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Abstract 

 Accelerated longitudinal designs (ALD) allow studying developmental processes usually 

spanning multiple years in a much shorter time framework by including participants from 

different age cohorts, which are assumed to share the same population parameters. However, 

different cohorts may have been exposed to dissimilar contextual factors, resulting in different 

developmental trajectories. If such differences are not accounted for, the generating process will 

not be adequately characterized. In this paper, we propose a continuous-time latent change score 

model as an approach to capture cohort differences affecting the speed of maturation of 

psychological processes in ALDs. This approach fills an important gap in the literature because, 

until now, no method existed for this goal. Using a Monte-Carlo simulation study, we show that 

the proposed model detects cohort differences adequately, regardless of their size in the 

population. Our proposed model can help developmental researchers control for cohort effects in 

the context of ALDs.  

Keywords: Accelerated longitudinal designs; cohort differences; speed of maturation; latent 

change score models; continuous time models; state space models 
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A Dynamic Approach to Control for Cohort Differences in Maturation Speed Using 

Accelerated Longitudinal Designs 

The study of developmental phenomena typically involves taking multiple repeated 

measures across many years. Accelerated longitudinal designs (ALDs; Bell, 1953, 1954; Duncan 

et al., 1996), also known as cohort-sequential (Nesselroade & Baltes, 1979) or cross-sequential 

designs (Schaie, 1965), allow studying processes that unfold over long periods of time, but in a 

much shorter time frame. The key aspect of ALDs is that participants enter the study at different 

ages—that is, they come from different age or birth cohorts. Consider, for example, a study 

examining the development of cognitive abilities from ages 5 to 25. In a conventional longitudinal 

design, such a study would require following each participant for 20 years, which is unfeasible in 

most cases. In contrast, in an ALD the researcher can select a sample of participants ranging in age 

from 5 to 22, and measure them once a year during four consecutive years. This combination of 

cross-sectional and longitudinal information from different age cohorts results in a complete 

coverage of the target age range, even though each participant provides information for only a 

fraction of the total study period. Figure 1 illustrates a hypothetical example of individual 

longitudinal data of participants measured every year for 20 years (left panel) and data from an 

ALD in which participants are measured every year for four years (right panel). 

[FIGURE 1] 

ALDs have been most extensively used in the field of cognitive development, especially 

during childhood, adolescence, and early adulthood (e.g., Estrada et al., 2019; Fandakova et al., 

2017; Ferrer et al., 2009; Ferrer & McArdle, 2004; Green et al., 2017; Wendelken et al., 2017), 

but also covering the entire life-span (McArdle et al., 2002; McArdle & Woodcock, 1997). 

Particularly during childhood and adolescence, one of the most relevant aspects of developmental 



Cohort effects in maturation speed in ALDs - 4 
 

change concerns the speed of maturation. Certain individuals mature faster than others―that is, 

they reach the peak of their development at earlier ages. For example, previous studies on cognitive 

abilities have identified groups of children that reach similar levels of reading and verbal 

performance, but at different speeds (Ferrer et al., 2010; Holahan et al., 2018).  

The main assumption of ALDs is that all the cohorts share a common developmental 

trajectory, and this trajectory can be studied by linking together all the segments of data provided 

by each cohort. This assumption, originally termed convergence (Bell, 1953, 1954), is referred to 

as cohort equivalence in this manuscript. We define two or more cohorts as being equivalent 

when their trajectories can be described with the same set of parameter values—that is, when 

they come from the same population. In populations with little or no changes over the years, this 

assumption is reasonable. Nevertheless, human societies are dynamic and constantly exposed to 

potentially transformative events such as technological and medical advances, financial or health 

crisis, migrations, or changes in the educational system, among many others. In such scenarios, 

differences across cohorts may emerge due to differences in some of these social and economic 

factors. If such cohort differences are not accounted for, ALDs are not capable of disentangling 

age-related changes from cohort differences, leading to substantially biased estimates (Estrada & 

Ferrer, 2019). 

In the present study, we propose an approach to identify and control for cohort 

differences in the speed of maturation of a developmental process in the context of ALDs. For 

this, we use a latent change score approach using state-space equations in continuous time. 

Latent change score models, also called latent difference models (LCS; Ferrer & McArdle, 2003; 

McArdle, 2001, 2009; McArdle & Hamagami, 2001) are a dynamic approach to the study of 
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developmental data in which the changes, instead of the levels, are the focus and are modeled as 

latent variables. This approach offers several advantages over other methods in the literature. In 

the remainder of the article, we review previous approximations to the modeling of cohort 

differences and the speed of maturation. Next, we introduce latent change score models, 

continuous-time models, and their joint implementation within a state-space modeling 

framework. We describe the proposed model and evaluate its performance under different 

sampling conditions in a simulation study. Finally, we discuss the results and elaborate on the 

strengths and limitations of the model.  

Previous approaches to examine cohort differences in the speed of maturation 

One of the first successful attempts to account for cohort differences in developmental 

change came from Miyazaki & Raudenbush (2000), who proposed a hierarchical model that 

captured cohort differences in an intercept, a linear slope, and a quadratic slope. This approach 

was later adopted by empirical researchers and extended to latent growth curves (LGC) and other 

multilevel models (e.g., Finkel et al., 2007; Gerstorf et al., 2011; Hoffman et al., 2011; Orth et 

al., 2015). Research based on these approaches has considered cohort differences in two aspects 

of the model: a) the intercept, which usually corresponds to the level in the first measurement 

occasion, and b) the rate of change, which includes all the linear and higher order components 

that account for change in the variable of interest1. LGC and multilevel approaches, however, 

have at least two important limitations. First, linear and higher order components are not capable 

of separating the speed of the changes from their size. For example, larger scores in a linear 

component involve steeper slopes (i.e., faster changes), but also higher scores in the long-term 

 
1 Quadratic and higher order components are also sometimes interpreted a rate of acceleration (e.g., Finkel et al., 
2007; Gerstorf et al., 2011). 
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(i.e., larger changes). Adding polynomial terms to these models can help to better capture the 

shape of the trajectories, but they are not interpretable in terms of development. The second 

limitation is that LGC and multilevel models are not dynamic models. These models are useful to 

describe change as a function of time, but they cannot explain the mechanisms that bring about 

change (see, for example, McArdle, 2009; Voelkle et al., 2018). In psychological science, most 

developmental theories describe individuals and environmental influences on them as a dynamic 

system, inasmuch it unfolds continuously over time and its changes are (at least partially) 

determined by the past history of the system. In order to disentangle the components of change, 

models are needed that can capture the dynamic nature of developmental processes. 

In a recent study, Estrada et al. (2021) proposed using LCS models as a dynamic 

approach to the study of cohort differences. In fact, they proposed an extension of these models 

that successfully captured cohort differences in the initial and maximum level of the trajectories. 

However, they did not consider potential differences in the speed of maturation. 

LCS models have been frequently used for the study of development from childhood to 

early adulthood. In this age range, most traits (e.g., cognitive abilities) show a rapid growth 

during the first years followed by a progressive deceleration, until they reach a maximum level 

between 20 and 30 years of age (e.g., Figure 1)—the exact age depends on the specific ability 

and the individual (McArdle et al., 2002). LCS models are particularly useful for the study of 

this type of trajectories because they capture three key aspects of exponential functions: 1) the 

initial state, representing the level at the onset of the process (typically, the first measurement 

occasion), 2) the asymptote, representing the maximum level to which the trajectories tend, and 

3) the speed of maturation (or decay), which determines how fast the process is reaching the 
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asymptote. Thus, unlike LGCs and multilevel models, LCS models can separate the speed of 

maturation from the overall growth, the latter being indicated by the position of the asymptote. 

Figure 2 depicts various examples of trajectories in which all cohorts reach the same maximum 

level in the long-term (captured by the asymptote in the model), but older cohorts (i.e., 

individuals born earlier) show slower maturation.  

[FIGURE 2] 

Importantly, the speed of maturation in univariate LCS models is explicitly captured by a 

self-feedback or auto-proportion parameter. In the empirical and methodological literature, this 

parameter is described as the extent to which the state of a process at any given time t is 

determined by its previous state at t−1. However, to the best of our knowledge, no previous 

empirical studies have used it as an indicator of the speed of maturation, and very few 

methodological papers have acknowledged it as such (see Cáncer et al., 2021; Estrada et al., 

2021). Furthermore, and to our best knowledge, the model proposed in this manuscript is the first 

approach to controlling for cohort differences in the speed of maturation. Therefore, although 

cohort differences in the so-called rate of change (i.e., overall change, typically captured with 

linear and higher order components in multilevel and growth models) have been widely reported 

in the literature (e.g., Cole, 2000, 2003; Drewelies et al., 2018; Estrada et al., 2021; Finkel et al., 

2007; Gerstorf et al., 2011; Vainikainen & Hautamäki, 2022; Zhang et al., 2020), it is hardly 

possible to find empirical examples of cohort differences in the speed of maturation specifically. 

This does not mean, however, that such differences do not exist at all (see, for example, Eckert-

Lind et al., 2020). Note that, when researchers report cohort differences in certain features of the 

trajectories, they are actually reporting differences in certain parameters of their model. Some 
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specific aspects of development, such as the speed of maturation, are not captured by the 

parameters of static models typically used in developmental studies. Thus, cohort differences in 

maturation speed may go unnoticed in such studies, or confounded with other aspects of 

development.  

A mathematical description of latent change score models 

In a typical specification of the LCS model, the so-called dual LCS model, latent changes 

in a process y are a function of: (a) the latent state of the process at the previous occasion t−1, 

through a self-feedback parameter β, and (b) an additive component (sometimes termed slope), 

representing a linear effect on the system. Therefore, the changes for each individual i, at any 

time t, are expressed as: 

 [ ] [ 1] ,i t i t a iy y y−∆ = β⋅ +  (1) 

 The left panel of Figure 3 represents the path diagram of a univariate LCS model. This 

model combines information from the initial level, the additive component, and the self-feedback 

to generate specific trajectories for each individual. Equation 1 specifies two sources of between-

individual variability: a) the initial level, which captures the mean µ0 and variance σ20 in the 

latent level at the first measurement occasion, and b) the additive component, which captures the 

mean µa and variance σ2a of the latent linear component added at each repeated occasion. The 

initial level and additive component are usually allowed to be correlated, with covariance σ0,a (or 

correlation ρ0,a). The mean and variance in the maximum level of the trajectories (or the 

asymptotes, parameters μAs and σ2As, respectively) are not directly estimated in LCS models. 

Instead, they are obtained through the following equations: 

 / ( β)As aµ = µ −  (2) 
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 2 2 2/ ( β)As aσ = σ −  (3) 

where it is shown that the variance of the additive component σ2a captures individual differences 

in the maximum level of the trajectories. Once the initial state and additive component are 

specified, all within-individual variability is determined by the change equation (Equation 1), 

and any observed deviations from the implied latent trajectories are considered measurement 

error (with variance σ2e)2. 

[FIGURE 3] 

In LCS models, the self-feedback parameter has a dual interpretation: in the short-term, it 

represents the extent to which changes from t−1 to t are determined by the state of the process at 

t−1, whereas in the long-term, it represents the rate (or speed) at which the process moves with 

respect to the asymptote. As described previously, most developmental processes from childhood 

to early adulthood can be assumed to follow exponential trajectories of decelerated growth. In 

such trajectories, the self-feedback is always negative, representing a deceleration effect—that is, 

the process tends to an equilibrium or asymptote3. Therefore, larger (i.e., more negative) self-

feedbacks will result in trajectories that approach the asymptote more quickly, implying a higher 

maturation speed (for a detailed interpretation of the LCS model parameters, see Cáncer et al., 

2021).   

 
2 Further within-individual variability could be incorporated into the model in the form of prediction errors (i.e., 
innovation or dynamic error) at the latent level (Oravecz et al., 2011; Voelkle et al., 2012; Voelkle & Oud, 2015). 
This specification, however, is very uncommon in the LCS framework. 
3 LCS models are also capable of capturing exponential trajectories of accelerated (instead of decelerated) change, 
which are defined by a positive self-feedback. In such scenarios, scores further from the initial level lead to larger 
subsequent changes, resulting in a pattern of “explosive” change, where even small increases in time lead to 
dramatic changes in the variable of interest.  
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Importantly, the standard LCS model (Equation 1) depicts a system in which changes 

occur in discrete time steps, which has problematic implications in the context of ALDs. LCS 

models in discrete time (LCS-DT) assume that all participants are measured at the exact same 

time points—that is, measurement intervals are equal across participants and occasions. This 

assumption is rather difficult to hold in empirical applications, and even more so in ALDs, where 

participants are rarely measured at the same age. A typical scenario is, for example, one in which 

a participant is measured at ages 5.32, 6.41, and 7.23, whereas another is measured at ages 5.84, 

6.36, and 7.58. Although both belong to the same cohort, the exact time interval is not constant 

across participants, nor across occasions for each participant. Furthermore, previous research has 

shown that LCS-DT models do not provide accurate estimates of the generating parameters when 

time intervals are unevenly spaced (see Estrada & Ferrer, 2019). In the next section, we 

introduce continuous-time modeling as a solution to this problem. 

Continuous time models 

 Continuous-time (CT) models have been proposed as a powerful approach for the study 

of psychological processes in longitudinal research (de Haan-Rietdijk et al., 2017; Deboeck & 

Preacher, 2016; Oud & Delsing, 2010; Oud & Jansen, 2000; Oud & Singer, 2008; Ryan et al., 

2018; van Montfort et al., 2018; Voelkle et al., 2012; Voelkle & Oud, 2013, 2015). These models 

use differential equations to describe change in the process of interest, which is assumed to 

unfold in continuous time. Equation 1, where the change in y occurs over a time lag of Δt=1 (the 

left-hand side of the equation could be specified as Δy/1), could be considered a crude 

approximation of the underlying continuous process. In CT, this equation can be re-expressed as 

a first order ordinary differential equation that provides the change in y (dy) as a function of the 

level y(t), for an infinitesimally brief time lag dt (Brown, 2007): 
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 ,
( ) β ( )i

i a i
dy t y t y

dt
= ⋅ +  (4) 

Continuous-time models account for the exact occasions of measurement to estimate 

parameters that are independent of the time lag and can be transformed to any specific time 

interval. Therefore, they can naturally account for time intervals of any length, be they equal or 

unequal across occasions or participants. From a practical point of view, this allows comparing 

parameters that are estimated using different time intervals (see Voelkle et al., 2012). Also, one 

could argue that most, if not all, psychological processes are assumed to unfold continuously 

over time (i.e., they do not stop existing between observations). In this regard, CT models 

provide a more theoretically accurate representation of the seamless nature of developmental 

processes. 

In the context of ALDs, where each individual provides only few observations and time 

intervals can differ widely across individuals, CT models are a more adequate approach. In fact, 

previous studies comparing LCS models in discrete and continuous time with data from ALDs 

found that CT models provide a much better recovery of the generating parameters when the 

observations are unevenly spaced (see Estrada et al., 2021; Estrada & Ferrer, 2019)).  

Modeling change in continuous time: state-space models 

In this study, we use a state-space approach in continuous time (SSM-CT) to detect and 

control for cohort differences in the speed of maturation. SSMs were originally developed in the 

field of mechanical and electrical engineering with the purpose of detecting, predicting, and 

separating random signals from noise (Kalman, 1960; Kalman & Bucy, 1961). In recent years, 

they have been introduced to the study of dynamics in psychological research (Chow et al., 2010; 

Gu et al., 2014; Hunter, 2018; Ji & Chow, 2019; Oud & Jansen, 2000). In the context of 
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psychological processes, this approach allows detecting temporal dynamics, predicting future 

states of the system, and separating the latent relevant process from measurement error. 

SSMs have two main components: the state equation and the output equation. In 

continuous-time, the state (or transition) equation is a first-order ordinary differential equation 

that describes change in a vector of latent variables for an infinitesimally brief time interval (dt): 

 ( ) / ( )i i i id t dt (t)+ (t)+ t=y Ay Bu q  (5) 

Where yi(t) is a l × 1 vector of latent states for each individual i, ui is a m × 1 vector of observed 

covariates, qi is a l × 1 vector of dynamic noise (i.e., prediction error) with mean zero and 

covariance Q, A is a l × l matrix of auto-regressive dynamics, and B is a l × m matrix of covariate 

effects on the latent state yi. In this framework, the latent states at t=0 (namely, initial conditions; 

see Ji & Chow, 2019) are defined by a latent initial mean vector, noted as x0, and a latent initial 

covariance matrix, noted as P0 (Hunter, 2018). 

The second component of the SSM model is the output equation, which is equivalent to 

the measurement structure in structural equation models (SEM). It links the latent level to the 

time-specific observations and separates latent scores from measurement error: 

 ( ) ( ) ( ) ( )i i i it t t t= + +Y Cy Du r  (6) 

where Yi is a n × 1 vector of observed (or manifest) variables, ri is a n × 1 vector of observation 

noise (i.e., measurement errors) with mean zero and covariance R, C is a n × l matrix of factor 

loadings, and D is a n × m matrix of covariate effects on the observed state Yi. 

 The parameters in SSM-CT models are estimated using a recursive algorithm called 

Kalman Filter, consisting of a series of alternating prediction and correction steps (Chow et al., 
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2010; Hunter, 2018). In the prediction step, the filter uses information from the state vector and 

its covariance matrix at time t−1 to create a forecast for the state vector and covariance at time t. 

In the correction step, it uses the observed data and measurement model to update the forecast 

from the previous step. As the Kalman Filter iterates across individuals and time, it produces 

Kalman scores (similar to the latent scores in SEM) that can be substituted into a log-likelihood 

function. This function, called the prediction error decomposition function, iteratively reduces 

prediction errors to obtain maximum likelihood estimates of the model parameters (for further 

details, see Boker et al., 2018; Chow et al., 2010; Hunter, 2018; Kalman, 1960; Kalman & Bucy, 

1961; Oud & Jansen, 2000). 

 The right panel of Figure 3 illustrates a univariate LCS model in continuous-time 

specified as a SSM. In a SSM-CT framework, the auto-regressive dynamics of the continuous-

time LCS model (LCS-CT) described in Equation 4 can be respecified into a state equation as:  

 , ,

, ,

β 1
0 0

l i l i

a i a i

y yd
y ydt
    

=    
    

 (7) 

where yl represents the time-varying latent level for each individual, and ya represents the time-

invariant latent linear component —note that its mean and variance do not change over time. 

This latter component influences the latent level yl but it is not influenced by it. Both latent 

variables are defined at time zero as a multivariate normal distribution with mean vector and 

covariance matrix: 

 
2

0 0 0 0,
0 0 2

0,

~ ,l a

a a a a

y
N

y
  µ σ σ   

= =      µ σ σ      
x P  (8) 
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Similarly, the output equation of a LCS model in which the process of interest is 

measured with a single indicator4 can be expressed as: 

 [ ] [ ] [ ],

,

1 0 l i
i i

a i

y
Y e

y
 

= + 
 

 (9) 

where the additive component ya,i is not linked to any observation and ei represents the 

measurement error, with mean 0 and time-invariant variance σ2e. 

Note that the SSM-CT in Equation 7 is a continuous time specification of the LCS-DT 

described in Equation 1 and has the same number of parameters. However, the interpretation of 

the parameters differs in two key aspects: a) the time metric and b) the definition of the initial 

conditions. In a LCS-DT model, the parameters β, µa, σ2a, and σ0,a are scaled for a time lag Δt=1, 

whereas in a SSM-CT model they are scaled for an infinitesimally brief time lag (dt). Similarly, 

in a LCS-DT model, µ0 and σ20 are the mean and variance at the first measurement occasion 

(t=1), whereas in SSM-CT they represent the state of the system at time zero, which can refer to 

any arbitrary point in time (not necessarily the first occasion). For further details on their 

mathematical relation, see Chow et al. (2010), Estrada & Ferrer (2019), Hunter (2018), Oud & 

Jansen (2000), or Voelkle & Oud (2015). In the next section, we present an extension of the 

SSM-CT model that allows cohort differences in the self-feedback parameter (i.e., the speed of 

maturation). 

Modeling cohort differences in the speed of maturation: A SSM-CT model with moderators 

 
4 When the latent level of y is measured by multiple indicators, Equation 9 can be extended to include them. In that 
case, the dimensions of the vector of observed variables, the matrix of factor loadings, and the vector of 
measurement errors are rescaled according to the number of indicators. 
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Consider a study examining the development of fluid reasoning from childhood to early 

adulthood in which participants were born between 2000 and 2009. As researchers, we may want 

to test whether younger generations (i.e., individuals born later) may be experiencing a faster 

maturation in fluid reasoning abilities, perhaps due to recent technological advances or changes 

in the educational system. To represent such an effect, we can use the year of birth to create an 

observed variable coh with values from 0 to 9 (from the youngest to the oldest cohort), 

representing the cohort to which each participant belongs. In the context of LCS models, 

differences in the speed of maturation of fluid reasoning across cohorts will involve cohort 

differences in the self-feedback parameter. In order to capture such differences, we propose an 

extension of the LCS model that uses the cohort as a moderator of the auto-regressive dynamics 

across latent states. In our model, between-cohort variability in the self-feedback parameter can 

be modeled by specifying the following state equation: 

 , ,

, ,

1
0 0

l i l ik

a i a i

y ycohd
y ydt

ββ + λ ⋅    
=    
    

 (10) 

where cohk is the observed value in the cohort variable for each cohort k, β determines the value 

of the self-feedback when cohk=0 (in our example, the youngest cohort), and λβ represents the 

change in the self-feedback for each unit of change in the cohort. This formulation is an 

extension of Equation 7 that allows capturing variability in the speed of maturation (i.e., the self-

feedback β) due to differences in the cohort variable. 

In Equation 10, β and λβ are freely estimated, whereas cohk is considered a fixed 

parameter. In some statistical software, such as OpenMx (Boker et al., 2018), observed variables 

can be inserted into the state-space matrices to specify statistical models at the individual level. 

These variables (usually termed definition variables) are specified as fixed parameters that take, 
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for each individual, their corresponding observed value in that variable (e.g., cohk in Equation 

10). In the context of ALDs, with individuals grouped into cohorts, we use this functionality to 

specify models at the cohort level, with all individuals within a specific cohort sharing the same 

model (i.e., the same set of parameter values).  

As described previously, the self-feedback is related to the additive component and the 

asymptotes through Equations 2 and 3. Such relations imply that, for a fixed asymptote, 

differences in the self-feedback will lead to differences in the mean (μa) and variance (σ2a) of the 

additive component. Also, because covariances are sensitive to the metric of the variables, 

changes in the additive component variance will lead to differences in its covariance with the 

initial state (σ0,a), but not necessarily in their correlation (ρ0,a), as this is independent of the 

metric. Therefore, capturing cohort differences in the self-feedback parameter will involve 

modeling such differences also in: a) the vector of initial latent means (x0) and b) the initial latent 

covariance matrix (P0). Figure 3 shows, marked with an asterisk, the parameters that may vary 

due to cohort differences in the speed of maturation. In our model, cohort differences in the 

vector of initial means are specified as: 

 0
0

a a kcohµ

µ 
=  µ + λ ⋅ 

x  (11) 

where all parameters (except cohk) are freely estimated, µ0 captures the mean state of the process 

at t=0, µa is the additive component mean when cohk=0, and λµa captures the change in the 

additive component mean for each unit of change in the cohort. This specification of the latent 

states allows capturing variability in the mean of the additive component due to differences in 

the cohort variable. 
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 Cohort differences in the initial latent covariance matrix are modeled by first 

decomposing this matrix as 0 =P DRD , where D is the diagonal matrix of standard deviations 

and R is the correlation matrix, and then specifying cohort effects in the standard deviation of the 

additive component: 

 0,0 0
0

0,

10 0
10 0

a

aa a k a a kcoh cohσ σ

ρσ σ    
=     ρσ + λ ⋅ σ + λ ⋅    

P  (12) 

where all parameters (except cohk) are freely estimated, σ0 is the standard deviation of the latent 

initial state, σa is the standard deviation of the additive component when cohk=0, ρ0,a is the 

cohort-invariant correlation between the initial state and the additive component, and λσa 

captures the change in the standard deviation of the additive component for each unit of change 

in the cohort variable5. This specification of the latent covariance matrix captures cohort 

differences in the additive component variance and, at the same time, accounts for the resulting 

differences in the metric of the covariance with no need for additional parameters. 

Importantly, in the previous example on fluid reasoning, the values of the cohort variable 

from the youngest to the oldest cohort were {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, representing a linear 

change. However, these values are arbitrarily chosen by the researcher, and other sequences are 

possible depending on particular hypotheses. If the change in β is expected to be non-linear 

across cohorts, the sequence {0, 1, 4, 9, 16…} can be used to represent a quadratic cohort effect. 

Other transformations of the cohort variable can be applied to account for relations of various 

forms (i.e., cubic, square root, logarithmic, or exponential, among others). In the supplementary 

 
5 Note that the dual LCS model described in previous sections and the LCS model with moderators from Equations 
10-12 differ in the interpretation of some parameters. In the former, the parameters β, µa, and σa describe the 
trajectories of the whole sample of participants, whereas in our model they refer to participants with a value of 
zero in the cohort variable (i.e., when cohk=0).  
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materials, we include annotated R code for estimating the SSM-CT model with moderators, as 

well as a SEM version of the model in discrete-time.  

Method 

 The goal of the present study is to examine the ability of a SSM-CT model with 

moderators to identify and control for cohort differences in the speed of maturation in the context 

of ALDs. For that purpose, we generated repeated measures of a latent process y that unfolds 

over 15 years. The process was generated according to the LCS model described in Equation 1. 

In empirical longitudinal studies, time intervals between assessments typically vary across both 

time points and participants (e.g., see Voelkle et al., 2012). We reproduced these unequal 

intervals by dividing each year into 52 weeks. That is, we used a semi-continuous LCS model to 

generate 52 waves of data per year, for a total of 780 waves. Then, for each year, we chose one 

of the waves at random with equal probability for each wave (i.e., a probability of 1/52). This 

resulted in a 15-wave database with unevenly spaced time intervals of random lengths between 

and within participants. Because the key feature of ALDs is that participants are only measured 

during a fraction of the target age range under study, the number of waves per cohort was 

trimmed according to different patterns of planned missing data (see the section Sampling 

Schedule, below).  

The parameters of the model were chosen to represent trajectories that are typical of the 

development of cognitive abilities from childhood to early adulthood (e.g., Kail & Ferrer, 2007; 

Schmitt et al., 2017; Van Der Maas et al., 2006). These parameters are reported in Table 1, and 

were based on previous empirical studies (Ferrer et al., 2007, 2010; Shaywitz et al., 1990). One 

of the strengths of continuous-time models is that the resulting CT parameters can be 
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transformed into DT parameters for any specific time interval. For a detailed description of such 

transformations, see Voelkle & Oud (2015) and Estrada & Ferrer (2019). 

[TABLE 1] 

 The parameters in Table 1 were used as a baseline to generate 100 replications for each of 

the 48 simulation conditions, which were created by fully crossing the following three factors, 

explained in the next sections: 

1. Size of cohort effect: four conditions (d = {0, .1, .2, .4}) 

2. Sampling schedule: four conditions (D0, D1, D2, and D3) 

3. Sample size: three conditions (N = {125, 200, 500}) 

Size of cohort effect 

 In this manuscript we present the first approach to modeling cohort differences in the 

speed of maturation captured by a self-feedback parameter. To the best of our knowledge, there 

are no previous references of how large such differences may be in empirical data, although their 

size will probably vary widely depending on the construct, the developmental period under 

study, or the distance in year of birth across cohorts. As guidelines for our simulation, we used a 

study by Ferrer et al. (2010) that examined the development of reading abilities and IQ in a 

representative sample of schoolchildren from ages 6 to 18. In this study, the authors used LCS 

models to evaluate differences in reading abilities between groups. They found differences in the 

self-feedback parameters of around .2 in reading abilities and .1 in IQ across groups. Based on 

this study, we included four different effect sizes in our simulation: d = {0, 0.1, 0.2, 0.4}. 

In the baseline condition (d = 0), all cohorts were defined by the same set of parameters 

reported in Table 1 (i.e., no cohort effects). The remaining conditions implied small, medium, 
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and large cohort effects. The size of the effect was defined as the absolute difference in the self-

feedback between the youngest and the oldest cohort. Cohort differences were meant to 

reproduce a pattern of differences where the youngest cohort had the largest (or most negative) 

self-feedback (i.e., the fastest maturation speed), and this value decreased linearly down to the 

oldest cohort. For example, with an effect of d=.4 and 11 cohorts, the values of the self-feedback 

parameter from the youngest to the oldest cohort were {−.45, −.41, −.37, −.33, −.29, −.25, −.21, 

−.17, −.13, −.09, −.05}. The range of self-feedback parameter values across all conditions of 

cohort effect size is reported in Table 2. Note that, across all conditions, the value of the self-

feedback in the middle cohort (or the average of the two middle cohorts) was −.25. 

Because of the dependence of the asymptote on both the self-feedback and the additive 

component (see Equations 2 and 3), differences in the self-feedback also involved differences in 

the mean and variance of the additive component to ensure that the mean and variance of the 

asymptote were cohort-invariant. Thus, in conditions with an effect of d=.4 and 11 cohorts, the 

parameter values were {13.5, 12.3, 11.1, 9.9, 8.7, 7.5, 6.3, 5.1, 3.9, 2.7, 1.5} for the additive 

component mean, and {5.06, 4.20, 3.42, 2.72, 2.10, 1.56, 1.10, .72, .42, .20, .06} for the additive 

component variance. The ranges of these parameters across all conditions are also reported in 

Table 2. 

[TABLE 2] 

Sampling schedule 

 There are many possible sampling schedules for an accelerated longitudinal design, 

depending on the desired length of the study, the average time interval between assessments, or 

the available budget. For this study, we chose sampling designs that could be carried out in a 
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maximum of five years. We based our choice on the findings of Estrada & Ferrer (2019), who 

evaluated the performance of the LCS-CT model under seven different sampling designs. 

Among them, we selected the three designs (D1, D2, and D3) that showed the best performance 

and cost-efficiency. These designs are summarized in Figure 4.  

[FIGURE 4] 

 As a reference, we added a benchmark design (D0) consisting of full trajectories for each 

participant in each cohort. It involved 13 cohorts in which every participant was measured yearly 

from ages 5 to 19. Although this design is not very feasible in empirical studies, it allows 

examining the ability of the model to recover cohort effects when full trajectories are available, 

and serves as a baseline against which to compare the performance of the other designs.  

Sample size 

 In a previous study, Estrada et al. (2021) found that only 125 participants were required 

to recover cohort effects in the mean latent initial level and asymptote of the trajectories using 

LCS models. Here we included the following three sample sizes: 125, 200, and 500 individuals 

per sample. 

Estimation and analysis 

For each sample in each condition, we fitted the SSM-CT model with cohort-related 

parameters described in Equations 10-12 and freely estimated the following ten parameters: 

initial state mean and standard deviation (μ0 and σ0), additive component mean and standard 

deviation (μa and σa), correlation between initial state and additive component (ρ0,a), self-

feedback parameter (β), measurement error variance (σ2e), and three cohort-related parameters 

(λβ, λµa, and λσa). The model was estimated with the functions 
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mxExpectationStateSpaceContinuousTime and mxFitFunctionML from the R package OpenMx 

(Boker et al., 2018; Hunter, 2018; Neale et al., 2016). The R code for generating the data sets and 

estimating the model is available at: https://github.com/PFernandez-Cancer/ALD_cohort_effects.  

Results 

The model converged for all samples and conditions. We evaluated the relative bias, 

variability, and rates of 95% confidence interval (CI) coverage of the parameter estimates across 

all simulation conditions. These results are reported in Figures 5-7. All numerical results can be 

found in the Supplemental Materials. 

Relative bias 

The relative bias of the estimates in each condition was computed as ( ) /estRB = θ −θ θ , 

where estθ  is the average estimate across all replications in a given condition, and θ is the true 

parameter value6. Values of RB closer to 0 imply unbiased estimates, positive values imply 

overestimation, and negative values imply underestimation. Consistent with previous literature, 

we considered estimates to be non-trivially biased if |RB|>.10 (Flora & Curran, 2004). For a 

general overview of the model performance, we also report the Root Mean Square of the 

Relative Bias, computed as 2
1

( ) /K
kk

RMS RB RB K
=

= ∑ , where K=10 is the number of 

parameters in the model.  

The top panel of Figure 5 depicts the RB for all parameters across all simulation 

conditions. Overall, the recovery of the generating parameters was excellent. As expected, 

 
6 When cohort effects are null (d=0), the parameters λβ, λµa, and λσa have populational values of zero 
(θ=0), and thus computing the RB would imply dividing by zero. In such conditions, RB was computed by 
dividing the absolute bias by the minimum value for θ in our study, that is, the population value of λβ, λµa, 
and λσa in conditions with small cohort differences (d=.1).  

https://github.com/PFernandez-Cancer/ALD_cohort_effects
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Design 0 yielded the least biased estimates, with RB ranging from −.05 to .04. This design has 

the highest data density (i.e., 15 repeated measures per participant), and thus it is used as a proxy 

for optimal model performance. In Design 1, the parameters capturing cohort effects (i.e., λβ, λµa, 

and λσa) were slightly underestimated with samples of 125 participants and small cohort 

differences (d=.1), with RB ranging from −.19 to .004. Also, the parameter capturing cohort 

effects in the standard deviation of the additive component (λσa) was slightly underestimated in 

conditions with 200 participants and equivalent cohorts (d=0), with RB between −.15 and .01. In 

Designs 2 and 3, nearly all the estimates were unbiased, regardless of cohort effect size and 

sample size. Importantly, cohort differences in the self-feedback parameter were accurately 

captured by λβ across all conditions in Designs 2 and 3 (RB range from −.08 to .07), whereas in 

Design 1 a minimum of 200 participants was required (RB range from −.07 to .02). 

[FIGURE 5] 

The RMSRB for each design and condition is reported in the bottom panel of Figure 5. In 

general, the total bias was very low for all designs. Model performance was mostly affected by 

sample size (i.e., larger samples led to better performance), and it was generally better in 

conditions with larger cohort effects. In conditions with 125 and 200 participants, Design 1 

showed the largest total bias, whereas Designs 2 and 3 performed very similarly to the 

benchmark design (D0). With samples of 500 participants, the differences between designs were 

negligible.  

Variability of the estimates 

 We evaluated the variability of the estimates by computing the standard deviation of the 

relative bias in each condition: [( ) / ]SDRB SD= θ −θ θ . This index captures the variability of the 
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parameter estimates on the same scale for all parameters. Unlike the relative bias, there are no 

standard criteria for determining an excessive degree of variability. This index is always positive 

and values closer to zero imply less variability of the estimates. For a general overview of the 

model’s precision, we provide the total standard deviation of the relative bias, computed as:

1
mean( ) /K

kk
SDRB SDRB K

=
=∑ . 

 The top panel of Figure 6 depicts the SDRB across all simulation conditions. As expected, 

larger samples led to less variability in the parameter estimates. However, the SDRB was most 

affected by the size of the cohort differences, with larger differences leading to smaller SDRB. In 

the benchmark design (D0), the variability of the estimates was slightly higher for λσa, with 

SDRB ranging between .05 and .50, and very low for the remaining parameters (range .01-.19). 

The performance of Designs 1, 2, and 3 reproduced a similar pattern: the parameters capturing 

cohort effects (i.e., λβ, λµa, and λσa) had larger SDRB compared to the remaining parameters of 

the model. In particular, the variability was always higher for λσa (range .08-1.26), followed by 

λβ (range .05-1.13), and λµa (range .04-.89). 

[FIGURE 6] 

 The total variability of the SSM-CT model with moderators is reported in the bottom 

panel of Figure 6. Design 0 showed the best performance, with mean SDRB values between .03 

and .13. In contrast, the largest variability in the estimates was found for Design 1, with mean 

SDRB values between .08 and .46. The amount of total variability in Designs 2 and 3 was almost 

identical across all conditions (ranges 05-.27 and .05-.31, respectively), with a marginally better 

performance of Design 3.  

Coverage 
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 We computed the rates of coverage as the proportion of 95% confidence intervals around 

the point estimate that included the true parameter value. As such, 95% is the optimal value of 

coverage, and coverage below 90% is considered inadequate (Collins et al., 2001; Enders & 

Peugh, 2004). As a measure of the global coverage of the model for each design, we computed 

the mean coverage as: 1
mean( ) /K

k k
coverage coverage K

=
=∑ .  

The coverage results were excellent, with rates of 95%CI coverage above 86% (average 

94.6%) across all parameters and conditions. Importantly, the coverage for the parameters 

capturing cohort differences was always above 89% (average 94.3%). There were no meaningful 

differences in mean coverage across designs: all designs performed very similarly to the 

benchmark design (D0), with mean coverage rates around 94%. Figure 7 shows the 95%CI 

coverage rates for all parameters (top panel) and the mean coverage across designs (bottom 

panel). Complete numerical results are included in the supplemental materials.  

[FIGURE 7] 

Discussion 

 In the present work, we introduced a latent change score approach to detect and control 

for cohort differences in accelerated longitudinal designs. In particular, we focused on 

differences in the speed of maturation of one developing process, which is captured by a self-

feedback parameter. This is an important goal as, to the best of our knowledge, no methods are 

available in the literature for detecting cohort differences in speed of maturation independently 

of the maximum level of the trajectories. For this, we used a latent change score model in 

continuous-time that includes the cohort as a moderator of the auto-regressive dynamics across 
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latent states. In this section, we provide an overview of the model’s performance and elaborate 

on the limitations and methodological considerations derived from the present study.  

Summary of findings 

The performance of the LCS model with cohort-related moderators was evaluated under 

various conditions of sampling design, sample size, and cohort effect size. As expected, the best 

model performance was achieved for the benchmark design (D0), representing participants who 

were followed yearly during the complete time range of the study. Nevertheless, differences in 

performance between the benchmark design and the other designs were very small. That is, the 

performance of any of the ALDs evaluated in this paper is not much worse than an optimal 

design with complete trajectories for each individual. In Design 1, where participants were 

measured only two times in alternative years, the total length of the study was three years. This 

design led to slightly larger bias and variability in the estimations, probably because the overlap 

between cohorts was minimal (see Figure 4). In fact, it required at least 200 participants to 

accurately capture cohort effects in the speed of maturation. Despite these marginal amounts of 

bias, the rates of coverage were excellent for all generating parameters, even in conditions with 

125 participants.  

The model performance in Designs 2 and 3 was almost identical. In Design 2 participants 

were measured three times in alternative years (i.e., the length of the study was five years), 

whereas in Design 3 they were measured four times in consecutive years (i.e., the length of the 

study was four years). In both designs, the recovery of the generating parameters was excellent 

in terms of bias and coverage, regardless of sample size and cohort effect size. In terms of 

variability, Design 2 showed a marginally better performance. In sum, both designs were equally 

adequate for recovering features of the generating process and cohort effects in maturation speed. 
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Given these similar results, the choice of one over the other should be decided by the researcher 

based on the desired number of assessments (three or four measurements) and the desired length 

of the study (five or four years). 

Overall, the accuracy and coverage of the parameters capturing cohort differences in the 

speed of maturation was excellent. However, these parameters showed more variability in the 

estimations compared to the remaining parameters of the LCS model. An interesting finding is 

that sample size had little impact on the variability of the estimations. Of course, larger samples 

led to less variability, but this was mostly affected by the size of cohort differences and the type 

of sampling design. Across all cohorts, larger cohort effect sizes consistently led to lower 

variability in the parameter estimates. This implies that larger cohort effects are somewhat easier 

to estimate in any given sample. Similarly, the ALD with the least estimation variability was 

Design 2, followed by Design 3 and Design 1, in that order (we are not considering D0 in this 

comparison because it is not an ALD). Based on these findings, we would recommend using our 

model with Design 1 and 200 participants or more, or with Designs 2 or 3 and 125 participants or 

more. 

Theoretical and methodological considerations 

The procedure presented in this paper extends previous work on the study of cohort 

differences in accelerated longitudinal designs (cf. Estrada et al., 2021; Miyazaki & Raudenbush, 

2000). Our main contribution is the introduction of one of the first approaches to the study of 

cohort differences using dynamic models (along with Estrada et al., 2021), and the first approach 

to the study of differences in the speed of maturation of developmental processes. For this, we 

used an extension of LCS models because: a) they are suited to model exponential trajectories, 

common in many developmental processes and b) they incorporate a self-feedback parameter 
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that explicitly captures the speed of maturation of the process of interest. Importantly, despite the 

great popularity of LCS models, their ability to capture the speed of maturation has apparently 

gone unnoticed in the literature until now. In this manuscript, we introduced and emphasized this 

feature of LCS models, and proposed using the cohort variable as a moderator to account for 

differences in maturation speed. 

The present approach will provide further understanding on how the evolution of the 

social, cultural, or economic conditions affects the speed of development of particular 

populations, and how this development looks after controlling for cohort differences. In fact, 

although we focused on growth trajectories from childhood to early adulthood, our approach 

could potentially be applied to trajectories of decelerated or accelerated decline, typically found 

in the study of physical and cognitive development in late life (e.g., Dodge et al., 2014; Finkel et 

al., 2007; Gerstorf et al., 2011; Hoffman et al., 2011; Zhang et al., 2020). In this context, the self-

feedback can be used as an indicator of the speed of decay, where larger self-feedbacks (i.e., 

further from zero) imply faster declines. 

A key aspect of the proposed model is that the set of values defined in the cohort variable 

reflects the expectations of the researcher about the direction and type of cohort effect. In this 

manuscript, we used a linear effect in favor of the younger cohorts as a proof of principle, but 

other effects are possible. The values of the cohort variable work in a way similar to the slope 

loadings in a LGC model. In a LGC model, the slope loadings can be modified to represent 

different functional forms, and the researcher can use nested model specifications to select the 

functional form that better captures the shape of the trajectories. Similarly, the values of the 

cohort variable can be changed to represent different types of cohort effects, and the researcher 
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can use nested model comparisons to select the type of effect that better captures the differences 

across cohorts.  

In developmental studies, differences across groups are often modeled via a multiple-

group specification, where different sets of parameters are estimated for each group. This is a 

reasonable approach when the number of groups is small, and the sample size within each group 

is sufficiently large. However, in ALDs each cohort may include only a few participants (e.g., 

125 participants divided into 12 cohorts leads to 10-11 participants per cohort). In these 

situations, a multiple-group approach may not have enough power to detect cohort differences 

across groups. Furthermore, the number of parameters in a multiple-group model increases 

linearly with the number of groups. For example, an ALD with 12 cohorts would require 

estimating 40 parameters (12 self-feedbacks, 12 additive component means, 12 additive 

component variances, 1 initial mean, 1 initial variance, 1 correlation, and 1 error variance). In 

contrast, our model required only 10 parameters, regardless of the number of cohorts, thus 

providing a more parsimonious approach.  

Although we implemented the LCS model with moderators using state-space equations in 

continuous-time, other approaches are also possible. For example, despite the increasing 

popularity of SSMs, many empirical researchers are more familiar with SEM. The state and 

output equations in SSMs are mathematically equivalent to the structural and measurement 

equations in SEM (for details, see Chow et al., 2010 and Hunter, 2018). Equations 10, 11, and 12 

can be implemented into a SEM framework to account for cohort differences in the time-lagged 

dynamics, means, and variances of the model. In the supplemental materials, we provide R code 

in OpenMx for the formulation and estimation of the model both in continuous-time SSM and 



Cohort effects in maturation speed in ALDs - 30 
 

discrete-time SEM. Also, in Appendix A we provide a brief description of a discrete-time SEM 

version of the LCS model with cohort-related moderators. 

In this manuscript, we proposed an approach based on parameter moderation using latent 

change score model in continuous-time to address a specific problem, namely the detection of, 

and control for, cohort effects in the context of ALDs. Importantly, this approach can be applied 

to any type of (non-accelerated) longitudinal designs and can be used to test for moderating 

effects besides those related to cohorts. For example, Hu et al. (2014) used a latent differential 

equation model in SEM to examine the extent to which the coupling relations between emotional 

eating and estradiol were moderated by a self-reported measure of negative affect. In the context 

of psychometrics, parameter moderation has also been proposed as a valuable tool for exploring 

measurement invariance and item differential functioning (see Bauer, 2017).  

Limitations and future directions 

In this study, we focused on the speed of maturation of a single construct that unfolds 

over time. In principle, our model could be extended to multivariate systems including dynamic 

interrelations between several latent processes. In univariate systems, the specific shape of the 

exponential trajectories is defined by the interaction between the self-feedback and the additive 

component over time. However, in bivariate systems the nonlinear behavior of the system is 

defined by the interaction between all parameters representing self-feedbacks, the couplings, and 

the additive components, and the resulting trajectories may not have an exponential form. 

Consequently, the self-feedback parameter cannot be directly interpreted as the rate (or speed) of 

reduction between the initial and peak levels (i.e., speed of maturation or decay) in such bivariate 

systems (for further details, see Cáncer et al., 2021). Future research should investigate how to 
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extend the current proposed approach to multivariate systems and examine ways to capture 

cohort differences in the cross-lagged dynamics between latent processes.  

Consistent with the patterns of change typically found in cognitive development from 

childhood to early adulthood, we analyzed exponential trajectories of decelerated change. 

However, in the context of aging, declines in well-being or cognitive abilities may exhibit 

patterns of accelerated decay, which are defined by positive self-feedbacks. In principle, 

accelerated longitudinal designs and bivariate latent change score models could be applied to 

examine such trajectories, but it must be noted that their performance in that setting has not been 

investigated. Future research should examine whether cohort differences can be detected and 

controlled for with the methods proposed in this paper.  

The proposed model uses a discrete variable as a moderator of the dynamic relation 

between latent states, but using continuous moderators is also possible in the SSM and SEM 

frameworks. One key difference between discrete and continuous moderators lies in the number 

of cases per level of the moderator. In the ALDs used in this study, cohorts were defined by the 

year of birth, and there were no fewer than seven participants per cohort. If cohorts were defined 

by the day (instead of year) of birth, many levels of the cohort variable would contain only one 

participant. However, using such continuous moderators may not be possible in LCS models. 

This is due to the dependency among the parameters representing self-feedback, additive 

component mean, and additive component variance. In the sampling schedules used in the 

present study, each cohort (i.e., each level of the moderator variable) had enough individuals to 

estimate a mean and variance for the latent additive component. With a continuous moderator, 

one would impose individual differences in the mean and variance of the additive component, 

but the estimation of between-individual variance parameters for single individuals would not be 
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possible. This has relevant implications in the context of ALDs: a) a sampling schedule must be 

chosen to ensure that no cohorts have one case only, as this would lead to estimation problems, 

and b) if cohorts are defined by the date of birth, it is necessary to create wide enough bins 

before using it as a moderator. In the present paper, we used bins of one year, but it may be 

reasonable to use bins of two, three, or more years so as to ensure that the number of participants 

in each group is large enough. 

In our modeling approach, we account for differences in the self-feedback parameter due 

to differences in the cohort variable. However, individual variability in the speed of maturation 

may not be fully explained by the cohorts. Driver & Voelkle (2018) developed a Bayesian 

framework for estimating hierarchical continuous-time models that allows the specification of 

random effects in any of the model parameters. This is a promising approach for detecting cohort 

differences such as those studied in this paper, and it could potentially capture the variance in a 

given parameter that is not explained by the cohort variable. However, future research should 

examine the performance of this approach under conditions commonly found in ALDs, such as 

high percentage of data incompleteness, few participants per cohort, few repeated measures per 

participant, and random time intervals between observations. 

As a final note, the sampling schedules evaluated in this manuscript are planned missing 

data designs where the source of missingness is controlled by the researcher. However, non-

planned missing data (e.g., participant attrition) is common in longitudinal studies, and can be 

particularly harmful when missingness is related to the variables being measured—that is, when 

missingness is “not at random” (MNAR). The impact of MNAR in longitudinal analyses has 

been documented, and various methods have been proposed for dealing with this problem (e.g., 

Enders, 2011; Gottfredson et al., 2014; Jeličić et al., 2009, 2010; Laird, 1988; Wang et al., 2008). 
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It must be noted that, in the presence of unplanned missing data, especially MNAR, the sampling 

requirements will likely be more demanding than those proposed in this study. Future research 

should investigate for the effect of unplanned data missingness on the performance of 

continuous-time dynamic models, particularly in the context of ALDs. 

Conclusion 

 In the present study, we proposed a LCS model with cohort-related moderators that 

allows identifying cohort differences in the speed of maturation of developmental processes. 

This is an important contribution because it allows other researchers to address the question of 

whether differences in the speed of maturation exist across different cohorts, independently of 

whether such cohorts reach the same maximum level on average. We focused on data gathered 

through accelerated longitudinal designs because a) ALDs are an efficient solution for studying 

process that unfold over long periods of time, and b) they heavily rely on the assumption that 

cohorts are equivalent. However, the approach proposed here can be applied to any study 

including different cohorts, regardless of whether the design is accelerated. 

Our results suggest that the proposed model can adequately capture such cohort 

differences in the context of accelerated longitudinal designs. Based on our findings, researchers 

should note that: 

a) In empirical research, the assumption of cohort equivalence is typically unknown. If 

researchers suspect that there might be cohort effects affecting the maturational speed of 

the process under study, they should consider including cohort-related moderators in their 

models. Our findings indicate that the proposed model is able to: a) capture cohort 

differences ranging from very small to very large, and b) estimate cohort-related 
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parameters as null when cohort differences are zero in the population (i.e., when the 

assumption of cohort equivalence is met). 

b) All the sampling designs evaluated showed excellent performance in terms of bias, 

variability, and coverage. The choice of one over the rest will depend on the desired 

number of evaluations, length of the study, and sample size available. Design 1 was the 

shortest, with two evaluations per participant and a total length of three years, but it 

required at least 200 participants. The performance of Design 2 (three evaluations during 

five years) and Design 3 (four evaluations during four years) was virtually identical, and 

both required only 125 participants. 

c) The performance of the benchmark design (D0) was only slightly better than that of the 

three ALDs studied in this paper (D1, D2, and D3). This suggest that, despite the large 

amount of (planned) missing data, ALDs are not only very similar in performance to 

conventional longitudinal designs (with complete trajectories for each individual), but 

also represent a much more cost-efficient alternative. 

We have shown that the continuous-time LCS model with cohort-related moderators is a 

reliable tool to account for cohort differences in the speed of maturation of a developmental 

process. We encourage researchers to use this model for developmental research, and particularly 

in the context of ALDs. We hope these findings will provide useful information for the design of 

longitudinal studies and the analysis of potential cohort differences in such studies.  
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Appendix A 

 In this section, we describe how to specify a LCS model with cohort-related moderators 

in a discrete-time SEM framework. The path diagram of such model is depicted in Figure A1. In 

this figure, the change scores have been removed. In consequence, the self-feedback has become 

an auto-regression coefficient with a value of β* = 1+β. Removing the change scores is not 

necessary, but it simplifies the path diagram.  

[FIGURE A1] 

In Figure A1 the moderation structure connecting latent states is composed by a direct 

and an indirect pathway. The direct pathway from yt−1 to yt takes a value of β* that is freely 

estimated. The indirect pathway is formed by three components: a) a coefficient coh that is fixed 

to the observed value in the moderator, b) a coefficient λβ that is freely estimated, and c) a 

phantom variable D with mean and variance zero. The indirect pathway is used to capture the 

moderating effect coh × λβ. This time-invariant structure accounts for differences in the self-

feedback parameter due to differences in the moderator variable. 

As described previously, if the speed of maturation is affected by cohort differences, it is 

necessary to account for such differences not only in the self-feedback parameter, but also in the 

mean and variance of the additive component and its covariance with the initial state. In the 

present paper (both the CT model presented in the main text and the DT model presented in this 

Appendix), we accounted for cohort effects in the covariance matrix by decomposing it into a 

correlation matrix and a diagonal matrix of standard deviations (see Equation 12). Because such 

effects cannot be represented correctly in a path diagram, they are not included in Figure A1. 

However, some SEM programs such as OpenMx (Boker et al., 2018) provide functions that 
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allow manipulating the equations of the model to account for moderator effects in any parameter. 

In the supplemental materials, we provide annotated R code to specify and estimate the LCS 

model with cohort-related moderators within a discrete-time SEM framework.  
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Table 1. Baseline generating parameters 

Parameter Value in CT 

Self-feedback (β) −.25 

Initial mean (μ0) 10 

Additive component mean (μa) 7.5 

Initial variance (σ20) 25 

Additive component variance (σ2a) 1.5625 

Initial-Additive component covariance (σ0,a) 4.375 

Measurement error variance (σ2e) 2 

Implied values  

Asymptotic level mean (μAs) 30 

Asymptotic level variance (σ2As) 25 

Initial-Additive component correlation (ρ0,a) .7 
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Table 2. Parameter values across cohort effects (in continuous time) 

Parameter 
Effect size of the 

cohort 

Value in the 

oldest cohort 

Value in the 

youngest cohort 

Self-feedback 

β 

0d =  

.1d =  

.2d =  

.4d =  

−.25 

−.20 

−.15 

−.05 

−.25 

−.30 

−.35 

−.45 

Additive 

component 

mean μa 

0d =  

.1d =  

.2d =  

.4d =  

7.5 

6 

4.5 

1.5 

7.5 

9 

10.5 

13.5 

Additive 

component 

variance σ2a 

0d =  

.1d =  

.2d =  

.4d =  

1.5625 

1 

.5625 

.0625 

1.5625 

2.25 

3.0625 

5.0625 
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Figure 1. Examples of complete and partial trajectories in an accelerated longitudinal design 
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Figure 2. Example of cohort effects in the speed of maturation in a 20-year follow-up (left panel) 

and a hypothetical 5-year ALD with five cohorts. 
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Figure 3. Path diagram of a univariate latent change score model specified as a SEM in discrete-

time (left panel) and as a state-space model (SSM) in continuous-time (right panel). All unnamed 

paths have values fixed at 1. 
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Figure 4. Sampling designs 
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Figure 5. Relative bias of the parameter estimates across all conditions (top panel) and Total 

Root Mean Square of the relative bias (bottom panel). The cut-offs of −.1 and .1 for the RB are 

represented by solid black horizontal lines. 
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Figure 6. Standard Deviation of the Relative Bias (SDRB) of the parameter estimates across all 

conditions (top panel) and Total SDRB (bottom panel). 
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Figure 7. 95%CI coverage of the parameter estimates across all conditions (top panel) and mean 

coverage (bottom panel). 
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Figure A1. Latent change score model in discrete-time with cohort-related moderators across 

latent states 

 


