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Abstract: Policies for reducing CO, and other GHG emissions have motivated an increase in elec-
trification in metropolitan areas, mandating reductions in energy consumption. Metro systems are
keystone contributors to the sustainability of cities; they can reduce the energy consumption of
cities through the use of the economic driving parameters in their onboard automatic train opera-
tion systems (ATO) and through the strategic design of efficient timetables. This paper proposes a
two-level optimization method to design efficient, comfortable, and robust driving commands to be
programmed in all the interstations of a metro line. This method aims to increase the sustainability of
metro operations by producing efficient timetables with economic driving for each interstation while
considering comfort restrictions and train mass uncertainty. First, in the eco-driving level, an optimal
Pareto front between every pair of successive stations is obtained using a multi-objective particle
swarm optimization algorithm with fuzzy parameters (F-MOPSO). This front contains optimized
speed profiles for different running times considering train mass variations. The global problem is
stated as a multi-objective combinatorial problem, and a fuzzy greedy randomized adaptive search
procedure (F-GRASP) is used to perform an intelligent search for the optimal timetables. Thus, a
global front of interstation driving commands is computed for the whole line, showing the minimum
energy consumption for different travel times. This method is analyzed in a case study with real data
from a Spanish metro line. The results are compared with the minimum running time timetable and
a typical timetable design procedure. The proposed algorithms achieve a 24% reduction in energy
consumption in comparison to the fastest driving commands timetable, representing a 4% increase in
energy savings over the uniform timetable design.

Keywords: energy saving; sustainability in railway transport; efficient timetable; fuzzy logic;
multi-objective combinatorial optimization; train control; train load variation

1. Introduction

The road to decarbonization has been paved by the European Commission, which
aims to achieve an 80% reduction in CO, and other GHG emissions by 2050. Metropolitan
systems are greatly affected by this objective, with their primary sources of carbon emissions
coming from industry, transport, and domestic sources. This leads to strategies that focus
on replacing fuel-based technologies with clean alternatives, increasing the electrification
of cities to progressively reduce these emissions and, therefore, the electricity demand of
urban areas.

As an electrical transport mode, metro systems are crucial to achieving sustainable
urban mobility. However, metro rail transit contributes significantly to the electricity
demand in metropolitan areas, and with growing electricity prices, reducing the energy
consumption of metro operations has become crucial for the sustainability of cities. Several
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strategies have been studied and implemented to improve railway systems’ energy effi-
ciency, mainly targeting low-investment measures that do not require changing the train
fleet or improving infrastructure in metros.

One of the highest potential energy savings methods comes from eco-driving [1],
which involves designing the most efficient driving pattern between two stations to meet
the target schedule with minimum energy consumption. The eco-driving implementation is
significantly different for metro trains than mainline trains, which employ manual driving.

Many modern metropolitan lines have their trains automatically driven by automatic
train operation systems (ATO). Their automatic operation starts with the onboard ATO
equipment receiving a set of driving commands at the station from the centralized reg-
ulation system. Typically, the driving command sets are pre-programmed in the ATO
equipment for each pair of stations and comprise four parameters: holding speed (vh),
coasting speed (vc), re-motoring speed (vr), and braking rate (b), as shown in Figure 1.

80 T T T
______________________ .
£60¢ : <—VC—> : |
E/ - - \ o - -
< 40 1
[0}

5 3
n 20 |
O 1 1 1

2850 3350 3850

Position (m)
Figure 1. Example of ATO driving commands in a speed profile.

After that, the train implements a specific speed profile to the following station, which
results from the ATO driving logic using the driving commands received and the track
characteristics as input data. Complex algorithms are part of the ATO driving logic. They
are in charge of different functions, including the calculation of braking curves (with
variable deceleration to maintain the train’s braking level depending on variations in the
grade), speed regulation (according to the maximum speed profile, holding speed, and
braking curves), the calculation of the start of the braking points (to ensure that the train
can follow the braking curve and make a smooth transition from traction to the braking
curves), the calculation of the start of the coasting points, and passenger comfort control
(limiting the jerk and imposing a hysteresis cycle between traction and braking mode) [2].

Therefore, the eco-driving problem in ATO systems is designing the driving commands
to be programmed in the track-side equipment, which defines the speed profile that the
onboard equipment will implement during the operation according to the ATO’s logic.
As said before, the input for the eco-driving problem comes from the timetable where the
target times to achieve between stations can be extracted. In metropolitan systems, the
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operator determines the commercial speed of the line according to passenger demand. The
commercial speed determines the journey time between terminal stations and, associated
with that, the time margin with respect to the minimum journey time. Then, the running
time between stations can be obtained by distributing the complete journey margin time
among all the stretches.

The timetable can be designed with energy efficiency objectives by optimizing the
distribution of the journey time. With this aim, a greater time margin should be allocated
where the benefits in energy consumption associated with increasing the running time are
higher. Therefore, energy consumption can be minimized when designing ATO driving
commands by means of an integrated approach that takes into account eco-driving and
timetable optimization.

This paper presents an optimization method to design CBTC ATO driving commands
that minimize the energy consumption of a metro line while simultaneously optimizing
the trains driving at each pair of stations and the schedule. Furthermore, this method uses
a multi-objective optimization model to obtain the solution for all the possible values of
commercial speed (i.e., all the possible journey times between terminal stations).

Multi-objective optimization is carried out with a two-level approach. At the eco-
driving level, the multi-objective eco-driving problem is solved at each interstation employ-
ing a MOPSO algorithm with fuzzy parameters (F-MOPSO) combined with a high-fidelity
ATO simulator. The ATO model presented in this paper has been tested, and its accuracy
has been proved in different metro lines [3,4]. A Pareto curve for each interstation is ob-
tained, containing the most efficient driving commands in terms of energy consumption
and running time. The passenger load uncertainty is also considered, defining the train
mass as a fuzzy number. The comfortability from the passengers” perspective and the
robustness of the speed profiles performed by the driving commands against passengers’
load variations is ensured by applying comfort and driving pattern robustness restrictions
during the F-MOPSO optimization.

At the global level, the timetable design is stated as a multi-objective combinatorial
optimization problem (MOCOP). This problem is solved using a greedy randomized adap-
tive search procedure with fuzzy parameters (F-GRASP). This search algorithm produces
a global journey time/energy consumption Pareto front where each solution represents
the eco-driving speed profiles (defined by a set of driving commands) for every line inter-
station. The multi-objective approach has the advantage of providing a front of optimal
solutions, where the decision-maker can select the trip time for the driving command
design in view of the trade-offs between time and energy. Moreover, the proposed method
achieves optimal timetables while accounting for train load uncertainty.

The main contribution of the proposed work Is a multi-objective integrated methodol-
ogy to solve the ATO driving command design problem of a complete metro line by the
optimization of train driving and timetables. Furthermore, the method proposed covers the
main uncertainty of operation (train mass variation) using fuzzy modelling and applying
driving pattern robustness restrictions in the optimization process. Finally, the quality of
the service is guaranteed in the results by the comfort restrictions in place and by including
detailed ATO modelling to improve the accuracy of the results and the applicability to
real systems.

The paper is organized as follows. In Section 2, the relevant literature is reviewed.
Section 3 describes the procedure to obtain robust and efficient driving commands. The F-
MOPSO algorithm for obtaining efficient speed profiles is presented in Section 4. Section 5
describes the F-GRASP algorithm to design and optimize the timetable for a metro line. A
case study using data from a real metro line is analysed in Section 6. Finally, conclusions
are drawn in Section 7.

2. Literature Review

The optimal regimes of train driving were obtained in the first eco-driving studies
applying Pontryagin’s maximum principle, including traction, holding speed, coasting,
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and braking [5,6]. Thus, an optimal speed profile can be obtained by calculating the
switching points between the optimal regimes [7]. These regimes can also be applied in
constrained eco-driving models with speed limits, gradients, variable traction forces, and
trip time restrictions [8,9]. Furthermore, they can include the negotiation of steep uphills
and downbhills [10].

The methods proposed in the literature to calculate efficient driving patterns can be
classified into mathematical optimization and simulation-based models.

Different approaches have been proposed to obtain eco-driving solutions. Among
them, we can find constructive algorithms [7-10], dynamic programming [11,12], mixed-
integer programming models with approximations [13,14] or sequential quadratic pro-
gramming [11,15], and the discretization of the problem with the application of Lagrange
multipliers [16].

The eco-driving problem in ATO systems involves the design of the driving commands
to be programmed. Thus, it is crucial to include in the model the ATO logic to obtain an
acceptable degree of accuracy because trains’ energy consumption and running times
critically depend on the automatic driving rules. However, these rules are frequently
nonlinear, hindering the analytical resolution of the models. Mathematical models usually
apply simplifications to obtain solutions. In some cases, these simplifications could affect
the accuracy of the solutions obtained. This effect could be significant in metro lines where
the running time differences between the nominal and fastest driving could be 2-3 s.

Simulation-based methods are fundamental in this regard because of their flexibility
in being combined with accurate models of train operations, including train motion, line
infrastructure, and ATO logic.

Compared with the traditional fixed block signalling systems, the newest signalling
systems are based on moving block communication-based train control (CBTC) [17], which
uses radio communications with higher bandwidth. Thanks to these communication
improvements, the driving parameters can take practically continuous values, increasing
the possible speed profile space and making impractical the use of exhaustive searches.
Therefore, the application of eco-driving in CBTC systems demands more sophisticated
optimization models. These types of eco-driving methods include artificial intelligent
techniques such as artificial neural networks (ANN) [18], nature-inspired algorithms such
as genetic algorithms (GA) [19,20], ant colony optimization (ACO) [21], simulated annealing
(SA) [22], differential evolution (DE) [23], multi-objective particle swarm optimization
(MOPSO) [24], and non-dominated sorting genetic algorithm II (NSGA-II) [25].

Previous studies mainly focused on eco-driving designs between two stations, where
the timetable was predefined and running times were fixed. However, energy savings can
also be obtained by optimizing the timetable in the complete line.

With timetable optimization, the metro operator determines the running time between
terminal stations in a line regarding passenger demand. Many approaches to this problem
have been made without considering eco-driving optimization through dynamic program-
ming coupled with a simulation model to compute the utilized energy [26]. Other methods
involve using the e-constraint method and applying multi-objective optimization with
distance-based methods [27]. Several mixed-integer programming models have been pro-
posed to solve the scheduling problem for single-track railways [28], to integrate train-stop
planning and timetabling in high-speed railways [29], to solve the timetable and train-set
circulation plans in transition times for high-speed lines [30], to solve the problem of multi-
periodic train timetabling and routing high-speed trains at stations [31], to integrate the
line planning, timetable and rolling stock allocation problem [32], to integrate the timetable
problem with passengers’ train booking decisions [33], and to solve the schedules of trains
on a railway network to determine the best stop locations for both technical and religious
services [34]. Passenger waiting time has also been included in optimization [35] by treating
passenger behaviour as deterministic. In [36], a method for determining the optimal train
running interval and routing scheme is proposed based on analyzing the spatiotemporal
distribution of passenger flow to control the train load factor. Contrary to the common fixed
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timetables, an operational concept to produce schedules with ad hoc individual passenger
demands was presented in [37].

Other approaches aim to produce timetables that increase regenerative braking recov-
ery. In [38], a mixed integer programming model was proposed to optimize the timetable
to maximize the exchange of regenerative braking between powering and braking trains.
The authors of [39] used a GA to maximize the coincidences of departures and arrivals to
stations in a line. An artificial bee colony algorithm was applied in [40] to modify train
intervals and dwell times to maximize the overlap in the timetable of tractioning and
braking processes. In [41], a mixed-integer programming model was applied to increase
the synchronization of power demands from tractioning trains and the power supply of
braking trains. In [42], a mixed-integer linear programming model to synchronize trac-
tion and braking events combined with a local search algorithm to shave power peaks
was proposed.

Maximum energy savings can be accomplished using integrated optimization methods.
These methods combine efficient speed profiles with optimal timetables while minimizing
traction energy consumption. Approaches to this problem include dynamic programming
with energy consumption and service quality as objectives [43], multi-train simulation with
a single train speed profile optimization model [44], two-level optimization models coupled
with a genetic algorithm to search for the optimal solution [45], an integer programming
model to minimize total net energy consumption [46], and dynamic integrated optimization
with adaptive cycle time based on passenger demand [47]. In [48], an iterative algorithm
was applied to integrate trip time distribution and improve the driving strategy. In [49,50],
pseudospectral and indirect methods were applied to allocate time supplements within
interstations to achieve energy-efficient train operations within a railway timetable. These
methods used the acceleration-holding speed—coasting-braking sequence and were applied
for non-ATO regional trains. An integrated optimization approach was proposed by [51]
using a three-dimensional grid network to reduce traction energy consumption. In [52],
available time supplements were redistributed over the trips and were further optimized
in [53] by including uncertain delays using fuzzy numbers and constraints applied to
punctuality. In the approach presented in [54], the timetable design problem was solved
using a model that considers headway between successive trains, trip time distribution,
and passenger demand. In this work, a two-level algorithm was presented by applying
dynamic programming for the train control level to obtain energy-efficient driving with a
given trip time. At the timetable level, the results for the dynamic programming step are
fed into a SA algorithm to optimize the headway of trains and trip times.

The integrated methods previously stated are single-objective optimization methods.
Thus, a single solution is obtained for a trip time or a time-energy balance. Other papers
have formulated multi-objective travel time and energy consumption problems. In [55], the
proposed model included metaheuristics to improve the optimal consumption curves and
use historical data. This study proposed a long-distance train model with speed profiles that
do not correspond to ATO systems. Gao et al. [56] formulated a bi-objective linear program,
which considers energy consumption and passenger travel time for metro lines, but an ATO
model is not included. Yang et al. (2019) [57] proposed a multi-objective problem solved by
NSGA-II to optimise timetables in a metro line considering cost, passenger waiting time,
and robustness. The driving model consisted of an acceleration phase, a coasting point,
and a braking phase.

These previous studies state a deterministic problem and do not include uncertainty in
their models, which has a relevant influence in real-world applications. The main sources
of uncertainty in ATO traffic operation are train delays and train load [3]. Other studies
have modelled uncertainty in different parameters, such as train traction [58].

Given the high precision of ATO equipment in train driving, mass variations caused
by passenger load variations are the only relevant factor affecting the execution of pre-
programmed driving parameters [59]. The climate conditions considered in [60] are irrele-
vant in metro operations where the train is protected by the tunnel in most track sections.
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Passenger mass fluctuates with the operation period, primarily between peak and off-peak
hours. Unsteady passenger flow and train headway cause variations in the mean value
of passenger load for each period. Several authors have tackled the eco-driving problem
considering train mass uncertainty. In [24], the proposed model optimized ATO speed
profiles using a mean value of train mass for a specific period. By controlling the driving
pattern against train mass variations, a Pareto set of robust and efficient speed profiles
were obtained with accurate ATO models [3]. Moreover, the set of driving commands to be
programmed into the ATO equipment was obtained through an optimization model that
considered statistical information about delays to minimize the expected energy consump-
tion. Another approach proposed in [25] generates a Pareto optimal curve by applying an
NSGA-II algorithm, which was modified to consider fuzzy values of train mass. Energy
consumption was minimized with the design of optimal ATO speed profiles along a pair
of stations. Both of these studies were limited to computing speed profiles for the route
between every two stations for given running times, assuming that the timetable is fixed.
However, the interstation running time, which is determined by the train timetable, also
influences energy consumption. Normally, a longer interstation running time implies less
energy consumption.

3. Two-Level Fuzzy Optimization Model for the Design of Robust and Efficient
Driving Commands and Timetables

Designing and optimizing an efficient metro line timetable is a complex problem
where opposing objectives, running time and energy consumption, must be improved to
achieve an optimal solution. The approach presented in this paper to solve this problem
consists of a two-level optimization model, as shown in Figure 2. In the lower level (eco-
driving model), the F-MOPSO algorithm is applied to search for a set of optimal speed
profiles for each interstation. Once a Pareto front is computed for train operations at every
interstation in the line, the timetable problem becomes a combinatorial problem. The
F-GRASP algorithm is used for the higher level (global level) to obtain a global Pareto
front, where each solution represents the total running time of a train from the first to the
last station along the line and the corresponding total energy consumption of an optimal
timetable. This total running time (and its associated timetable) and the total energy
consumption are obtained by selecting one solution (a speed profile) from the Pareto curve
of each individual interstation. Thus, a member of the global Pareto front is an optimal set
of driving commands to be programmed from the first to the last station that provides a
timetable that aims to minimize total running time and energy consumption.

3.1. Global Optimization Level

The global fitness evaluation function for the Pareto front computed in the F-GRASP
algorithm is a fuzzy extension of the crisp problem shown in the following equations:

Minimize fo (%) = (fg1(%5), fe2(%5)) @
. S ;s
far(%g) = X1 fal%s) ©)
o S o
fea (%) = ) fo(%s) ®)
where fo1(%,) and fg (%) are the total running time and energy consumption of the entire
metro line, obtained with a sequence of optimal speed profiles £, = (£1, £2,..., %5) from

interstation 1 to S computed in the F-GRASP algorithm. Each element s in £, is a solution
(%5) of driving commands for every interstation s. The possible solutions for %; are the
Pareto fronts computed at the eco-driving level. fi(%s) and f, (%) are the running time and
the energy consumption of the interstation s, respectively.
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Figure 2. Two-level optimization level.

3.2. Eco-Driving Optimization Level

At the eco-driving level, speed profile optimization at each interstation s is a multi-
objective problem, where the objectives are minimizing running time and energy consump-
tion in a route, with its objective function shown in

Minimize f(2s) = (f1(2s), f2(%s)) )

A detailed simulator of train motion and ATO equipment is used to compute f; (£s)
and f>(%;) [2]. The design of these speed profiles dictates the driving modes in which a
train can be operated between two stations. Four decision variables, the driving parameters
of an ATO configuration, determine the speed profiles: coasting speed (vc), re-motoring
speed (vr), holding speed (vh), and braking rate (b). Solutions obtained in the F-MOPSO
algorithm are defined as a configuration vector of driving parameters £; = (vc, vr, vh, b).
The computed Pareto curve contains a set of non-dominated solution vectors where at least
one objective has a lower-performing value than other solutions from the solution space.
The other objective is likewise of lower or equal value. Every speed profile obtained in
the Pareto front is a feasible solution that complies with the comfort criteria defined by
the metro operator. These criteria dismiss solutions that include uncomfortable rides with
traction cut-offs in steep slopes, several re-motoring periods, short traction periods, and
low-speed rides. Restrictions related to passenger comfort are relevant for implementa-
tions in a real-world operation and complement the jerk control implemented in the ATO
driving logic.

One comfort criterion is the maximum slope value for traction cut-off restrictions,
which limits the application of coasting during steep uphill segments,

p< Pmax if Fy = 0and Fj,*" >0 (5)

where p is the slope, pmax is the maximum slope permitted at the start of a coast, F;, is the
current traction effort, and Fj,*" is the traction effort in the previous instant. Cutting off
traction during a steep slope results in an uncomfortable sensation for passengers because
of the sudden change in acceleration rates [61].
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Another restriction is the maximum number of re-motoring occurrences in transit,

Nremotoring < Mmax (6)

where 7remotoring 18 the number of re-motoring instances executed along an interstation and
Nmax is the maximum number of re-motoring instances permitted for passenger comfort. A
limitation regarding the minimum traction time of a train during traction drive mode is
also in place. This limitation avoids rapid successive changes in traction modes during the
train’s journey, which leads to an uncomfortable perception of constant variation in motion
due to jounces.

Train speed is also limited with a coasting speed restriction that does not allow the
coasting speed to fall below a certain threshold, a minimum speed constraint throughout
the journey (7), and a minimum speed limit along the curves to avoid the excessive wear of
the wheels and track.

U > Umin ()

All feasible solutions must ensure the driving pattern in the interstation remains stable,
that is, not affected by variations in the transported mass or passenger load, to minimize
variability in running times and energy consumption. This additional robustness restriction
is imposed using a filter to exclude those speed profiles, which modifies its driving pattern
when the train mass varies [3].

3.3. Fuzzy Mass Model

The model proposed in this paper accounts for uncertainty regarding passenger load
in train transits between stations [25]. Given the vagueness of knowledge regarding mass
variations of a train during different times of the day (peak hours, off-peak hours), the
additional passenger mass is modelled using fuzzy numbers [62]. Fuzzy mass values will
also make running time and energy consumption fuzzy.

The use of fuzzy values for the passenger load allows for modelling the train mass
uncertainty during a certain period in order to devise the planning of the train timetable.

Let M be the train mass corresponding to the passengers’ load that is represented by a
fuzzy number, M. This fuzzy number is modelled as a pseudo-triangular fuzzy number.
The triangular fuzzy number is truncated (being, thus, a pseudo-triangular fuzzy number)
because of technical reasons, as the shaved-off side indicates that it is not possible to exceed
the maximum passengers’ mass value expressed by the train manufacturer (maximum
load). The proposed model could be applied as well for other possibility membership
functions (such as exponential, hyperbolic, and piece-wise linear functions [63] and S-
shaped membership functions [64,65].

The possible values of the mass are shown in Figure 3. Negative values of passengers’
load are not allowed, and m; is the least passenger load possible. The greatest possible
value is m,;, and the maximum value M is my,, which has a possibility of A. The maximum
load is indicated by the train manufacturer and corresponds to the maximum passenger
load permitted in the train. The value of A is the possibility associated with this maximum
load for the considered scenario. Therefore, the function that indicates membership to the
fuzzy mass is indicated in (8).

1 m
( >M— L my <m<my,
mg; —mj mg; —mj
= [ —— - o, <m<m
0, m < my
O,m>mb
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Figure 3. Fuzzy passenger load mass.

Total train mass M; is the empty train mass My plus the additional mass from the
passenger load M. The fuzzy total train mass necessarily produces fuzzy values for the
resulting running time T and energy consumption E of a global train journey. Equation (4)
is expressed in fuzzy terms as

Minimize E(£) = (T(aes), E(fs)) )

where T and E are the fuzzy running time and fuzzy energy consumption, respectively, for
station s.
Similarly, Equation (1) can be written in fuzzy terms as:

Minimize fg(ﬁ) = (Tg (%¢), E;(Jﬁg)) (10)

where Tg and E; are the fuzzy total running time and fuzzy total energy consumption,
respectively, for a complete metro line.

3.4. Fuzzy Dominance

Applying multi-objective optimization algorithms to compute a Pareto curve of op-
timal solutions requires the determination of dominance rules to identify dominating
solutions among the population with better values for each objective. With fuzzy objectives,
fuzzy dominance must be established to rule out dominated solutions in the solution
space [66]. The fuzzy Pareto dominance concept is used to compare two solutions, where
an individual solution A fuzzy-dominates another solution B if each objective k is fuzzy-
dominated [67]. A t-norm function is created in the fuzzy intersection of each objective,
determining the corresponding level of dominance, as shown in Equation (11).

wom — (A < FB) = fom (4 < £B) 1)

where the objective k is transformed into a measure in [0, 1] with the fuzzy-k dominance
function.

Given the two objectives of the problem, the fuzzy numbers T for running time and E
for energy consumption are compared using a min t-norm operation. Therefore, dominance
is computed using strong fuzzy dominance, defined in [25], by means of possibility and
necessity measures [68].

The strong fuzzy dominance used in this paper is calculated by applying the necessity
measure, as shown in (12). 75 is the required level of necessity for the fuzzy comparison.
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min(N(TB > TA), N(EB > EA)) > ;5D (12)

The necessity measure for the running time and energy consumption can be calculated
with regard to the possibility measure as follows:

N(TB > TA) —1- H(TB < TA) (13)

N(EB>EA) :1—H(EB<EA) (14)

Therefore, applying alpha-cuts arithmetic, A dominates B if tz(A) < t,(B) and
ex(A) < eq(B), comparing lower and upper limits with & = 1 — nP.

This type of fuzzy dominance can be applied because of the relationship between time,
energy consumption, and train mass. This dependency follows an increasing monotone
pattern, where an increase in train mass necessarily increases the running time and energy
consumption of the journey.

4. Eco-Driving Level: FFMOPSO Algorithm

The first level of the procedure detailed in this paper involves using a nature-inspired
algorithm such as MOPSO to obtain efficient driving commands for every interstation.
The MOPSO algorithm has been selected because it has been proven that it outperforms
other commonly applied algorithms in the speed profile optimization problem [24]. These
driving commands are obtained using a fuzzy mass model to include mass variations
related to passenger load. The result is an optimal Pareto curve for every interstation that
contains speed profiles that are comfortable and robust and serve as an input for the next
level of optimization.

F-MOPSO Algorithm

The design of ATO speed profiles for the initial step of the efficient timetable design
algorithm involves the application of an F-MOPSO algorithm to find the optimal solutions
for economical driving at each interstation.

The search for solutions in particle swarm optimization algorithms is carried out using
a population of individuals [69]. Each individual £ is called a particle, and the population
of particles is referred to as a swarm. Particles fly to regions inside the search space where
the best results are obtained; in this case, the goal of the particles is to find solutions
that minimize each objective with lower functional values. A particle’s flight is modified
iteratively through its individual experience and is also influenced by the results the other
particles in the swarm have obtained. Iteratively, each particle communicates its findings
to the swarm and adjusts its trajectory based on its personal best result (pbest) and the
swarm’s global best result (gbest), converging on an optimum or near-optimal point of the
solution space.

Every partlcle i of the swarm represents a vector of decision variables containing the
driving parameters for the ATO commands £; = (vc, vr, vh, b). The position of the particles
of the swarm is updated according to the following equations:

vi(n) = woi(n — 1) + c1r1(pi — xi(n — 1)) + cor2 (pg — xi(n — 1)) (15)

xi(n) =x;j(n —1) +v;(n) (16)

The motion of each particle is driven by its velocity & = (vyc, Vor, Upn, Up ). This velocity
is computed every n iterations using the distance between its current position x and the
previously obtained pbest and gbest position values, stored in a vector p = (Poc, Por, Pois Pb)-
The influence of the personal and the swarm experience is modulated through the social
factors ¢ and ¢, respectively, and r; and r, are random numbers between 0 and 1. The
coefficient w represents the inertia weight of the particle and decreases from an initial w; to
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wy, helping the swarm search based on global experiences on the first iterations to search in
new areas and progressively orient themselves towards their local experience to discover
optimal points in their vicinity.

The need to guide the particles through the search space with the local and global best
findings requires selecting these drivers correctly. Once the particle swarm has converged
on its solutions, fuzzy dominance is applied to dismiss solutions that are dominated.
Mutually non-dominated solutions are saved to an external archive A, becoming candidates
for the global guide. The best speed profile guide is selected using a crowding distance
mechanism (CD) [70], and a specific probability is denominated as Top select probability.
Crowding distance ensures variability in a Pareto curve by calculating the average distance
of a speed profile to its neighboring solutions. Solutions with the highest crowding distance
values are selected with the Top select probability from a sorted list by descending crowding
distance to encourage the exploration of the least crowded areas in the solution space.

The F-MOPSO methodology to compute the optimal speed profiles between stations
can be summarized in the following steps:

e  Step 1: Initialize the swarm particles’ positions and velocities and evaluate the objective

functions to obtain the first pbest value.

Step 2: Start the search loop with the initialized particles for N iterations.

Step 3: Update the velocity and position of every particle using Equations (15) and (16).
Step 4: Evaluate the particles in their new positions using the fuzzy fitness function,
resulting in fuzzy running time and energy consumption values.

e  Step 5: Apply comfort criteria and driving pattern robustness to filter speed profiles
that do not comply with the comfort requirements. Pattern robustness checks if the
driving pattern is maintained with the upper and lower alpha-cut values of the fuzzy
train mass.

e  Step 6: Apply fuzzy dominance to dismiss dominated and unfeasible solutions and
add non-dominated speed profiles to the external archive A.

Step 7: Calculate the crowding distance for each objective and sort the solutions.
Step 8: Update gbest and pbest.
Step 9: Repeat steps 3-8 until the last iteration.

5. Global Level: F-GRASP Algorithm

The speed profiles computed with the F-MOPSO algorithm provide the driving com-
mands of the most efficient speed profiles that the train can perform in every transit
between stations to allow for the flexible selection of a specific running time and energy
consumption. Thus, a combinatorial approach is needed to achieve an optimal Pareto curve
of solutions for the entire line. Every solution in this global Pareto front contains a vector of
driving commands for each interstation, defining all the speed profiles a train will follow
in a complete cycle of operation. The associated timetable is obtained from each speed
profile’s trip time, including their respective dwell times.

Considering the bi-objective nature of the problem, efficient timetable design is a
multi-objective combinatorial optimization problem (MOCOP). Using a finite set of objects
represented by the speed profile solutions from the F-MOPSO algorithm, an optimal run-
ning time and energy consumption value is obtained. MOCOPs can be approximated by
classic literature problems, which share a similar mathematical formulation. Proposed prob-
lems include the assignment problem, cutting stock problem, job shop problem, travelling
salesman problem, vehicle routing problem, and knapsack problem. The efficient timetable
design combinatorial problem can be considered a variation of the 0/1 multi-objective
knapsack problem [71,72] by studying the similarities between both problems. Given a
set of items (speed profiles) with a specific weight and value (running time and energy
consumption), the objective is to determine which items must be included in the collection
(timetable) to maximize total value while keeping the total weight below or equal to the
maximum weight limit (minimizing energy consumption while keeping total running time
below or equal to a certain threshold).
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The literature has numerous propositions to solve multi-objective combinatorial prob-
lems. Greedy algorithms are widely used because of their low computational time, making
them suitable for real-time implementation in train operations. These algorithms obtain
near-optimal solutions with a memory-less iterative procedure. GRASP [73] is a multi-start
metaheuristic two-phase procedure involving construction and a local search. A greedy
randomized criterion creates a feasible solution, which is then explored iteratively in the
local search phase to improve the solution until the best overall solution is found in the
vicinity of the initially proposed solution. The constructive heuristic creates a restrictive
candidate list (RCL) where each member is added with a greedy function, selecting the best
items from the item pool. A partial solution is estimated by selecting random candidates
from the RCL to increase the diversity of solutions.

For our problem, a similar formulation considered by Soares Vianna and Claudio
Arroyo [74] is used, with a series of modifications to adapt it to the timetable design
problem. The main formulation is

Minimize

far (2 _Tiftin fea(® _E§1in (17)
A7< ngfEasz& > +Ag< gE%’Easz&
subject to

g = (%1, %2,..., %5)
tse {5,585, %

s €{1,2,..., 8} (18)
jef{1,2,..., P}
2

ZAw:L OS)\wgl
w=1

w €{1,2}

where A} and A are the weights of the running time and energy consumption objectives
for each iteration n, fg1(%,), and fyo(%g) are the evaluated running time and energy
consumption, TS 2, Ti ins ES.ay, and Ei i, are the boundaries of the problem, %, is the
solution vector of the driving commands, £; is the set of driving commands for the Pareto
front of interstation s, S is the total number of interstations in the line, j represents a solution
from an interstation’s Pareto front, and P is the total number of solutions in the Pareto front
of an interstation.

The first set of solutions is created using randomized solutions selected from the RCL.
Each fuzzy solution obtained from the previous step for each interstation is ranked using a
similar formulation to (17). The RCL is populated with the computed rankings and sorted
in ascending order. The ranking formula is

fl (ﬁjs) - T;in‘n
Ts —— TS

max min

f2 (557> - Einin
Es . —E°

max min

n

where f; (J?JS) and f, (55;) are the evaluated running time and energy consumption for the

solutions of driving commands JEJS P P
running time and energy consumption for an interstation s.

The weights AT and A% are modified in every iteration of the F-GRASP algorithm to
create a diversity of solutions.

Both (17) and (19) are normalized with the boundaries of the problem and the intersta-
tion, respectively. These are the limits of the objectives and represent the global maximum
and minimum running time and energy consumption of the timetable design problem and
the maximum and minimum running time and energy consumption a train can achieve
with the computed speed profiles from the F-MOPSO algorithm for a single interstation.
The global boundaries are obtained by evaluating the solution composed of the maximum

Ejqx, and E; . are the boundaries of the
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and minimum running time speed profiles and the maximum and minimum energy con-
sumption speed profiles and obtaining the total running time and energy consumption of
these profiles. The time and energy boundaries for a single interstation are obtained by
comparing the lowest and highest values for each interstation and saving the minimum
and maximum values for all interstations. Normalization is carried out by subtracting the
minimum running time and energy consumption from the evaluated values and dividing
by the range between the maximum and minimum bounds of these values.

The parameter J is used to prune the CL and obtain the RCL, limiting the number of
candidates that are available to be selected for the creation of a solution. Candidates at
the top of the ranking have the lowest evaluated values and are more likely to be selected
in the construction phase. In contrast, the worst-ranked values can be excluded from the
construction phase with low enough values of 4.

A random solution from the initial constructed phase is explored in the local search
phase to improve the evaluation function value. The worst-ranked £; component of the
solution £, is selected for improvement using a loop where a neighbouring solution from
the interstation Pareto front with better ranking is explored. A new global solution £; is
evaluated, and the process is repeated until the exploration for a solution £; is exhausted

and fg (J?;) is no longer improved. A new component £; is selected, and the previous one

is marked as EXPLORED to avoid future explorations. This step is completely greedy. The
quality of the final solution £, determines the number of iterations of the local search step.

Once the best solution is obtained, % is stored as a result of the F-GRASP iteration,
and the algorithm computes the next iteration. When the maximum number of iterations N
has been reached, fuzzy dominance is applied to the saved F-GRASP solutions to dismiss
dominated solutions, as explained in Section 3.2. The output of the optimization algorithm
is the global Pareto curve for the line.

The pseudocode of the fuzzy GRASP algorithm is presented in Algorithm 1.

Algorithm 1 F-GRASP

Input: N, 6, Speed Profiles
Output: PF (Pareto Front)
Ti ins TS .o, Ei ins E$ s €« Evaluate max and min time and energy speed profiles and
compute total values
TS Toaxs Eyiys Eiax € Sort time and energy values for each interstation and retrieve max
and min value
Initialize Ay, with random value between 0 and 1
F-GRASP archive « O
while iteration <= N
CONSTRUCTION PHASE
Rank all speed profiles
Create candidate list with ranked speed profiles
Sort candidate list in ascending order
Let RCL be a list of & % of candidate list
% € Random solution from RCL
Compute initial fg (%g)
LOCAL SEARCH PHASE
Mark all components of £, as NON-EXPLORED
while Exists any £; marked as NON-EXPLORED
%5 €« Worst — ranked component in solution %¢
if Rank (%,) is worse than best rank in Pareto front s
%s* = Better — ranked neighbour solution to £
Compute fo (£4*)
if Jfg (fgt) <fa (%)
2o € %"
else
Mark %5 as EXPLORED
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Algorithm 1 Cont.

Save £ in the F-GRASP archive
Update Ay, with random value between 0 and 1
iteration & iteration + 1
PF « Compute fuzzy dominance on FGRASP archive
return PF

6. Case Study

The proposed procedure described in Sections 2—4 was applied to a case study of
urban rail transit of Metro de Madrid. The metro line consists of 16 stations and 12 km that
were modelled with speed limits, curves, tunnels, and gradients for each interstation. This
line is representative of a typical metro line because the interstations present different cases
of uphill and downhill gradients and different speed limitations due to track curvature. It
is operated as a loop starting and ending at the same station. The train studied is a class-
3000 train of Metro de Madrid, with 160 tons of empty train mass, a maximum passenger
load of 78 tons, and a total length of the train of 90 m. The maximum power of the train is
1500 kW, and the traction network voltage is 1.5 kV DC.

The simulation of the train’s motion along the metro lines to compute running times
and energy consumption using different speed profiles was carried out using an accurate
model of train motion and a real ATO driving control, described exhaustively in [2].

6.1. GRASP Algorithm Validation

The proposed F-GRASP algorithm was used to obtain a Pareto front of efficient driving
commands for timetable design. This Pareto curve contains a solution for every iteration
of the F-GRASP algorithm and represents the driving commands of the ATO for every
interstation in the metro line.

The optimization algorithm receives the Pareto front obtained using the F-MOPSO
algorithm for each interstation, as detailed in Section 3. All of its solutions become the
input for the algorithm at the global level, thus applying its methodology to obtain a global
Pareto front with all the driving commands for the complete line journey. A Pareto front of
driving commands is obtained for each of the 32 interstations in the line. The first 16 curves
correspond to the interstations in track 1, while the successive 16 curves belong to track 2.
The solutions obtained vary according to interstation track features, such as speed limits,
gradient, and track length. These driving commands take discrete values and are limited
with an upper and lower value and a fixed increment. These values are the same as used
in [24] and are shown in Table 1. Comfort restrictions are applied to dismiss unfeasible
solutions. These comfort constraints include a restriction to a minimum coasting speed of
20 km/h during the trip, a maximum of 3 re-motoring phases, and a limitation of traction
cut-off for uphill segments with a slope greater than 25 mm.

Table 1. Possible ATO driving commands.

Deceleration Speed Holding  Coasting Speed Re-Motoring

Rate (m/s?) (km/h) (km/h) Speed (km/h)
Minimum 0.6 30 30 5
Maximum 0.8 80 80 50
Increase 0.05 0.25 0.5 1

The GRASP algorithm was selected among other optimization methods because of its
low computational time and near-optimal solutions. To validate it, the proposed algorithm
was compared with an optimization algorithm similar to the one used to obtain the efficient
speed profiles, multi-objective particle swarm optimization [75] (MOPSO), and was also
compared with the most popular algorithm for MOCOPs [76], the nondominated sorting
genetic algorithm II (NSGA-II) [77], based on elitism ranks and nondominated selection. In
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addition, GRASP was compared with four innovative optimization algorithms based on
different techniques: weighted optimization framework [78] (WOF), which applies problem
transformation through the use of weighted variables; sparse evolutionary algorithm 2 [79]
(SparseEA2), a similar algorithm to NSGA-II but with a sparse genetic operator; large-scale
evolutionary multi-objective optimization assisted by direct sampling [80] (LMOEA-DS),
which reformulates the problem to identify search directions and guiding solutions; and
a cooperative coevolution framework applied to generalized differential evolution [81]
(CCGDE3), which uses multiple populations with random grouping of decision variables.
All of these algorithms were executed on a computer equipped with an Intel Core i7-
8700 CPU at 3.20 GHz and 32 GB of RAM.

Once the optimal driving commands per interstation £; were obtained, the previously
mentioned algorithms were applied to obtain the Pareto front of efficient driving commands
for the entire line. A comparison between the GRASP and the rest of the algorithms
is presented in Figure 4. Each algorithm was applied using crisp datasets for ease of
comparison, with a precise mass value corresponding to a passenger load of 75%.

400
O GRASP
+ MOPSO
NSGAII
+  SparseEA2
350 3 x  WOF
6. CCGDE3
3 ¢ LMOEADS

300

Energy Consumption (kWh)

250
D BRYS)
200 1 1 1 1 ]
2400 2600 2800 3000 3200 3400

Running Time (s)

Figure 4. Comparison of the Pareto fronts obtained by the algorithms.

The adjustment parameters of all of the algorithms can be found in Table 2. These
parameters were obtained through trial and error, per usual in literature, and showed the
best results for optimality in our case study:.

The GRASP algorithm is better suited for the case study presented in this paper due to
two factors: diversity and optimality. The Pareto fronts obtained by all the tested algorithms
can be observed in Figure 4. GRASP reaches the boundary values of the metro line both in
running time and energy consumption, whereas algorithms such as NSGA-II and CCGDE3
tend to concentrate their solutions on the central part of the curve. The reason behind this
behaviour lies in the weight allocation of the objectives in the GRASP algorithm. These
weights change in every iteration randomly, forcing the solutions to become diverse as the
algorithm tries to improve them by focusing on one objective over the other.

The evolutionary mechanisms of NSGA-II and CCGDES3 have difficulties providing
solutions in the extremes of the Pareto front and generate less diversity of solutions in our
case study. Algorithms such as WOEF, SparseEA2, and LMOEA-DS present more diverse
solutions along the curve but lack in the density of solutions, generating more dispersed
points toward the extremes of the curve.
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Table 2. Tuned parameters of the algorithms.

Population Numbe.r of Cogl}lflve Sofl.al Mutated genes ~ Mutation rate
MOPSO generations coefficient coefficient
400 1000 2 2 20 30%
. Number of Mutation Crossover
NSGA-II Population generations probability probability Mutated genes
200 1000 40% 60% 7
. Number of
Population .
SparseEA2 generations
400 1000
Number of
. generations . Transf.
WOE Population (origi- Grouping method function Number of groups
nal/transformed)
400 1000/500 Ordered Interval 4
. Number of Number of
Population . .
CCGDE3 generations subpopulations
400 1000 2
Population Numbe.r of Cluster number Number of ral?df)m sefmpl'lng along each
LMOEA-DS generations guiding direction
400 1000 10 30

The difference in optimality can be explained by resorting to hypervolume compu-
tation. Hypervolume indicates the volume of the space that a Pareto front dominates in
the objective space [82]. This indicator is used to measure the diversity and convergence
of a multi-objective metaheuristic algorithm. Low values of this indicator reveal a higher
percentage of the solution space covered by a Pareto front.

The hypervolume values associated with the final result for the different algorithms are
displayed in Table 3. The proposed GRASP algorithm has the lowest value of hypervolume,
followed by WOF, SparseEA2, and LMOEA-DS. The WOF algorithm shows the second-
lowest value because of its optimality in the central part of the Pareto front, but the
solutions obtained in the extremes of the curve are less optimal than the ones obtained by
the GRASP, thus resulting in a slightly worse hypervolume value. The hypervolume values
of NSGA-II and MOPSO are close. However, MOPSO solutions do not reach the optimal
front, penalizing its optimality, and NSGA-II does not provide solutions on the extremes,
penalizing its diversity. CCGDE3 obtained worse results in both optimality and diversity,
which reveals that this algorithm is not suitable for the proposed problem.

Table 3. Execution time for 1000 iterations and hypervolume values.
GRASP NSGA-II MOPSO SparseEA2 WOF CCGDE3 LMOEA-DS
Time (s) 8.58 18.39 26.01 68.81 52.15 39.05 52.69
HV 0.1343 0.168 0.1653 0.136 0.135 0.1992 0.1415

To analyse the computational burden of the algorithms, Table 3 shows the execution
time for 1000 iterations, and Figure 5 depicts the hypervolume evolution along the compu-
tational time. Table 3 shows that, for the execution of 1000 iterations, the GRASP algorithm
is the fastest, running in 8.58 s, while the slowest is the SparseEA2 algorithm, taking 68.81 s
to execute. In addition, Figure 5 shows that the GRASP algorithm is the fastest in reaching
hypervolume convergence, while the SparseEA?2 algorithm requires more execution time
to obtain similar hypervolume values.
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Figure 5. Comparison of the execution time and the hypervolume obtained by the algorithms.

Thus, for all the reasons detailed above, the proposed GRASP algorithm presents the
best performance for this combinatorial problem.

6.2. GRASP Application with Fuzzy Mass Model

The design of timetables for the metro line case study was carried out by including
uncertainty for the passengers’ load in its computation. Following the membership function
described in Section 3.3 and Equation (8), a fuzzy mass model was applied (see Figure 3).

The core value (m,) was 120 tons, representing 75% of the total train mass, and it was
the value with the highest possibility. A passenger load equal to the maximum train mass
(my), 160 tons (100%), was modelled with a possibility (A) of 0.5. The considered operational
scenario has high passenger demand, and the selected A value affects the shape of the fuzzy
number but does not affect the application of the proposed optimization algorithm. The
lower train mass value corresponding to 0 possibility (1m;) was equal to 40 tons (25%). An
a-cut of 0.7 was applied in this example where lower and upper limits of 60% and 90%
passenger load are obtained.

As the train mass was modelled a fuzzy value with associated uncertainty, the result-
ing speed profiles, running times, and energy consumptions must necessarily be fuzzy
values. Therefore, fuzzy dominance must be applied to obtain a fuzzy Pareto front. Strong
dominance theory, detailed in Section 3, was used to filter and dismiss dominated solutions
in the solution space. This dominance filtering was applied to the sets of speed profiles
obtained in the F-MOPSO algorithm for each interstation, resulting in an optimal fuzzy
Pareto front for every interstation. Our proposed fuzzy GRASP algorithm uses these fronts
to compute a global Pareto front that contains the running times and energy consumption
of the different optimal timetables.

The global Pareto front is presented in Figure 6. This figure displays the lower,
upper, and core values of the Pareto curve solutions obtained for each F-GRASP iteration.
Applying strong fuzzy dominance reveals that many solutions, which would be dominated
in the crisp case, cannot be filtered because of the train mass uncertainty modelled by
fuzzy numbers.

6.3. Driving Commands Selection

To obtain the timetable associated with a solution from the global Pareto front, a goal
running time for the line must be established. Running times obtained in the Pareto curve
are fuzzy and require a punctuality restriction over the target running time for the timetable.
The running time fuzzy constraints for the timetable design are illustrated in Figure 7. This
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figure shows the fuzzy running time T. The upper running time is restricted by the goal
running time established by the metro operator, Ty;;. In our case, Tyy; = 2495 s, which
accounts for 5% of the time margin from the fastest journey time.
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Figure 6. Pareto Front with Fuzzy Mass Model.
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Figure 7. Running time fuzzy constraints for timetable design.

The punctuality restriction was applied by employing a necessity measure
N (T < To;,]-) > 0.3, which is more restrictive than the possibility measure. This type

of constraint provides lower running time values for the line to fulfil the constraint. The
algorithm could be applied similarly by imposing a possibility measure if more flexibility
was given to the punctuality constraint, resulting in a higher running time for the line.
Nevertheless, the algorithm is equally efficient, and the quality of solutions is similar in
both cases. The selected value of the necessity measure in this case study was n = 0.3. With
n=1- H(T > Tob]-> =1 — a, the value of « in Figure 7 was obtained asa« =1 — 0.3 = 0.7.

The chosen values for n and, consequently, «, allow the railway administrator to tune
the degree of punctuality that must be accomplished. If the selected necessity measure
were equal to 1, there would be complete certainty that the imposed constraint is fulfilled.
With a value of n = 0.3, an intermediate level of certainty is permitted. This parameter can
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be freely selected by the railway administrator and does not affect the efficient execution of
the algorithm.

Given the resulting global Pareto front of the optimization algorithm, a solution can be
drawn fulfilling previously explained punctuality criteria and with the minimum energy
consumption, as shown in Figure 6.

A solution set of line-driving commands were selected from the F-GRASP outcome
and compared with two alternative timetable designs to evaluate the benefits of the F-
GRASP solution. These timetables are a flat-out timetable (or minimum running time
timetable) and a timetable computed according to the typical timetable design applied by
metro operators. This procedure consists of deciding on a total margin time to be added
to the fastest journey time and distributing this margin equally across all interstations
whenever possible. The selected speed profile for each interstation uses a running time that
is lower or equal to the fastest time plus the margin for that interstation.

Table 4 presents the total savings and margins of the previously described timetables.
This table displays the lower and upper values of the cycle’s running time and energy
consumption for the x-cut considered and the core savings and margins of the considered
timetables in relation to the minimum running time timetable. The fuzzy GRASP algorithm
achieves similar lower and upper running times compared to the typical timetable for
metro operators. However, the intelligent search of the F-GRASP algorithm produces more
significant reductions in energy consumption due to its exhaustive search in interstations
with more significant potential savings. The typical timetable design reduces the energy
consumption with respect to the flat-out design by 20.48%, while the proposed algorithm
obtains an additional 4% reduction for up to 24.17% savings. Margins for both strategies
are near 4.2%, indicating that the optimized approach to select slower speed profiles
and distributing non-uniform margins yields improved energy efficiency and maintains
delay absorption capabilities. The savings and margins obtained for each interstation
are presented in Figure 8. This figure displays the values obtained using the train mass
core value, representing the most possible scenario. F-GRASP generally obtains savings
equal to or higher than those gained by designing a timetable with typical metro operator
criteria. With the intelligent search performed by the F-GRASP algorithm, savings of up
to 70% in energy consumption can be achieved for an interstation. These savings are
distributed unequally, selecting slower speed profiles in the interstations where greater
global energy savings can be achieved, such as interstations 2, 3, 5, 24, and 31. Other
interstations have lower potential savings, such as interstations 7, 8, 11, 15, 28, and 32, and
faster speed profiles are selected to reduce the total running time of the timetable. The
typical timetable design obtained maximum savings of 62% in an interstation but aimed to
achieve savings in every interstation, often compromising the total running time to reduce
total energy consumption.

Table 4. Comparison of total savings and margin with F-GRASP.

Core Core

tuco7 () £ 7(5) €n=0.7 (Wh) e;=0.7(kWh) Savings (%)  Margin (%)

Min. Run. 07 ¢ 2399.0 397.1 429.6 - §
Time
Typical 2459.3 24953 315.8 344.6 20.48 418
F-GRASP 24656 2494.1 298.1 330.7 2417 421

The margin figure is connected to the savings achieved in every interstation. Margins
represent the spare running time compared to the minimum running time. As displayed
in Figure 8, F-GRASP margins are notably higher in interstations 2, 3, 5, 9, 24, 29, and
31. These margins are related to the energy savings in those interstations where higher
potential savings can be obtained. Therefore, the running times associated with the trip
increase proportionally to the energy savings due to the selection of slower speed profiles
that involve less traction effort, revealing the trade-off between both energy consumption
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and running time objectives. The typical timetable design obtains more equally distributed
margins across the interstations because of its non-intelligent selection of speed profiles.
The design strategy of this timetable selects speed profiles locally and does not account for
the global effect on the timetable.
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Figure 8. Savings and margins for each interstation.

7. Conclusions

This paper presents an integrated optimization method to design efficient driving com-
mands for all the interstations of a metro railway line and an associated efficient timetable
with high-fidelity ATO modelling, comfort restrictions, driving pattern robustness, and
train mass uncertainty. This method aims to contribute to the sustainable operations of
metropolitan railways by enabling the use of more efficient driving commands.

The proposed method is composed of two-level optimization. At the eco-driving
level, a nature-inspired algorithm is used to perform a multi-objective optimization of
the speed profiles for each interstation trip. F-MOPSO obtains a Pareto front of solutions,
where each one represents a speed profile defined by a set of driving commands with an
associated running time and energy consumption. These solutions are obtained considering
uncertainty in the train operation by modelling the passengers’ load as fuzzy numbers.
Moreover, the computed driving commands ensure comfortable and robust speed profiles
thanks to the comfort restrictions applied in the optimization.

The speed profiles obtained for each interstation in the first step are fed into a GRASP
algorithm with fuzzy parameters (F-GRASP), which performs an intelligent search to
optimize the line’s total journey time and energy consumption. A global Pareto front is
computed, allowing the traffic operator to select a suitable set of speed profiles and the
associated timetable in view of the trade-offs between energy consumption and travel time.

Our optimization method has been applied to a case study that uses real data from
a Spanish metro line. A real train and 32 interstations have been accurately modelled to
test the algorithms. To validate the optimization algorithm, GRASP has been compared
with other popular optimization methods for multi-objective problems. The performance
of these algorithms has been evaluated, revealing that our F-GRASP algorithm is the most
suitable candidate given the quality of the solutions regarding optimality and diversity
metrics, as well as computational complexity.

The results from our case study reveal that the proposed method allows the design
of driving commands that optimize the global energy consumption of the line journey.
Consequently, the driving commands obtained produce 24% energy savings with a 5%
increase in travel time compared to the fastest trip time. Furthermore, compared with the
typical timetable design, which equally shares the time margin in all the interstations, the
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proposed design procedure obtained 4% more energy savings. These extra savings are the
result of the intelligent distribution of the time margin achieved by the F-GRASP algorithm
by using more time margin in the interstations where more global energy savings can
be obtained.

Regarding future works, the following suggestions can be highlighted: the application
of the driving commands in actual operations, extending the presented concept to design
not only the driving commands for nominal operations but also design alternative driving
commands at each interstation to recover delays or to reduce the speed to maintain regular
train intervals, and the development of traffic regulation algorithms that control trains to
meet timetables associated with driving commands.
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