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A B S T R A C T

Wind power is one of the most important renewable energy sources worldwide. However, integrating
these technologies in electricity markets faces challenges due to the intermittent wind speed, resulting in
potential imbalances within power grids and subsequent inefficiencies. Traditional approaches for modeling
the uncertainty simulate fixed wind power values in operational and planning models, which work well for
the short term but are inadequate for medium-term decision-making due to lower forecasting accuracy and
the inability to differentiate the imbalance risk faced in each simulated value. This paper proposes a novel
methodology for incorporating wind energy imbalance risk into medium-term generation planning models. For
this, we first simulate realistic wind power scenarios and perform a fitting distribution process to characterize
the hourly wind power behavior. Then, we model the imbalance risk using quadratic-uncertainty cost functions
for each simulated value. Subsequently, we conduct a temporal aggregation to reduce the computational
burden, preserving the conceptual framework of the imbalance risk modeling. Finally, we propose a medium-
term generation planning model that includes the imbalance risk model and the temporal aggregation strategy.
Our approach is evaluated in a real-size case study formed by Spain, Portugal, and France’s electricity markets,
demonstrating accurate wind power imbalance risk modeling and lowered planning costs.
1. Introduction

Wind power is one of the most important renewable energy sources
worldwide. In fact, it is the second renewable energy source after
hydroelectric power and above solar generation [1]. Recently, wind
energy sources have seen significant growth in power networks, owing
to environmental concerns such as reducing greenhouse gas emissions
and technological advancements leading to lower investment costs [2].
Furthermore, yearly capacity increases for onshore and offshore wind
power have been predicted. On the one hand, the onshore capacity is
expected to reach more than 200 GW globally by 2050, more than 24
times the amount of wind power installed in 2018 [3]. On the other
hand, it is predicted that the global cumulative of offshore technologies
will have increased sevenfold to 215 GW or more by 2030 [4].

However, wind speed’s intermittence impedes its widespread in-
tegration into power grids because it could lead to uncertainty and
fluctuation in electricity supply [5]. In fact, energy oscillation needs ex-
tra capacity in the power grid, lowering the economy of the system and
its stability [6]. In addition, wind-power deviations result in increased
requirements for ancillary services and spinning reserves, leading to
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higher overall operating costs [7]. One of the primary challenges faced
by system operators and market agents is to effectively utilize this
variable resource while maintaining a balance between consumption
and generation, ensuring high system reliability. Nevertheless, the
participation of wind producers in energy markets is hindered by the
uncertainty surrounding their power generation. Imbalance costs can
be considerably high, prompting wind producers to offer lower output
than expected in order to mitigate these costs [8,9]. This strategy
could result in reduced profits and inefficiency. In the same way,
planning for wind energy in medium- and long-term scheduling are
extremely challenging because of the erratic and intermittent nature
of wind power supply [10]. In particular, it is difficult to accurately
estimate the effects of wind power integration on electricity markets,
which increases the risk exposure of the market agents and hinders the
decision-making process in planning-related issues.

In this regard, numerous techniques have emerged to assess the
impacts of the stochastic nature of wind in electricity markets. In [11],
a risk-seeking stochastic optimization model for trading wind power
in electricity markets is proposed. The wind power scenarios are
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generated using a seasonal autoregressive integrated moving average
(SARIMA) approach. Subsequently, these scenarios are integrated into
a risk-seeking stochastic optimization model that considers the real-
time wind power deviations. In [12], a stochastic programming model
is proposed for the integrated operation of hydro and wind resources.
The authors utilize a martingale model of forecast evolution (MMFE) to
simulate the wind power uncertainty. This approach effectively models
the evolution of forecast uncertainty associated with wind power,
enabling the generation of long-range synthetic forecast scenarios. A
comprehensive review of the fundamental steps involved in stochas-
tic optimization and uncertainty modeling within renewable energy
applications context is offered in [13].

The most common approaches for tackling uncertainty in power
systems are probabilistic techniques [14]. In these approaches, the
probability density functions (PDF) of the uncertain variables as wind,
are calculated to specify the chance to which one observation falls
within a particular range of values. Once the PDF is obtained, three
probabilistic strategies are typically followed to model the effect of
the uncertain variable on the electricity market: Sampling-based simu-
lations, scenario-based approaches, and point estimation methods [6,
15]. In sampling-based simulations, discrete scenarios of the uncer-
tain variable are taken from the PDF. After that, simulations on each
sample are conducted to characterize the impact of the uncertainty
on the market. As more samples are simulated, more precise results
are expected. In contrast, the PDF curve is subdivided into uncertain
intervals in the scenario-based approaches. Then, representative sce-
narios are selected considering the variable’s probability of falling in
each interval. Reduction scenario techniques are usually included to
diminish the computing burden. Finally, the point estimation methods
use the moments of the uncertain input parameters to build the PDF of
the market output to be analyzed [15]. A detailed review of different
modeling techniques for the uncertainty applied to energy systems can
be found in [14,16–18].

Most of the approaches mentioned above characterize wind’s uncer-
tain impact on the electricity market, simulating fixed values of wind
power in an operational or planning model. This approach works well
for the short-term but could not be the best approach for medium- and
long-term generation planning models, mainly for two reasons. On the
one hand, the wind is one of the most challenging meteorological data
to forecast. At present, it is impossible to predict wind changes with
sufficient accuracy for longer horizons than a few days [19,20]. In this
way, simulating fixed values could be an extreme measure for scenarios
that could be highly inaccurate, like those located on distribution tails.
This approach could lead to expensive planning scenarios. On the
other hand, it could be unrealistic because this representation does not
model the balancing actions through reserves management that system
operators would take in the short term [21]. Although some proposed
strategies in the literature allow flexibility ranges [22], they do not
differentiate the imbalance risk faced in each possible realization. In
this context, an appropriate flexible approach with suitable imbalance
risk modeling could help find more realistic solutions and better reserve
scheduling at lower planning costs.

Analytical formulations have been proposed to model imbalance
risk due to wind resources. These approaches enable the integration
of wind uncertainty into optimization models by adjusting the model
parameters by suitable values. With this approach, it became possible
to simulate diverse aspects of forecasting uncertainty concerning mete-
orological conditions and predicted power magnitude [8]. In [8], the
wind power uncertainty dispatch cost (WPUDC) is introduced as the
expectation of the operational cost for surplus incurred by wind power
forecasting. The WPUDC is a quadratic function obtained from a linear
piecewise approach of the CDF of wind power constituted of three
segments. The authors show that the linear approximation accurately
matches the dispatched wind power in all distribution intervals. In [7],
a measure to quantify the probabilistic risk of failing the contracted
2

dispatch is developed using the same linear approach on the wind
power CDF. It is concluded that multiple quadratic cost functions better
capture the wind uncertainties, differentiate the seasonal behavior, and
improve the grid’s efficiency. In [23,24], the concept of WPUDC has
been extended to model the uncertainty cost of renewable resources
in Cournot’s oligopolistic games of energy trading. Results show the
existence of a unique Nash equilibrium and the suitability of this
approach to resolve competition models for local markets. Finally,
in [21], a polynomial cost function for chance-constrained economic
dispatch problems has been proposed to model parametric and non-
parametric distributions of wind power. With this approach, the total
operational cost is reduced.

However, the above references primarily focus on short-term plan-
ning horizons and small-scale case studies. These settings allow for
the availability of accurate expected values, the anticipation of mi-
nor variations in actual wind power, and computational constraints
that limit the simulation of exhaustive scenarios in planning models
are generally absent. In contrast, this paper aims to shed light on
some questions that remain open in the literature, including: How
to effectively incorporate the high uncertainty of wind power into
medium-term generation planning models while adequately accounting
for its probabilistic features and its impact on balancing costs? How
to reduce the computational burden of large-scale applications when
considering numerous scenarios to model wind power uncertainty?

Although these questions have been studied in the literature, these
challenges persist, and novel approaches continue to emerge to address
them. For instance, recently [25] introduced a model that addresses
wind power integration uncertainty in system planning, utilizing a
non-parametric kernel density estimation method to fit wind power
prediction errors. In contrast, [26] adopts a multi-stage stochastic
approach considering the uncertainty of wind power on representative
days. Alternatively to these references, we propose a methodology to
include wind power uncertainty in medium-term generation planning
models through parametric functions. On the other hand, the issue
of reducing the computational burden of large-scale applications has
been addressed in works such as [27–29], and [30]. These studies
present methodologies designed to enhance performance and reduce
the computational load when addressing the generation planning prob-
lem in large-scale applications. In contrast to these existing approaches,
our contribution focuses on addressing computational challenges by
introducing temporal aggregation for the representation of the wind
power uncertainty.

In this context, the main contributions of our work to the state of
the art can be summarized as follows:

1. We introduce a novel methodology for incorporating wind en-
ergy imbalance risk into medium-term generation planning mod-
els. In contrast to existing literature, our approach involves
calculating individual quadratic cost functions for each poten-
tial wind resource realization. This calculation depends on its
location on the PDF and the maximum permissible deviation
between the realization and the actual dispatch. This approach
enables us to accurately incorporate the high uncertainty of wind
power in the mid-term into generation planning models while
considering the imbalance risk and balancing cost faced by each
scenario.

2. We introduce the use of uncertainty cost functions aggregated
temporally to address computational challenges in large-scale
applications. This approach reduces the computational burden
by reducing the granularity of the problem and relaxing the
constraints associated with the balance between generation and
demand. Moreover, after temporal aggregation, our approach
preserves the main features identified hourly for the uncertainty,
imbalance risk, and balancing cost modeling.

The rest of the paper is structured as follows. Section 2 introduces
the proposed methodology and describes the medium-term generation
planning model. Section 3 shows the results obtained for the study case.

Finally, the main findings of this work are shown in Section 4.
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Fig. 1. Schematic representation of the proposed methodology.
2. Methodology

Fig. 1 provides an overview of the methodology proposed in this
paper. Firstly, several realistic wind power scenarios are simulated for
each hour of the midterm horizon, using the methodology proposed
in [31]. Next, a fitting distribution process is performed to represent
the observed values of each hour through hourly CDFs. These CDFs are
then utilized as a basis for modeling imbalance risk through quadratic-
uncertainty cost functions. Subsequently, a temporal aggregation has
been conducted to reduce the complexity and computational burden
of the medium-term generation planning model. Moreover, one tem-
poral aggregation strategy is proposed to include the uncertainty cost
functions in large-size problems. Finally, a medium-term generation
planning model that incorporates these functions is suggested. The
subsequent sections provide detailed explanations of the methodology
presented in this paper.

2.1. Scenarios generation

This paper follows the methodology proposed in [31] to generate
realistic wind power scenarios. This approach allows for including
the spatial–temporal dependencies of wind power among multiple in-
terconnected electricity markets with an hourly resolution. For this,
a set of scenarios is generated representing the total wind power
production for each geographical area. Unlike approaches that focus
on detailed representations of individual wind turbines and farms
like [32,33], this aggregated methodology offers valuable insights into
the impact of wind behavior across these markets. It considers factors
such as network status and operational strategies that local methods
may not adequately capture. These factors play an essential role in
mid-term planning models, where understanding the behavior of the
interconnected system is crucial to modeling the integrated market.

In this context, multiple-time series of wind power are simulated
for each area using the value of wind power utilization instead of
real power. This approach removes dependency and trends from the
historical data due to the wind power installed capacity, leading to
a better representation of spatial–temporal correlations among areas.
In short, this methodology is divided into three main steps. First, a
3

time series decomposition of historical data is performed to capture the
trends and seasonality of each interconnected market. Second, Seasonal
Auto-Regressive Integrated Moving Average models (SARIMA) are de-
veloped to obtain the temporal dependencies of each area. Finally,
the simulation of several paths of wind power considering the spatial
dependencies is conducted through correlated and multivariate Monte
Carlo simulations. This methodology closely simulates the dynamics of
the PDF of the historical data at monthly, weekly, daily, and hourly
scales, making it suitable for medium-term planning applications. It is
important to note that the high accuracy and reliability of the SARIMA
model depend on various factors, including data reliability, parameter
selection, model assumptions, spatial correlations, and uncertainty pro-
cessing. Therefore, a thorough evaluation of the quality of the scenarios
generated should be conducted, tailored to the specific study case.
Detailed measures assessing the quality of the scenarios generated for
this paper can be found in [31].

2.2. Distribution fitting

After obtaining wind power paths from the scenario generator, a
fitting distribution is proposed to be performed for each hour. To
achieve this, the PDF of each hour was obtained and adjusted through
maximum likelihood estimation. The adequacy of the fitting was tested
using the Kolmogorov–Smirnov (KS) test [34]. The KS test evaluates
the null hypothesis that the data from the scenario generator follows a
specific distribution against the alternative hypothesis that it does not.
In particular, we have considered that the null hypothesis is accepted
at the 5% significance level, indicating a high level of accuracy in
the selected distribution. In this paper, six distributions proposed in
the literature for modeling wind power density functions were con-
sidered [35–37]: Normal, Weibull, Gamma, Beta, Logistic, and Kernel
distributions. However, other distributions could be considered in our
methodology depending on the specific application [35], and a detailed
analysis of whether these distributions can accurately describe the data
distribution is encouraged to be explored in future works. If multiple
distributions fit the data, Akaike’s Information Criteria (AIC) was used
to compare their relative quality and determine the best fit [38]. In
short, through the KS test and the AIC we guarantee that the probability
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distribution fitted have been adequately selected and describe the data
properly. Finally, the Mean Absolute Error (MAE) and the Root Mean
Square Error (RMSE) measures have been calculated to assess the
quality of the fit for each hour as follows:

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖| (1)

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (2)

where 𝑛 is the sample size, 𝑦𝑖 and 𝑦𝑖 are the scenario and the fitted
value for the scenario 𝑖, respectively. The MAE and the RMSE have been
widely used due to their simplicity and explainability. In particular,
MAE gives less weight to outliers, while RMSE gives a relatively high
weight to large errors [39]. In conjunction, the information of both
measures gives a sensitivity of the number and magnitude of the errors
obtained with the fitting. As will be seen in the next section, fitting
the generated scenarios to known distribution functions enables ob-
taining polynomial approaches around the realizations and accurately
modeling the uncertainty cost of wind power.

2.3. Uncertainty cost

Once a PDF has been fitted by each hour, the imbalance risk of each
hour is modeled. Usually, an imbalance cost is produced because of the
under- or over-estimation of the actual wind power in the forecasting
stage. In [8] the concept of wind power uncertainty incremental cost
(𝑈𝐼𝐶) is introduced to quantify the extra cost by unit for balancing
wind power uncertainty in system operation as:

𝑈𝐼𝐶(𝑤𝐹 ) =
𝜕𝐸[𝐶(𝛥𝑤𝐹 )]

𝜕𝑤𝐹
(3)

here 𝐶(𝛥𝑤𝐹 ) is the cost for balancing power deviation from the
orecasted wind power 𝑤𝐹 to the real wind power generation 𝑤𝑅, and
[𝐶(𝛥𝑤𝐹 )] is the expected value of the balancing cost. Likewise, the
pward and downward reserve costs are given by Eqs. (4)(a) and (b),
espectively:

(𝛥𝑤𝐹 ) =
𝐶𝑟(𝑤𝐹 ) = 𝑘𝑟(𝑤𝐹 −𝑤𝑅), if 𝑤𝐹 −𝑤𝑅 > 0; (a)
𝐶𝑝(𝑤𝐹 ) = 𝑘𝑝(𝑤𝑅 −𝑤𝐹 ), if 𝑤𝑅 −𝑤𝐹 > 0; (b) (4)

here 𝑘𝑟 and 𝑘𝑝 are the unit cost of the upward and downward
eserves. Notice from (3) that the uncertainty cost proposed by [8]
epends on the expected value of the balancing cost. This approach
s valid for the short term when an accurate expected value can be
ound and minor variations for the actual wind power are anticipated.
owever, the uncertainty is much greater in the medium term. This
aper argues that the deviations concerning each possible realization
hould be considered in the modeling to better capture the imbalance
isk at different distribution intervals. Therefore, in contrast to what
as proposed by [8], this paper introduces a novel definition of the
xpected value of the imbalance cost for a realization 𝑤𝐹 between 𝑤−

𝐹
nd 𝑤+

𝐹 by:

[𝐶(𝛥𝑤𝐹 )] = ∫

𝑤+
𝐹

𝑤−
𝐹

𝐶(𝛥𝑤𝐹 )𝑓 (𝑤)𝑑𝑤 (5)

= 𝑘𝑟 ∫

𝑤𝐹

𝑤−
𝐹

(𝑤𝐹 −𝑤)𝑓 (𝑤)𝑑𝑤 + 𝑘𝑝 ∫

𝑤+
𝐹

𝑤𝐹

(𝑤 −𝑤𝐹 )𝑓 (𝑤)𝑑𝑤 (6)

where 𝑓 (𝑤) is the PDF of the wind power 𝑤. In this paper, it is
assumed for simplicity that 𝑤−

𝐹 = 𝑤𝐹 − 𝜎 and 𝑤+
𝐹 = 𝑤𝐹 + 𝜎, where

𝜎 is the deviation interval and also 𝜎 ≤ 𝑤𝑓 . The parameter 𝜎 repre-
sents the permissible range of variations for wind energy technologies.
These deviations encompass both the difference between the market-
bid (forecasted value) and the actual dispatch, as well as the maximum
allowable balancing actions through reserves that system operators
4

might need to implement in the short term [21,40]. The acceptable
deviation limits can vary based on factors like the technology em-
ployed, the country’s regulations, and the unique characteristics of the
electricity market. Consequently, the appropriate value for 𝜎 should
be determined in consultation with the specific electricity market in
question. Then, replacing (6) in (3) it is obtained that:

𝑈𝐼𝐶(𝑤𝐹 ) = 𝑘𝑟 ⋅ 𝐹 (𝑤)||
|

𝑤𝐹

𝑤−
𝐹
+ 𝑘𝑝 ⋅ 𝐹 (𝑤)||

|

𝑤+
𝐹

𝑤𝐹
(7)

here 𝐹 (𝑤) is the CDF of 𝑤. In contrast to [8], where the entire CDF
s approached through a piecewise function of three linear terms, in
his paper, we focus on each individual realization and approximate the
DF using a straight line in the vicinity of that realization. By adopting
his approach, we achieve a more refined and localized representation
f the CDF, offering improved accuracy and flexibility compared to
he previous method. As the proposed fitting process gives differen-
iable functions, we approach the CDF around each realization through
he first term of Taylor’s series. It is a common procedure applied
n engineering problems, even the uncertainty treatment [17]. Then,
pproaching the CDF around the wind power realization 𝑞 through the
irst term of Taylor’s series, it is obtained that:

(𝑤) = 𝐹 (𝑞) + 𝑓 (𝑞)(𝑤 − 𝑞) (8)

olving (7) and by replacing (8), it is obtained that:

𝐼𝐶(𝑤𝐹 ) = (𝑘𝑟 + 𝑘𝑝)[𝐹 (𝑤𝐹 ) + 𝑓 (𝑤𝐹 )(𝑤 −𝑤𝐹 )] −𝐾 (9)

here 𝐾 = 𝑘𝑟𝐹 (𝑤−
𝐹 ) + 𝑘𝑝𝐹 (𝑤+

𝐹 ). Then, the wind power uncertainty
ost (𝑈𝐶) is defined here as the expected balancing cost due to the
ncertainties in the realization 𝑤𝐹 between 𝑤−

𝐹 and 𝑤+
𝐹 . From the

fundamental theorem of calculus, the wind power uncertainty cost can
be calculated as a function of the scheduled wind power 𝑃𝑤 as [41]:

𝑈𝐶(𝑃𝑤) = 𝐸[𝐶(𝛥𝑤𝐹 )] = ∫

𝑃𝑤

0
𝑈𝐼𝐶(𝑤𝐹 )𝑑𝑤 + 𝛾 (10)

where 𝛾 is a constant. Developing (10) it is obtained that:

𝑈𝐶(𝑃𝑤) = (𝑘𝑟+𝑘𝑝)∫

𝑃𝑤

0
[𝐹 (𝑤𝐹 )+𝑓 (𝑤𝐹 )(𝑤−𝑤𝐹 )]𝑑𝑤−∫

𝑃𝑤

0
𝐾𝑑𝑤+𝛾 (11)

To solve (11), notice that the only integration variable is 𝜔 while all
other parameters are constants. In fact, 𝐹 (𝜔𝐹 ) and 𝑓 (𝜔𝐹 ) represent the
CDF, and the PDF evaluated at the wind power realization 𝜔𝐹 , and 𝐾
and 𝛾 are known constants. Therefore, the integration of Eq. (11) yields:

𝑈𝐶(𝑃𝜔) = (𝑘𝑟 + 𝑘𝑝)
[

1
2
𝑓 (𝜔𝐹 )𝜔2|

|

|

𝑃𝜔

0
+ 𝐹 (𝜔𝐹 )𝜔

|

|

|

𝑃𝜔

0
− 𝑓 (𝜔𝐹 )𝜔𝐹𝜔

|

|

|

𝑃𝜔

0

]

−𝐾𝜔||
|

𝑃𝜔

0
+ 𝛾 (12)

After that, it is possible to write the wind power uncertainty cost as a
quadratic function depending on the scheduled wind power like:

𝑈𝐶(𝑃𝑤) = (𝑘𝑟+𝑘𝑝)
{

1
2
𝑓 (𝑤𝐹 )𝑃 2

𝑤+[𝐹 (𝑤𝐹 )−𝑓 (𝑤𝐹 )𝑤𝐹 ]𝑃𝑤

}

−𝐾𝑃𝑤+𝛾 (13)

otice that 𝛾 can be easily adjusted to make 𝑈𝐶(𝑃𝑤) = 0 when the
mbalance risk is minimum. Additionally, when it is considered that
𝑟 = 𝑘𝑝 = 𝜆𝑈𝐶 , i.e., when upward and downward reserves are equally
enalized, it can be obtained from Eq. (13) that:

𝐶(𝑃𝑤) = 𝜆𝑈𝐶

{

1
2
𝑓 (𝑤𝐹 )𝑃 2

𝑤 + [𝐹 (𝑤𝐹 ) − 𝐹 (𝑤−
𝐹 ) − 𝐹 (𝑤+

𝐹 )

− 𝑓 (𝑤𝐹 )𝑤𝐹 ]𝑃𝑤

}

+ 𝛾 (14)

In any case, the uncertainty cost function for each realization may
e written as a quadratic function like:

𝐶(𝑃𝑤) = 𝛼𝑃 2
𝑤 + 𝛽𝑃𝑤 + 𝛾 (15)

here 𝛼 and 𝛽 can be obtained comparing the Eqs. (14) and (15):

= 1𝜆 𝑓 (𝑤 ) (16)

2 𝑈𝐶 𝐹
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Fig. 2. Uncertainty cost function comparison for Normal and Weibull CDF.
𝛽 = 𝜆𝑈𝐶 [𝐹 (𝑤𝐹 ) − 𝐹 (𝑤−
𝐹 ) − 𝐹 (𝑤+

𝐹 ) − 𝑓 (𝑤𝐹 )𝑤𝐹 ] (17)

As it can be seen from Eqs. (17) and (18), the values of 𝛼 and 𝛽 can
be computed by evaluating the CDF and the PDF in the forecasted
value 𝜔𝐹 and the extremes of the deviation intervals 𝜔−

𝐹 and 𝜔+
𝐹 which

are all known parameters. In contrast, 𝛾 could be adjusted to make
the quadratic cost function equal to zero when the imbalance risk is
minimal.

To summarize, this paper presents a generalization of the definition
of the uncertainty cost proposed in [8]. While in [8] the entire CDF
is approached through a piece-wise function of three segments, our
model enables the estimation of the imbalance cost for any interval
and around each possible realization on the wind power CDF. This
generalization allows for better capture of the features and asymme-
tries of the imbalance risk at various distribution intervals, making it
highly suitable for managing the high uncertainty of wind power in
the medium- and long-term. Moreover, the mathematical formulation
to properly estimate the uncertain cost function in this context is
one contribution of this paper. This formulation ensures the proper
quantification and representation of the imbalance cost considering
intervals for the uncertainties associated with wind power generation
and the reserves-cost management.

As an illustrative example, Fig. 2 shows the effect of approaching a
Normal (mean 0.5 and standard deviation 0.1) and a Weibull CDF (scale
parameter 0.35 and shape parameter 2.0) in three different realizations.
Notice that the wind power has been normalized in magnitude. The
approach has been evaluated assuming realizations of 0.25 (blue line),
0.50 (green line), and 0.65 (red line) for each CDF. Figure (a.1) and
(b.1) shows the linear approaches made on Normal and Weibull CDF.
Figures (a.2) to (a.7) and (b.2) to (b.7) illustrate the uncertainty cost
functions for Normal and Weibull distributions, respectively, under
different scenarios. For Figures (a.2) to (b.5), 𝜎 = 0.05, while for Figures
(a.6) to (b.7), 𝑘𝑟 = 𝑘𝑝 = 1.0. Additional details are provided within each
figure for further reference and analysis.

It can be seen from Fig. 2 that:

1. The minimum of the quadratic function is always close to the re-
alization value, indicating that our approach effectively captures
the proximity of deviations to the actual realization.

2. Deviations are more heavily penalized when they occur within
the quasi-linear interval of the CDF. It can be seen from the
tighter curves observed for realizations falling within these sec-
tions (green and blue lines in the Normal and Weibull CDFs,
5

respectively). This behavior is desirable due to the higher prob-
ability of occurrences in these parts of the CDFs. In other words,
when the imbalance risk is low, a higher penalty is imposed on
values deviating from the forecasted ones. Also, notice that the
shape of the curve closely relates to the parameter 𝛼, with higher
values of 𝛼 resulting in increased penalization.

3. As it was expected, Figures (a.2) to (b.3) demonstrate that higher
balancing reserve prices lead to greater penalties for deviations.

4. Figures (a.4) to (b.5) show that if the upward reserve cost is
less than the downward, the minimum of the curve shifts to-
wards the right. This indicates that scheduled wind power tends
to be higher to mitigate the risk of incurring additional costs
associated with utilizing downward reserves. A similar analysis
can be conducted if the cost of upward reserves exceeds that of
downward reserves.

5. It can be seen from Figures (a.6) to (b.7) how the selection
of the deviation interval can impact both the location of the
minimum and the level of penalization, being less susceptible
to realizations on the quasi-linear part of the CDF.

In a nutshell, the uncertainty cost function allows modeling the
short-term balancing actions that system operators could take in the
short term while modeling properly the imbalance risk faced in each
realization. If a realization has a high probability of occurrence, the
variations of this value are more penalized. It is a matter of fact that
deviations from this realization would more likely produce imbalances.
In contrast, those variations are more flexible for realizations with a
low probability of occurrence. In this way, our approach differentiates
the possible imbalance risk of the realizations and could be easily
included in medium-term generation planning models. In addition, this
approach can provide more flexibility to optimization techniques in
those realizations with a low probability of occurrence, enabling the
technique to find cheaper solutions than those obtained with fixed
values approaches.

2.4. Temporal aggregation

Reducing the temporal scope of the problem is a commonly em-
ployed strategy for simplifying the complexity in medium- and long-
term planning models. This practice is valuable when dealing with
large-scale problems where many scenarios are needed to model the
uncertainty properly, making it challenging to handle variables with
a high level of granularity. A detailed review of different temporal
aggregation methods applied to power systems analysis can be found
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Fig. 3. Schematic representation of the proposed temporal aggregation.
in [42]. This paper has conducted a two-steps temporal aggregation
approach inspired in [30,43]. First, the demand covered by dispatch-
able generation has been selected as the control variable for grouping
similar operational hours. This selection allows capturing the spatial
and temporal dynamics of the system while considering the behavior
of the resources that must be scheduled on a mandatory basis, like,
for instance, renewable energy sources, units that should be dispatched
with a minimum production for reliability purposes, and nuclear gen-
erators. For this, initially, a k-means clustering algorithm has been
performed to group the days of each month based on how similar they
are and to select a reduced number of types of day representatives
of the month [44]. A monthly basis has been chosen here because of
the time resolution of different variables of midterm planning models
like hydro management and fuel contracts. However, other temporal
aggregations are admitted by the proposed methodology.

After that, a second clustering process was carried out to group
the similar hours of the representative days into system states. With
this approach, each state usually represents more than one hour, and
each type of day is treated similarly. Thus, the computational burden
of the medium-term planning model is reduced while preserving the
market dynamics. In the case of the uncertainty cost functions, one
quadratic function is calculated first for each hour. After that, the
mean of the quadratic functions belonging to the grouped hours in
the state is calculated, i.e., one quadratic function is computed for
each state. This approach allows preserving, at the minimum of the
function, the average of the forecasted values of the clustering hours
while better capturing the average features of the quadratic functions,
i.e., symmetry and convexity.

Temporal aggregation approaches have inherent limitations like
they could lead to the loss of crucial temporal details which may
include critical information, mainly when dealing with events that
occur on a short time scale, like sudden storms and power outages.
Nevertheless, this limitation can be addressed in our proposed method-
ology by defining a unique state for each hour. This hourly granularity
proves a precise and comprehensive representation of imbalance risk
and unexpected events. In this context, the trade-offs between compu-
tational efficiency and result accuracy should be carefully considered
when defining the temporal aggregation’s granularity for a particular
study case.

Finally, once the uncertainty cost functions are calculated, they are
adequately scaled according to the installed wind power capacity. The
proposed temporal aggregation is schematically shown in Fig. 3.

2.5. Medium-term generation planning model

The proposed methodology has been implemented as an exten-
sion of the market equilibrium model developed in [45,46]. A per-
fect competition market has been simulated. The quadratic cost func-
tions related to the uncertainty cost and the temporal aggregation
6

have been included in the formulation. In this way, the medium-
term generation planning can be determined by solving the following
quadratic-optimization problem:

min
𝑃𝑓𝑚𝑠

𝐹
∑

𝑓=1

𝑀
∑

𝑚=1

𝑆
∑

𝑠=1

(

𝐶𝑓𝑚𝑠(𝑃𝑓𝑚𝑠) +
𝜃𝑓𝑚𝑠
2

𝑃 2
𝑓𝑚𝑠 + 𝑈𝐶(𝑃𝑓𝑚𝑠)

)

(18)

subject to:
𝐹
∑

𝑓
𝑃𝑓𝑚𝑠 = 𝐷𝑚𝑠 ∀𝑚, 𝑠 (19)

𝑃 𝐹
𝑓𝑚𝑠(1 − 𝜎) ≤ 𝑃𝑓𝑚𝑠 ≤ 𝑃 𝐹

𝑓𝑚𝑠(1 + 𝜎) ∀𝑓, 𝑚, 𝑠 (20)

(𝑃𝑓𝑚𝑠) ≥ 0 ∀𝑓, 𝑚, 𝑠 (21)

where 𝑓 , 𝑚, and 𝑠 denotes firms, months, and states. Likewise, 𝐹 , 𝑀 ,
and 𝑆 indicate the total number of firms, months, and system states.
Besides, 𝑃𝑓𝑚𝑠, 𝑃 𝐹

𝑓𝑚𝑠 and 𝐶𝑓𝑚𝑠 are the generated power, the forecasted
wind power, and the production cost of the firm 𝑓 , at the month 𝑚,
and the state 𝑠. The production cost function is the sum of the variable
thermal production costs, these units’ start-up and shut-down costs, and
the fixed cost of dispatched units, following the methodology proposed
in [44]. Additionally, 𝜃𝑓𝑚𝑠 is the conjectured-price response which
measures the change in the market price 𝜆𝑚,𝑠 concerning the changes
in the production of each firm. That is:

𝜃𝑓𝑚𝑠 = −
𝜕𝜆𝑚,𝑠
𝜕𝑃𝑓,𝑚,𝑠

∀𝑓, 𝑚, 𝑠 (22)

Eq. (19) corresponds to the power balance constraint, and Eq. (20)
is the constraint of the maximum deviation allowed concerning the
wind power realization. Finally, Eq. (21) represents other technical and
economic constraints considered in the model. To give some examples,
the model includes restrictions related to the allocation of hydrother-
mal resources throughout the whole medium-term horizon, emissions
allowances for thermal units, fuel contracts, and energy flow limits
among different operative areas [45,46].

Finally, notice that committing the generation planning, including
the uncertainty cost function, has advantages concerning committing
fixed forecasted values for wind resources. First, wind flexibility can
achieve cheaper operation points for the whole system. Second, the
imbalance cost for deviations from the forecasted value to the commit-
ted value is covered. If the actual wind power is the expected value,
there will be no imbalance cost. Moreover, third, the model covers the
deviation costs on both sides at the same time. For instance, if the
commitment is under the forecasted value and the actual realization
is above it, a part, if not all, of the deviation cost is covered and
considered in the model output.
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3. Results

The proposed methodology has been tested in a real-size study case.
For this, the power markets of Spain, Portugal, and France have been
simulated from 1 January 2022 to 31 December 2024, following the
methodology described in Section 2.1. There are notable characteristics
that make this study case interesting to be analyzed. On the one hand,
each country has a unique combination of electrical sources. The total
generation capacity installed for Portugal, Spain, and France is cur-
rently close to 19 GW, 112 GW, and 141 GW, respectively. From these
values, 28%, 24%, and 14%, respectively, came from wind resources
in 2022 [47]. Due to these differences, it is possible to capture a wide
range of uncertainties from a local and global perspective. On the other
hand, there are physical interconnections between Spain and France
and between Spain and Portugal, with no physical interconnection be-
tween Portugal and France. Spain and Portugal’s electricity markets are
fused in the Iberian Electricity Market (MIBEL), and energy transfers
between MIBEL and France depend on each market’s rules. In this way,
it is interesting to simulate the response of each market and the whole
under different reserve-cost scenarios.

This section is ordered as follows. In Section 3.1, the aspects re-
lated to the treatment of the wind power uncertainty are discussed,
i.e., the steps from Sections 2.1 to 2.4 of the methodology are detailed.
For the sake of clarity, the results of the temporal aggregation are
introduced before the uncertainty cost function calculations. Likewise,
Section 3.2 shows the impact of the methods proposed to treat the wind
power uncertainty on the generation-planning model (Section 2.5 of the
methodology) considering deterministic and Monte Carlo simulations
of three hundred scenarios.

3.1. Treatment of the wind power uncertainty

3.1.1. Scenarios generation
Hourly paths of wind power have been generated following the

methodology proposed in [31]. Real wind power data from 2008 to
2020 for Spain, and 2012 to 2020 for Portugal and France, have been
firstly treated. Subsequently, three hundred scenarios of wind power
generation for each hour and country have been simulated from 2022
to 2024. Fig. 4 shows the CDF and the box plot representing the per-
unit wind power obtained for each country for all the simulated hours.
Red, green, and blue lines show the behavior of Spain, Portugal, and
France, respectively. The CDF shows similar behavior for wind power
in Spain and France. However, Spain exhibits a higher utilization of the
installed capacity in almost all the distribution intervals. In contrast, a
higher imbalance risk for Portugal is expected from the low slope of the
CDF and the heavy right tail. These observations are more evident in
the accompanying box plot, which reveals similar distributions among
the regions for values below the median, but notable asymmetries in
Portugal due to its higher skewness. It is worth mentioning here that
the accuracy of the forecasted scenarios is crucial in guarantying the
reliability of the results obtained through the proposed methodology.

3.1.2. Distribution fitting
After generating the wind power scenarios, a distribution has been

fitted for each hour following the methodology indicated in Section 2.2.
Table 1 presents the number of hours fitted to a particular distribution
by area. Specifically, 26.304 h corresponding to the simulated period
(1 January 2022 to 31 December 2024) have been fitted for each area.
Results show that logistic regression provides a better fit for most hours
in Spain and France, also suggesting the presence of heavy tails in the
distributions. Moreover, the kernel approach shows better fitting results
for Portugal, as seen in the last column of the table.

In addition, MAE and MAPE evaluation metrics have been com-
puted for each possible realization. To do this, we compared the fitted
CDF with the empirical cumulative distribution function (ECDF), as
7

described in [35], derived from each realization for each hour of the
Table 1
Distribution fitting obtained by country.

Normal Weibull Gamma Beta Logistic Kernel

Spain 894 1752 650 85 21 922 1001
Portugal 375 1421 3507 789 2172 18 040
France 419 7179 1106 243 11 346 6011

Table 2
Values obtained for MAE and RMSE by hour and country.

Hour MAE [%] RMSE [%]

Spain Portugal France Spain Portugal France

1 2.73 1.89 2.44 3.16 2.36 2.87
2 2.74 1.87 2.43 3.17 2.34 2.87
3 2.72 1.87 2.43 3.15 2.33 2.87
4 2.73 1.86 2.45 3.15 2.33 2.88
5 2.72 1.87 2.44 3.14 2.34 2.87
6 2.71 1.89 2.44 3.14 2.36 2.88
7 2.73 1.86 2.43 3.15 2.33 2.87
8 2.72 1.90 2.45 3.14 2.37 2.89
9 2.69 1.91 2.45 3.11 2.38 2.89
10 2.68 1.89 2.48 3.10 2.36 2.91
11 2.68 1.87 2.48 3.10 2.34 2.91
12 2.71 1.90 2.43 3.13 2.37 2.87
13 2.68 1.87 2.48 3.11 2.33 2.92
14 2.67 1.90 2.46 3.10 2.36 2.90
15 2.69 1.89 2.46 3.12 2.35 2.89
16 2.69 1.90 2.45 3.11 2.37 2.88
17 2.69 1.89 2.44 3.11 2.36 2.87
18 2.69 1.88 2.45 3.11 2.34 2.89
19 2.69 1.89 2.44 3.11 2.36 2.88
20 2.68 1.89 2.40 3.10 2.36 2.84
21 2.71 1.91 2.45 3.13 2.38 2.89
22 2.70 1.91 2.43 3.12 2.38 2.87
23 2.72 1.89 2.45 3.14 2.37 2.89
24 2.74 1.91 2.44 3.17 2.38 2.87
Mean 2.70 1.89 2.45 3.13 2.36 2.88

generated scenarios. Subsequently, we calculated the average MAE and
MAPE values over each hour of the day for the forecasting period.
Table 2 shows the values obtained for MAE and RMSE in each hour
and area. Results show that the fitting process approximates the CDF of
the scenarios generated in all the hours and areas properly, regardless
of the hour of the day. In addition, the last row of the table shows the
mean value, indicating the highest performance for Portugal and the
lowest for Spain.

3.1.3. Temporal aggregation
Temporal aggregation helps to reduce the execution times and

the computational complexity in large planning models. In this way,
selecting the type of days and system states for each realization is
crucial. In general, the lower the number of system states, the lower the
complexity of the problem. However, the cost of this reduction is losing
accuracy in results. Moreover, the strategy adopted to cluster similar
operational hours may significantly impact the obtained results. The
main objective of the temporal aggregation followed in this paper is to
propose an approach to extend the proposed methodology for including
wind power uncertainty in the generation planning models used to
tackle real-size problems. However, identifying the optimal temporal
aggregation is out of the scope of this paper, and it is suggested to
be investigated in future works. In this context, five types of days
representatives of each month have been selected to reduce the prob-
lem’s size in this paper. The clustering has been performed according
to the net demand (the part of the demand covered by dispatchable
generation). Additionally, six system states by type of day have been
built to represent the electricity market. These values of the kind of
days and the system states have been shown to have a good equilibrium
among computational complexity, the objective function’s accuracy,
and the main variables of planning models similar to the proposed one
in this paper [30].
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Fig. 4. CDF and box plot of wind power scenarios generated for Spain, Portugal, and France.
Fig. 5. Scenarios of wind power for June.

To illustrate the temporal aggregation performed, Figs. 5 to 10 show
the wind power scenarios generated for June and December 2022 in
Spain and their temporal aggregation. These months have been selected
to show the different behavior in summer and winter. The horizontal
axis indicates the hour of the month (for Figs. 5 to 8) or system states
(for Figs. 9 and 10), depending on the figure. In contrast, the vertical
axis shows the number of simulated scenarios (three hundred). One
scale of colors on the right of each figure is provided to indicate the
per-unit value of wind power in each realization or the number of the
system states. Figs. 5 and 6 show the wind power scenarios generated
for June and December. Notice that the wind power scale is the same
for both Figures. It can be seen from those Figures a higher utilization
in December from the more yellow and blue light colors in Fig. 6. In
contrast, Figs. 7 and 8 show the belonging of the hours to each system
state after the two-step temporal aggregation processes. From the dark-
green columns of the figures, it can be seen that the hours have been
grouped following a weekly pattern, approximately. It was expected
because of the weekly seasonality of the demand captured by the k-
means clustering algorithm. Finally, Figs. 9 and 10 indicate the wind
power scenarios as a function of the system state representation.

3.1.4. Uncertainty cost
Once the distribution fitting is performed, the coefficients 𝛼, 𝛽, and 𝛾

from Eq. (15) are calculated for each hour. In this way, the uncertainty
cost will be a function of the reserve costs and the deviation interval
8

Fig. 6. Scenarios of wind power for December.

Fig. 7. Belonging of each hour of June to the system state.

𝜎 of each hour. In addition, one quadratic function is calculated to
represent each system state properly and according to the temporal
aggregation. To illustrate this, Figs. 11 and 12 show the quadratic cost
functions obtained for Spain when 𝑘 = 𝑘 = 20, and 𝜎 = 0.1 for two of
𝑟 𝑝
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Fig. 8. Belonging of each hour of December to the system state.

Fig. 9. Scenarios of wind power as a function of the system state representation for
June.

Fig. 10. Scenarios of wind power as a function of the system state representation for
December.
9

Fig. 11. Figure from June.

the system states1. In particular, the thicker line on the figures shows
the quadratic uncertainty cost obtained for the state with our approach.
In particular, the hour 15:00 on the 21st of June and 21st of December
2022 has been evaluated. The hours mentioned pertain to system states
22 and 21, where a total of 81 h were aggregated in June and 72 h
in December, respectively. The minimum values, represented by blue
dots, are 0.19 and 0.25. These values indicate a higher value of wind
energy expected for December. As it can be seen from the figures, the
temporal aggregation proposed allows capturing the average minimum,
symmetry, and convexity of the clustered quadratic cost functions for
both months.

A close inspection of the curves indicates a higher increase rate for
June, suggesting a lowest imbalance risk. It can also be seen from the
quadratic coefficients 𝛼 obtained for both curves, which were 4.0 for
June and 2.3 for December, respectively. A fixed cost can be observed
even if the actual wind power value matches the forecast. As it was
suggested in Section 2.4, the value of 𝛾 can be adjusted to make the
uncertainty cost equal to zero when there is no imbalance. Finally,
Table 3 shows some descriptive statistics that summarize the values
of the coefficients obtained for each area. A total of 360 uncertainty
cost functions have been computed by area, being consistent to the five
types of days of each month, and the six system states detailed in the
temporal aggregation. The units of 𝛼, 𝛽, and 𝛾 are e/unit2, e/unit, and
e, respectively. As was expected from Fig. 4, 𝛼 values suggest a higher
imbalance risk for Portugal. Likewise, the highest deviation of all the
constants is expected for France.

Finally, notice that each cost function properly represents the main
characteristics of the state, as can be seen from Figs. 11 and 12.
However, it is worth mentioning that when the quadratic functions are
averaged to obtain one function for each state, some features of the
uncertainty of each realization could get lost. This limitation can be
addressed through our methodology by defining a higher number of
states for each hour and, in a more accurate scenario, by defining a
unique state for each hour.

1 The values of 𝑘𝑟 and 𝑘𝑝 have been selected to be approximately realistic.
For this, we subtract the time-average price of activated balancing energy
mechanisms in the European Union electricity markets [48] with a typical offer
price of a marginal conventional unit of the case of study. Likewise, allowed
deviations have been chosen considering that they could change according to
the market. A clear example is the PJM which establishes deviations exempts
of payments from day-ahead energy bids of 5%. However, other countries can
allow higher or lower deviations [40]. In this context, the deviation interval 𝜎
has been established in 0.1 to cover various scenarios exempt from payments
and balancing capabilities.
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Table 3
Descriptive statistics of the coefficients obtained by country.
Area/Coeff. Mean Std. deviation Skewness Kurtosis

𝛼 𝛽 𝛾 𝛼 𝛽 𝛾 𝛼 𝛽 𝛾 𝛼 𝛽 𝛾

Spain 2.31 −1.01 0.14 1.17 0.54 0.10 0.23 0.06 0.44 2.64 2.26 2.34
Portugal 1.67 −0.70 0.11 0.84 0.33 0.10 0.38 0.24 0.88 2.38 2.62 3.20
France 2.42 −0.87 0.11 1.26 0.43 0.08 0.26 0.02 0.74 2.59 4.10 3.23
Fig. 12. Figure from December.

3.2. Impacts of the methodology on the medium-term generation planning
model

This section has conducted simulations for the integrated markets of
Portugal, Spain, and France from 1st January 2022 to 31st December
2024. Scenario- and sampling-based approaches have been used to
evaluate the impact of including the imbalance risk in the medium-
term generation planning model. In both approaches, we compare the
market clearance when fixed forecasted realizations of wind power
are considered (the traditional approach) and when the imbalance
cost function is included in the market simulation (our proposal).
Specifically, the variations of six parameters of the market clearance
are analyzed: wind power production, average price, system operation
cost, emissions cost, start and stop cost, and imbalance cost.

3.2.1. Case study 1: Scenario-based approach
This section compares the market clearance between the traditional

approach and our proposal for percentiles P15, P30, and P50 of wind
power generation for each hour. These specific percentiles were chosen
as they represent scenarios that enable evaluating the CDF at different
distribution intervals on the most linear part of the CDFs across all the
areas (see Fig. 4). By selecting these percentiles, we aim to reduce the
impact of significant asymmetries that may occur above the median
in Portugal, simplifying the analysis of the results for this case study.
That is because deviations from the forecasted values are expected to
be lower within the quasi-linear interval of the CDF and, therefore,
more comparable with the traditional approach. In contrast to wind
power generation, all the other variables that could be subject to
uncertainty (e.g., solar generation and demand) are fixed. The scenario-
based approach allows evaluating the impact of our methodology in a
simple way. Actually, it lets us isolate the effects of our methodology
from other uncertain variables but wind power on the results. Finally,
two scenarios have been proposed to be discussed. In the first scenario,
the same reserve cost for all the countries is assumed; in the second
one, the impact of having different reserve prices is analyzed. Those
scenarios enable us to determine the effect of applying independent
10
or joint prices for balancing mechanisms on interconnected electricity
markets.

Scenario 1: Equal reserves’ cost for all the areas
For this scenario, it has been assumed that 𝑘𝑟 = 𝑘𝑝 = 20 e/MWh and

𝜎 = 0.1 for all the countries. Table 4 shows the variations obtained from
the market simulation when the generation planning model includes
the imbalance risk. Variations have been denoted by the symbol 𝛥 in
the table. Changes in wind production, average price, costs of opera-
tion, emissions, start and stop, and imbalance are shown by country
and percentile. In addition, the last row shows the sum of all the
cost variations for easy reference. In particular, imbalance costs have
been calculated considering the wind power deviations concerning the
forecasted value. The units of the values are given in the first column.
Positive values in production indicate a higher wind power generation
obtained with our model. On the contrary, high positive values in the
remaining entries indicate lower values from our approach. Then, it
can see that our proposal increases the wind power production in all
the percentiles. In contrast, it has reduced average prices for all the
areas and percentiles. Likewise, our approach reduces the cost in all the
considered percentiles but starts and stops costs in the P15 of Portugal
and France, where they increase. However, this increase is minimal
compared with earns achieved by reducing the other charges.

Furthermore, it can be seen that Spain and France show simi-
lar behavior for all entries in the table concerning the percentiles.
Both improve differences as the percentile increases concerning the
traditional approach, all variables but emissions cost, which has the
highest reductions in the percentile P30. In contrast, all the entries
achieve higher differences in percentile P30 for Portugal but imbalance
cost, which has the highest reductions in the percentile P50. Notice
that, contrary to what was expected, the differences in wind power
productions in Portugal decay at the last percentile. In other words,
our approach not always increases wind production with percentile to
reduce the total cost of the planning. In this case, the reduction is given
because the growth of wind power in Spain decreases its price and
increases the energy flow from Spain to Portugal by 315 GWh. From
the model perspective, importing this energy is cheaper than incurring
an imbalance cost for increasing wind energy in Portugal.

Observe that the imbalance cost increases considerably with per-
centile, even when the differences with the wind power production are
low (like P50 in Portugal). That is because of two reasons. First, the
values shown for production in Table 4 are the sum of values for the en-
tire planning horizon, which can be positive or negative depending on
the hour. In contrast, the imbalance cost increases for both positive and
negative deviations. Second, as it was shown in Eq. (20), the maximum
power deviation allowed increases with a greater wind energy avail-
ability. In this way, results indicate significant positive and negative
changes in hourly-wind energy production returning high imbalance
costs in realizations with low probability of occurrence (like those
found in percentile P50 for all the areas). Actually, results show that
our approach captures and appropriately incorporates the imbalance
risk of the realizations in the planning model by making wind power
production more flexible in those unlikely realizations. This flexibility
reduces the total cost in all the percentiles while incorporating the
balancing costs in the medium-term simulations.

Scenario 2: Different reserves’ cost for the areas
Notice that, in Scenario 1, the proposed uncertainty cost function

considers the imbalance risk but does not account for the varying
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Table 4
Variations when imbalance risk is included in simulations and 𝑘𝑟 = 𝑘𝑝 = 20 e/MWh for all the countries.

Var./Perc. Spain Portugal France

P15 P30 P50 P15 P30 P50 P15 P30 P50

𝛥Production [MWh] 257 651 364 460 492 567 31 919 54 376 26 289 154 277 233 739 334 215
𝛥Av. price [e] 0.42 1.55 1.65 0.03 1.16 0.93 0.27 0.79 1.26
𝛥Op. cost [ke] 553 368 643 149 674 035 95 833 205 465 136 907 80 187 353 231 363 377
𝛥Emi. cost [ke] 146 250 182 874 140 900 31 509 59 469 30 590 29 943 108 518 88 815
𝛥St&St cost [ke] 308 2664 3750 −1097 653 16 −529 690 842
𝛥Imb. cost [ke] 542 523 1 700 894 4 071 072 299 058 1 053 902 2 403 032 418 567 1 214 868 2 837 021
𝛥Total cost [ke] 1 242 450 2 529 582 4 889 757 425 304 1 319 490 2 570 545 528 168 1 677 308 3 290 055
Table 5
Variations when imbalance risk is included in simulations and 𝑘𝑟 = 𝑘𝑝 = 40 e/MWh for Portugal, and 𝑘𝑟 = 𝑘𝑝 = 20 e/MWh for Spain and France.

Var./Perc. Spain Portugal France

P15 P30 P50 P15 P30 P50 P15 P30 P50

𝛥Production [MWh] 257 651 364 460 492 567 27 243 4898 −80 271 154 277 233 739 334 215
𝛥Price [e] 0.41 1.36 1.37 0.07 1.05 0.75 0.27 0.74 1.16
𝛥Op. cost [ke] 551 333 579 724 552 271 89 351 180 097 118 887 79 707 332 892 332 809
𝛥Emi. cost [ke] 145 411 162 479 116 983 28 748 50 904 26 557 29 761 102 564 82 455
𝛥St&St cost [ke] 372 2085 2526 −1049 706 −154 −470 627 609
𝛥Imb. cost [ke] 542 523 1 700 894 4 071 072 579 131 1 901 127 4 332 080 418 567 1 214 868 2 837 021
𝛥Total cost [ke] 1 239 641 2 445 183 4 742 853 696 181 2 132 835 4 477 370 527 566 1 650 872 3 252 895
weight that the installed capacity of wind power may have on each
country’s energy mix. This means that deviations of similar magni-
tude are treated equally for all countries, regardless of their installed
capacity and resource dependency. However, in practice, countries
with higher dependency on wind energy may have a stronger need
to minimize forecasting deviations in order to ensure the secure op-
eration of their power systems. In this scenario we explore a more
restrictive forecasting deviation scenario for Portugal, which has the
higher dependency on wind energy compared to the other countries of
the study case. The results obtained under this more restrictive scenario
will be compared with those obtained in Scenario 1. For this, it has
been assumed that 𝑘𝑟 = 𝑘𝑝 = 40 e/MWh for Portugal. In contrast, the
reserve prices of Spain and France have remained equal to 20 e/MWh.
Likewise, the deviation interval has been preserved in 0.1 to make
results comparable with were obtained in Scenario 1.

The results of this scenario are shown in Table 5. Observe that
this table has the same arrangement as Table 4. It can see from both
tables that the variations in wind power production and the total
imbalance cost of Spain and France remain constant. Moreover, similar
behavior is identified for both countries when the two scenarios are
compared but operation cost, where the highest deviation is achieved at
percentile P30 instead of P50. In particular, observe that the reduction
in operational and emission cost values between the two tables suggests
a higher net generation from conventional plants in Scenario 2. It is,
of course, because the lower values in Table 5 indicate nearer values
to the traditional approach, which has less net wind energy and high
conventional generation to supply the demand.

In contrast to Spain and France, wind power production and total
imbalance costs have changed in Portugal. As was expected, pro-
ductions are more similar to forecasted for percentiles P15 and P30
because of the increase in reserve price that increases the imbalance
penalization. However, contrary to the expectations, the reserves price
increase has grown the differences concerning predicted values of wind
power in percentile P50. Moreover, the negative sign indicates that the
net wind power production is less than forecasted. In this percentile,
the observed behavior in scenario one has intensified here because
the high reserve prices in Portugal increase the differences between
the prices of the Spanish and Portuguese markets even more. In this
case, Portugal’s differences in imports increase by around three times
from the scenario 1, which also explains the increase in conventional
production in Spain and France. Furthermore, it can be seen from
the last row that almost all the reductions in cost achieved with our
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approach in the first scenario have been reduced but in Portugal.
These results show that unilateral increases in the reserve prices in one
country could not decrease deviation and decrease planning costs but
could also negatively impact other markets.

3.2.2. Case study 2: Sampling-based approach
This section analyzes the differences obtained for the market clear-

ance when a Monte Carlo simulation of three hundred scenarios is
performed using the medium-term generation planning model. All the
simulations have been conducted in a computer with 128 GB of in-
stalled RAM and 48 logical processors with Intel(R) Xeon(R) Silver
4116 CPU @2.10 GHz. With this machine, the scenarios’ simulations
took 7 h and 13 min for the traditional approach. In contrast, fin-
ishing all the scenarios with our approach took 6 h and 37 min,
i.e., 36 min of difference or saving of computational time close to 8%.
These savings in computational time can be attributed to the flexible
representation of wind power generation in our approach. By relaxing
the constraints associated with the balance between generation and
demand, our methodology alleviates the computational burden on the
optimization problem. As a result, the optimization solver exhibits
improved performance, leading to more efficient and faster market
clearance.

The same six variables described in Section 3.2 are compared, with
𝜎 = 0.1 and 𝑘𝑟 = 𝑘𝑝 = 20 e/MWh in the three countries. In contrast
to the first case study, our simulations in this study incorporate real-
istic wind power paths throughout the planning horizon, rather than
relying on percentile scenarios. Furthermore, we have included realistic
paths for demand and solar generation. By adopting a sampling-based
approach, we can assess the impact of our proposed methodology on
market clearance in a more uncertain environment, resembling real-
world medium-term scenarios. This extends beyond the scope of the
simulations conducted in the initial case study. Six CDFs have been
fitted for each analyzed variable to show the variations regarding the
traditional approach obtained in this case study. Results obtained for
the CDF of each of the six cost variation analyzed in case study 1
are shown in Fig. 13. Likewise, the CDF obtained for the total cost
variations are shown in Fig. 14 for an easy reference. In both figures,
red, green, and blue lines indicate results obtained for Spain, Portugal,
and France, respectively. Likewise, each variable and its units are
indicated on the horizontal axis.

The analysis of these figures reveals some key findings about our
approach. Firstly, it can be seen from the production distributions that
our approach leads to an increase in wind power production in Spain

and France, while its impact on production in Portugal exhibits some
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Fig. 13. PDF for the variables considered in Monte Carlo simulations.
reductions. It can be seen from the part of the CDF of the production
curve that falls in negative variations. The realistic paths used to model
the uncertainty of wind power, demand, and solar generation play a
significant role in explaining the observed discrepancies in Portugal’s
production. The analysis of price distribution further supports this
observation, highlighting a more significant decrease in Spanish elec-
tricity prices compared to Portugal. Consequently, this price difference
fosters an augmented energy flow from Spain to Portugal, as previously
discussed in the first case study.

Additionally, our methodology consistently achieves a reduction in
operation and emissions costs, with results predominantly clustered
around the mean in the case of Portugal. Remarkably, despite the
decrease in wind power production, Portugal attains lower operating
costs. This outcome can be attributed to the combination of reduced
reliance on fossil technologies within Portugal and an increased import
of energy from Spain, leading to more favorable operating cost out-
comes. Furthermore, the analysis of start and stop costs reveals that
our approach could reduce or increase these costs across all areas.
However, it is notable that our methodology demonstrates a reduction
for Spain in almost all the scenarios. In contrast, Spain has the higher
imbalance cost. Remarkably, the imbalance cost in France is more
similar to Portugal than Spain, despite the fact that the change in
net wind power production in France is more similar to Spain. This
discrepancy indicates that deviations from forecasted values are more
frequent and significantly lower in France compared to Portugal. This
can be attributed to the non-linear penalization introduced by the
quadratic function, which leads to significantly different imbalance
costs for the same net wind power deviations.

Lastly, Fig. 14 provides evidence that the total cost is reduced for all
countries, including Portugal, despite experiencing a decrease in wind
power in specific scenarios. This underscores the overall cost reduction
benefits of our proposal across all the analyzed countries.

4. Conclusions

This paper proposes a novel methodology for incorporating wind
energy imbalance risk into medium-term generation planning models.
By evaluating a realistic study case involving the interconnected elec-
tricity markets of Spain, Portugal, and France, we have demonstrated
the effectiveness of our methodology. Our overall findings indicate that
12
Fig. 14. PDF for the total cost variation obtained in Monte Carlo simulations.

incorporating an imbalance risk that depends on wind power distribu-
tions enhances the flexibility of wind power production in instances
with a low probability of occurrence, alleviates constraints related to
the balance between generation and demand, and induces changes in
various outcomes of the generation planning models. In addition, we
show that the transmission grid notably influences these changes. The
results indicate that our representation of the wind power uncertainty
adequately approximates the forecasted values in all the hours and
countries. Furthermore, the proposed temporal aggregation approach
has successfully captured the average characteristics of the wind power
uncertainty representation for different months, resulting in fewer sce-
narios for evaluation. Additionally, based on the outcomes of the
study cases, our approach accurately models wind power imbalance
risk at different distribution percentiles while simultaneously lowering
planning costs. Moreover, it reduces computational times by 8% when
applied to our realistic study case. Also, we show that a planning strat-
egy oriented to reducing the imbalance risk could mean that a country
should reduce its expectations of generating with renewable resources.
Finally, our analysis has shed light on the impact of increasing the
penalization price for imbalances in a country. Our analysis indicates
that increasing the penalization price for imbalances in a country does
not necessarily reduce the imbalances and decrease planning costs but
could also negatively impact other markets. This finding underscores
the importance of considering interconnections when defining reserve
incentives and penalties for balancing in multi-area electricity markets.
However, the applicability of our results may be influenced by the
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i
–

unique geographical and climatic features of the case study. Future
research efforts should broaden the scope by including data from more
countries and regions, allowing for a more comprehensive assessment
of the methodology’s applicability and robustness. In addition, we
encourage exploring and implementing alternative methods at each
stage of our methodology to enhance our proposal further.
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