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A B S T R A C T   

The world is currently moving towards more environmentally friendly modes of transport. As a result, the sales of 
electric vehicles (EVs) are growing exponentially, and the new charging-associated loads are influencing the 
operation of the power distribution networks and their elements. Given the stochastic nature of the additional 
load from EVs, it is difficult to predict such a load with analytical methods. In this regard, a fuzzy-logic-based tool 
to assess the influence of the charging load of EVs on the transformers’ aging was developed in the MATLAB- 
Simulink environment, and the impact of different EV penetrations was simulated and assessed. The fuzzy- 
logic-based model incorporates the influence of ambient temperature, power quality, and overloads. It com
prises a diagnostic part, which warns a user about possible issues by providing actual information about the 
transformer’s state, and a tuning part, which is aimed at optimizing the transformer’s load level and the power 
factor at the secondary voltage side. Moreover, the effectiveness of photovoltaic generation units, shunt capacitor 
banks and battery energy storage systems, installed at the secondary voltage side, for distribution transformers’ 
service life extension were analyzed. The results show that, for high EV penetration levels, a combined grid 
reinforcement strategy allows to reduce the loss of life of the transformer by around 3–5 times.   

1. Introduction 

To meet future mobility needs, reduce climate and health-related 
emissions, and phase out oil dependence, traditional engine technolo
gies must be replaced by more efficient and eco-friendly alternatives, as 
EVs [1]. At the same time, several countries (e.g., Germany, Denmark, 
Sweden) have decided to switch their electricity generation from fossil 
fuels to renewable energy sources, making EVs even more environ
mentally friendly compared to internal combustion vehicles. Research 
has revealed evidence that the transition to EVs is of immense impor
tance for the environment, including overall air quality and reducing 
carbon emissions [2]. EVs, compared to diesel or gasoline-powered cars, 
produce fewer lifecycle emissions, and these emissions can be further 
reduced with electricity generated from non-polluting renewables, such 
as wind and solar. Until now, electric vehicles have been gradually 
gaining momentum in the market. According to the latest edition of the 
“Global Electric Vehicle Outlook” from the International Energy Agency 
[3], in 2021 sales of EVs doubled to a new record of 6.6 million, and the 
interest kept rising strongly into 2022, despite disruptions in global 

supply chains. 

1.1. Problem statement and motivation 

For the electrical distribution network, EVs are primarily an addi
tional load of a stochastic nature, which complicates the process of 
managing the power system and affects its reliability. For example, EV 
charging during peak hours increases the total demand in the power 
system and can lead to the transformer’s overloading and disruption of 
the energy supply [4]. 

According to [5], up to 4 out of 5 plug-in EVs recharging occasions 
occur at the residential homes, and about 1 out of 5 charging events take 
place at the workplace. Typically, the residential homes in Europe are 
supplied through electric networks, which are tied to distribution 
transformers. Therefore, this work is focused on the impacts of home 
charging on the distribution transformers feeding those power networks. 
Contemporary residential homes are adapted to high-power fast char
gers at 10–22 kW as opposed to traditional charging at 3–6 kW [6]. 
Several fast charging 20 kW connectors operating simultaneously can 
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cause a blackout in a holiday village with transformers that are not 
designed for such loads. Overrating of a transformer leads to an increase 
in the temperature of the windings, taps, insulation and oil, which can 
reach unacceptable values. Also, the induction of the scattering mag
netic flux increases, causing an increase in eddy currents that heat the 
metal parts of the transformer. As a result, there is a risk of damage 
associated with the amount of current and temperature, and the aging is 
accelerated. 

In parallel with that, harmonic distortions in electric energy systems 
continue to grow due to the proliferation of nonlinear loads and elec
tronic devices [7]. Moreover, photovoltaic (PV) systems with low 
short-circuit power can affect the voltage profile and cause harmonic 
distortion of voltage and current [8,9]. When nonlinear loads are con
nected to the distribution networks, they tend to draw nonlinear cur
rents and consequently distort the system’s voltage [10]. The most 
substantial effect of harmonic distortions within a power distribution 
network is the temperature increase, which results in increased power 
losses, transformer derating and possible equipment failures [11]. In 
addition to that, harmonic distortions can adversely affect system’s 
microcontrollers, electric energy meters, breakers and relays, causing 
their erratic behavior [12]. 

Local power injection from a community-level PV system and from 
prosumers with rooftop PV panels can help to avoid the transformer’s 
overloading due to EVs charging. However, due to the intermittent na
ture of PV technologies and the specific generation profile (solar in
stallations usually make their major contribution at noon), the effect on 
transformer aging would be insufficient [13]. For more efficient trans
former’s aging mitigation, PV generation should be coupled with battery 
energy storage systems (BESSs) [14]. Installation of a BESS is most 
common for single-family homes with PV systems, which gives home
owners the ability to store available surplus of energy during the day
time and consume that energy during times of pick demand or when 
there is no generation from renewable energy sources [15]. 

1.2. Previous work analysis and contribution 

It is commonly assumed that EVs charging often starts after people 
return from work, which coincides with the evening peak load [4]. This 
coincident demand of lighting, household appliances and EVs charging 
can overload the power distribution system, which was initially pro
jected for lower energy demand. 

The impact of plug-in EVs charging on the power distribution sys
tems and their elements has been on agendas of many researchers during 
the recent years. In [4] the authors evaluated home-dominant and 
work-dominant EV charging impacts on the power grid and reported 
noticeable line loading increase of about 15%. The work [16] demon
strates that operation of quick charging stations can lead to the increase 
of the transformer’s temperature beyond the thermal limits and reduce 
its lifetime. The effect of the current and voltage harmonic distortions on 
the distribution transformer’s aging was evaluated in [17]. The study 
[18] revealed that voltage harmonics can cause significant increase of 
top-oil temperature rise and core losses of pole-type oil-filled trans
formers, deterioration the winding insulation. A methodology to obtain 
spatial and temporal projections of charging demand and to assess the 
peak-shaving potential from EVs is proposed in [19]. The paper [20] 
demonstrates a possibility to extend the transformer’s life through the 
optimal scheduling of the EV charging. The authors of [21] investigate 
whether grid reinforcements are reasonable from a cost and emissions 
perspective for an electrical network with high penetration of EVs, 
concluding that it is possible to reduce the EV charging costs under the 
current transformer’s capacity. The article [22] assesses the influence of 
the stochastic load of electric cars on the distribution network and 
concludes that EV charging can cause unacceptable voltage decrease in 
load nodes. 

The complexity of modeling the EV charging loads is due to their 
stochastic nature; therefore, the use of analytical modeling methods is 

practically impossible, and different numerical methods are preferred 
[22]. Evaluation of distributional transformers’ aging acceleration as a 
result of extra charging loads added by plug-in hybrid electric vehicles is 
given in [23]. Probabilistic data-driven methods to assess the severity of 
transformer’s overloading and aging, when imposed to high-level of EVs 
charging demand coupled with generation from rooftop PV, are pre
sented in [24,25]. In [26] the thermal aging of oil-immersed trans
formers is estimated., using an artificial neural network and Monte Carlo 
simulations. The article [27] proposes to employ a deep learning 
approach based on a convolutional neural network to predict the life 
duration of the transformer. The authors of [28] and [29] assessed the 
transformers’ loss of life (LoL) in distribution networks with individual 
residential houses and high number of plug-in EVs and investigated how 
the transformer’s aging can be mitigated by means of the power system 
reinforcement, including local PV generation and BESSs. The results of 
[24,25] have shown that the presence of PV generation in the electrical 
networks with EV chargers can decrease the transformer’s LoL, and with 
a BESS this positive effect is even more significant [28,29]. 

In [4,19] the effects of EV charging demand are only investigated for 
bus voltage and branch loading levels. The papers [16,19–23] study the 
transformers’ deterioration, but the effects of prosumers with rooftop PV 
panels or options of the electrical network upgrading with BESS units 
were not considered. The effect of distributed generation and energy 
storage technologies is not incorporated in the transformer’s aging 
model in [26]. The methods based on the artificial intelligence [26,27] 
require a large number of data with known conditions for training and 
testing, but they are still subjective. Additionally, in [27] the charac
teristic quantities used in the prediction model were obtained assuming 
their Weibull distribution, which that may not be valid in all cases. To 
quantify the uncertainties of stochastic processes and calculate expected 
values of unknown data generating processes, the Monte Carlo method is 
employed in [22,24–26,28]. This method consists in generating a large 
number of random values for distributions of quantities given by the 
corresponding probability densities, on the basis of which the probabi
listic characteristics of the problem being solved are calculated [30]. 
However, the accuracy of Monte Carlo calculations strongly depends on 
the number of iterations. For instance, to increase the accuracy by 10 
times, it is necessary to increase the number of iterations by 100 times. 
And as the number of iterations increases, so does the calculation time 
[30]. In [29] only a single level of EV penetration is modeled, while the 
considered share of reactive power is unrealistically high for a resi
dential power network. 

To overcome the limitations of the previous studies, the influence of 
the ambient temperature variations, EVs charging, and power quality 
issues on the transformer’s aging should be investigated more 
complexly. This study is based on the outputs of the previous research 
works [28,29]. Compared to [28], the influence of higher harmonics and 
shunt capacitor banks (SCBs) on transformers’ aging have been incor
porated in the modeling, and more case scenarios have been created. 
Compared to [29], various EV penetration levels have been considered, 
covering the range of penetration from 0% to 100%, and the potential of 
PV installations has been employed to control the power factor (PF). The 
effectiveness of several grid reinforcement strategies for mitigation of 
the transformer’s LoL under different EV penetration levels has been 
estimated. These strategies include deployment of BESS, dispersed PV 
generation, and SCBs to compensate the reactive power. A 
fuzzy-logic-based tool has been set up to prevent overloading and 
overheating of the mineral-oil-immersed transformer, while maintain
ing the PF at a desired level. The rules for diagnostics and tuning settings 
can be adjusted by a user, depending on the rated capacity, voltage level 
or specific operational conditions. Thus, the proposed approach is 
applicable for different sites of distribution networks. 

The rest of the paper is organized as follows. Section 2 defines the 
input data and the case study scenarios. Section 3 presents the algorithm 
and the developed model. The transformer’s aging model is defined in 
Section 4. The obtained results are discussed in Section 5. Some 
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strategies to prolongate the transformers’ life cycle, which do not rely on 
grid reinforcements, are outlined in Section 6. And next the conclusions 
are stated. 

2. Input data for the case study 

2.1. Power demand in distribution system 

A distribution power network, which is typical for power supply of 
European rural areas, is considered as a research object. A possible 
configuration of such a network is shown in Fig. 1. The radial feeder is 
equipped with a 20/0.4 kV mineral-oil-immersed transformer and hosts 
residential dwellings and a local enterprise. A shunt capacitor bank with 
a 12-step regulator and a BESS are connected to the secondary voltage 
bus. The SCB has a capacity to compensate 90% of the maximal reactive 
power demand. The aggregated size of BESSs units should be 60% of the 
rated power of all PV generation units, which is sufficient to absorb the 
surplus of PV power in the electrical network under study. The latter 
value was determined during the modeling process, and for this esti
mation a BESS of unlimited capacity was initially embedded in the 
model. 

The hourly transformer’s loading at each t-th sampling step can be 
calculated as 

StotT,t =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
PLoad,t + PEVs,t − PPV,t ± PBESS,t

)2
+
(
QLoad,t − Qc.b.,t

)2
√

, (1)  

where PLoad,t, QLoad,t are the t-th active and reactive power demands of 
consumers, respectively; PEVs,t is the t-th power demand of EVs; PPV,t is 
the t-th solar power output; PBESS,t is the t-th BESSs power output/con
sumption; Qb.c.,t is the t-th power output of the shunt capacitor bank. 
Duration of each sampling step is assumed 1 hour. 

For the values PLoad,t and QLoad,t the electricity demand data of 11 real 
residential dwellings and a small enterprise is used in this work. The 
average PF of the cumulative loading from residential and 
manufacturing consumers is 0.8. The PV and the EV inverters are 
assumed to have a PF of unity. 

To incorporate the PEVs,t values, the EVs demand charging curve has 
been replicated from [19]. According to the results of [31], the variance 
in the EVs’ charging behavior across seasons is limited (i.e., there are no 
specific seasonal patterns), and there is no substantial difference in the 
start-charging times among weekdays or between weekends. Therefore, 
for this study two generalized charging curves are used for the whole 
year: one for weekdays and another for weekends. Charging events for 
holiday dates are treated as weekdays or weekends, depending on the 
day of the week the holiday happened. Additionally, it is assumed that 
EV charging demand on a weekend is about 2/3 times smaller compared 
to a working day. 

The PV electric output, PPV,t,is calculated based on the mathematical 
model from [32], using the solar irradiation data and the ambient 
temperature data from the photovoltaic geographical information 

system (PVGIS) [33] for the geographical coordinates of Kherson city. 
Such a calculation approach is universal and can be applied to any 

section of the network if there is initial data on this section. 

2.2. Higher harmonics and temperature 

Another two factors to incorporate in the model are the ambient 
temperature and the power quality. The ambient temperature data for 
the considered geographical location was taken from the PVGIS [33]. 

The power quality aspect is represented through the voltage har
monic distortions. The voltage harmonic of the fundamental frequency 
and higher voltage harmonics have been synthetically generated using a 
random distribution in the following ranges: 90–110% for the funda
mental harmonic; 0–7.5% for the 3rd harmonic; 0–9% for the 5th har
monic; 0–7.5% for the 7th harmonic; and 0–5.25% for the 11th 
harmonic. These ranges are 1.5 wider, compared to the permissible 
relative voltage levels established in EN 50,160–2010. In this case it is 
assumed that the electrical network is polluted with higher harmonics, 
which can come from manufacturing nonlinear loads, PV inverters and, 
to an extent, from EV inverters [8,17,18]. 

The cumulative influence of higher harmonics on the distribution 
transformer can be indirectly evaluated through the total harmonic 
distortion (THD) [10]: 

VTHD =

̅̅̅̅̅̅̅̅̅̅̅̅
∑∞

h=2
V2
h

√

V1
, (2)  

where VTHD is total voltage harmonic distortion; Vh is voltage harmonic 
component in root mean square (RMS); V1 is a fundamental voltage in 
RMS. 

2.3. What-If scenarios 

In this work five different scenarios were elaborated. Their descrip
tion is given in Table 1. 

3. Algorithm and model description 

Designing of a diagnostic tool for power application can be chal
lenging, since it needs to be tuned to a specific system, and usually 
several measurements need to be taken and compared to obtain 
reasonable performance [11]. Therefore, the mathematical tool of fuzzy 
logic has been chosen for to analyze the limit states (overload, tem
perature overheating) during transformer operation. The fuzzy-based 
model can operate with input data specified indistinctly; it analyzes 
the parameters and factors that affect the normal operation of the 
transformer and helps to anticipate emergencies. Using signals from the 
fuzzy logic controller, automation acts to prevent the transformer’s 
overloading. 

Fig. 1. The secondary distribution system.  
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The flowchart in Fig. 2 outlines the steps of implementing the pro
posed fuzzy-logic-based algorithm. This algorithm is generic for each 
scenario presented in Table 1, but some blocks can be activated or not in 

the process, depending on the studied case. 
Once the input data is loaded, parameters of the electrical network, 

such as aggregated power consumption on the transformer’s secondary 
bus and PF are to be calculated. Next, a fuzzy logic control system for 
diagnostic of the distribution transformer is to be employed. The left 
part of the algorithm is dedicated to diagnostics. It consists of a set of 
input membership functions (MFs), a rule-based controller and a 
defuzzification process. The MFs are curves that define how each point 
in the input space is mapped to a membership value between 0 and 1 
[34]. 

The fuzzy logic input uses MFs to determine the fuzzy value of the 
input [34]. There are different MF topologies available in MATLAB 
Fuzzy Logic Toolbox, such as triangular, trapezoidal, Gaussian, poly
nomial, sigmoidal. The voltage harmonic distortion, the ambient tem
perature, and the transformer’s resulting loading are the three inputs to 
the fuzzy logic system for diagnostics (see Fig. 3), and each input has 
several MFs. The attributes of the MFs for each input are then manipu
lated to add weight to different inputs. The Mamdani fuzzy system with 
the centroid method for defuzzification was selected [35]. 

The diagnostic system uses randomly generated data for voltage 
harmonics, as described in Section 2.1. There are three voltage har
monics MFs, which define THD in the range from 0% to 12% as low, 

Table 1 
What-if scenarios for the study.  

Scenario Description 

Base case The feeder contains only residential and manufacturing loads and EVs. 
Six EV levels have been considered, namely 15%, 33%, 50%, 67%, 85%, 
and 100%. The average PF of the loads, excluding EV charging loads, is 
0.8. 

Case 1 PV generation units have been added to the electrical network. These can 
be rooftop PV systems, standalone PV systems or community-level PV 
systems at the secondary side of the transformer. The installed power of 
PV units is 100% of the transformer’s nameplate rating. The output of 
the PV generation can be regulated to control the PF. 

Case 2 In addition to the PV generation, a regulated shunt capacitor bank has 
been injected at the secondary bus of the transformer. The capacity of the 
SCB is 90% of the feeder’s reactive power consumption. The output of 
the SCB can be regulated to control the PF. 

Case 3 In addition to the PV generation and SCB, controlled BESSs have been 
added. Energy storage can be local (e.g., stationary home energy storage) 
or community-level, both installed at the secondary side of the 
transformer.  

Fig. 2. The flowchart of the proposed fuzzy-logic-based approach.  
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medium or high (Fig. 4a). The ambient temperature has four MFs, laying 
between –25 ◦C and +50 ◦C (Fig. 4b). For the loading (Fig. 4c) there are 
three input variables, which split the range from 0% to 200% in “low”, 
“normal”, and “overload” zones. Additionally, the “harmonic voltage” 
input has a weight of 1, the “temperature” input is weighted 1.15, and 
the “loading” input is weighted 1.25. 

The output also has a set of MFs, which define the possible responses 
and outputs of the studied system [11]. In the created model there are 
four output MFs: “No issue”, “Attention”, “Possible issue”, and “Inevi
table issue” (Fig. 4d). 

The corresponding rule surfaces are demonstrated in Fig. 5. 
Next, all the output MFs are combined into one aggregated fuzzy set. 

A crisp value for representing uncertain data from this aggregated to
pology is obtained through a defuzzification process. 

The rules for the diagnostic part of the algorithm are user-defined 
and listed in Table 2. 

When the fuzzy control system is defined, it can be exported into 
Simulink model. The inputs are processed by the fuzzy logic controller, 
the fuzzy output is decoded and split into four ranges, and then an 
integer from 0 to 3 is output and sent to scopes and to workspace vari
ables. These integers reflect the transformer’s state and can be decoded 
into a degree of warning message for a distribution system operator 
(DSO), which are of the following four types: “No issue”, “Attention”, 
“Possible issue”, “Inevitable issue”. In case of an “Inevitable issue”, an 
alarm signal can be sent to a distribution system operation center. In 
such a way, the diagnostic part of the model monitors the state of the 

distribution transformer and generates a warning message for a DSO. 
The right part of the algorithm (see Fig. 2) is dedicated to tuning. For 

this purpose, an additional fuzzy logic controller was integrated in the 
Simulink model. The objectives of tuning are to avoid heavy overloading 
of the transformer and to maintain the PF around 0.92, whenever 
possible. These can be implemented by adjustment of the SCB’s reactive 
power output, by control of charging and discharging modes of a BESS, 
and by temporary curtailment of PV generation. 

The fuzzy logic system for tuning is shown in Fig. 6. It has three 
inputs, which are data about PV generation, overall apparent power, 
which depends on the energy demand, and PF at the secondary bus of 
the transformer. Each input has embedded MFs. 

The three “PV power” MFs define the PV generation in the range 
from 0% to 140% of the transformer’s rated power as low, medium or 
high (Fig. 7a). The two “cos fi” MFs specify the transition between poor 
and high PF values (Fig. 7b). The two MFs for the total loading cross in 
the point of 100% of the transformer’s rated power (Fig. 7c). The three 
output MFs define the possible responses of the system. Anything from 
0 to 0.5 requires a “subtle” tuning, from 0.25 to 0.75 – an “active” 
tuning, and from 0.75 to 1 – an “intense” tuning (Fig. 7d). 

The corresponding rule surfaces are demonstrated in Fig. 8. 
Depending on the output value, the system can adjust the SCB’s 

reactive power output from 0% to 100% (one step is 8.33%), curtail up 
to 15% of the available PV power output, and switch between charging 
and discharging modes of the BESS. The tuning is successful if duration 
of the transformer’s operation under “Inevitable issue”, “Possible issue”, 

Fig. 3. The fuzzy logic system for diagnostics.  

Fig. 4. Membership function plots: (a) voltage THD; (b) ambient temperature; (c) aggregated loading; (d) output of the diagnostics fuzzy logic controller.  
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and “Attention” conditions is minimized in favor to the “No issue” 
condition. If transition to the “No issue” state is impossible, sledding to a 
less threatening regime, would be preferable. 

The rules for the tuning part of the algorithm are user-defined and 
listed in Table 3. 

The model based on the fuzzy-logic-based algorithm was imple
mented in the MATLAB-Simulink environment, as shown in Fig. 9. The 
tuning part is dashed with a green line, and the rest of the blocks belong 
to the diagnostic part. The presence of particular elements, required by 

the algorithm Fig. 2, in the model is determined by positions of the 
switches, which are enumerated from 1 to 5 in Fig. 9. The switches can 
activate/deactivate certain blocks and enable/disable control options, 
depending on the studied scenario. 

The input data about the EV charging demand, load demand, PV 
generation, and shunt capacitor bank is received from the corresponding 
signal builders, aggregated and sent to the MATLAB S-function 
“s_func_calc_power,” which calculates the transformer’s loading and the 
PF at each sampling step. The synthetically generated data about the 

Fig. 5. Fuzzy control rule surfaces for the diagnostic system: (a) dependence of the output from the ambient temperature and the voltage THD; (b) dependence of the 
output from the ambient temperature and the loading; (c) dependence of the output from the loading and the voltage THD. 

Table 2 
Membership rules for the diagnostics part of the algorithm.  

IF the 

“temperature” is:

AND the “harmonic

voltage” is:

AND the “loading” 

is:

THEN the Output is:

below normal low low No issue

below normal low normal No issue

below normal medium low No issue

below normal medium normal Attention

below normal high low No issue

below normal high normal Possible issue

normal low low No issue

normal low normal Attention

normal medium low Attention

normal medium normal Possible issue

normal high low Attention

normal high normal Possible issue

hot low low Attention

hot low normal Possible issue

hot medium low Possible issue

hot medium normal Inevitable issue

hot high low Possible issue

hot high normal Inevitable issue

very hot – – Inevitable issue

– – overload Inevitable issue

Fig. 6. The fuzzy logic system for tuning.  
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higher harmonics is processed by the MATLAB S-function “s_func_
calc_thd,” which determines the voltage THD value. Information about 
the total transformer’s loading, THD, and ambient temperature is then 
sent to the fuzzy logic controller for diagnostics. Through the defuzzi
fication process, according to the elaborated rules and MFs, crisp values 
for representing uncertain data are obtained. These values are translated 
to the scope “Status graph_Function” and used to generate a warning 
message for a DSO. When the transformer is loaded more that 100% of 
its nameplate power, the load demand can be supported by the BESS (if 
activated). 

The tuning part also has its fuzzy logic controller, which provides 

input for three MATLAB functions responsible for tuning of the output of 
PV, SCB, and BESS. If the tuning part of the algorithm is activated, it 
determines the warning message for a DSO. 

4. Transformer’s aging model 

The transformer’s aging is mainly related to the deterioration of 
winding’s insulation, which is a function of temperature, particularly 
winding hottest-spot temperature (ΘHS) [36]: 

ΘHS.t = ΘA.t + ΔθO.t + ΔθHSO.t, (3) 

Fig. 7. Membership function plots: (a) PV generation; (b) power factor; (c) aggregated apparent power; (d) output of the tuning fuzzy logic controller.  

Fig. 8. Fuzzy control rule surfaces for the tuning system: (a) dependence of the output from the PV generation and the PF; (b) dependence of the output from the 
aggregated power and the PF; (c) dependence of the output from the PV generation and the aggregated power. 

Table 3 
Membership rules for the tuning part of the algorithm.  

IF the “PV power” 

is:

OR the “cosφ” is: AND the “apparent 

power”:

THEN the Output 

is:

low high – subtle

medium – – active

high poor – intense

low – high intense

medium – high intense

– high normal subtle
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where ΘA is the temperature of the cooling medium (ambient temper
ature), ◦С; ΔθO is the transformer’s top oil temperature (i.e. temperature 
in the upper layers) rise over the ambient temperature, ◦С; ΔθHSO is the 
transformer’s hot-spot temperature rise over the top oil temperature, ◦С. 

The coils’ insulation degradation can be estimated with an index of 
degradation (such as LoL), which is used in the real transformer’s 
thermal models [36–38]. 

It is assumed that the temperature rises ΔθO.t and ΔθHSO.t are inde
pendent of the temperature of the cooling medium in the range of its 
variation from +40 to –20 ◦C [38]. The dynamics of terms that char
acterize the temperature rise (i.e., ΔθO and ΔθHSO) depends on temper
ature changes in transient thermal processes and loading changes. In 
more detail the method of their calculation is presented in [29]. 

The transformer’s relative wear is estimated using ΘHS by computing 
the aging acceleration factor [36]: 

FAA = e

(

15000
ΘrefHS+273

− 15000
ΘHS+273

)

, (4)  

where ΘHS
ref is the reference hottest-spot temperature, which is 110 ◦C for 

65 ◦C average winding rise and 95 ◦C for 55 ◦C average winding rise 
transformers [36]. 

The aggregated relative wear for the given temperature cycle can be 
assessed with the equivalent aging factor, which is equal to the sum of 
the relative wear for all time intervals Δti (i = 1, 2 … M) divided by the 
sum of time intervals: 

Fig. 9. The fuzzy-logic-based model in MATLAB-Simulink.  
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FEqA =

∑M

i=1
FAA,i⋅Δti

∑M

i=1
Δti

, (5)  

where FAA,i is aging acceleration factor for the temperature that exists 
during Δti; M is the total number of time intervals. 

The yearly loss of life can be determined as follows: 

LoLy% =
FEqA⋅T
LN

⋅100, (6)  

where LN is the insulation’s normal life, which is equal to 180,000 h, 
according to [36], T is the period of time. For one year T = 8760 h. 

5. Simulation results and discussion 

This section analyzes the simulation results for the electrical 
network, which operates under different EV penetration levels. The 
operating scenarios are as per Table 1. The transformers’ aging is 
assessed and discussed. 

The cumulative demand charts from residential and industrial con
sumers for different cases have been obtained during simulations. As an 
example, the cumulative charts aggregated at the 0.4 kV side for a 
winter weekday for the 100% EV penetration are shown in Fig. 10. The 
values in the ordinate axis were converted in p.u., using the trans
former’s rated power as the base, and are presented in percent. As it can 
be seen, the load profiles have a morning and an evening maximum. The 
curve 1 (in blue) is the aggregated demand at the secondary side of the 
transformer (base case), the curve 2 (in green) is the aggregated demand 
after the PV generation is deployed (case 1), the curve 3 (in gray) cor
responds to the apparent power of the residential and the manufactural 
loads, and the dashed curve 4 (in brown) is the demand curve after the 
PV generation, the SCB, and the BESS have been added, which corre
sponds to the case 3 from Table 1. 

Note that Fig. 10 only demonstrates the load profiles of a specific day 
for a reference purpose, and throughout the year these profiles are 
subjected to changes, according to the load demand and PV output data 
(see Section 2). Given that the household energy demand can be 
spatially and temporally variable, the EVs can have a greater or smaller 
relative effect on certain types of demand profiles. However, from the 
charts Fig. 10 it can be concluded that EV charging combined with 

regular load demand is the most dangerous for the transformer at high 
EV penetration levels. Therefore, the transformer is the bottleneck of the 
considered distribution feeder; its capacity is likely to be exceeded at 
high EVs penetration, which will be further revealed in more detail. 

Let us demonstrate the tuning effectiveness of the proposed method 
for the distribution transformer’s aging mitigation on the example of the 
same working day under 100% EV penetration. As it had been stated 
earlier, the tuning process is successful if the duration of transformer’s 
operation under more severe conditions is mitigated in favor to less 
severe conditions. The outputs of the fuzzy logic controllers for the base 
case and for the case 3, after tuning, are demonstrated in Fig. 11. As it 
can be seen, tuning allowed to reduce the duration of the most drastic 
operation mode (the integer 3 corresponds to the “Inevitable issue”) in 
favor to the less adverse “Possible issue” mode (the crisp value 2). 

Changes of the PF throughout the same winter day for different grid 
reinforcement scenarios, under 100% EV penetration, are demonstrated 
in Fig. 12. For the base case the average value of the PF is around 0.9. 
The corresponding curve is outlined with the blue crosses, and it is 
overlapped by other curves in many parts. As about the case 1, with 
addition of uncontrolled PV generation the PF drops down, with espe
cially deep dip between 7:00 and 13:00. Activation of PV control for PF 
regulation can improve the PF, but in the time window between 7:00 
and 13:00 it is still much lower than the desired value 0.92. Looking at 
the case 2, with addition of the non-regulated SCB the PF remains too 
low between 6:00 and 12:00, while during some time periods (e.g., from 
15:00 till 2:00) it is close to unity. Activation of the tuning part of the 
model to control the SCB’s reactive power output improves the PF only 
partially: it is still far from the desired value 0.92 during the large part of 
the day. The best values of the PF can be achieved with the case 3, when 
the electrical network is additionally reinforced with a controlled BESS. 

Comprehensive results about the transformer’s aging can be ob
tained from testing the algorithm on the yearly model for the considered 
demand profiles of the electrical network. The duration of the trans
former’s operation modes, according to the fuzzy logic output, the 
corresponding aggregated relative wear, and the LoL values for different 
EV penetration levels are summarized in Table 4. As it can be seen, there 
is a correlation between the duration of the most dangerous degrees of 
warning and the yearly LoL coefficients in percent. For 15%, 30%, and 
50% EV penetration levels the charging loads have small impact on the 
transformer’s deterioration, and the grid reinforcement strategies are 
not needed, since their effect is negligible. The combined influence of 
EVs charging and regular loads’ demand (base case) is the most 

Fig. 10. Load demand profiles of the low-voltage distribution network under 100% EV penetration.  
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devastating for the transformer: for the extreme 100% EV penetration 
the LoLy reaches hazardous 31.43%, and for the 85% EV penetration the 
value of LoLy is 8.13%. For the 67% EV penetration the loss of life is up to 
1.67%, which is not very high for a mineral-oil-immersed transformer. 

Injection of PV units (case 1) alleviates the aging just modestly: the 
PV generation has intermittent nature and usually makes its major 
contribution at noon, which coincides nor with the morning, nor with 
the evening demand peaks. Therefore, PV installations cannot be 
considered as a separate measure to mitigate the transformer’s LoL, and 
their role is just supportive. A switched capacitor bank, which com
pensates the reactive power demand (case 2), allows to decrease the 
total apparent power, which results in notable lessening of the trans
former’s LoLy by around 2 times for EV penetration levels 85% and 
above. Under lower EV penetrations the effect of the SCB is less notable. 

A synergy of the controlled PV generation, SCB, and BESS (case 3) is 
the most resultive in terms of mitigation of the impact of EVs charging, 
ambient temperature, high power demand and harmonic distortions on 
the transformer’s aging. The BESS would charge during the daytime 
from the PV generation, when there is no transformer’s overloading. In 
the evenings, when most of the EVs are being recharged, community- 
level BESS and accumulation batteries of residential prosumers would 
send energy back to the houses or to the grid. In addition, the SCB 
installed on the transformer’s secondary bus would compensate reactive 
power demand and help to maintain the PF at the desired level. This 
joint effect substantially reduces the transformer’s loading and, as a 

result, the LoLy can be improved compared to the base case: 2.97 times 
for 67% EV penetration; 4.13 times for 85% EV penetration; 5.15 times 
for 100% EV penetration. As the result, the LoLy for extreme EV pene
tration levels of 85% and 100% is mitigated to 1.97% and 6.1%, 
respectively. Although, the 6.1% LoL is a substantial value, the trans
former’s replacement can be delayed for a long time, if emergencies and 
long-duration overloading are avoided. Moreover, the case 3 demon
strates the most balanced composition of the degrees of warning. For 
instance, for 100% EV penetration the duration of the “Inevitable issue” 
status is only 87 h per year, while the mildest “No issue” status lasts for 
2553 h, and the relatively harmless “Attention” status lasts for 3958 h. 
To compare, for the base case at 100% EV penetration the most 
dangerous status “Imminent problem” lasts for 295 h. 

Summarizing, the case 3 is a preferable grid reinforcement strategy 
for development of electrical networks with high penetration of EVs and 
significant share of PV generation, which are similar to the network 
considered in this study. It allows to prolong the transformer’s lifetime, 
while maintaining the PF near the desired value. 

6. “Soft” strategies for improving the LOL of transformers 

In the previous section several grid reinforcement technologies to 
mitigate the transformer’s aging have been assessed. However, with 
proper management of EV charging, it is not only possible to avoid the 
negative consequences of additional load on the distribution network, 

Fig. 11. Demonstration of transformer’s operation tuning efficiency: base case vs. case 3 after diagnostics and tuning.  

Fig. 12. Variations of the PF during a working day for different grid reinforcement cases, 100% EVs penetration.  

I. Diahovchenko et al.                                                                                                                                                                                                                          



Electric Power Systems Research 221 (2023) 109455

11

but even to increase the economic efficiency. 
To shift the load associated with EV charging to off-peak times, 

several strategies are used [20,39]:  

• Using of the vehicle-to-grid (V2G) technology.  
• Introduction of time-of-use electricity rates for charging: EV owners 

who charge their vehicles during lower-demand times of day (usually 
overnight) are motivated by savings.  

• Explaining tangible benefits of setting an automated off-peak 
charging schedule.  

• Using of behavioral science techniques and personalization to 
educate customers on the impact of charging their EVs at different 
times of the day. 

The essence of V2G technology is in the utilization of the batteries of 
parked EVs as energy storage units. In other words, EVs can take elec
tricity from the grid during low demand periods, and then give it back to 
the grid at times of peak loads. Use of batteries of parked EVs as energy 
storage devices can help to reduce the required generation margin in the 
so-called hot standby, which in turn will reduce the need in expensive 
BESSs and contribute to a more economical operation of the electrical 
network. However, to implement the V2G, it is necessary to install 
charging stations supporting the reverse power flow. 

As shown earlier, the probability of an unacceptable overload of a 
transformer is highly dependent on the EV penetration. In this regard, in 

the networks with high EV penetration it is necessary to encourage users 
to recharge their vehicles during off-peak hours and participate in V2G. 
To do this, a flexible billing system can be used. To implement this, a 
tariff differentiated by zones of the day with a strong difference in price 
in each tariff zone can be established. Consumers respond to changes in 
the price of electricity by changing the demand. As the price rises, de
mand decreases, and vice versa, a decrease in price leads to an increase 
in demand. The level of consumer’s response to a change in price is 
called the elasticity of demand [40]. The elasticity of demand is calcu
lated with the following formula: 

ε = ΔWdem,%
ΔC,%

, (7)  

where ΔWdem,% is a change in electricity consumption associated with a 
change in its price; ΔC,% is the price change. 

The report [40] shows that the average level of own-price elasticity 
of electricity demand in residential buildings in the United States is from 
–0.12 in the short run to –0.29 in the long run. Given that 80% of plug-in 
EVs recharging occurs at the residential homes [5], these values can be 
taken as a reference for the elasticity of the charging demand. Also, 
when modeling, the discreteness of the EVs charging load should be 
taken into account, that is, elasticity does not affect the load directly, but 
the number of users who want to charge their EVs at one time or another. 

Table 4 
The transformer’s statuses and LoL for the whole year.  
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7. Conclusions 

This study presents a fuzzy-logic-based framework to mitigate the 
aging of the transformer feeding a power distribution system with high 
penetration of plug-in EVs. Several negative factors affecting the trans
formers have been considered and incorporated in the model: ambient 
temperature, poor power quality, and overloads caused by excessive 
power demand from regular loads and EV charging. Effectiveness of 
following grid reinforcement methods to prevent unacceptable trans
former’s LoL has been evaluated: photovoltaic generation units, shunt 
capacitor banks, and battery energy storage systems, installed at the 
secondary voltage side. 

The first part of the proposed algorithm makes diagnostics of the 
mineral-oil-immersed transformer’s state and outputs a degree of 
warning (i.e., a message) for a distribution system operator. When the 
transformer’s state corresponds to the “Inevitable issue”, a distribution 
system operator should take actions to prevent a potential emergency. 
The second part (the tuning part) of the algorithm is aimed to avoid 
unacceptable overloading and maintain the power factor near the 
desired level. It can control the PV generation output, the shunt capac
itor bank’s output, and charging/discharging of the BESS. This part of 
the algorithm can be switched off by a user. 

A clear dependence of the probability of unacceptable overload of 
the transformer and a decrease in its service life from the EV penetration 
level has been demonstrated. At 85% EV penetration, the charging loads 
combined with the regular load demand result in the transformer’s loss 
of life of 8.13%, and at the ultimate 100% EV penetration the LoL rea
ches 31.43%, which will inevitably lead to a failure. Considering the grid 
reinforcement strategies, the best results can be observed when the 
electrical network is additionally equipped with controlled energy 
storage, PV installations and the shunt capacitor bank (i.e., case 3 of the 
study). For this case, at 100% EV penetration the transformer’s LoL is 
reduced more than 5 times, compared to the base case. With this com
bined grid reinforcement strategy, it is possible to address the impact on 
the rising EV charging demand on the transformer’s aging. 

Despite the improvements in the LoL, the PF for the cases 1 and 2 
remains unstable and often drops below the desired value. For the case 3 
it is possible to maintain the PF closer to the desired value throughout 
the day. 

The developed algorithm and the fuzzy-logic-based tool are universal 
and can be applied to any section of the electrical network if there is 
initial data on this section. In the future work the “soft” strategies for 
improving the LoL of transformers are to be considered, which include 
the scheduling of EV charging and the elasticity of demand. 
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