subgroup generated by C; ele-
ments of C satisfying this condition form a nonempty Zariski open subset of
C. Since the conjugacy classes of semisimple elements in g is an affine vari-
ety, and X is compact, the condition that s(x) € ad(E), is semisimple for
all z € X implies that the conjugacy class in g determined by the element
s(z) € ad(F)y is independent of z. Fix an element so € g in this conjugacy
class. Then L(P) C is the centralizer, in G, of s for the adjoint action of
G. Let

(4.6) C(s) C Ad(E)

be the sub-group scheme whose fiber over any point x € X is the centralizer,
in Ad(E), of the element s(x) for the adjoint action on the Lie algebra; since
the conjugacy class of s(x) is independent of z € X, it follows that C(s) is
indeed a sub-group scheme of Ad(FE). Also, recall that Ad(FE) is a quotient
of E x G, where two points (21, g1), (22, g2) € E x G are identified if there
is g € G such that 2o = 219 and go = g 'g1g. The complex submanifold

(47) EL(P) cCkE

is the locus of all point z € E such that the image of (z, g) € E x L(P) in
the quotient space Ad(FE) lies in C(s).

Now choose s € C as above satisfying the extra condition that oayt(s) =
s (as before, impose the condition that the subgroup of Aut(E) generated by
{exp(ts) }+ec coincides with the subgroup generated by C); since the subspace
C%m C C fixed by oayt is Zariski dense in C, such an element s exists. Choose
the above element sy € g such that dog(sp) = so. This condition implies
that og(L(P)) = L(P) (the parabolic subgroup P associated to L(P) is not
unique, and P need not be preserved by o¢). The antiholomorphic involu-
tion o of F and the antiholomorphic involution og of G together produce
an antiholomorphic involution of £ x . This involution descends to an an-
tiholomorphic involution of Ad(E). Since oaut(s) = s, the sub-group scheme
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C(s) in (4.6) is preserved by this antiholomorphic involution of Ad(E). Con-
sequently, Erp) in (4.7) is preserved by the antiholomorphic involution o
of E.

We note that the condition that (dp ® Id.)(s)(¢) = 0, for all s € C,
implies that (EL(p), ¢) is, in fact, a reduction of the structure group of

(E, ¢).
Let

3Cg
be the center of g, so 3 is the Lie algebra of Z. Let

E@3) = Ex%;

be the vector bundle associated to E for the adjoint action of G on 3. Since
the adjoint action of G on j is trivial, we have E(3) := X x 3. Also, note
that

E(3) C ad(E)

is the fiberwise center of the Lie algebra bundle ad(E).

While the infinitesimal automorphisms of (E, ¢) are parameterized by
aut(E, ¢), the infinitesimal automorphisms of the triple (E, ¢, og) consti-
tute the subspace

aut(E, ¢, op) = aut(E, )7 :={s € aut(E, ¢) | caut(s) = s},

where o,y is the real involution of the Lie algebra aut(F, ¢) in (4.3)). There-
fore, we have

HY(X, E(3))7™® = H(X, E(3)) Naut(E, ¢, op);

note that the involution o,qk) in (4.2) induces an involution of
H°(X, ad(E)) (also denoted by 0,q(k)), and the subspace H(X, E(3)) C
H°(X, ad(E)) is preserved by o,q().-

Proposition 4.4. Let (E, ¢, o) be a o-real L-twisted Higgs pair. If
(E, ¢, op) is a-stable then

(4.8) aut(E, @, op) = HY(X, E(3))7=® .

Assume that (E, ¢, o) is a-polystable. Then (E,p,0p) is a-stable if
and only if

(4.9) aut**(E, ¢, o) = HO(X, E(3))7) |
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Proof. We will start proving the second part, assuming the first part. The
first part will be proved subsequently.

Assume that (E, ¢, o) is a-polystable. If (E, ¢, o) is a-stable, then
the first part of the proposition implies that

aut®(E, ¢, op) = HO(X, E(3))7®,

since any section s € H°(X, F(3)) is pointwise semisimple. Note that
H(X, E(3)) = 3, because H°(X, E(3)), as noted before, is the trivial
holomorphic vector bundle on X with fiber 3. The 0,4(g)-invariant part
HO(X, E(3))7® < H°(X, E(3)) coincides with 3%7¢, where dog is, as
above, the involution of g induced by og.

On the other hand, if (E, ¢, og) is not a-stable, then for any reduction

ELS C EPS Cc FE
as in (3.5)), consider the subbundle
Z(EL,) C ad(EL,)

defined by the centers of the fibers of the adjoint bundle ad(Ey,) of Er_;
so for any point z € X, the fiber Z(Ey, ), is the center of the Lie algebra
ad(Er,).. Note that Z(FEp,) is a trivial vector bundle over X whose fibers
are identified with the center 37, of the Lie algebra of the Levi subgroup Ls.
Moreover, we have

3L, = HO(X7 Z(ELS)) - HO(X7 ad(ELs)) - aUt(E7 (P)a

and the automorphism o, of aut(FE, ¢) preserves the above subspaces
H°(X,ad(Er.)) and HY(X, Z(Er.))); in fact, the action of oau on
H(X, Z(EL))) coincides with the action of dog on 3r.. The vector
space HY(X, Z(Eyr.)) is strictly larger than H°(X, E(3)), because P; is
a proper parabolic subgroup of G (recall that (E, ¢, o) is a-polystable
but not a-stable). Also, every element s € Z(EpL,) is pointwise semisim-
ple. These together imply that H°(X, Z(Ey_))?® is strictly larger than
H°(X, E(3))=®. This proves the second part of the proposition assuming
the first part.
To prove the first part of the proposition, we first note that

HY(X, E(3))°~® C awt(E, ¢, o),

because H*(X, E(3)) C aut(E, ¢).
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Let (E, ¢, og) be a o-real L-twisted Higgs pair which is a-stable.
First, assume that

(110 aut™ (B, p, op) \ H'(X, E()™ # 0.

Take an element s € aut®*(F, ¢, op) that generates a Cartan subalgebra
of aut**(E, ¢). As we saw in (4.7)), this section s produces a reduction of
structure group

EL®) C E
of E to a Levi subgroup L® C G which satisfies the following two conditions:

1) E(L®) is a reduction of structure group of (E, ¢), and
2) op(E(L%)) = E(L?).

From the assumption in it follows that the conjugacy class in g de-
termined by s does not lie in 3. Consequently, L® C G is a proper parabolic
subgroup.

The reduction E(L®) C E thus contradicts the given condition that
(E, ¢, o) is a-stable. In view of this contradiction, we conclude that

aut®*(E, ¢, op) = HY(X ,E(3))7=® .

To complete the proof we need to show that aut(F, ¢, og) does not have
any nonzero nilpotent element.

Let s € aut(E, ¢, og) be a nonzero nilpotent element. This defines a
parabolic subalgebra bundle

(4.11) P C ad(E)

constructed as follows. Since there are only finitely many conjugacy classes
of nilpotent elements of g, there is a open subset U C X such that

e X \ U is a finite subset, and

e the conjugacy class in g determined by s(x) € ad(FE), is independent
ofx € U.

Take any x € U. Let ny C ad(E), be the normalizer of C- s(x), and
let t; be the nilpotent radical of ny. Now inductively define n; 1 to be the
normalizer of t; in ad(FE), and define v;1; to be the nilpotent radical of
n;y1. Now {n;};>1 is an increasing sequence of subspaces that converges to
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a parabolic subalgebra of ad(FE), (see [AB| p. 340, Lemma 3.7]). This way
we obtain a parabolic subalgebra bundle

P c ad(E)|U

over U. Since the conjugates of a parabolic subalgebra in a complex reductive
algebra are parameterized by a complete variety (conjugates of a parabolic
subalgebra Lie(P) C g are parameterized by G/P which is a complete va-
riety), the above subalgebra bundle P’ actually extends to a parabolic sub-
algebra bundle P over X (as in (4.11])); see the proof of Proposition 3.9 in
[AB]. It is straight-forward to check that this subalgebra bundle P contra-
dicts the given condition that (F, ¢, og) is a-stable. This completes the
proof of the proposition. O

The following two lemmas correspond to [GGMI, Lemma 2.16] and
IGGM1), Lemma 2.17] respectively. Note that here we only consider reduc-
tions of structure groups that are compatible with the real structure.

Lemma 4.5. Let (E, og) be a (0x,0q,c)-real G-bundle over (X, ox). Let
G’ be a Lie subgroup of G such that the Lie algebra g’ = Lie(G') has the
following property: The normalizer Ng(g') C G for the adjoint action of G
on g is G’ itself. The reductions Eq: C E of structure group of E from G
to G’ such that

(4.12) oaa(e)(Ad(Eqr)) = Ad(Eq),

are in one-to-one correspondence with subbundles F C ad(FE) of Lie algebras
satisfying the following two conditions:
1) aad(E)(F) = F, and

2) for any v € X and any trivialization E, ~ G of the fiber E, (0b-
taining by fizing an element of E,), the subalgebra F, C ad(E), is
conjugate to g, via the trivialization ad(E), ~ g induced by the triv-
1alization of E,.

Proof. Tt is a consequence of [GGMI1, Lemma 2.16] and the fact that equa-
tion (4.12)) is equivalent to the above condition (1) on F'. O

Let P C G be a parabolic subgroup. Let Ep C E be a holomorphic
reduction of structure group such that



518 I. Biswas, L. A. Calvo, and O. Garcia-Prada

Let Lp C P be a Levi subgroup of P, and let U C P be the unipotent
radical. The Lie algebras of Lp, P and U will be denoted by [, p and u
respectively. Let

E; C Ep

be a holomorphic reduction of the structure group of Ep from P to Lp, such
that

(4.14) oad(r)(Ad(EL)) = Ad(EL).

Conditions and imply that o,q(p) = d(0aq(r)) Preserves
all three subbundles Ep(u), Ep(p) and Ep(l) of ad(E). Denote by og, (),
OEu(p) and 0 g, (1) the real structures on Ep(u), Ep(p) and Ep([) respectively
induced by o,q(p). There is a short exact sequence of holomorphic vector
bundles with real structure
(4.15)

0—— (Ep(u), 0, (w) —= (EP(p), 0. (p)) — (Ep(1), o, 1)) —0.

Note that is a short exact sequence of Lie algebra bundles, and all the
homomorphisms in are in fact Lie algebra structure preserving. A Lie
algebra bundle (right) splitting of is a homomorphism of Lie algebra
bundles f : Ep(l) — Ep(p) such that the composition of homomorphisms

Ep(t) -1 Ep(p) — Ep(1)

coincides with the identity map of Ep(l), where Ep(p) — Ep(l) is the

projection in (4.15). If
fooE.() = 0ppmof,
then the splitting f is called (0g,.(1), 0 g, (p))-Teal.

Lemma 4.6. Let Ep C E be a holomorphic reduction of structure group to
P satisfying . Reductions E, of the structure group of Ep from from
P to Lp satisfying are in a natural bijective correspondence with the
holomorphic Lie algebra bundle (right) splittings of the exact sequence in

that are (0g,.(1), Op,(p))-Teal.

Proof. Setting G = P and G’ = Lp in Lemma 4.5, we conclude that the
space of reductions of structure group of Ep from P to Lp satisfying
(4.14]) is in bijective correspondence with subbundles F' C Ep(p) such that
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0ad(g)(F) = F and F; is conjugate to I, once we identify Ep(p), with p for
any € X, by fixing an element of (Ep),. 0

Let (F,p, og) be a a-polystable o-real L-twisted Higgs pair that is
not a-stable. From Proposition 4.4 it follows that there exists a non-central
element n € aut(E, ¢, o), in other words there exists n € H(X, E([g,g]))
such that

oaut(n) = n.

There is an element

UZ—UT‘F\/iu'L [7 ]7

where u,, u; € ¢ = Lie(K) and [u,, w;] = 0, such that n(z) € E([g,9])
lies in the conjugacy class of u for every x € X; as before, K is a maximal
compact subgroup of G preserved by o¢ (see Proposition 2.1). This element
u = u, + v/—1u; satisfies the equation dog(u) = u. Let a € [€, €] be an
infinitesimal generator of the torus generated by wu; and w,. Then, a also
satisfies the equation doga = a. Furthermore, the subgroup

K, = Zg(a) = {h € K | Ad(h)a = a}

is preserved by og, because K is preserved by og. We denote by G the
complexification KT and by og, the restriction og| ke - The section n €
HY(X, ad(E)) 1nduces a G-equivariant map

oyt B — g

which is also (o, dog)-real, because oau(n) = 1. Therefore, we conclude
that

By = f{e € E| éy(c) = u)

is preserved by og, and F; is a (0x,0¢,,c)-real principal Gi-bundle. Since
pis a (0@, oy)-compatible representation, the complex vector subspace

1 :={{v € V| p(a)v = 0}
is equipped with a real structure oy, = ovyly,, and
p1 = plx,

is a (0¢,, 0y, )-compatible representation.
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Proposition 4.7. The above (0x,0q,,¢,0L,0v,,%)-real L-twisted Higgs
pair
(B, o1 == ¢lE,, 0B, = 0E|E)

is a-polystable.

Proof. First, we shall prove that (E1, ¢1, og, ) is a-semistable. We denote by
£, the Lie algebra of K;. For s € y/—1#%;, consider the parabolic subgroup

ts

Pis:={g € G1 | e®ge™™ is bounded when t— oo},

and the Levi subgroup
Lis:={g € Pis| Ad(g)s = s}.
Any holomorphic reduction of structure group oy of E to P; s such that
O'Ad(E)(AdEPLS) = AdEp, ,
can be extended to a real reduction of structure group o to Ps such that
oad(g)(AdEp,) = AdEp, .

Moreover, we have
deg E(0,s) = deg F1(01,s).
Therefore, using the given condition that (E, ¢, og) is a-semistable it is
deduced that (E1, ¢1, op,) is also a-semistable.
From Lemma 4.6, it follows that (E1, ¢1, op,) is a-polystable if for every

s € yv/—1¢, and for every holomorphic reduction of structure group o of E;
to Py that satisfies the two conditions opq(g,)(AdEp, ) = AdEp, , and

deg Eq(o1,s) — B(s,a) = 0,

there is a real splitting w; of the following exact sequence of real vector
bundles

00— (Eip, (1), 08, (u,)) — (E16,(P1), 08, (p,)) — (B0, (L), 08, (1,)) —=0.

The argument for the existence of the splitting is identical to the argument
for the non-real case. (See [GGMI| Proposition 2.18] for details).
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On the other hand, we have ¢ € H°(X, Ey (V) ® L) if and only if

p(w(tos(p))) = 0,

where w is a splitting of (4.15) and ¢,, s € HY(X, E,(p)) is the sec-
tion which is equal to s on the fibers. For the same reason, ¢ €
H(X, Eir, (V1) ® L) if and only if

(4'16) p(wl(djal,s(@))) =0,

where 15, s € H*(X, E1,,(p1)) is the section which is equal to s on the
fibers. If we decompose p and I, using characters n € Hom(7, S'), where
T C H is a maximal torus, then w; is the restriction of w, which corresponds
to setting n = 1.

Since (E, ¢) is a-polystable, we have ¢ € H(X, Er (V) ® L). As
noted before, this implies that p(w(¢ss(¢))) = 0 and hence holds.
It was observed earlier that

¢1 € HY(X, By, (V1) ® L)

if ([{.16) holds. 0

Proof of Theorem 4.3. From Proposition 4.7, we obtain a opg-compatible
reduction of structure group of a polystable o-real L-twisted Higgs pair
(E, ¢, og) from (G, p) to a subgroup (KT, p1) with real structure, where
K§ ¢ G.We can iterate this process and finally, within a finite number n of
steps, we obtain a opg-compatible holomorphic reduction of structure group
(En, ¢n) of (E, ¢) from (G, p) to (KS, p,), where K is a Levi subgroup
of G and (Ey, ¢n, 0g|E,) is a-stable. This proves Theorem 4.3. O

Remark 4.8. The uniqueness of the Jordan—Hélder reduction (up to con-
jugation) follows immediately from the uniqueness of the usual (with no real
structures) case (see [GGMI], Proposition 2.20]).

4.2. Stability implies the existence of solution

In this section, we prove one implication of Theorem 4.1 for o-real L-twisted
G-Higgs pairs (E, ¢, og) that are a-stable.

Let E be a C* principal G-bundle over X equipped with a (ox,0q, ¢)-
real structure og (see Section 2.2). Let h be a og-compatible C*° reduction
of structure group of E from G to the maximal compact subgroup K. By
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Proposition 2.5, there is a bijective correspondence between og-compatible
connections on Ex and og-real complex structures on E. As a consequence,
after fixing a or-compatible U(1)-connection on L, we conclude that the
space of all o-real L-twisted Higgs pairs (F, ¢, og) such that the underlying
C*-bundle to E is E is in bijective correspondence with the space of all
triples (o, A, ¢) such that

e op is a (0x, 0g, ¢)-real structure on E,
e A is a og-compatible connection on Eg, and

e ¢ is a holomorphic section of E(V) ® L satisfying

oy ®or(p) = tox(e),

where oy is the involution of V' = E(V) induced by of and oy, and o,
is the fixed involution on L. Here, abusing notation, we are denoting
L and its underlying smooth line bundle in the same way.

We will denote by .7 the set of triples (o, A, ) satisfying the above con-
ditions.

Let & be the space of connections on Ex. Let . be the space of all C*
sections of V' ® L. The product space

X = xS

is an infinite-dimensional Kahler manifold equipped with a Hamiltonian ac-
tion of the gauge group

(4.17) H = Q(Eg(K)).
Take any
a € 3(8) C Lie(%).
In this case, the moment map is given by
(4.18) p (A, ) = AFa+ p(p) —V-1la

for every (A, ¢) € 2, where u(p) is defined as in Equation (3.12). As
before,

B € Sym¥(g")°

is a K-invariant non-degenerate bilinear form on the Lie algebra g = Lie(G)
which is positive on €. Let (, ) be the bilinear form on Lie(.#") induced by
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B, where J# is constructed in (4.17)). The maximal weight of the action of
s € Lie(#) on (A, p) € Z is defined as follows:

(4.19) N((A, ¢), 5) = lim XE((4,9),5).
where
(4.20) N((A,9),8) o= (uo(e/ 7oA, eV Tog) )

The limit in (4.20]) exists by Lemma 2.1.2 of [Mu2]. The integral of the
moment map in (4.18)) is defined by

1
(4.21) TO((A, @), V19 ;:/0 N((A, @), s) dt .

Remark 4.9. If we fix the pair (A4, ¢) in , then eV=1s € H is a
critical point of ¥ if and only if eV=15(A, ) is a solution of u®(A, ¢) = 0,
where p® is defined in (4.18)).

Definition 4.10. Let E be a holomorphic principal G-bundle X, and let h
be a C° reduction of structure group of E from G to K. Let A be the Chern
connection on the principal K-bundle Ey, given by h, corresponding to the
holomorphic structure on E. Take s € /—1¢, and let o be a holomorphic
reduction of structure group of E from G to Ps, where Ps is the parabolic
subgroup of G defined by s. The section ¥y 55 € QV(En(v/—18)) is defined
as follows: the reduction o defines a holomorphic map

(4.22) ¢: B, — G/P,.

Ife € Ep, then&(e) = P is a parabolic subgroup of G conjugate to Ps. From
[GGM]I, Lemma 2.6], using the antidominant character xs, it follows that
there exists s¢) € vV —1%, such that P = P The map

ge)”

(4.23) Wi By — 1t

e > See)
induces a section V¥ 55 € QV(ER(v/—18)).

Proposition 4.11. Let (E, ¢, o) be a o-real Higgs pair. Let h be a
og-compatible C*° reduction of structure group of E from G to K. Let
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(om, A, p) € T be the triple corresponding to (E, ¢, o). Let o be a holo-
morphic reduction of structure group of E from G to Ps. Then

degE(Uv 8) - B(87 Oé) = )\Q((A’ 90)) \% _1¢h,a,s)7
where Yy, o5 € QO(ER(v/—18)) is constructed above.

Proof. First, recall that the degree of a g-real Higgs pair is equal to the
degree of its underlying Higgs pair (see (3.3))); also recall that the maximal
weight of (og, A, ¢) is the maximal weight of (A, ¢). Therefore, it suffices
to prove the proposition by forgetting real structures.

In [Mu2l Section 2.1.6] it is proved that there is a bijective correspon-
dence between pairs (o, s) and filtrations

(4.24) V(th,0,5)

of V.= E(V) constructed as follows: let A1, ..., A, be the eigenvalues of
p(—vV=1p 5.5); then E(V)A = D« E(V)(A;), where E(V)();) are the
eigenbundles of eigenvectors A;. B

From [Mull Lemma 4.2] we know that for the Hamiltonian action of %
on 7, the maximal weight A(4, —/—1t, ) is equal to

r—1

(4.25) Ardeg(E(V)) 4> (A — A1) deg(E(V)*).
k=1

Equation coincides with one of the different ways to calculate
deg E(o, s) defined in equation (3.3) (see [GGMI, Lemma 2.12 (3)]).

Now, in a similar way, we can extend the Hamiltonian action of J# on
o/ x . to prove the proposition (see [Mull, Lemma 4.3)). O

Let 4 = Q%E(G)) be the gauge group of the principal G-bundle E.
The real structures ox and og together induce an involution o¢ on the
group ¥. Since og preserves the subgroup K, it follows that oy restricts to
an involution o on JZ. By abuse of notation, we denote also by oy the
involution on ¢/ and the involution on Lie(¥).

A triple (og, A, ¢) € 7 is called simple if there is no semisimple ele-
ment u € Lie(¥) such that

e v is invariant under oy,e(y, and

° <<d,ua(A, ©), u), —leu> = 0.
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Theorem 4.12. Take any « € 3(t). Fix a simple o-real triple (og, A, @).
There is an element s € 4/ such that

1) og(s) = s, and
2) the function U* in (4.21) attains its minimum at s.

Theorem 4.12 will be proved after proving Proposition 4.14.
Fix from now on p > 2. Let (og, A, ¢) be a simple triple whose corre-
sponding o-real Higgs pair is a-stable. We define

Meth = LE(E(vV/-1¢)
to be the completion of Q°(E(y/—1¢)) with respect to the Sobolev norm
Isllzz = lisllze + lldas|ze + [Vdas]| Lo ,
where d s is the covariant derivative of s with respect to A, and
V: QT X ®ad(R)) — QYT*X @ ad(R))
is the tensor product of the Levi-Civita connection and d4. Note that

Q°(E(v/—1%¥)) is actually isomorphic to ¢/.# using the exponential map.
Let C be a positive real number. Consider the bounded metric space

Mety o = {s € Metj | [[u*(e*(4,9))llL, < C}.

Proposition 4.13. If a metric minimizes ¥* in Met? ., then it also min-
imizes U* in Meth.

Proof. Suppose that s € Meth . is a minimum of ¥*. Let B = e*(A) and
© = ¢e°(p). We define the differential operator

0
L(u) = V-l a#(etu(Ba@)Mt:O )
for every u € LE(E(v/—1%)).

By [Br, Lemma 3.4.2], it suffices to prove that Ker(L) = 0, because if s
minimizes ¥ and Ker(L) = 0, then p(B,0) = 0, and by Remark 4.9, one
has that s minimizes ¥ on Met}.
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We prove that Ker(L) = 0, by contradiction. Let 0 # u € Ker(L).

U+OLie(¥) (u)
2

Therefore, the element also lies in Ker(L). Then we have

s U+ OLie(%) (u) u -+ OLie(%) (u) .
< Vv 1L< : , : =0.

From [Mu2, Equation 2.13] it follows that WFJTM leaves (B, ©) invariant.
Consequently, (og, B, ©) is not simple and hence (o, A, ¢) is not simple.
In view of this contradiction, we conclude that Ker(L) = 0. O

Proposition 4.14. There exist positive constants C1 and Co such that
sup [s| < C1U((A,¢),€") + Co

for every s € Meth .

Proof. The given condition that p > 2 implies that L) < C°, which follows

from the Sobolev embedding theorem, and it makes sense to consider sup |s|.

Repeating the same arguments as in [Mull Section 6], it suffices to prove

that

(4.26) Isllzy < C1UY((A, ), e®) + Cy.

To prove (4.26)) by contradiction, suppose that C, Cy satisfying (4.26))
do not exist. Then it can be shown that there is a sequence {u;} € Met} .

converging weakly to some
Us € Meth -,
such that
(4.27) A((A ), us) < 0.
Indeed, following [Mu2l Lemma 2.5.4], if C;, Co do not exist, then there is
a sequence of real numbers {C} and a sequence {s;} of metrics in Met} 5

such that

lim Cj = oo and |lsjll > CjU%((4,¢),€™).

J]—00

Let j := ||sj]|zr and u; := %’, then ||uj|[zr = 1 and sup |u;| < C;.
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Passing to a subsequence if necessary, we can suppose that {u;} con-
verge to an ue,, weakly on L2(E(v/—1¢)), and A*((4, ¢),us) < 0. From
the definition of the integral of the moment map we have the following:

1 (A, ).ev)
c; = [enl
> S ) + 1 [0 0~V Tt
- ljl;t(Ag(A,—ﬁuj) + A2 (i, =V —=1uy))
+;/O (AP (A, —V=Tuy) + A (0, —vV=1uy))dI

These inequalities together imply that ||04(u;)| is bounded, so there is a
subsequence {u;} converging to u. In addition, we have

A (A, ) u00) < lim AF((A, ), —V=1u;) < 0

The subsequence {og(u;)} € Met} ., converges weakly to ogus € Meth -,
and

(4.28) A((A,9), og(usx)) < 0.

U; +ay ut

The partial sums of subsequences { } converge to

— p
U, = 2 S Metgc

and this element is invariant under oy. Then p(ul ) has real constant
eigenvalues. The filtration V(ul,) induces a holomorphic reduction of
structure group o from G to P such that Ep = og(FEp), and therefore
oad(g)(AdEp,) = AdEp,. Since by hypothesis (E, ¢) is a-stable, it follows
that

deg E(o,s) + B(a,s) > 0.

In view of Proposition 4.11, this inequality contradicts (4.27]), completing
the proof. O
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Proof of Theorem 4.12. To prove Theorem 4.12, let {s;} be a minimizing
sequence for ¥, then
si + oy (s;)
s = (2RI
is a og-invariant minimizing sequence for ¥¢. From Proposition 4.14, after
passing to a suitable subsequence, we can suppose that {s;} converges weakly
to some s', invariant under oy, that minimize ¢, O

Theorem 4.15. Let (E, ¢, og) be a a-stable a-real L-twisted G-Higgs pair.
Then there is a op-compatible C* reduction of structure group h from G to

K satisfying (3.13)).

Proof. Fix a og-compatible C'*° reduction of structure group of £ from G
to K. Let

(JEv A7 90) €7

be the triple associated to (E, ¢, og). The existence of a og-compatible
C* reduction of structure group h of E from G to K satisfying is
equivalent to the existence of a og-compatible pair (A4’, ¢') satisfying the
equation

(4.29) p*(A ¢ =0,

where pu® is defined in (4.18)).

From Remark 4.9 we know that fixing a op-compatible pair (A4, ¢) in

equation ((4.21]),
eVl e

is a critical point of ¥ if and only if e¥V~15(A, ) is a solution of .
Finally, since (E, ¢, o) is a-stable, it follows that (og, A, @) is simple

(see Proposition 4.4 and [Mull, Definition 3.8]), and hence we can apply

Theorem 4.12 to complete the proof. O

4.3. Polystability implies the existence of a solution

In this section, and in the next one we prove Theorem 4.1.

Let (E, ¢, 0p) be a a-polystable o-real L-twisted Higgs pair.
If (E, ¢, op) is a-stable then it admits a opg-compatible Hermite—
Einstein-Higgs reduction (see Theorem 4.15). If (E, ¢, og) is not a-
stable, by the Jordan-Holder reduction (Theorem 4.3) we obtain a
(ocx,0¢|er, ¢, 0L, 0v]v, +)-real Higgs pair (E',¢',op|p) that is a-stable,
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then, by the previous case, it admits a og/-compatible reduction of structure
of (E., ¢,) from (G, p') to (K', p|K') satisfying (3.13). This reduction de-
fines another reduction (Ex,¢k) of (E,¢) from (G, p) to (K, p|K), that,
with respect to the structure group, is given by

Ex = Fg X K = E}(/ X K

and with respect to the Higgs field, ¢ is the image of ¢/, under the ho-
momorphism

HYX,E(Viy)® L) — H°(X,Ex(Vg)® L)

induced by the injection E., (Vi) Ex (V) , where V. and Vi are
complex vector spaces such that p(K') = GL(Vg/) and p(K) = GL(Vg),
respectively. Since the reduction (EY, @) is og-compatible and it is Her-
mite Einstein Higgs, then one can see that the reduction (Fk, k) is also
op-compatible and it is Hermite-Einstein-Higgs, in other words, it satisfies

Equation (3.13]).

4.4. Existence of a solution implies polystability
Proposition 4.16 (Existence of a solution implies semistability).
Assume that there exist a og-compatible Hermite—Finstein—Higgs reduc-

tion h of a o-real L-twisted Higgs pair (E, ¢, og). Then (E, ¢, og) is a-
semistable.

Proof. Suppose that (E, ¢, o) is not a-semistable. Then, there is a holo-
morphic reduction o of structure group of E from G to Ps such that
UAd(E)(AdEPS) = AdEPS and

(4.30) deg E(s,0) — B(s,a) < 0.
From Proposition 4.11, one has that
(431) )\04( (A, ()0> s V _1¢h,a,s) < 0.

By hypothesis h is Hermite-Einstein-Higgs, then A§( (A4, ¢),vV—lénss) =
0. (See Equation . Since A\}( (A4, ¢),vV—1¢p0s) is a non decreasing
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sequence, it follows that
)\a( (A7 SO) sV _1¢h,0',5) >0

and this contradicts (4.31)). (]

Proposition 4.17 (Existence of solutions implies polystability). As-
sume that there exist a og-compatible Hermite—Finstein—Higgs reduction h
of a o-real L-twisted Higgs pair (E, ¢, o). Then (E, ¢, o) is a-polystable.

Proof. Let h be a og-compatible Hermite-Einstein—Higgs reduction. Take
s € v/—1¢, and let o be any reduction of structure group from G to Ps, such
that oaq(g)(AdEp,) = AdEp,. Since h is og-compatible,

UE(Eh) = Ehv

where FEj, is the reduced K-bundle. We define £ as the map such that the
following diagram

(4.32) By G/P,
O’El UG\L
g/
Ep G/Pdoc(s) )

commutes, where ¢ is defined in (4.22)). Analogously, we define v’

(4.33) Ep L v

]

E, YT,

where v is defined in . The maps ¢ and v’ define sections ¢, , s and
wﬁwﬂcs in Ej,(v/—18) such that the associated reductive filtrations V (¢, o 5)
and V(¢ , ,..) (see equation (4.24))) are related in the following way: they
define reductions Ep and og(Ep) that satisfy OAd(E) (AdEp,) = AdEp,.
The o-real Higgs pair (F,p,0p) is a-semistable by Proposition 4.16.
Let o be a reduction of structure group of F from G to Ps; such that
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oaq(e)(AdEp,) = AdEp, as well as
(4.34) deg E(s,0) — B(s,a) = 0.

Let A be the connection on Ej, that corresponds to the holomorphic structure
on FE. From Proposition 4.11 and (4.34]), it follows that

(4'35) )\a( (A7 90) ) ﬁ¢h,a,s ) =0.

Since h is an  Hermite-Einstein-Higgs  reduction,  then
N ((A,0),V—1Ypes) = 0 and since A (A, ¢),vV—1¢nss) is a non-
decreasing sequence, then A ( (A4, ¢) ,v/—1¥n0s) = 0, for all . This implies
that e!¥nos fix A, for any t. Therefore, the filtration V(¥he,s) induces
a reduction of the structure group of Ep, from Ps; to Ls. Analogously,
eVhiooas fixes oz A, for any t, where o, is the real structure induced in
the space of connections by or and ox. The filtration V(zﬁ;h 006 ) induce
a reductions of the structure group of og(Ep,) from ogPs to ogLs. Both
reductions are related by

oade)(Ad(EL,)) = Ad(EL,).

ten,o,s

The element e fixes also ¢ for any ¢. This implies that ¢ €
HO(X, Er (V) ® L). This completes the proof. O

5. Real Higgs bundles and the non-abelian Hodge
correspondence

Let G® be a semisimple real form of a connected complex semisimple
Lie group G defined by a conjugation p € Conj(G). Let 7 € Conj(G),
commuting with g and defining a compact real form K C G. The sub-
group H® := K NGR defines a maximal compact subgroup of GX. Let
g® = h® @ m® be the Cartan decomposition of g®, the Lie algebra of G~,
where h® is the Lie algebra of H® and m® is its orthogonal complement with
respect to the Killing form. Let H and m be the complexifications of H* and
m®, respectively. Let og be a (i, 7)-compatible conjugation of G (see Exam-
ple 2.3). By abuse of notation, we denote by og the restriction to H and the
restriction of dog to m. Then the isotropy representation ¢ : H — GL(m)
is (0, og)-compatible (see Example 2.3).

Let (X, ox) be a compact Klein surface, and let Kx be the canonical
bundle of X. The anti-holomorphic involution ox induces a real structure
0K, on Kx.
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5.1. Real G®-Higgs bundles and Hitchin equations

Let Z(H) be the centers H and Z(H)3¢ be the subgroup of elements of
Z(H) of order two that are invariant under og. Set

(5.1) Z)¢ = Z(H)5° Nker(v)

and let c € Z%¢. A (ox,0q,c, &)real GX-Higgs bundle is a
(0x,0q,¢,dog, 0K, ,+)-real Kx-twisted HC-Higgs-pair of type ¢. Set o =
(0x,0q,¢,£). Sometimes we will refer to these objects as o-real G-Higgs
bundles.

Let 3(h) be the center of h and a € /—1h N 3(h). The notions of a-
stability, a-semistability and a-polystability in Section 3.2 apply to a-real
GR®-Higgs bundles. Since we are mostly interested in the relation of these
objects to representations of the fundamental group of X we will take « = 0
and will refer to O-stability simply as stability (the same for semistability
and polystability).

Denote by M(G¥®,0x,0q,¢,£) the moduli space of isomorphism
classes of polystable (ox, og, ¢, £)-real G®-Higgs bundles. We may fix
the topological type d € m(H) = 71 (H®), and consider the subvariety
My(GR, ox,0q,¢c,%).

Let (E, ¢, o) be a o-real GR-Higgs bundle over (X, ox). Let h be a
op-compatible reduction of the structure group of E from H to HX, and let

(5.2) 2 QP(BE(m)) — Q%Y(E(m))

be the map defined by the compact conjugation 7 in the fibers induced by
h combined with complex conjugation on complex 1-forms.

Choose a ox-compatible Kéhler form on X as defined in Section 2.2.
This defines a ok, -compatible metric on Kx. Taking @ = 0, one can show
that the Hermite-Einstein—Higgs equation coincides in this particular
case with the Hitchin equation

(5.3) Fyp — [, m(p)] = 0.
As a particular case of Theorem 4.1 one thus has the following.

Theorem 5.1. A o-real G®-Higgs bundle (E,p,0p) is polystable if and
only if there exists a og-compatible reduction h of the structure group of

from H to H® satisfying .
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And Corollary 4.2 gives now the following.

Corollary 5.2. A o-real G®-Higgs bundle (E, ¢, 0g) is polystable if and
only if the underlying G®-Higgs bundle (E, ) is polystable.

From the point of view of moduli spaces, it is convenient to look at the
Hitchin equation from a different but equivalent point of view (see [GGMI]).
To explain this, we fix a C* principal H-bundle Ex and a reduction of
structure group h to a H®-bundle Egez C Ey. We are then looking for
a connection A on Exz and a smooth section ¢ € QV9(X, Egy(m)). The
Hitchin equations become then

Fa—lp,m(p)] =0
(5.4) Bap = 0.
Here d 4 is the covariant derivative associated to A, and d4 is the (0, 1) part
of dA.

Let M&W&e(GR) be the space of solutions (A, ) to (5.4) modulo the
gauge group X of Ege. Recall (see [GGMI]) that, if d € 71(H) is the
topological class of Eg, and My(G®) is the moduli space of G®-Higgs bun-
dles, then there is a homeomorphism

(5.5) MEE (GR) 22 Ay (GR).

Now, if we are equipped with conjugations ox and og and ¢ € Z7¢, as
at the beginning of Section 5, we can consider a (ox, 0, ¢)-real structure
og, on Eg, which, if the reduction h is chosen to be o, -compatible, it will
restrict to og_, on Ege.

Let .77 be the set triples (ox,,, A, ), where A is O, -compatible and
 satisfies , which in this case is

(5.6) oy @0k (p) = oxe,

where V' = Eg(m). The action of the gauge group #® of Eyr preserves .7+
and we define the moduli space M8&€¢(GR o, 0q,c, +) of (ox, 0g, ¢, £)-
real solutions to on Ey= as the set of triples (ox,,, 4, ¢) € I+ with
(A, ¢) satistying modulo the gauge group J#%.

Theorem 5.1 can now be reformulated as follows.
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Theorem 5.3. Fiz the topological class of Ep to be d € w1 (H), then (5.5)
restricts to give a homeomorphism

Md(GR,O'X,O'G,C, :i:) = Mgauge(GRaaXaaGac7 :t) .

5.2. Real Higgs bundles and compatible representations of the
orbifold fundamental group

Let x € X and m(X, ) be the fundamental group of X. A represen-
tation of 71(X, z) in G® is a homomorphism p: m (X, ) — G®. The
group G® acts on the set Hom(71(X, x), G®) of all such homomorphisms
by conjugation:

(g-0)() = gp(1)g~"

for g € G®, p € Hom(m (X, x), G®) and v € m (X, x). If we restrict the
action to the subspace Hom™ (71(X, z), G®) consisting of reductive repre-
sentations, the orbit space is Hausdorff. By a reductive representation
we mean one that is composed with the adjoint representation in the Lie
algebra of G® decomposes as a sum of irreducible representations. Define
the moduli space of representations or character variety of 71 (X, z)
in G® to be the orbit space

R(G) = Hom™ (71 (X, z), G)/G.

The moduli space R(G®) is independent of the choice of base point
x € X and has the structure of an algebraic variety [Ril.

Given a representation p € Hom(7(X, x), GR) there is an associated
flat GR-bundle on X, and conversely, the holonomy of a flat GR-bundle over
X produces a representation p € Hom(m (X, ), G®). More precisely, there
is a natural bijection between the set of equivalence classes of representations
Hom(m (X, x), G®)/G® and the set of equivalence classes of flat GE-bundles,
which in turn is parameterized by the cohomology set H'(X, G®).

Given a representation p € Hom(m (X, x), G®) there is a topological in-
variant taking values in 71 (G®) = 71 (H®). Fixing d € 71(G®) we can con-
sider the subvariety Rq(G®) € R(GR®) consisting of those representations
with topological class d.

The non-abelian Hodge correspondence states that there is a home-
omorphism

(5.7) Ra(G®) =2 My(G®).
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The proof of (5.7)) is given by combining ([5.5)) and Donaldson—Corlette’s
existence theorem of harmonic metrics. To explain this, let Egz be a
C* principal G®-bundle over X with fixed topological class d € m1(G®) =
71 (H®). Fix a reduction Eg= of the structure group h of Ege to H®. We
have that

Bz (%) = Egz (%) © Egz(m®).

The covariant derivative D on Eqx(g®)

poses uniquely as

of a connection on Egr decom-

(5.8) D =da+7,

where A is a connection on Egr and da is its covariant derivative, and
Y € QYX, Egr(m®)). Let Fa be the curvature of A. Consider the following
set of equations for the pair (A, v):

Fa+ 35[0, ¢ =0
(5.9) dap = 0
&5 = 0.

These equations are invariant under the action of /%, the gauge group of
Ez=. The theorem of Corlette [Co] (see Donaldson [Do] for G® = SL(2, C)),
says that there is a homeomorphism

(5.10) {Reductive flat connections D on Eqz} /9%
= {(da, ¢) satistying (5.9)}/#".

Recall that a flat connection is said to be reductive if the holonomy repre-
sentation is reductive.

To complete the argument, leading to , we just need and the
simple fact that the correspondence (4, ¢) — (A, ¥ := ¢ — 7(yp)) defines
a homeomorphism

(5.11) {(A, ) satisfying (5.4)}/% = {(A, ) satisfying (5.9)}/ 2% .

The first two equations in are equivalent to the flatness of D =
da + 1, and (5.10) simply says that in the ¥®-orbit of a reductive flat con-
nection Dy on Ege we can find a flat connection D = g(Dg) with g € 9%
such that if we write D = d 4 + v, the additional condition d%1 = 0 is sat-
isfied, where the operator d% is defined using the Hodge *-operator given by
the complex structure of X. This can be interpreted more geometrically in
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terms of the reduction g(h) of Ege to an H®-bundle obtained by the action
of g on the initial reduction h. The equation d%1 = 0 is equivalent to the
harmonicity of the section of the G®/H®-bundle Eqx (G®/H®) defined by
g(h).

If, as in Section 5.1, we are equipped with conjugations ocx and o¢g, ¢ €
Z°¢, and Ep is a C*° H-bundle, we can consider a (ox, 0¢, ¢)-real structure
og, on Eg. If we fix also a reduction h of structure group Egr chosen to
be og,-compatible, then og, will restrict to og . on Eg=, and since og
preserves m®, we also have a restriction OF, 5 (mF) : Epr (m®) — Ege(m®).
Let Egr the GR-bundle obtained from E = by extension of structure group.
Since o preserves G¥, we can extend Og, toamap og_, : Ege — Egr,
and we also have og_, (gr) : Eg= (g®) — Egz(g®).

Let D be a connection on Eqr. Recall that this can be regarded as a map
D : TEg: — g®. The compact conjugation 7 : g — g preserves g~ and
hence we can consider the connection 7(D) := 7o D. Let #* be the set of
pairs (og_z, D), where og_ is as above and D is a connection on Eg= such
that the connection T%¥%(D) is og_g-compatible. Abusing notation, let D
denote also the covariant derivative defined by D on Ege(g®). From
we have the decomposition D = d4 + 1, where A is a connection on Egx
and ¢ € Q' (X, Epyr(mR)). Since 7(A) = A and 7(¢)) = —), the set of pairs
2% can be identified with the set of triples (OB 5> A, ¥), where Ais op -
compatible and og,_, (m#)(¢) = £0%(¥). Setting ¢ := ¢ — 7(p), it is imme-
diate that 2% is then in bijection with the set of triples (og,,, 4, ¢) € T+
considered in Section 5.1. The uniqueness of the harmonic section provided
by the Donaldson—Corlette theorem (recall that G¥ is semisimple) im-
plies that this section is fixed by og_,, or more precisely, by the correspond-
ing map defined on the space of sections of Eqz(G®/H®). As a consequence
of this and we have the following.

Proposition 5.4. The bijection restricts to give a bijection
{(og s, D) € PE with D reductive flat} /9% = M (GR o, 0q, ¢, +).

We now need to identify {(og_,D) € 2% with D reductive flat} /4%
in terms of representations of the fundamental group of X. To do this, fix
a point x € X, such that ox(z) # z. The orbifold fundamental group
(X, z) of (X, ox) is, as a set, the disjoint union of 71 (X, z) and

Path(X, z) := {Homotopy classes of paths ~ : [0, 1] — X |
7(0) = z, ¥(1) = ox(z)},
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with the composition defined by y271 = 0% (72) 01, where

o 0 if’}/leﬂ'l(X,$)
971 ity e Path(X, 2).

The function ¢ induces the short exact sequence
(5.12) 0——>m(X, 2) —>T(X, 2) +~7/27 —>0 ,

where ¢ denotes the inclusion of groups.

Let ¢ € Z§°(H) NKer(v) N Z(G®), where recall Z(H) and Z(G¥) are
the centers of H and G® respectively, and Z5°(H) is the subgroup of ele-
ments of order 2 in Z(H) invariant under og.

Let G} = G%(og, ¢) be the group whose underlying set is G® x (Z/27)
and the group operation on it is given by

11
g1, e1){g2, €2) = (g1logT?2 "2 g2)c , €1 T €2).
( ) ) = (91( T2)(ga)c T2, e + e2)

A representation p: I'(X, z) — éﬂi is called (ox, og,c, )-
compatible if it is an extension of a representation p : m (X, r) — G®
fitting in a commutative diagram of homomorphisms

(5.13) 0—m(X, 2) ——>T(X, 2) ——>7/27. —0
lp J{ﬁ lld
0 GR — " LGR T 77 -0,

where 4, 7 are the inclusion maps and ¢ and ¢’ are the corresponding pro-
jections.

Let R(G®, ox, 0g, ¢, =) be the variety consisting of G®-conjugacy
classes of (ox, og, ¢, £)-compatible representations p : I'(X, z) — CA}]}L
whose restriction to 71 (X, x) is reductive, that is, its conjugacy class is
an element in R(G®). We have the following.

Proposition 5.5. The holonomy representation defines a bijection
{(og s, D) € PE with D reductive flat }/9® = Ry(GR,0x,0q, ¢, £).

Proof. Recall that the holonomy representation p : m1(X,z) — G® in-
duced by a flat connection D on Egr is defined as follows: let v € (X, z),
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there is a lift 7 : [0, 1] — Egr of «y such that D(%%) = 0. Let e = 5(0).
If 4(1) = eg, then p(vy) = g.

Let (opz, D) € P+ where D is reductive flat connection. We de-
fine a homomorphism p = hol(D) : I'(X,z) — @i in the following way:
Plr(x,2) = p- Let v € T'(X, x) \ m (X, x), and let e be an element in the
fiber Egr at x. Let ¢/ € Egr be the point obtained by parallel transport by
D of e along ~. Let g, € G® be the element of the group such that

(5.14) e = f()ac(gy),

where f : Egz — 0% 0 (Ege) is the isomorphism of principal GX-bundles
induced by og_,. We define

p(Y) == gy,

for every v € I'(X, x) \ m (X, ). Following the same arguments as
in the proof of [BGHIL Proposition 4.4], one shows that p is a
(0x, oG, ¢, x)-compatible representation. Equivalence classes of (ogz , D) €
P* where D is reductive flat connection correspond to equivalence
classes of (ox,o0q,c,+)-compatible representations since hol(D) satisfies
that hol(D)(eg) = ghol(D)(e)g~! for all g € G® and for all e in the fiber
of Egr at the point x. R

Conversely, let p : T'(X, ) — G% be a (0x, 0, ¢, £)-compatible rep-
resentation. The induced representation p : 71 (X, x) — G® corresponds
to a flat GX-bundle (Ege, D). A map f : Egz= — 0%0c(Ege) can be con-
structed using and it can be extended to the other fibers as is done
in [BGHI, p. 18]. From [BGHI) Proposition 4.3], the morphism f defines a
pair (0 _,, D) € #*. The og_,-compatibility of 7373 (D) follows from the
(ox, oG, ¢, £)-compatibility of p. O

Combining Propositions 5.5 and 5.4 and Theorem 5.3 we have now the
following non-abelian Hodge correspondence for real GR-Higgs bundles.

Theorem 5.6. There is a homeomorphism
Ra(G¥, 0x, 06, ¢, £) = Ma(G¥, 0x, 06, ¢, £).
Remark 5.7. Theorem 5.6 generalizes the result in [BGH3] for a complex

reductive Lie group G, since G can be viewed as a real form of G x G, as
mentioned in the introduction.
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6. Involutions of moduli spaces

Consider the same setup and notation of Section 5.

6.1. Involutions of Higgs bundle moduli spaces

Let M(G®) be the moduli space of polystable GX-Higgs bundles over X . The
(0x,0q,c, £)-real GR-Higgs bundles studied in Section 5 appear in a natural
way as fixed points of certain involutions on the moduli space M(G®), in a
similar way as they do in the case when G® is complex, as studied in [B{],
whose approach we follow closely. Recall that ox is a conjugation of X,
o¢ is a conjugation of GG satisfying the conditions given at the beginning of
Section 5, and ¢ € Z7¢, where Z7¢ is defined by (B.1).

Let (E, ¢) be a G®-Higgs bundle on X. Let o¢(E) be the C* princi-
pal H-bundle on X obtained by extending the structure group of E using
the conjugation og : H — H. Since ox is antiholomorphic, the pullback
o%0c(E) is a holomorphic H-bundle over X.

Let

og : E(m) — E(m)
be the conjugate linear isomorphism that sends the equivalence class of any
(e,v) € E x m to the equivalence class of (e,05(v)). Let og(p) be the C*

section of F(m)® Ky defined by og and the antiholomorphic involution
oKy . Kx — Kx induced by ox. We have the following involutions.

im(ox,o6)t: M(GR) — M(G®)

(6.1) (E,p) +— (o%0g(E),to%0a(p)).

As a consequence of Corollary 5.2, there is a forgetful map

fM : M(GR>GX7OGa ¢, :l:) — M(GR)
(E79070—E) — (E»SD)

We denote by M(GR,U)(, oa,c,£) the image of fag.

Proposition 6.1. The fized points of ipm(ox, Jg)i and the moduli spaces

of polystable (ox, oq, ¢, +)-real GR-Higgs bundles are related as follows.

1)
./\/l(GR)LM(UX’UG)i 2 U M(GRva)OUG?C?i)'

ceZ)G
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2) For g(X)>2 and if we restrict the involution to the subvariety
Mg (GEY € M(GR) of stable and simple G®-Higgs bundles, then

M(G]R)ég/l(dx,ifc)ig U MV(GR,O'X,UGUC»:‘:)'

ceZ’C

Proof. (1) If (E, ) is the image of (E, p,05) € M(G®,0x,0q,c, %), then
there is a holomorphic isomorphism of bundles f : £ — ok o¢(F) induced
by g, and this defines amap f : E(m) ® Kx — o%oq(E)(m) ® Kx. We
thus have

imlox,06) (B, ) = (f(E), £(¢)) = (E, ).

(2) Let (E, ) € M(GR)QQ:(UX’UGF. There is an isomorphism f : £ —
oxoc(E),such that (f(E), £f(¢)) = (£, ¢). The composition o5 0c(f) o
f belongs to the group Aut(E, ¢) of automorphisms of (E, ¢). Since (E, ¢)
is assumed to be simple, this group coincides with Z(H) N Ker(:). Let
c:=oxoqg(f)of € Z(H)NKer(¢). Since f commutes with o%og(f)o f,
we have that og(c) = c. Therefore, ¢ € Z7¢ Nker(¢), and f defines a
(0x,0¢,c)-real structure o on E. For the real structure opy,) ® o, in-

duced by o and ox we have that 0 g, ® 0x(¢) = T, since by hypothesis

¢ = £f(p). O

6.2. Involutions of character varieties

We study now the involutions of the character variety R(G®) corresponding
to the involutions of M(G®) via the non-abelian Hodge correspondence
. This generalizes the case in which G® is complex treated in [BG], which
again we follow closely.

Fix a point z € X. The involution ox of X produces an involutive
isomorphism

(0x), : m(X,z) — m(X,ox(x)).

This in turn gives an involution
(6.2)
(0x), : Hom™ (7 (X, z),G®)/G® — Hom™ (m(X,0x(x)), G%)/G¥,

which, abusing notation, we are also denoting by (o x ). As mentioned above,
R(G®) = Hom™ (m1(X, x), G®)/G® is independent of the choice of the base
point.
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Let o be an involution of G®. This defines an involution (denoted also
by o)
o R(G®) — R(G®)
given by p — ocop. In other words, ¢ sends a homomorphism p :
71 (X,x) — G® to the composition

m(X,z) 2 G® 25 GR.

Clearly, this involution commutes with the involution (o). in (6.2). There-
fore, o o (0x), is also an involution.
One has the following.

Proposition 6.2. Let tg(ox, 0g)T be the map given by

iR(ox,00)T: R(G®) — 1R1(GR)
P — ogoT2T20po(ox)e

Then 1r(ox,06)T is an involution of R(G®) and the following diagram
commautes:

M(GR) = R(GR)
LM(UX,UG)ii im(ax,ac)i

~

M(GR) — =~ R(GR).

Proof. The fact that tg(ox,0q)™ is an involution follows from the previ-
ous discussion. The commutativity of the diagram follows immediately from
the construction of the non-abelian Hodge correspondence map M(G®) —
R(G®). Recall from Section 5.1 that if (E, o) is a polystable G® Higgs bun-
dle, one associates to it the flat GR-connection D = da + ¢ — 7(¢p), where
the pair (A, ¢) solves the Hitchin equations ([5.4). The result follows now
from the properties of the holonomy map associating to D a representation
of 7 (X, z) in G®. O

Let ﬁ(GR,Ux,Ug,C,:l:) be the image in R(G) of the map de-
fined by restricting p € R(GR,0x,06,¢,+£) to m (X, z). Notice that
the homeomorphism in Theorem 5.6 defines a homeomorphism between
R(GR, ox, 0g, ¢, £) and M(G®,0x,0q,¢,£), which is indeed the restric-
tion of the homeomorphism R(G®) = M(G®) given by the non-abelian
Hodge correspondence. As a corollary of Propositions 6.2 and 6.1, and The-

orem 5.6 we have the following.
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Proposition 6.3. The fized points of 1g(ox,0q)% and the moduli spaces
of (ox, 0g, ¢, &)-compatible representations of I'(X, x) in G% are related
as follows.

1)
R(GR)LR(UX#?—G):E D) U ﬁ(GR,UX,O-GaCa :l:)

c€Z.°NZ(GR)

2) For g(X)>2 and if we restrict the involution to the subvariety
Rirr(GF) C R(GR) of irreducible representations, then

Rin(GR)=loxoe) | ] R(G*ox,06,¢,%).
c€Z/SNZ(GR)

Remark 6.4. Recall that a representation in R(G®) is said to be irre-
ducible if the centralizer of the image of p in G® coincides with the center
of GR. Under the non-abelian Hodge correspondence the subvariety of
irreducible representations is in bijection with the subvariety of stable and
simple Higgs bundles (see [GGMI]).
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