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ABSTRACT 
A study was conducted on the tensile stress of an epoxy resin (ResoltechVR 1050/1056). This 
was done by gathering a sample of 39 tensile strength data under consistent levels of 
stress. The tensile stress resistance is often characterized using a three-parameter Weibull 
distribution and the reliability of this characterization, given by confidence intervals (CIs). 
This approach commonly utilizes data-resampling techniques to estimate the CI of its 
parameters. CIs are constructed from six existing point-estimation methods. Herein, the jack-
knife was carried out to calculate the CIs using 39 subsamples and bootstrap methods using 
100 or 200 subsamples. To date, there have been no studies exploring the effectiveness of 
subsampling methods for constructing CIs related to tensile strength. In this study, jackknifed 
and bootstrapped samples are used to implement the percentile method and three variations 
of the bias correction methods. We then performed simulations to evaluate the reliability of 
these methods using a Weibull random number generator. Our results showed that while the 
bias-corrected approach generated the most stable CIs from replicate samples, its accuracy 
was contingent on the point-estimation method employed. We also found that the different 
methods for calculating CIs resulted in significantly varying widths of the CIs.

KEYWORDS 
jackknife; bootstrap 
confidence intervals; three- 
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1. Introduction

Epoxy-based laminating systems are becoming popular 
because of their high strength, durability and low 
shrinkage during curing procedure, providing lighter 
and more resistant materials. Epoxy polymers are also 
being employed as adhesives or matrices in extensive 
industrial applications regarding the manufacturing proc-
esses of automobile, aeronautical and naval engineering, 
etc. As epoxy resins are being used more frequently in 
load-bearing structures where the safety of personnel or 
property is of great importance, relying solely on point- 
wise estimates is inadequate. Depending only on individ-
ual, isolated estimates or data points is not sufficient or 
reliable for making informed decisions or drawing con-
clusions in certain fields like statistics, risk assessment, 
decision-making and scientific research. In this regard, 
tensile strength, a fundamental material property, plays a 
pivotal role in industries. Accurate estimates of tensile 
strength are critical for ensuring the safety and reliability 
of products and structures. Confidence intervals (CIs 

hereafter) are essential statistical tools that provide a 
measure of the precision and uncertainty associated with 
these estimates. However, constructing reliable CIs for 
tensile strength is a complex endeavor due to the inher-
ent variability in material properties and the often-limited 
availability of test specimens. Traditionally, constructing 
CIs for tensile strength has relied on classical statistical 
methods assuming that data follows specific parametric 
distributions. These methods, while useful in many scen-
arios, often struggle to capture the full complexity of 
material behavior, leading to potentially inaccurate or 
overly optimistic CIs. In light of these challenges, sub- 
sampling methods have emerged as promising alternatives 
for estimating CIs related to tensile strength. However, 
despite their potential advantages, there remains a sig-
nificant gap in the literature (M€aki-Lohiluoma et al. 
2021 and references herein). Previous studies have not 
adequately explored or evaluated the effectiveness of 
sub-sampling methods specific to tensile strength data.

To ensure a higher level of reliability, supplemen-
tary methods must be employed. Although prior tests 

CONTACT R. Caro-Carretero rcaro@comillas.edu Organizational Industrial Department, ICAI- Higher Technical School of Engineering, Universidad 
Pontificia Comillas, Alberto Aguilera 23, 28015 Madrid, Spain. 
� 2023 The Author(s). Published with license by Taylor & Francis Group, LLC 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by- 
nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, 
or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their 
consent.

QUALITY ENGINEERING 
https://doi.org/10.1080/08982112.2023.2286500

http://crossmark.crossref.org/dialog/?doi=10.1080/08982112.2023.2286500&domain=pdf&date_stamp=2023-12-07
http://orcid.org/0000-0003-2233-7635
https://doi.org/10.1080/08982112.2023.2286500
https://doi.org/10.1080/08982112.2023.2286500
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tandfonline.com
https://doi.org/10.1080/08982112.2023.2286500


have shown the mechanical performance of an adhe-
sive joint, they do not allow quantitatively assessing 
its reliability. To achieve this objective, an analysis of 
experimental data using resampling techniques was 
conducted to assess the accuracy of CI estimations in 
terms of width and proportion of coverage of the true 
parameter. Application of this methodology to an epoxy 
resin provides insights into how different point-wise esti-
mation methods may influence CIs width. Epoxy resin 
(ResoltechVR 1050/1056) was chosen for this purpose 
because it has enhanced mechanical and thermal proper-
ties, making it a viable option for developing high- 
performance lightweight structures reinforced with glass, 
carbon, aramid and basalt. Stress rupture measured by 
tensile strength methods is a time-dependent failure 
mode. The variation in the strength of epoxy resin has 
been analyzed assuming that different tensile strengths 
follow a three-parameter Weibull distribution. Weibull 
statistics were successful in materials science for model-
ing this type of data. The Weibull distribution’s adapt-
ability to various types of data is the primary reason for 
its widespread use in a broad range of applications. 
Also, the probability distributions governing failures in 
materials exhibit a non-Gaussian behavior with a large 
tail on the high-strength side.

Engineering literature features a large number of 
studies that characterize strength data concerning flaw 
types and sizes determined through fractography using 
Weibull parameters (Quinn and Quinn 2010). The 
Weibull distribution is also widely- used for example 
to represent the brittle fracture failure of ceramic 
components (Garrido et al. 2019 and references 
therein). Wong et al. (2006) developed a methodology 
for estimating Weibull parameters to examine the 
microstructural factors contributing to a failure in a 
brittle rock model. In addition, the fracture of con-
crete structures was analyzed by assigning distinct ten-
sile strengths to beams in a regular triangular lattice, 
using number generators based on the Weibull distri-
bution instead of the Gaussian distribution (van Mier, 
van Vliet, and Wang 2002). Parambil and Gururaja 
(2017 and references herein) conducted an in-depth 
examination of the gradual development of damage at 
the micro-scale in polymer composites when subjected 
to longitudinal loading (loading along the direction of 
the fibers). Testing the tensile strength of individual 
fibers and bundles of fibers revealed that Weibull fits 
were representative of the stochastic fiber fragmenta-
tion characteristics (Parambil and Gururaja 2015). cre-
ated a 3D model of a repeating unit cell consisting of 
numerous fibers randomly distributed throughout a 
polymer matrix and subjected it to loading in multiple 

directions (multi-axial loading). A unique strength value 
was assigned to each fiber, based on the Weibull distri-
bution (Naito et al. 2012). Al�ıa et al. (2013) conducted 
an experiment that utilized the Weibull statistical model 
to suggest the optimal adhesive and surface treatment 
that provides the highest level of technical performance 
and reliability for adhesive joints between aluminum 
and composite materials (probability that an adhesive 
joint works appropriately under specific load). Towse 
et al. (1999) utilized the Weibull distribution to estimate 
the strength at specific locations within the adhesive 
joint and evaluated the impact of minor fluctuations in 
the local geometry on failure prediction within an ideal-
ized section of the joint. Arenas, Narb�on, and Al�ıa 
(2010) assessed the optimal thickness of an acrylic 
adhesive in simple single-lap joints carried out using 
the Weibull distribution. Hadj-Ahmed, Foret, and 
Ehrlacher (2001) proposed a Weibull model to estimate 
the shear strength of an adhesive joint, using a similar 
approach.

1.1. Three-parameter Weibull approach

The two-parameter Weibull distribution has been 
extensively studied and refined in formal standards, 
norms, and scientific literature. Its popularity is 
mainly attributed to its simplicity and ease of use 
(Nourbakhsh et al. 2014). However, with the three- 
parameter Weibull distribution, data can be fitted 
with less dispersion. International standards do not 
provide a procedure for estimating the parameters of 
this distribution although (Akram and Hayat 2014; 
Cousineau 2009a; Goda, Kudaka, and Kawai 2011; 
Qin, Zhang, and Yan 2012), among other studies, pre-
sent different methods to estimate them. Nevertheless, 
there is no consensus among the scientific community 
regarding the most effective method for estimating the 
parameters of this distribution. The challenge of 
obtaining accurate parameter estimates has led to the 
development of numerous techniques to address this 
issue. One such approach is presented in Garrido 
et al. (2019), which evaluates and analyzes six existing 
methods for fitting the three-parameter Weibull distri-
bution to glass ceramic data. The study also introdu-
ces the use of neural networks for this purpose.

The definition of the cumulative distribution func-
tion for the three-parameter Weibull distribution is

F tð Þ ¼ 1 − e− t−t0
g

� �b

(1) 

in which the parameters are the shift (or location) 
parameter t0, the scale parameter g and the shape 
parameter b, which is also called the Weibull 
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modulus. When t0 is set to 0, the resulting distribu-
tion is the two-parameter Weibull distribution.

Two common techniques for parameter estimation 
are the L-Moment method (LM, hereafter) and the 
maximum likelihood estimation (MLE, hereafter). 
Moment-based methods have a well-established his-
tory in statistics because they are typically less compu-
tationally complex and require fewer iterations 
compared to other techniques. However, they are not 
always satisfactory (Akram and Hayat 2014). When 
the data contains outliers or follows a heavy-tailed 
distribution, moment-based estimators of the Weibull 
parameters may produce biased or unreliable results. 
Outliers can excessively impact the moments and lead 
to poor parameter estimates. When dealing with trun-
cated or censored data, alternative methods such as 
MLE or Bayesian estimation may be more suitable for 
estimating Weibull parameters. In situations where 
the available data is limited, other methods like MLE, 
which are known for their efficiency in small samples, 
may be preferred. For data with complex dependen-
cies, specialized techniques like MLE with suitable 
models for dependence structures might be more 
appropriate. Moment-based methods do not naturally 
incorporate prior information or expert knowledge 
about the parameters, which could be valuable in some 
applications. While Modified Moment Estimators (MME, 
hereafter) are generally more efficient than moment- 
based estimators, the latter are easier to compute. 
Nonetheless, as with the LM approach the MLE tech-
nique may not always yield satisfactory results as the 
regularity conditions are not always met (Bartkut_e and 
Sakalauskas 2008; Cheng and Amin 1983). Furthermore, 
the solutions obtained through MLE may display biases 
that vary based on the sample size and cannot be deter-
mined precisely. Finally, closed-form solutions for two 
out of three parameters are not available using this 
method (Cousineau 2009a). As a result, more elaborate 
and unorthodox techniques are required. The modified 
maximum likelihood estimators (MMLE, hereafter), as 
defined in Cohen and Whitten (1982), are designed to 
generate reliable estimates of Weibull’s parameters in sit-
uations where MLE is inadequate. These estimators are 
formulated by incorporating additional restrictions into 
the log-likelihood function (Cheng and Amin 1983). In 
standard MLE, the shape parameter of the Weibull distri-
bution can be unconstrained, leading to estimation diffi-
culties, especially when the estimated shape parameter 
falls outside a meaningful range (e.g., negative values). 
MMLE may incorporate restrictions on the shape param-
eter to ensure it falls within a specified range, such as 
b> 0 to guarantee a proper Weibull shape. In cases 

where the data is not well-described by a Weibull dis-
tribution, MMLE may involve transforming the data 
or applying a different parametric form (e.g., log-trans-
formed data to fit a linear model) to better conform to 
the distributional assumptions. In addition, MMLE 
may involve adjustments to the likelihood function to 
account for the presence of censored or truncated 
observations. This might include incorporating indica-
tor functions to handle the truncated or censored data 
appropriately. In some cases, MMLE may seek to maxi-
mize the posterior distribution, incorporating prior dis-
tributions for the parameters.

Following Garrido et al. (2019), for the simulations 
that follow, we will employ the MMLE approach, 
which involves maximizing the log-likelihood, consid-
ering that

1 − e− tr−t0
g

� �b

¼ r= Nþ 1ð Þ (2) 

where, in a random sample of size N, tr refers to the 
rth order statistic. Setting r to 1, we get:

� ln
n

nþ 1

� �

¼
t1 − t0

g

� �b

(3) 

Cousineau (2009a) examines alternative techniques 
to maximize the likelihood function, including the 
Maximum Product of Spacing (MPS hereafter) 
approach (Cheng and Amin 1983) and the Weighted 
Maximum Likelihood Estimation technique (w-MLE 
hereafter) (Cousineau 2009b). The MPS estimation 
technique provides consistent estimators under a 
broader range of conditions compared to MLE estima-
tors. It can be regarded as a method that overcomes 
the aforementioned difficulties associated with MLE 
while preserving its fundamental characteristics. This 
approach involves maximizing the likelihood of the 
spacing between two consecutive data points (Cheng 
and Amin 1983; Qin, Zhang, and Yan 2012). Regarding 
w-MLE, Cousineau (2009b) demonstrates the process of 
computing weights that counteract the biases inherent to 
the MLE function.

In this manuscript, we present a bootstrap statistical 
analysis of the six existing point-estimation methods 
described above, namely LM, MLE, MME, w-MLE, 
MMLE, and MPS when they are used to build CIs. As 
of now, there has been no investigation conducted on 
the effectiveness of bootstrap confidence interval tech-
niques in evaluating tensile strength. Although it is cru-
cial to conduct a reliability analysis of brittle materials, 
most studies were focused on point estimates of the 
parameters (Zapata-Ord�uz, Portela, and Su�arez 2014). 
Estimated Weibull parameters in an attempt to investi-
gate the concrete tensile strength using MLE, MME 
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and w-MLE. Thus, in this study, we explore various 
bootstrap CI methods to assess their precision in esti-
mating the tensile stress to failure of an epoxy resin. 
The code necessary to reproduce the analyses discussed 
in this manuscript is accessible in Caro-Carretero 
(2023). In the development of the resampling techni-
ques, various alternatives have been considered such as 
Leave-One-Out Cross-Validation (Webb et al. 2011), 
Oversampling (Oliveira et al. 2021), Undersampling 
(Hoyos-Osorio et al. 2021; Oliveira et al. 2021) or 
Combined Sampling (Oliveira et al. 2021). The choice 
of the jackknife and bootstrap resampling methods was 
motivated by the need for robust and computationally 
feasible techniques for estimating the sampling distribu-
tion of statistics. This is particularly relevant here since 
the assumptions required for classical statistical methods 
(such as normality) are not met. Furthermore, these 
methods have become popular in statistics due to their 
flexibility and ability to handle a wide range of situations.

2. Experimental data

The sample of epoxy resin (ResoltechVR 1050/1056) 
tested consists of 39 specimens. Empirical data on ten-
sile strength was gathered at constant stress levels rang-
ing from 54 MPa to 105 MPa. The maximum strength 
of this adhesive, according to the technical datasheet, is 
81.5 MPa after 14 days of curing at 23 �C while a value 
of 97.2 MPa is reached with 16 h at 60 �C.

The international standards devoted to the deter-
mination of tensile properties in plastics, ISO 527-1 

(2019) and ISO 527-2 (2012), whose ASTM equivalent 
standard is D638-14 (2022), have been followed in 
this research. Such standards encompass the principle, 
methods and apparatus for testing, the preparation, 
conditioning and measuring of test specimens, etc. 
Therefore, in spite of not being directly applicable to 
epoxy resins, they provide a reliable framework to 
define the procedure for our purpose. They also 
describe the shape and dimensions of the test speci-
mens, shown in Figure 1.

This standard D638-14 refers to the molding proce-
dures and conditions set out in the relevant inter-
national standards for the corresponding material. It 
also refers to the strict control of all the conditions of 
preparation of the specimens of each batch and to the 
examination of their surfaces, which must be free 
from visible defects, scratches and other imperfections. 
The positioning of the samples on the grips is also 
specified, taking care to align the longitudinal axis of 
the grips with the axis of the testing machine, the 
pre-stress requirements, the set-up, adjustment and 
calibration of the extensometers as well as the test 
speed. Adhering to such a detailed procedure, the 
stress to failure of 39 pieces was recorded, which are 
shown in Table 1.

An additional factor to consider when employing 
the Weibull as a lifetime distribution in strength reli-
ability is the number of test specimens that are needed 
to adequately estimate the parameters. The appropri-
ate number of test specimens to use is influenced by 
several factors, such as material and testing expenses, 
the distribution parameter values and the desired pre-
cision for a particular application. Standards provide 
useful tables and calculations to aid in assessing this 
number. In the absence of specific requirements, a 
general rule (no strict rule specifying a minimum 
sample size) is that about 30 test specimens are 
enough to estimate Weibull distribution parameters. 
Nevertheless, utilizing more specimens will enhance 
the accuracy of the estimates (Quinn and Quinn 2010
and references herein). In practice, the sample size 
you can obtain may be limited by resource constraints 
or data availability. In such cases, you may need to 
work with the data you have and be aware of the 

Figure 1. Geometry and size of the specimens according to 
ISO 527-2 (2012). Distances are given in millimeters (mm).

Table 1. Epoxy resin date.
54.403 56.537 64.442 64.759 66.082 66.686 67.442 69.526 70.316
73.323 73.395 73.517 74.144 74.302 75.028 75.269 75.275 76.214
78.150 80.212 80.378 80.950 81.875 82.674 85.489 86.301 87.466
87.773 92.125 93.317 94.576 94.966 97.715 98.706 99.408 101.852
104.069 104.774 104.829

Note: The tensile stress to failure ranging from 54.4 to 104.8; the mean of this sample is 81.2 MPa, its standard deviation is 
13.5 MPa and its skewness is 0.14.
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limitations in the parameter estimates. Additionally, 
resampling methods, such as bootstrapping can be 
useful even with relatively small sample sizes.

3. Materials and methods

3.1. Resampling technique

Jackknife and bootstrap are based on the concept of 
resampling, where inferences about a population can 
be made from sample data by resampling or subsam-
pling the data and performing inference about the 
population from the resampled data. This approach is 
appealing because it is versatile and can be utilized in 
various scenarios involving intricate data structures, 
both in parametric and non-parametric contexts. In 
addition, these techniques can be applied to statistics 
that originate from non-symmetric distributions, 
which is particularly useful for performance measures 
related to adhesive failure tension, as these cannot be 
easily transformed into a Gaussian distribution. This 
article explores two resampling techniques that can be 
employed to determine CI around point estimates for 
the adhesive failure tension model.

The accuracy of any particular point-estimation 
approximation is not known precisely. In statistics, a 
CI is a form of estimation that is derived from the 
observed data. It puts forward a range of credible val-
ues for an unknown parameter that lies between a 
lower and an upper limit with a given level of confi-
dence (usually 95% confidence level is utilized).

Because the material parameters are nonlinearly 
interdependent, analytical methods to obtain the con-
fidence intervals of the reliability or failure probability 
of the components are more complicated. Herein, 
resampling approaches are used instead, known as the 
jackknife and the bootstrap methods, which are based 
on the resampling of experimentally observed data.

3.1.1. The jackknife technique

The jackknife estimator for a parameter is obtained by 
systematically excluding one observation at a time from 
a dataset and computing the estimate based on these 
subsets. Afterwards, the jackknife estimate is the mean 
of these computations. This method for estimating 
parameters of data sets was originally introduced by 
Quenouille (1949) and later improved by Tukey (1958).

The jackknife can be viewed as a linear approxima-
tion of the bootstrap, as well as other subsampling 
techniques (Efron and Tibshirani 1993; Tukey 1958). 
These methods are built on the concept of estimating 
the distribution of a large population using only a 

small sample; they are especially useful when traditional 
methods are impractical, infeasible or inapplicable.

A significant advantage of this technique is that 
data analysis is performed without any prior assump-
tions regarding the population distribution. This is a 
desirable advantage particularly when the data’s 
underlying distribution is uncertain or there is a sus-
picion that the data may not conform to a specific 
distribution. The jackknifed datasets provide an esti-
mate of the theoretical distribution of the observed 
data and can be viewed as treating the sample as if it 
represents the entire population. Hence, this approach 
relies on the assumption that the jackknifed distribu-
tion of errors is a reliable approximation of the actual 
distribution of sampling errors, as outlined in Efron 
and Tibshirani (1993).

The basic jackknife algorithm can be schematized 
as follows:

We define a random variable T whose unknown 
distribution function, Pf ¼ P(T� t), depends on a 
population parameter h that we want to estimate with 
an estimator ĥ

�
:

1. Conduct the experiment and collect data T ¼ ft1, 
t2, t3 … , tNg as the original sample of size N. 2. 
Generate a new data set, T� ¼ ft1

�, t2
�, t3
�, … , tN-1

�g, 
from the original (i.e., copy each element except one). 
For each iteration, exclude a distinct element (or a dis-
tinct set of elements) from the original dataset T to 
form slightly varied datasets, T�. 3. Compute the esti-
mate of h� as t� using the jackknifed dataset. 4. Perform 
steps 2 and 3 n times, excluding a different datum on 
each iteration. In this study, the observed dataset is sub-
ject to multiple repetitions. Quinn and Quinn (2010) 
and references herein found that the average sample size 
in test specimens is approximately 20. 5. Estimate the 
intervals limits using the distribution of t�.

In an attempt to compare the different estimation 
methods and resampling techniques, the observed 
data is used to obtain the failure probability F(t) ¼ Pf, 
generating jackknifed replications Pf (t�). The empir-
ical probability distribution is constructed putting a 
mass of 1/(N − 1) to each point of the subsamples.

3.1.2. The bootstrap technique

The jackknife resampling is generally considered suit-
able for small data samples as in our case. We also 
examined an alternative technique called bootstrap. 
To implement bootstrap, it is necessary to construct 
samples that are of equal size to the original sample. 
To achieve this, subsampling is done with replace-
ment. Hence, some of the data might be present more 
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than once in the subsample while others may be miss-
ing entirely from the subsample. One advantage of 
bootstrap is that all the subsamples have identical 
sizes to the original sample. Consequently, if the par-
ameter to be estimated has a biased estimator, and if 
the bias depends on sample size, then the influence of 
this bias is absent from the bootstrap technique.

Here, to perform bootstrap, we elected to generate 
100 and 200 bootstrapped samples all with the same 
size as the original sample, taken using random 
sampling with replacement to approximate repeated 
sampling from the population (given that there are 3939 

> 1062 possible subsamples of size 39 with replace-
ments, these bootstrapped samples are far from exhaust-
ing the possible subsamples).

Resampling techniques are frequently employed by 
researchers as a broad approach to constructing confi-
dence intervals for a variety of commonly used statistics. 
Bootstrapping is primarily based on drawing sub-samples 
from either the original sample (non-parametric boot-
strapping) or from a model fitted to the original sample 
(parametric bootstrapping). This article will focus on 
non-parametric bootstrapping, which is more commonly 
used. It does not rely on any assumptions about the 
characteristics of the underlying population, and solely 
utilizes information from the original sample (Puth, 
Neuh€auser, and Ruxton 2015).

3.2. Deriving confidence intervals from jackknife 
and bootstrap distribution

When working with a sample from the population of 
interest, it is not possible to determine the population 
parameter with absolute certainty. Therefore, a confi-
dence interval is constructed to estimate a range of 
values that a parameter of interest in a population 
may take, based on a random sample of data.

With relatively small sample sizes (Chernick and 
Labudde 2011), we are at risk that CIs have coverage 
lower than the specified nominal level (e.g., 95%). In fact, 
Carpenter and Bithell (2000) emphasize that this issue 
might be more severe for 99% confidence intervals gener-
ated via bootstrapping, particularly if the sample size is 
not sufficiently large (n¼ 50 as a minimum). Hence, in 
this study, we would caution against using 99% CIs 
because of the sample size of the observed data set.

The objective of this work is to evaluate the boot-
strap CIs of the parameters related to the three-par-
ameter Weibull distribution. To test this approach, we 
will utilize the data on the breaking stress of an epoxy 
resin described earlier. There are various bootstrap-
ping techniques to determine a confidence interval for 

a population parameter. In this study, we concentrate 
on the two most widely used methods: percentile 
bootstrap (PB) and bias-corrected bootstrap (BC) con-
fidence intervals (Chernick and Labudde 2011; 
Davison and Hinkley 1997; Efron and Tibshirani 
1993). Bootstrap CIs are constructed from six pro-
posed point-estimation methods where h denotes a 
parameter of interest while a indicates the significance 
level (e.g., a¼ 0.05 for 95% CIs; 1 − a is commonly 
called the confidence level). Further details of these 
methods can be found in Efron and Tibshirani (1993).

Manly (2007) provides references to a number of 
other methods; the techniques outlined below are 
both the most commonly employed and the simplest 
to put into practice. In essence, one way to enhance 
the percentile method is to address any bias that may 
arise due to the true parameter value not being the 
median of the distribution of bootstrapped estimates. 
As pointed out by Caro-Carretero (2023) and Ruxton 
and Neuh€auser (2013), there is no explanation for 
why researchers choose to use a particular bootstrap 
method to generate CIs. Nevertheless, the choice of 
which bootstrap CI method to use depends on the 
specific statistical problem, data characteristics and the 
underlying assumptions (Davison and Hinkley 1997; 
Karavarsamis et al. 2013). Each bootstrap CI method 
has its strengths and weaknesses. Namely, Percentile 
Bootstrap CI is simple to implement, widely applicable 
and suitable for a wide range of statistics and param-
eter estimations. However, it may not perform well 
for skewed distributions or in cases where there are 
outliers. Studentized Bootstrap CI adjusts the boot-
strap samples using the estimated standard error of 
the statistic, taking into account the variability within 
each resampled dataset. In contrast, it can be compu-
tationally intensive, especially for complex statistics 
and may not be ideal for small sample sizes. 
Bootstrap-t CI is similar to the studentized bootstrap 
approach but uses the t-distribution to construct the 
CI, which can be more robust against outliers. Despite 
that, it can be computationally intensive and may still 
be affected by skewness in the data. Bias-Corrected 
Bootstrap CI addresses the bias in the bootstrap esti-
mates by adjusting them with the estimated bias of 
the statistic. While it provides more accurate CIs, 
especially for small sample sizes, it can be sensitive to 
the choice of bias-correction method and may not 
perform well with extreme outliers. Bias-corrected and 
accelerated CI adjusts for bias and skewness by estimat-
ing acceleration and skewness factors from the boot-
strap samples. Conversely, it can introduce additional 
uncertainty. Bootstrapped Quantile CI constructs CIs 
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based on quantiles from the bootstrap distribution, 
which can be robust against outliers. Alternatively, it 
may not capture the full shape of the bootstrap distri-
bution if the quantiles chosen are not appropriate. 
Bootstrapped CIs for Ratios designed specifically by 
resampling from the data while maintaining the struc-
ture of the ratio, although it has limited applicability to 
situations where ratio estimations are not relevant. 
Bootstrapped Bayesian CI combines the principles 
of Bayesian modeling with bootstrap resampling to 
construct credible intervals, allowing the incorporation 
of prior information when available, which can be 
subjective.

3.3. Methods for jackknife and bootstrap 
confidence intervals

Here, we briefly review the basic concepts underlying 
the two distinct methods of using bootstrapping to 
estimate CIs.

1. Percentile bootstrap method (Efron 1982; Efron 
and Tibshirani 1993)
In the percentile confidence interval, the boot-
strapped (or jackknifed) interval is determined by 
calculating the range between the percentiles of 
100 � a/2 and 100 � (1 – a/2) of the distribution 
of h estimates obtained from resampling. To 
obtain a percentile CI for h using bootstrapping 
(or jackknife), follow these steps: (1) create R ran-
dom bootstrapped (or jackknife) samples where R 
is either 100 or 200 in the bootstrap simulations 
that follow and R ¼ 39 with the jackknife simula-
tions; (2) calculate a parameter estimate for each 
bootstrapped (or jackknifed) sample; (3) arrange 
all R bootstrap (or jackknife) parameter estimates 
from lowest to highest; and (4) construct the 95% 
CI as outlined below,

CIh2 ĥ
�

ðjÞ, ĥ
�

ðkÞ

h i

95%
(4) 

where ĥ
�

jð Þ denotes the jth estimate when sorted 
in ascending order (lower limit), and ĥ

�

kð Þ denotes the 
kth estimate (upper limit); j¼ a

2� R
� �

and k ¼
1 − a

2
� �

� R
� �

: This method assumes that as the sam-
ple size increases, the empirical distribution function 
derived from bootstrapping progressively approaches 
the genuine distribution function, and that the empir-
ical quantiles conform to the law of large numbers. 
According to Efron (1982), in most cases the jackknife 
method yields less accurate results than the bootstrap 
and tends to be more cautious, resulting in marginally 

higher estimated standard errors. However, bootstrapping 
introduces an additional source of variation, caused by 
the finite number of possible subsamples of size R that 
can be generated. This limitation can be severe for large 
R and small samples. In order to determine the method 
with the best estimates, coverage probability (the propor-
tion of intervals containing the true parameter) has been 
calculated using the international standards devoted to 
the determination of tensile properties (true parameters 
according to standards). It is common to establish a 
nominal coverage probability of 95%. For instance, a 
95% percentile bootstrap CI generated using 100 boot-
strap samples would encompass the range between the 
2.5% quantile value and the 97.5% quantile value of the 
100 bootstrapped parameter estimates.

2. Bias-corrected method (DiCiccio, Romano, and 
Wolf 2019)
The bias-corrected method corrects for bias in the 
bootstrap (or jackknife) parameter estimates by 
adding a bias-correction factor z0 defined as the 
fraction of the bootstrap (or jackknife) estimates 
that are smaller than the original parameter esti-
mate

z0 ¼ /−1 Prob� fĥ
�
< ĥg

R

 !

(5) 

where /−1 denotes the inverse function of the stand-
ard normal cumulative distribution function, (e.g., 
/−1 (0.975) ¼ 1.96), and ĥ is the point estimation of 
the parameter (labelled BC-point in Tables 2–4), 
obtained from the original sample. We also have used 
the bootstrap (or jackknife) estimate for mean 
(labelled BC-mean in Tables 2–4) and the median 
(labelled BC-median in Tables 2–4) from the jack-
knifed and bootstrapped replications to obtain z0 

when we calculate bias-corrected bootstrap (or jack-
knife) CIs for the three parameters of the Weibull 
distribution.

In sum, we explored 72 different methods for 
building confidence intervals, that is, six-point esti-
mate methods (LM, MLE, MME, w-MLE, MMLE, and 
MPS) � 3 subsampling techniques (jackknife or boot-
strap with 100 and 200 subsamples) � 4 methods 
(percentile, BC-point, BC-mean, and BC-median). All 
these techniques are used to get CIs for the three 
parameters shown in three distinct tables.

To assess their coverage performance, we con-
ducted a Monte Carlo simulation. CIs offer an estima-
tion of the plausible range in which the true value of 
the statistic is expected to lie. A narrow CI suggests 
low variability of the statistic, which validates stronger 
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Table 2. Estimates and confidence intervals for the time-to-failure in a Weibull distribution shape parameter.
Method

Jackknifed sample¼ 39 LM MLE MME w-MLE MMLE MPS

Point estimate 2.612 2.792 4.168 2.722 3.374 3.161
Jackknife estimate for mean 2.648 2.780 4.173 2.712 3.408 3.209
Jackknife estimate for median 2.719 2.771 4.076 2.702 3.426 3.202
95% confidence interval

Percentile
Lower limit 2.450 2.684 3.963 2.6 3.205 2.998
Upper limit 2.789 2.981 4.662 3 3.737 3.408
Width 0.338 0.297 0.698 0.4 0.531 0.410

BC-point
Lower limit 2.309 2.684 3.999 2.621 3.205 2.998
Upper limit 2.786 2.981 4.830 3 3.676 3.394
Width 0.476 0.297 0.831 0.379 0.471 0.395

BC-mean
Lower limit 2.309 2.684 3.999 2.621 3.205 2.998
Upper limit 2.786 2.981 4.830 3 3.676 3.408
Width 0.476 0.297 0.831 0.379 0.471 0.410

BC-median
Lower limit 2.450 2.684 3.963 2.6 3.056 2.998
Upper limit 2.789 2.981 4.662 3 3.737 3.408
Width 0.338 0.297 0.698 0.4 0.531 0.410

Method

R bootstrap sample¼ 100 LM MLE MME w-MLE MMLE MPS

Point estimate 2.612 2.792 4.168 2.722 3.374 3.161
Bootstrap estimate for mean 2.646 2.800 4.318 2.694 3.368 3.154
Bootstrap estimate for median 2.690 2.824 4.190 2.674 3.328 3.126
95% confidence interval
Percentile
Lower limit 2.438 2.677 3.964 2.5 3.205 2.997
Upper limit 2.786 2.969 5.446 2.862 3.632 3.408
Width 0.347 0.292 1.482 0.362 0.427 0.410

BC-point
Lower limit 2.309 2.673 3.963 2.5 3.205 2.998
Upper limit 2.785 2.963 4.830 3 3.671 3.408
Width 0.475 0.290 0.866 0.5 0.465 0.409

BC-mean
Lower limit 2.438 2.673 4.025 2.5 3.205 2.998
Upper limit 2.786 2.963 6.032 2.862 3.632 3.408
Width 0.347 0.290 2.007 0.362 0.427 0.409

BC-median
Lower limit 2.438 2.677 3.966 2.5 3.205 2.997
Upper limit 2.786 2.969 6.032 2.862 3.632 3.408
Width 0.347 0.292 2.065 0.362 0.427 0.410

Method

R bootstrap sample¼ 200 LM MLE MME w-MLE MMLE-1 MPS

Point estimate 2.612 2.792 4.168 2.7221 3.374 3.161
Bootstrap estimate for mean 2.628 2.791 4.289 2.6933 3.405 3.169
Bootstrap estimate for median 2.632 2.787 4.154 2.6735 3.414 3.165
95% confidence interval

Percentile
Lower limit 2.438 2.673 3.966 2.5 3.205 2.997
Upper limit 2.786 2.974 4.860 3 3.676 3.400
Width 0.347 0.300 0.893 0.5 0.471 0.403

BC-point
Lower limit 2.396 2.673 3.966 2.6 3.204 2.997
Upper limit 2.786 2.979 4.860 3 3.671 3.394
Width 0.390 0.305 0.893 0.4 0.466 0.397

BC-mean
Lower limit 2.438 2.673 4.026 2.5 3.204 2.997
Upper limit 2.786 2.979 6.032 3 3.671 3.408
Width 0.347 0.3056 2.005 0.5 0.466 0.411

BC-median
Lower limit 2.438 2.739 3.966 2.5 3.210 2.997
Upper limit 2.786 2.97 4.860 3 3.676 3.400
Width 0.347 0.305 0.893 0.5 0.466 0.403

Note: The point estimates are the same in all the three segments of the table.
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Table 3. Estimates and confidence intervals for the time-to-failure in a Weibull distribution scale parameter.
Method

Jackknifed sample¼ 39 LM MLE MME w-MLE MMLE-1 MPS

Point estimate 37.604 38.287 54.263 38.238 46.816 45.642
Jackknife estimate for mean 38.013 38.065 54.114 38.242 47.218 46.295
Jackknife estimate for median 39.017 37.643 53.098 38.100 46.669 45.910
95% confidence interval

Percentile
Lower limit 35.293 36.998 50.741 36.516 45.026 43.726
Upper limit 40.149 40.154 59.504 41.603 50.700 48.482
Width 4.855 3.155 8.762 5.087 5.674 4.756

BC-point
Lower limit 32.485 37.025 52.657 36.645 45.053 43.726
Upper limit 40.142 40.154 61.043 41.603 50.700 48.482
Width 7.656 3.128 8.386 4.958 5.646 4.756

BC-mean
Lower limit 32.485 36.998 52.550 36.645 45.053 43.726
Upper limit 40.142 40.154 61.043 41.603 50.700 48.482
Width 7.656 3.155 8.493 4.958 5.646 4.756

BC-median
Lower limit 35.293 36.998 50.741 36.516 45.026 43.726
Upper limit 40.149 40.154 59.504 41.603 50.700 48.482
Width 4.855 3.155 8.762 5.087 5.674 4.756

Method

R bootstrap sample¼ 100 LM MLE MME w-MLE MMLE-1 MPS

Point estimate 37.604 38.287 54.263 38.238 46.816 45.642
Bootstrap estimate for mean 38.134 38.315 55.772 37.897 46.804 45.673
Bootstrap estimate for median 38.441 38.026 54.966 37.911 4.641 45.557
95% confidence interval

Percentile
Lower limit 35.304 36.998 52.516 34.985 45.024 43.711
Upper limit 40.149 40.154 66.636 39.635 49.808 48.456
Width 4.844 3.155 14.120 4.650 4.784 4.744

BC-point
Lower limit 32.485 37.006 52.507 36.432 45.053 43.723
Upper limit 39.916 40.549 61.043 41.609 50.169 48.438
Width 7.4303 3.148 8.536 5.177 5.116 4.715

BC-mean
Lower limit 32.485 37.006 54.059 34.985 45.053 43.723
Upper limit 40.076 40.154 71.942 39.635 50.169 48.438
Width 7.591 3.148 17.882 4.650 5.116 4.715

BC-median
Lower limit 35.293 36.998 52.507 34.985 45.024 43.723
Upper limit 40.149 40.154 61.331 39.635 49.808 48.438
Width 4.855 3.155 8.823 4.650 4.784 4.715

Method

R bootstrap sample¼ 200 LM MLE MME w-MLE MMLE-1 MPS

Point estimate 37.604 38.287 54.263 38.238 46.816 45.642
Bootstrap estimate for mean 37.854 38.265 55.440 37.925 47.194 45.800
Bootstrap estimate for median 38.333 38.080 54.390 37.680 46.744 45.557
95% confidence interval

Percentile
Lower limit 35.293 36.998 50.741 35.899 45.026 43.723
Upper limit 40.149 40.154 61.331 41.603 50.223 48.482
Width 4.855 3.155 10.589 5.704 5.196 4.759

BC-point
Lower limit 32.485 37.006 50.741 36.569 45.101 43.726
Upper limit 40.053 40.154 61.331 41.609 50.700 48.482
Width 7.567 3.148 10.589 5.040 5.598 4.756

BC-mean
Lower limit 33.759 37.006 53.064 36.301 45.101 43.726
Upper limit 40.142 40.154 71.942 41.606 50.700 48.482
Width 6.383 3.148 18.878 5.304 5.598 4.756

BC-median
Lower limit 35.293 36.998 50.741 36.301 45.101 43.726
Upper limit 40.149 40.154 61.331 41.606 50.700 48.482
Width 4.855 3.155 10.589 5.304 5.598 4.756

Note: The point estimates are the same in all the three segments of the table.
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Table 4. Estimates and confidence intervals for the time-to-failure in a Weibull distribution location parameter.
Method

Jackknifed sample¼ 39 LM MLE MME w-MLE MMLE-1 MPS

Point estimate 47.832 47.179 31.936 47.212 38.655 40.426
Jackknife estimate for mean 47.415 47.336 31.967 47.197 38.209 39.885
Jackknife estimate for median 46.636 47.268 32.722 47.359 38.351 40.235
95% Confidence interval

Percentile
Lower limit 45.699 45.867 27.206 44.347 35.312 38.097
Upper limit 49.503 48.386 35.916 48.928 39.976 41.887
Width 3.803 2.519 8.709 4.815 4.663 3.789

BC-point
Lower limit 45.703 45.863 25.734 44.345 35.312 38.126
Upper limit 53.162 47.921 33.388 48.219 39.976 41.887
Width 7.459 2.058 7.654 3.874 4.663 3.761

BC-mean
Lower limit 45.699 45.86 25.734 44.345 35.312 38.092
Upper limit 49.503 48.38 33.388 48.219 39.950 41.475
Width 3.803 2.519 7.654 3.874 4.637 3.382

BC-median
Lower limit 45.699 45.867 27.206 44.347 35.312 38.097
Upper limit 49.503 48.386 35.916 48.928 39.976 41.887
Width 3.803 2.519 8.709 4.581 4.663 3.789

Method

R bootstrap sample¼ 100 LM MLE MME w-MLE MMLE-1 MPS

Point estimate 47.832 47.179 31.936 47.212 38.655 40.426
Bootstrap estimate for mean 47.372 47.139 30.443 47.586 38.598 40.361
Bootstrap estimate for median 47.116 47.160 31.439 47.422 38.803 40.529
95% confidence interval

Percentile
Lower limit 45.699 45.839 20.291 46.289 36.168 38.128
Upper limit 49.503 48.386 33.492 50.934 39.976 41.886
Width 3.803 2.546 13.200 4.644 3.808 3.757

BC-point
Lower limit 45.876 45.839 26.769 44.338 36.168 38.126
Upper limit 53.162 48.386 33.496 48.928 39.976 41.885
Width 7.286 2.546 6.727 4.590 3.808 3.759

BC-mean
Lower limit 45.699 45.839 15.125 46.296 36.168 38.126
Upper limit 49.516 48.386 32.838 50.934 39.976 41.885
Width 3.816 2.546 17.712 4.638 3.808 3.759

BC-median
Lower limit 45.699 45.839 15.125 46.289 36.168 38.131
Upper limit 49.503 48.386 33.488 50.934 39.976 41.885
Width 3.803 2.546 18.363 4.644 3.808 3.754

Method

R bootstrap sample¼ 200 LM MLE MME w-MLE MMLE-1 MPS

Point estimate 47.832 47.179 31.936 47.2121 38.655 40.426
Bootstrap estimate for mean 47.589 47.172 30.821 47.4681 38.277 40.261
Bootstrap estimate for median 47.493 47.237 31.732 47.4374 38.351 40.529
95% confidence interval

Percentile
Lower limit 45.700 45.852 25.458 44.3473 35.794 38.097
Upper limit 49.503 48.010 35.916 48.9506 39.966 41.885
Width 3.802 2.158 10.457 4.6033 4.172 3.787

BC-point
Lower limit 45.749 45.839 25.458 44.3386 35.843 38.097
Upper limit 51.961 48.008 35.916 48.2798 39.976 41.851
Width 6.212 2.168 10.457 3.9412 4.133 3.754

BC-mean
Lower limit 45.703 45.839 15.125 46.2899 35.312 38.097
Upper limit 49.516 48.008 33.388 48.9901 39.950 41.851
Width 3.813 2.168 18.262 2.7003 4.637 3.754

BC-median
Lower limit 45.701 45.852 25.458 44.3473 35.794 38.126
Upper limit 49.503 48.010 35.916 48.9506 39.966 41.885
Width 3.801 2.158 10.457 4.6033 4.172 3.759

Note: The point estimates are the same in all the three segments of the table.
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conclusions made from the analysis. The proposed 
methodology has been explored by using the real 
data of breaking stress of an Epoxy resin presented in 
section 2.

4. Results and discussion

4.1. Confidence interval estimates

The results of the CIs for the six three-parameter 
Weibull point-estimation methods with the two resam-
pling methods, one using jackknife and two using boot-
strap techniques, are presented in Tables 2–4. Table 2
depicts the CIs for the shape parameter from 39, 100 
and 200 replicate samples. The same CIs for scale and 
location parameters are given in Tables 3 and 4, 
respectively.

The results show that for all resampling approaches 
the CI width is roughly similar for MLE and MPS 
based on point-estimation methods from 39, 100 and 
200 replicated samples (highlighted in orange in 
Tables 2–4). More specifically, in the case of the shape 
parameter, the utilization of the median estimate indi-
cated that the bias-corrected bootstrap method was 
the preferred approach since it gave the most consist-
ent confidence intervals across 39, 100 and 200 repli-
cated samples, but its reliability depended on the 
point-estimation method examined. The width (upper 
limit minus lower limit) of the CIs is much bigger 
(cells highlighted in blue) for MME method, resulting 
in more conservative CIs. Wider CIs suggest less pre-
cision (overcoverage) whereas narrower CIs may indi-
cate undercoverage. Nevertheless, the estimated CIs 
have more similar width (they are more consistent) 
when the number of subsamples is higher, and that, 
for all the methods (both percentile and the three 
bias-corrected bootstrap techniques) and all the point- 
estimation methods. This result was expected as 
increasing the number of subsamples reduces the var-
iations from sampling error so that all the techniques, 
owing to the law of large numbers, converge onto a 
unique estimate.

Regarding the scale parameter it was found that 
bias-corrected bootstrap approaches using the median 
estimate and the percentile bootstrap technique gave 
the most consistent confidence intervals from 39, 100 
and 200 replicated samples, but its accuracy, as was 
the case for the shape parameter, depended on the 
point-estimation method examined. It appears that for 
MME method, the CI widths are larger (highlighted 
in blue). However, unlike bootstrap CIs for the shape 
parameter, there have more similar values for all the 
point-estimation methods except the LM ones, 

regardless of the number of subsamples (either 39, 
100 or 200).

Finally, we see for the location parameter, as was 
the case for the scale parameter, that bias-corrected 
bootstrap approaches using the median estimate and 
the percentile bootstrap technique gave the most con-
sistent confidence intervals from 39, 100 and 200 rep-
licate samples. However, its reliability, as was found 
for the other two parameters, depended on the point- 
estimation method examined. For MME method the 
CI widths are wider (highlighted in blue). For the 
location parameter, bootstrap CIs have more similar 
values along all the point-estimation methods, when 
the replicate sample is 39, 100 and 200. It seems to 
indicate that the true parameter value is roughly the 
median estimate for the three pseudo samples.

Unlike previous research (Ruxton and Neuh€auser 
2013), the percentile method does not tend to produce 
more conservative CIs, because it depends on the 
point-estimation method used. The MLE and MPS 
point-estimation techniques returned roughly similar 
CI widths. In addition, the use of bias-corrected 
method using the median estimate gives more consist-
ent CIs than the remaining techniques.

4.2. Reliability curves

Figures 2–4 show the reliability curves of tensile 
strength for the epoxy resin. These figures provide 
illustrations of stress-to-failure distributions based on 
CIs of three parameters of Weibull distribution for 
the original sample consisting of thirty-nine values 
employing the six different methods and from 39, 100 
and 200 replicate samples. We first focus on sample 
size of 39. The results reveal that all the bootstrap 
methods utilized for the six estimation techniques are 
conservative. This effect is relatively minor for sample 
sizes of 100 and 200 (Figures 3 and 4) in all the boot-
strap methods and excepted with MME point estima-
tion (highlighted in blue in Tables 2–4) whose 
confidence interval is notably conservative (as it is 
excessively large, above all bias-corrected method 
using the mean and median estimates).

Our example further demonstrates that when deal-
ing with a single sample, the six point-estimation 
methods can generate CIs that vary significantly in 
size from one another. It is not unexpected that the 
usage of smaller sample sizes resulted in broader con-
fidence intervals overall.

It is worth highlighting that the reliability curves over-
lap frequently in many figures with percentile and bias- 
corrected methods. It means the reliability performance 
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of these two methods is quite similar. In other words, 
there isn’t a clear distinction in terms of which method 
consistently outperforms the other. This overlapping of 
reliability curves can present several implications: 1) the 
choice between them might introduce some uncertainty 
into the analysis 2) the overlap could also indicate that 
the quality of the data or the assumptions made in the 
analysis play a significant role in the performance of 
these methods. In such cases, improving data quality on 
the tensile stress of an epoxy resin may be more critical 
than choosing between the methods themselves. In sum-
mary, the overlapping of reliability curves between per-
centile-based and bias-corrected methods highlights the 
complexity of statistical analysis and the need for careful 
consideration when choosing and interpreting these 
methods in different scenarios. Nevertheless, a larger 
number of resamples can provide smoother and more 
clearly defined curves.

In contrast, the observation of similar reliability 
curves across different sub-sample sizes when using 
MMLE and MPS methods suggests robustness, 

consistency, and efficiency in these estimation techni-
ques. This suggests that these methods are not highly 
sensitive to the number of sub-samples used for esti-
mation. If so, it may have practical implications for 
decision-making and resource allocation. Depending 
on the context, it might be more cost-effective to use 
a smaller sample size (e.g., 39) if it yields similar reli-
ability estimates as larger samples (e.g., 100 or 200). 
However, it’s essential to consider the specific context, 
underlying assumptions, and potential tradeoffs when 
deciding on the appropriate sample size and estima-
tion method for reliability analysis.

4.3. Monte Carlo with simulated data

In order to compare the various bootstrap techniques 
formally, we replaced the data from Table 1 with 39 
simulated data generated with a Weibull distribution 
random number generator since the sample of epoxy 
resin tested consists of 39 specimens. The appropriate 
number of empirical data on tensile strength to use is 

Figure 2. Reliability curves of the Weibull distribution according to bootstrap CIs derived from the percentile and bias-corrected 
methods. Number of subsamples ¼ 39.

12 R. CARO-CARRETERO ET AL.



influenced by testing expenses. The advantage is that 
now we know the true population parameters; it is 
therefore possible to compute the proportion of confi-
dence intervals that indeed contain the true popula-
tion parameters. We show in Figure 5 (in the order 
they appeared in Tables 2–4, that is, Percentile, BC- 
point, BC-mean, BC-median) the frequency with 
which 95% CIs do not include the true population 
value (D638-14 2022). Each simulation was repeated 
5,000 times, each with a different simulated sample 
based on a Weibull random number generator (Manly 
2007). The MATLAB codes utilized for data gener-
ation and functions for computing CIs are accessible 
in Caro-Carretero (2023).

For each method and value of Weibull point-estima-
tion parameters, we assessed the proportion of CIs in 
which the true population value is outside the CI limits. 
We assessed separately the number of times the popula-
tion value exceeds the upper limit of the interval (indi-
cated in orange in Figure 5) and falls below the lower 
limit of the interval (indicated in blue in Figure 5). 

In an optimal scenario, a CI should be symmetric, with 
the population value exceeding the upper limit or fall-
ing below the lower limit in the same proportion, while 
also ensuring that the target level of coverage is met 
(Aguirre-Urreta, R€onkk€o, and McIntosh 2019; Kysel�y 
2009).

In Figure 5, it can be observed that with a small 
sample size of 39, for MME point-estimation method, 
irrespective of which bootstrap techniques is used, the 
parameter of interest is included in the CI approxi-
mately 93% of the time (Chernick and Labudde 2009, 
2011). The Percentile and BC-median bootstrap tech-
niques also include the parameters of interest roughly 
93% of the time over replications. For the remaining 
cases, we observed important deviations to 5% (12% 
in some case, up to 30% in others), indicating a lower 
than desired coverage level. Overall, the percentile 
method yielded CIs that were closer to the target 
coverage level of 95% than the bias-corrected boot-
strap method. As mentioned earlier, it is not exactly 
5% mainly because the sample is small. It is frequent 

Figure 3. Reliability curves of the Weibull distribution according to bootstrap CIs from the percentile and bias-corrected 
approaches. Number of subsamples ¼ 100.
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Figure 4. Reliability curves of the Weibull distribution plotted based on bootstrap CIs derived from the percentile and bias-cor-
rected methods. Number of subsamples ¼ 200. Note: Method 1 refers to percentile; 2 refers to BC-point; 3 refers to BC-mean; 4 
refers to BC-median. The percentages below the bars are the sum of the red and blue bars.

Figure 5. Proportion of samples for which calculated 95% CIs do not include the true population value of parameters within the 
CI limits based on 5,000 random samples.
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to see CI estimates that are conservatives for small 
samples.

5. Conclusions

Although the experimental results allow knowing the 
adhesive joint’s mechanical performance, a safe indus-
trial application requires suitable reliability measures 
when the goods and safety of the staff is at risk. To 
achieve this purpose, subsampling techniques were 
carried out assuming a Weibull distribution consisting 
of three parameters to estimate CIs of its parameters 
providing example time-to-failure distribution. This 
procedure is in agreement with research carried out 
on samples of concrete with high strength (Zapata- 
Ord�uz, Portela, and Su�arez 2014) and is consistent 
with other works on brittle materials (Alqam, Bennett, 
and Zureick 2002) where it was reported that the 
three parameters Weibull distribution prevailed over 
the two parameters Weibull distribution. In studies 
that involve failure and damage development, the 
Weibull distribution is assumed to be a suitable model 
for the statistics of mechanical and failure properties 
(Cousineau 2011).

The findings of our study indicate that when calcu-
lating CIs, using six different point-estimation meth-
ods can result in significantly varying CIs for a given 
sample. However, while the choice of point-estimation 
methods can indeed influence the accuracy and 
properties of CIs, the effectiveness of a specific point- 
estimation method can vary depending on the data 
distribution, sample size and underlying assumptions. 
Even the presence of outliers can greatly affect point 
estimates. Therefore, it’s essential to consider the con-
text and characteristics of the data when selecting a 
point-estimation method. For data that follows a nor-
mal or approximately normal distribution, the sample 
mean is often the preferred point estimate and it leads 
to efficient CIs. When dealing with non-normal data, 
especially when it has heavy tails or outliers, consider 
using robust point estimates like the sample median 
or trimmed mean. In cases with small sample sizes, 
it’s important to choose estimators that are less sensi-
tive to extreme values. The sample median may be 
more suitable. For data with unknown or complex 
distributions, non-parametric point estimators like 
the sample median or quantiles can be valuable. 
Resampling techniques can help assess the robustness 
of point estimates and their impact on the resulting 
CIs under various scenarios.

In this regard, our simulations further demonstrate 
that the choice of point-estimation approach has a 

significant impact on the methodology’s outcomes. 
The BC-point and BC-median returned the most con-
sistent estimates across subsample sizes. Therefore, we 
suggest that researchers should explicitly disclose the 
bootstrapping method they employed when presenting 
such confidence intervals. An informal examination of 
the literature indicates that this is not a widespread 
practice at present. Additionally, researchers should 
state the number of bootstrap samples they used in 
their calculations. It is rare for researchers to specify 
the number of bootstrap samples used when reporting 
CIs obtained via bootstrapping or insufficient infor-
mation was given to the reader to determine the num-
ber used, and amongst those that did, practice can be 
quite varied.
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