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Abstract 

People show stable differences in the way their affect fluctuates over time. Within the 

general framework of dynamical systems, the damped linear oscillator (DLO) model 

has been proposed as a useful approach to study affect dynamics. The DLO model can 

be applied to repeated measures provided by a single individual, and the resulting 

parameters can capture relevant features of the person's affect dynamics. Focusing on 

negative affect, we provide an accessible interpretation of the DLO model parameters in 

terms of emotional lability, resilience, and vulnerability. We conducted a Monte Carlo 

study to test the DLO model performance under different empirically relevant 

conditions in terms of individual characteristics and sampling scheme. We used State-

Space Models (SSM) in continuous-time. The results show that, under certain 

conditions, the DLO model is able to accurately and efficiently recover the parameters 

underlying the affective dynamics of a single individual. We discuss the results and the 

theoretical and practical implications of using this model, illustrate how to use it for 

studying psychological phenomena at the individual level, and provide specific 

recommendations on how to collect data for this purpose. We also provide a tutorial 

website and computer code in R to implement this approach. 

Keywords: damped linear oscillator, negative affect, within-individual change, 

state-space modeling, continuous time modeling 

 

 

 

 



Translational Abstract 

Until recent years, psychological researchers have mainly focused on studying groups 

of people. However, applied practitioners in many fields usually work with individuals. 

This is often the case, for example, in clinical psychology. Statistical methods focused 

on single participants can capture the individuality of each person and can prove very 

useful for making treatment decisions. In this study, we focus on the damped linear 

oscillator model. We discuss how to interpret the model parameters in terms of 

emotional lability, resilience, and impact of daily events on emotional state, based on 

repeated measures provided by each single person. We applied it to the specific case of 

negative affect, which has been widely related to multiple psychological disorders. 

Based on the results of an extensive simulation study, we provide recommendations on 

how to collect data and use this model to extract relevant clinical information. We 

provide computer code in R that implements this approach. 

  



Characterizing affect dynamics with a damped linear oscillator model: Theoretical 

considerations and recommendations for individual-level applications 

Characterizing the dynamic nature of affective processes is an important goal for 

practitioners in various fields (Gross & Barrett, 2013). In recent years, affect dynamics 

have been frequently studied through daily diary, experience sampling, or ecological 

momentary assessment methods (Kuppens et al., 2022). These methods have led to the 

popularization of intensive longitudinal databases, which can be examined using various 

analytical approaches and techniques. 

In this paper, we focus on negative affect. This outcome is a relevant variable 

for psychological science, especially in the field of psychopathology. Previous literature 

has shown that negative affect is a core feature of many types of psychopathology 

(Stanton & Watson, 2014). For example, it has been identified as a risk factor for 

adolescent substance use (Hussong et al., 2017). In fact, it plays an important role in the 

initiation and maintenance stages of smoking, and substance abusers generally 

experience more negative affect than abstainers (Kassel et al., 2007). Also, anxiety-

related aspects of negative affect have been linked to rumination (Kirkegaard Thomsen, 

2006). Another relevant outcome is that people with medical diseases such as systemic 

sclerosis (Leon et al., 2014) or psychological disorders such as depression (Peeters et 

al., 2006) usually report higher levels of negative affect. Importantly, participants with 

depression also show higher variability within a day in negative affect than healthy 

participants. These findings underscore the importance of studying negative affect 

dynamics and variability at the intra-individual level. 

The Damped Linear Oscillator Model 

The Damped Linear Oscillator (DLO) model, also termed Damped Harmonic 

Oscillator, is a powerful approach for studying intensive longitudinal data of negative 



affect. The DLO model is a system of equations that describes the dynamics of a 

process with oscillatory movements. Oscillatory fluctuations are a distinctive feature of 

affect processes, and a key aspect of the Adaptative Equilibrium Regulation framework 

(Boker, 2015). In this framework, the negative affect of an individual is considered an 

homeostatic system (Boker et al., 2010b) or a thermostat (Chow et al., 2005). These 

ideas highlight that the system is capable of regulating itself in response to perturbations 

in a short timescale, such as receiving bad news at work, and adapting to its 

environment in response to long-term persistent forces, such as suffering from a serious 

illness (Boker, 2015). 

The first goal of this paper is to connect the key features of the DLO model 

with the clinical aspects that they capture. We aim to present the model in an intuitive 

way to clinical practitioners concerned about affect and affect dynamics and highlight 

its utility in the context of clinical psychology. Our second goal is to conduct a 

comprehensive Monte Carlo study to examine under what conditions the model is able 

to recover the dynamics underlying a time series of negative affect. 

One noteworthy feature of the DLO model is that it can be fitted to data from a 

single person (Boker & Nesselroade, 2002). Therefore, it can be used as an individual-

based approach to characterize the dynamics of change at the within-individual level 

through a set of statistical parameters. Until recently, most psychological research (e.g., 

in personality, individual differences, or psychopathology) has been conducted by 

gathering large samples and taking cross-sectional measures from them (i.e., from a 

nomothetic point of view; Hamaker, 2012). Very often, researchers draw longitudinal 

within-person conclusions based on the resulting cross-sectional between-person 

findings. However, this procedure is inadequate as it assumes ergodicity of the process 

under study. Ergodicity implies that the distribution of the variables in the population 



(and the statistical moments used to characterize it) accurately reflects their distribution 

within any single individual. This is very rarely the case in psychological data (Fisher et 

al., 2018; Molenaar, 2004). As a solution, many authors have advocated for the use of 

individual-level methods in psychological research. Such methods, typically termed 

idiographic, imply characterizing each individual instead of assuming population-based 

distributions (Hamaker, 2012; Molenaar, 2004). One example of this is the 

characterization of negative affect dynamics of single-subject time series by means of 

the DLO model proposed in this paper.  

When specified as a State-Space Model in Continuous Time (SSM-CT), the 

DLO model has two main components: the dynamics equation (Equation 1) and the 

measurement equation (Equation 2). The dynamics equation is a second-order 

differential equation that describes change in two latent variables for an infinitesimally 

small time interval (dt): 
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(1) 

   

where x is a latent variable that captures the level or position of the system, and /dx dt

is the rate of change in position―that is, the velocity. Both position and velocity are 

derived with respect to time, with the derivative of position (x) being the velocity 

( )/dx dt  , and the derivative of velocity (i.e., the second derivative of position) being 

the acceleration ( )2 2/d x dt . Interpreted in terms of negative affect at any given time, the 

position is the individual’s current level of negative affect, the velocity is the direction 

and speed at which negative affect is changing, and the acceleration is how such speed 



is changing. For example, an individual recovering from bad news may still have a level 

of negative affect 5 points above their mean (position) but may be reducing their level at 

a given speed (velocity), and this reduction may become slower (acceleration or, more 

accurately in this case, deceleration) as the level gets closer to the person’s average. 

Equation 1 includes three components: η, ζ, and q(t). Each of them captures a particular 

feature of the individual’s affect dynamics, which are described in the following section.  

The second component of the DLO model is the measurement, output, or 

observation equation (Equation 2), which connects the latent variables defined in 

continuous time in Equation 1 with the observed measures (y) taken at a specific time 

point t, and includes one additional component, r(t) (see further explanation in Data 

Analysis section): 
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Equation 2 implies that the observed variable y is an indicator of the latent 

variable x, which captures the level, position, or momentary true score in negative 

affect. To define Equation 2, the second-order differential equation is reformulated as a 

two-dimensional system of first-order differential equations by defining the first-order 

derivative ( )/dx dt  as an extra latent variable without an underlying observed variable 

(see, for example, Voelkle & Oud, 2013). 

Note that equations 1 and 2 define a univariate linear oscillator, which describes 

change in a single unobserved process x, linked to an observed variable y, and measured 

at time t. However, the model can be expanded to characterize systems with two or 

more processes (see, for example Reed et al., 2015; Steele & Ferrer, 2011). In the next 



sections, based on previous conceptualizations in the literature, we interpret the model 

parameters1 and some of its key features.  

Substantive Interpretation of the Parameters in the Univariate DLO Model 

Equilibrium Point 

In a DLO model, the change of a variable or process (in this case, negative 

affect) over time is conceptualized as a dynamical system that fluctuates around an 

equilibrium point. A metaphor that helps understanding this conceptualization is a ball 

in a bowl (Boker, 2015). Consider the system depicted in Figure 1. The black line 

represents the equilibrium of the system. This is the point to which the system tends. If 

the ball inside the bowl is pushed to the left (panel B of Figure 1), it will run along the 

surface of the bowl and, eventually, will return to the bottom of the bowl (panel A of 

Figure 1). In the case of affect scores for one individual, this equilibrium point is 

typically defined as the mean of all their scores over T measurement occasions. This 

implies that, even if different individuals can (and usually do) have different 

equilibrium points, the mean of each individual is usually subtracted from all their 

scores so that the equilibrium point is typically zero2. 

INSERT FIGURE 1 ABOUT HERE 

Emotional Lability (η) 

The emotional lability parameter has been also termed frequency. For clarity, we 

now simplify Equation 1 so that the acceleration of the system becomes 
2 2/d x dt x= η  

 
1 Although other interpretations of the parameters are possible, the interpretation 
provided here is consistent with previous literature on the DLO model. 

2 Alternatively, the equilibrium point can be estimated, for example by adding an extra 
parameter in the measurement model  



(i.e., we assume for the moment that the parameter ζ equals zero). If the parameter η is 

negative, the system has a stable equilibrium, meaning that the farther the position is 

from the equilibrium, the greater the acceleration it experiences to reduce the distance 

(see, for example, Boker et al., 2010b). In contrast, positive values of η lead to an 

unstable equilibrium: in the ball-bowl metaphor, the bowl would be upside down 

(Boker, 2015), meaning that the farther the ball is from the equilibrium point, the 

greater the acceleration it experiences to move away from it. According to previous 

descriptions of negative affect processes in the literature, in this paper we describe a 

system with a stable equilibrium, thus η is always negative.  

 In the context of emotion, this parameter is often assumed to capture emotional 

lability (Chow et al., 2005), which has been defined as mood stability, or lack of it 

(Harvey et al., 1989). Figure 2 depicts the trajectories of negative affect of three 

hypothetical individuals over time. All three individuals start off at the same point of 

non-equilibrium, but each of them has a different value of η. The individual with a value 

farther away from zero (η = -.6) oscillates faster and thus experiences faster changes in 

affect, leading to a higher oscillation frequency. If we think of the individuals as bowls, 

the individual with the closest η value to zero (η = -.2) would be a flatter bowl.  

INSERT FIGURE 2 ABOUT HERE 

Resilience (ζ) 

In Figure 2, the parameter ζ equals zero for all three individuals. In physics, this 

situation is called Perfect Zero-Length Spring and implies no dissipation of energy in 

the system. Once the system is displaced from the equilibrium, it keeps oscillating 

indefinitely, following an invariant trajectory over time (see, for example, Boker et al., 

2010b). Of course, the Perfect Zero-Length Spring is not realistic in most empirical 

situations. In a real-life ball-bowl system, once the ball is displaced from the 



equilibrium, its oscillations will gradually decrease until it finally stops at the bottom of 

the bowl.  

Changes in the amplitude of the oscillations are captured by non-zero values of 

parameter ζ. Such a system is called a Zero-Length Spring with Linear Damping (Boker 

et al., 2010b) in which acceleration is 
2 2/  ζ /d x dt x dx dt= η +  (see Equation 1). In 

theory, both positive and negative values are possible for ζ, but only negative values 

imply damping or friction. This is because, with a positive value of ζ, the faster the ball 

is moving, the more acceleration it experiences in the same direction in which it is 

moving, whereas a negative value of ζ implies that the faster the ball is moving, the 

more acceleration it experiences in the opposite direction. Thus, a positive ζ leads to an 

amplification of the oscillations: after a displacement occurs, the system moves away 

from the equilibrium with a gradually larger amplitude―that is, it reaches higher 

acceleration and velocity in each oscillation. In contrast, negative values of ζ result in a 

progressive reduction of the amplitude in each oscillation, because the faster the ball 

moves, the more damping or friction it experiences. Consider two bowls, one whose 

surface is made of velvet, and the other made of metal and covered by oil. The damping 

or friction parameter would be negative for both, but much farther from zero for the 

velvet bowl. Due to this friction, the system returns to the equilibrium point much 

sooner.  

Fitting the DLO model to negative affect data typically leads to negative 

estimates of ζ (see, for example Bisconti et al., 2004; Boker et al., 2010b; Pettersson 

et al., 2013) representing the tendency of oscillations of affect to decrease in amplitude, 

until returning to the equilibrium, unless further perturbed. In the context of emotion, 

several interpretations are possible for this parameter. Here we consider it to capture 



emotional resilience. Resilience has been defined as the ability to resist, cope with, 

recover from, and succeed in the face of adverse life experiences (Montpetit et al., 

2010). We consider that this parameter captures resilience because a more negative 

value of ζ implies a shorter time away from equilibrium after a displacement, given the 

same emotional lability. That is, if two individuals have the same emotional lability, the 

one with the more negative ζ will either resist better or recover faster from a change in 

negative affect and, consequently, will return to equilibrium earlier than the other 

individual. Figure 3 depicts the trajectories of negative affect of three hypothetical 

individuals over time, who have the same emotional lability (η = -.4). The individual 

with a ζ value farther away from zero (ζ = -.45) experiences more damping or friction 

and therefore returns to their equilibrium earlier than individuals with values closer to 

zero.  

INSERT FIGURE 3 ABOUT HERE 

Impact of Daily Events or Vulnerability to Daily Events (𝞂𝞂2q) 

The trajectories of negative affect depicted in Figures 2 and 3 are not realistic 

because they only include one displacement from equilibrium at t = 0. However, 

negative affect is impacted by numerous daily events, such as having an argument with 

a romantic partner or a family member, failing an exam, receiving good or bad news, 

experiencing a problem at work, among many others. Each of these events cause a new 

displacement of negative affect from the equilibrium point. Back to the ball-bowl 

metaphor, these events are external forces that are constantly tapping the ball and 

moving it both to the right and to the left, leading to a system that never stabilizes at its 

“equilibrium point”, regardless of how much time passes. 



In the DLO model, the influence of these daily events is represented with the 

parameter 𝞂𝞂2
q, which is usually termed dynamic error variance. Daily events cause 

fluctuations in the rate of acceleration that, in turn, influence the latent scores of 

negative affect. If such events are measured, they can be included in the model as 

observed time-specific variables. However, it is hardly possible to keep track of all the 

internal and external events to which an individual is exposed throughout the day. When 

daily events are not registered, which is often the case in applied research, their effects 

on the individual are not predictable. In the DLO model, these unpredictable pulls and 

nudges to the level of affect are modeled as random dynamic noise, which is 

represented as a Gaussian stochastic process with mean zero and variance 𝞂𝞂2
q. The 

addition of random dynamic noises, also termed innovations, leads to a stochastic 

differential equation, and implies that the dynamics are not perfectly predicted by the 

previous state of the system, as random innovations can enter it at any moment. As 

shown in Equation 1, q is time-varying. This implies that, at each time t, the amount of 

dynamic error added to the system can be different, although it is always drawn from a 

normal distribution with time-invariant parameters: ( ) 2

0 00
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. 

In the context of emotion, dynamic error variance could be interpreted in two 

ways: individuals with larger variance are a) affected by more impactful events in their 

everyday life, or b) more vulnerable than other individuals to the same daily events. 

Figure 4 depicts the trajectories in negative affect of four hypothetical individuals over 

time who have the same emotional lability (η = -.4) and resilience (ζ = -.15). Unlike 

Figures 2 and 3, all individuals in Figure 4 start off at their equilibrium point at t = 0. A 

higher value of dynamic error variance means that larger displacements from 

equilibrium are more likely. Therefore, at any given time, the individual with 𝞂𝞂2
q = 6 is 



likely to be displaced farther away from their equilibrium than the individuals with 

lower values of dynamic error variance.  

INSERT FIGURE 4 ABOUT HERE 

Measurement Error (𝞂𝞂2r) 

As with any other psychological construct, the measures provided by an 

instrument designed to assess affect are not assumed to be the true values of negative 

affect. Any observed value is affected by a certain amount of measurement error, caused 

by multiple factors related to the measurement process (e.g., fatigue, reactivity, social 

desirability, etc.). This is represented in Equation 2 by the measurement error variance 

(𝞂𝞂2
r). In consequence, nonrelevant measurement error variance is added at each 

measurement occasion. Such errors are assumed to be drawn from a normal distribution 

[ ]( )20  ,  rN σ    with mean zero and variance 𝞂𝞂2
r.  

Panels A and B of Figure 5 depict the latent trajectory of negative affect for one 

individual over time (with η = -.4, ζ = -.15 and 𝞂𝞂2
q = 2) with a solid black line. The 

other two lines represent the observed trajectory in negative affect for this individual, 

and the values of measurement error variance are different in each panel. It can be 

noted how, for the same latent trajectory, different values of measurement error 

variance (𝞂𝞂2
r) lead to time-specific deviations of the latent trajectory of different size. 

Higher values of measurement error variance mean that larger errors are more likely in 

each measurement, leading to observed trajectories with larger deviations.  

INSERT FIGURE 5 ABOUT HERE 



Modeling Affect Dynamics in Continuous Time 

In a dynamic system, the current state of negative affect is considered to depend 

on its preceding states―that is, the current negative affect is determined, at least in part, 

by the negative affect at the previous occasion. Two frameworks are available for 

describing this feature: (1) the discrete-time (DT) framework, in which the passage of 

time is represented in discrete steps and the change in the system is defined for a 

specific time interval (i.e., from t−1 to t), and (2) the continuous-time (CT) framework, 

in which time is considered a continuous variable and the change in the system is 

defined for an infinitesimally brief time interval (dt) (see, for example, Ryan et al., 

2018; Voelkle et al., 2012). In the context of affect dynamics, parameters estimated in a 

DT framework capture the change in affect for a certain time lag (e.g., one day) whereas 

parameters estimated in CT capture the change for an infinitesimally brief time lag 

(Estrada & Ferrer, 2019). Theoretically, if a phenomenon is supposed to unfold 

continuously, as most of the psychological processes are, it seems more adequate to 

study it from a CT framework. Otherwise, the researcher is assuming that the process 

ceases to exist between observations (Oud & Delsing, 2010).  

In this work, the dynamic model of a DLO is specified in CT. This presents 

some practical advantages over a DT specification (see, for example, Ryan et al., 2018). 

First, in a CT specification, the underlying process is assumed to develop continuously 

over time but observed at some discrete time points (Oud & Voelkle, 2014). Therefore 

equal sampling intervals are not necessary, furthermore, it can be advantageous to use 

unequal sampling intervals, in particular when the sampling rate is low (Voelkle & Oud, 

2013). Second, in many scenarios, a model in discrete time is a particular case of the 

corresponding continuous-time model (Deboeck & Preacher, 2016; Ryan et al., 2018; 

Voelkle et al., 2012). Therefore, it is possible to rescale the parameters estimated in 



continuous time to obtain their corresponding values in discrete time for any sampling 

interval. Third, the application of CT models allows comparing parameter estimates 

from studies that used different time intervals (Deboeck & Preacher, 2016; Voelkle et 

al., 2012).  

Purpose of the study 

Previous research has shown that intraindividual variability is a very relevant 

factor in the study of negative affect (Bisconti et al., 2004; Chow et al., 2005). 

Therefore, we consider that a fully individual-based approach (i.e., fitting one separate 

model for each participant) is a promising avenue for the study of affect dynamics, 

especially in applied contexts typically focused on the individual, such as clinical 

psychology. 

However, although some studies on the performance of the DLO model exist, 

there are no clear recommendations on how to use it to conduct single-participant 

studies. In particular, there is very little information about how to sample the process of 

interest in order to adequately capture its temporal dynamics, or how estimates are 

affected by the degree of stochasticity of the process. These aspects are especially 

important for researchers because insufficient sampling or a high degree of stochasticity 

may cause the dynamics of the system to be characterized incorrectly. Consequently, the 

researcher could draw inaccurate conclusions from the results with detrimental 

implications for their applied goals. On the other hand, a more frequent sampling rate 

than required would avoid mischaracterization but would also be less efficient and 

increase research costs. Accordingly, we conducted a Monte Carlo study with the 

following purposes:  



1. Examine the performance of the DLO model under different empirically 

relevant conditions regarding the individual features and the sampling 

scheme.  

2. Based on our results, make specific recommendations on how to design 

studies on negative affect, and how to study affect dynamics using a DLO 

model. 

A tutorial website with computer code in R for applying this model, and notes 

on how to use it, are provided in the following link: 

https://marjfollero.github.io/DLO/Tutorial.html 

Methods  

Monte Carlo Study 

We generated repeated measures of negative affect for one individual (N=1), 

modeled as a latent process that unfolds in continuous time. The generating process was 

defined by the DLO model described in the previous sections, with parameters η = -.4, ζ 

= -.15, and r = 0.75. Although previous empirical studies have found between-

individual variability in these parameters, reported values for the frequency parameters 

(η) are typically close to the value selected here (Boker et al., 2010b; Montpetit et al., 

2010; Steele & Ferrer, 2011). In a damped linear oscillator system, the period 

oscillation (time taken to complete a whole cycle, λ) is a function of the frequency and 

damping parameters:  
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The values selected here for frequency and damping imply a period of 

oscillation of 9.86 days, meaning that, in the absence of large disturbances, the 

https://marjfollero.github.io/DLO/Tutorial.html


individual enters a new oscillation cycle approximately every 10 days. These values of 

period λ and damping ζ are consistent with previous estimates obtained from empirical 

data (Boker et al., 2010b).  

Regarding the simulation conditions of the study, we manipulated the number of 

measurement occasions in two ways: (1) number of days the participant is under study 

and (2) number of measurement occasions per day. We also manipulated (3) the 

occasions at which these measurements were collected: either all measurements taken at 

the exact same time every day (i.e., fixed time intervals), or measurements taken at 

random times during the day (i.e., varying time intervals from one measurement to the 

next). Additionally, we manipulated (4) the value of dynamic error variance (𝞂𝞂2
q). As 

explained above, individual differences in this parameter would capture either the 

magnitude of daily events affecting the individual or their vulnerability to events 

experienced in their daily life.  

1. Number of Days Under Study  

The number of days an individual is measured affects the accuracy with which 

the parameters defining their affect dynamics can be recovered. We aim to determine 

the minimum number of days that a single person needs to be measured to accurately 

capture their affect dynamics with a DLO model. For this purpose, we generated data 

for 14, 30, 60, 90, 120, 150 and 180 days. We decided to include a condition with 14 

days of data collection as the minimal setting because it is a common time frame in 

applied studies on affect. We extended our conditions up to 180 days because there was 

no previous information on what is the appropriate number of data points needed to 

recover the parameters correctly, and consequently we needed to achieve a high number 

of repeated measurements to examine what is the optimal duration.  



2. Number of Measurement Occasions per Day   

In most empirical studies on affect dynamics individuals are measured once per 

day. We hypothesize that more than one measurement per day might be helpful to 

characterize the dynamics of a single person, particularly if the process under study is 

affected by dynamic error. To investigate this aspect, we generated data in three 

different conditions: (1) one measurement occasion per day, (2) two measurement 

occasions per day, and (3) four measurement occasions per day.  

3. Measurement Occasions at Fixed Intervals or at Varying Intervals 

Most empirical studies omit whether measurements were taken at the same time 

each day. One of our goals is to compare the recovery of the parameters characterizing 

an individual’s affect dynamics in conditions with equal versus unequal time intervals 

between measurements. In the conditions with equal time intervals, measurements were 

taken every day at the exact same times (i.e., the same hour every day) within a fixed 

12-hour window: (1) in conditions with one measurement per day we selected the first 

hour of each day of data collection, (2) in conditions with two measurements per day we 

selected the first and twelfth hour of each day of data collection, and (3) in conditions 

with four measurements per day we selected the first, fourth, eighth and twelfth hour of 

each day of data collection. In contrast, in the conditions with unequal time intervals, 

we randomly selected the time of measurement for each day, with equal probability for 

all the hours within a fixed 12-hours period. This was done to reflect the fact that 

individuals are not usually available to be measured at any time (e.g., when they sleep). 

Instead, they are more likely to be measured during their active hours. 

4. Dynamic Error Variance  



As previously stated, dynamic error variance (𝞂𝞂2
q) can be interpretated as the 

impact of daily events that displace latent scores either to increase or decrease them. 

Individual differences in 𝞂𝞂2
q imply that people’s negative affect is affected by such 

events to different extents. Larger values of dynamic error variance (𝞂𝞂2
q) mean that 

larger displacements not explained by any measured variable occur, thus it may be more 

difficult to estimate the parameters that characterize a trajectory. On the other hand, if 

𝞂𝞂2
q is equal to zero, the system would eventually reach equilibrium and cease to 

oscillate afterwards. After this point, the level of negative affect would be constant and 

there would be no affect dynamics. However, this is a very unrealistic situation in which 

the individual's negative affect is not influenced by daily life events. 

In order to understand how different values of dynamic error variance affect the 

recovery of the generating process, we imposed the following values for 𝞂𝞂2
q: 0.5, 2, 4, 

and 6 (see Figure 4).  In empirical applications of the DLO model, the measurement 

structure (Equation 2), is usually not included, and thus no distinction is made between 

dynamic error variance and measurement error variance. Because there is not a typical 

value of dynamic error variance in the literature, the values selected for the simulation 

were meant to cover a wide range of empirical scenarios.  

The combination of the four simulation factors described above led to 168 

simulation conditions. For each of the 168 combinations we generated five hundred 

replications (i.e., 500 individuals). This number was adequate to achieve consistent 

results. 

Summary of Simulation Conditions 

1. Number of days under study: 14, 30, 60, 90, 120, 150, and 180. 



2. Number of measurement occasions per day: one measurement occasion per day; 

two measurement occasions per day; and four measurement occasions per day.  

3. Measurement Occasions at: fixed time intervals or varying time intervals 

4. Dynamic error variance (𝞂𝞂2
q): 0.5, 2, 4 and 6.   

(Values fixed across all conditions:  η = -.4, ζ = -.15, and 𝞂𝞂2
r = 0.75.) 

Data Analysis  

For each replication (i.e., individual) in each condition, we separately estimated 

the DLO model described previously. We specified the model as a continuous-time state 

space model, using the library OpenMx in R (Boker et al., 2018; Hunter, 2018; Neale et 

al., 2016). State space models (SSM) are composed of two equations: the state equation, 

which describes the system latent dynamics and corresponds to Equation 1 described 

previously, and the output equation which links the latent variables with their observed 

indicators, and corresponds to the measurement model described in Equation 2:  

 

  ( ) ( ) ( ) ( )/dx t dt x t u t q t= + +   A    B    (4) 

  t t t ty x u r= + +   C    D      (5) 

The state equation3 (Equation 4) specifies the derivative of tx with respect to 

time as ( ) /dx t dt  . ( )x t  is an l 1×  vector of latent states at time t , where l is the 

 
3 The state equation (Eq. 4) is in continuous time, and the notation x(t) indicates that x is 
a continuous function of t, whereas the output equation (Eq. 5) is in discrete time and 
the notation xt indicates that x is indexed by t. When estimating the model, the 
continuous differential equation in Eq. 4 is solved for all discretely observed values of t. 



number of latent variables. ( )u t  is an m 1×  vector of covariates, where m is the 

number of covariates. ( )q t  is an l 1×  vector of dynamic noise with mean zero and 

covariance matrix Q (which includes the dynamic variance parameter 𝞂𝞂2
q in position 

2,2). A is an l l×  matrix of autoregressive dynamics (including parameters η and ζ) and 

B is an l×m matrix capturing the effects of the time-varying covariates ( )u t (Hunter, 

2018). In SSMs, the state equation is a first-order differential equation that describes 

how latent states change over time. In contrast, the dynamic equation of the DLO model 

is a second-order differential equation that describes how the negative affect (position) 

and the first derivative of negative affect (velocity) change over time. This apparent 

problem is solved by defining the first-order derivative (𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ ) as an additional latent 

variable that is not linked to any observed indicator (see, for example, Voelkle & Oud, 

2013). The specification used in this study includes no covariates, therefore 0B = and 

( ) 0u t = . 

In the output equation (Equation 5), ty is an   1 n×  vector of manifest variables, 

where n is the number of manifest variables. tr is an   1 n×  vector of observation noise 

with mean zero and covariance matrix R. C is an    n l×   matrix of factor loadings, and D 

is an n×m matrix of covariate effects on the observation (Hunter, 2018). Because no 

covariates are included in this study, 0D =  and 0tu = . 

We estimated this model through the functions 

mxExpectationStateSpaceContinuousTime and mxFitFunctionML in OpenMx. These 

functions estimate the model parameters through a set of recursive algorithms called the 

hybrid Kalman Filter. This process recursively estimates the state vector and state 



covariance matrix through a series of prediction and update steps. In the prediction step, 

it generates forecasts at any time t based on the latent state vector and covariance matrix 

at the previous time. In the update step, it uses the observed data to update the predictor 

from the previous step. At the end of this process, the Kalman Filter adjusts the 

parameters of the model reducing prediction error decomposition through maximum 

likelihood prediction error decomposition (Hunter, 2018; Kalman, 1960; Neale et al., 

2016). A tutorial website with computer code in R for applying the model, and notes on 

how to use it, is provided in the following link: 

https://marjfollero.github.io/DLO/Tutorial.html 

The next section reports the results obtained after applying this estimation 

method to the simulated data. For each of the 168 simulation conditions, we computed: 

the rate of improper solutions, the degree of estimation accuracy and efficiency for each 

parameter, the rate of 95% confidence interval (CI) coverage of the parameter estimates, 

and the relative bias of the Standard Errors (SEs) for each parameter.  

Results 

Improper solutions 

In some of the replications, the estimation procedure led to convergence 

problems and improper solutions. A solution was considered improper when the 

optimization algorithm a) was stuck in a region of confusing geometry (OpenMx status 

code 5), or b) the optimizer could not find any way to improve the estimates (OpenMx 

status code 6). 

The number of replications leading to improper solutions varied across the 

simulation conditions, with the duration of the study being the most important factor. 

Table 1 reports the percentage of improper solutions in the conditions with relevant 

https://marjfollero.github.io/DLO/Tutorial.html


rates of them. Improper solutions were very infrequent (<1.8%) in conditions with 60 

days or more under study. In contrast, in conditions with 14 days under study, improper 

solutions were very frequent (range 1%-63%, median = 18%). This was also the case 

with 30 days under study when only one measurement occasion per day was available 

(rates ranging from 8% to 19%, median = 11%). With 30 or more days, and two or more 

time points per day, improper solutions never exceeded 5%. 

In general, an increase in the number of measurements occasions per day led to a 

decrease in the percentage of improper solutions. Additionally, improper solutions were 

more frequent when 𝞂𝞂2
q=0.5. Interestingly, no remarkable differences were observed 

between conditions with fixed vs. varying time intervals. Only proper solutions were 

used for the subsequent analyses. 

INSERT TABLE 1 ABOUT HERE 

Estimation Accuracy  

As an indicator of accuracy, we computed Relative Bias (RB) for each parameter 

in the model as   (θ    θ) / θestRB= − , where θ is the true parameter value and θest   is the 

average estimated value of the parameter across all the replications in a given condition. 

Values of RB closer to zero imply unbiased estimates, positive values imply 

overestimation, and negative values imply underestimation. According to previous 

literature (Flora & Curran, 2004; Rhemtulla et al., 2012), we consider parameters with 

|RB| < .10 (bias under 10% of the parameter true value) as adequate estimates. We 

consider parameters with .10 ≤ |RB| ≤ .15 (bias between 10 and 15% of the parameter 

true value) as tolerable bias. Additionally, in each replication we computed the total 

relative bias for all parameters as 2
1

K
kk

RMSRB RB K
=

= ∑ ,where K=4 is the number of 

parameters in the model.  The values of Root Mean Squared Relative Bias (RMSRB) 



are reported in Table 2 and depicted in Figure 6. The values of RB for each parameter 

are reported in Table 3.  

In general, the total relative bias decreased as the number of days under study 

increased. The first important finding in this regard is that the results were always 

unacceptable with 14 days under study. In other words, even in the best conditions, at 

least 30 days were required to obtain unbiased estimates.  

Furthermore, the number of measurement occasions per day had a large 

influence on the total relative bias across all conditions. Particularly, the total relative 

bias was much larger in conditions with one measurement occasion per day (1 O/D), 

compared to two or four O/D. We found RMSRB > .18 in all the conditions with 1 O/D 

(median RMSRB = .27), regardless of the dynamic error variance and the type of 

intervals (fixed vs. varying). The results from Table 3 indicate that this poor 

performance is due to heavily biased estimation of the dynamic and measurement error 

variances with 1 O/D. Therefore, the second important finding from our study is that 1 

O/D is not enough to adequately characterize individual affect dynamics with a DLO 

model. The differences between the conditions with two and four measurement 

occasions per day were not large, although the total relative bias was generally lower in 

the conditions with four measurement occasions per day. 

Interestingly, the dynamic error variance had an important effect on the 

estimation accuracy. We found substantial bias in most conditions with low dynamic 

error variance (𝞂𝞂2
q= 0.5). In such conditions, at least two O/D and 120 days were 

required to obtain overall bias below 10%. With higher values of 𝞂𝞂2
q, the results were 

generally acceptable with 60 or more days (with fixed intervals), or 30 or more days 

(with varying intervals). 



Another interesting finding was that, in conditions with 𝞂𝞂2
q= 4 and 𝞂𝞂2

q= 6, and 

only with varying time intervals, RMSRB increased with the number of days under 

study. This was not observed with fixed time intervals. This interaction pattern is 

another important finding from our study: with two or more O/D, using varying time 

intervals (i.e., sampling affect at random hours during the day) results in fewer study 

days required (i.e., 30 days in most conditions) to achieve unbiased estimates. However, 

and surprisingly, varying time intervals led to higher bias, compared to fixed intervals, 

in most of the conditions with 90 or more days. 

INSERT TABLE 2 AND FIGURE 6 ABOUT HERE 

Regarding the bias for the specific parameter estimates (reported in Table 3), the 

frequency parameter (η) was generally unbiased with 30 or more days, even in 

conditions where the overall relative bias (RMSRB) was not acceptable. The damping 

parameter (ζ) was acceptably recovered in most conditions with RMSRB < 0.10, with 

RB values generally below .10, or just above such value. The damping parameter was 

unbiased also in some conditions with 1 O/D, as long as a large number of days were 

available. In contrast, the dynamic error variance (𝞂𝞂2
q) was generally biased in the 

conditions where RMSRB > 0.10 and was frequently biased when 𝞂𝞂2
q=0.5. This 

parameter was biased also in conditions with varying intervals and 𝞂𝞂2
q=6. Finally, the 

measurement error variance (𝞂𝞂2
r) was better recovered with at least 2 O/D. In fact, it 

was unbiased in all the conditions with 4 O/D, regardless the number of days under 

study and the value of 𝞂𝞂2
q. In summary, our results indicate that the two variance 

parameters in the model appear to be harder to estimate than the frequency and damping 

parameters. 

INSERT TABLE 3 ABOUT HERE 



Variability of the Parameter Estimates  

To examine the efficiency of the parameter estimates, we computed the Standard 

Deviation of the Relative Bias (SDRB) as [ ]    (     ) /estSDRB SD= θ −θ θ , where estθ  is the 

estimation in a given replication and θ is the generating value for that parameter. SDRB 

allows expressing the estimation inefficiency in the same scale for all the parameters: 

the index is always positive and values closer to zero indicate lower variability of the 

parameter estimates in any given condition. Table 4 reports the value of SDRB for all 

the conditions in our study. 

As expected, more days under study led to lower SDRBs. This is because the 

model had more information (i.e., more measurement occasions, which in this scenario 

implies larger sample size) and therefore, the parameter estimates were more efficient. 

Regarding the number of measurement occasions per day, it was largely irrelevant in the 

conditions with 𝞂𝞂2
q ≥ 2 and 60 or more days. In contrast (and surprisingly), with 𝞂𝞂2

q=0.5 

and 14 or 30 days under study the estimate variability sightly increased with more O/D. 

Additionally, the SDRBs were larger in conditions where 𝞂𝞂2
q=0.5, compared to 

conditions with higher values of the dynamic error variance. Finally, comparing for 

parameters, the SDRB was generally higher for ζ and 𝞂𝞂2
q than for η and 𝞂𝞂2

r across all 

conditions.  

INSERT TABLE 4 ABOUT HERE 

Coverage and Relative Bias of the Standard Errors  

Coverage was computed as the proportion of 95% confidence intervals around 

the estimated parameter value that include the true parameter value. It is considered 

optimal when at least the 95 % of the intervals include the true parameter within its 

limits, and adequate if at least the 90% of the intervals include the true parameter within 



its limits (Collins et al., 2001; Enders & Peugh, 2004). The coverage for each parameter 

across all conditions is reported in Table 5. 

As expected, conditions with biased estimates led to poor coverage of the true 

parameter values. However, we found poor coverage also in conditions with adequate 

RB values. In fact, the coverage was below 95% for at least one parameter in all the 

conditions of our study.  

INSERT TABLE 5 ABOUT HERE 

Obtaining poor coverage indexes led us to investigate the possibility that the 

standard errors were underestimated. To examine this hypothesis, we computed the 

relative bias of the SEs (SERB) as ( ) /SESERB SDRB SDRB= θ − , where SDRB  is the 

empirical standard deviation of the relative bias of each parameter, computed across all 

the replications of each condition, and SEθ is the mean of the standard error estimates of 

each parameter in each condition. Note that SDRB is taken as a proxy of the true 

variability of the sampling distribution, whereas SEθ  is the estimated variability. The 

results regarding Standard Error bias are reported in Table 6. We found that the standard 

errors of all parameters were underestimated across all conditions, except for the 

standard errors of 𝞂𝞂2
r, which were anecdotally unbiased in some conditions with 1 O/D. 

Therefore, the bad coverage rates were due to the underestimation of the parameter 

standard errors. For this reason, even in replications with very accurate point estimates, 

the confidence intervals were too narrow and often excluded the true parameter value. 

INSERT TABLE 6 ABOUT HERE 



Discussion 

Summary of Findings  

In this paper, we had three objectives: (1) to connect the key features of the DLO 

model with the clinical aspects that they capture, and therefore to present the model in 

an intuitive way to applied practitioners, (2) to test the performance of the DLO model 

under different empirically-relevant conditions through a simulation study, and (3) 

based on our findings, to make specific recommendations on how to design individual-

based studies on negative affect when the researcher plans to examine its dynamics 

through a DLO model. We addressed our first goal through a detailed step-by-step 

description of the model in the introduction. In this section, we summarize the most 

relevant results and discuss the model performance. In the last section of this paper, we 

make several recommendations for applied researchers. 

The first relevant finding is that, from the standpoint of adequate model 

convergence, if the individual is measured once a day, at least 60 days are required to 

minimize the incidence of improper solutions. Higher values of dynamic error variance 

led to low rates of improper solutions with 30 days, but the value of 𝞂𝞂2
q for a given 

individual is unknown for the researcher before conducting the study, and therefore 

cannot be taken into consideration for planning it. Importantly, taking two or more daily 

measures, either at fixed or varying intervals, for at least 30 days, led to very low rates 

of improper solutions in the conditions examined here. 

Regarding the accuracy of the parameter estimates, we found that at least two 

daily measurements are needed to obtain unbiased estimates. Indeed, overall model bias 

was unacceptable in all the conditions with one measurement occasion per day. We 

found acceptable bias (based on RB values) for all four parameters of the DLO model in 

only a restricted set of combinations of conditions (see the bold type results in Table 3, 



and the summary recommendations in the section “Conclusions and 

Recommendations”). 

As expected, our results indicate that the estimation is more efficient (i.e., 

estimates show lower variability across replications) when the individual is measured 

for more days. However, and surprisingly, more measurement occasion per day lead to 

lower variability only in some (but not all) conditions. Dynamic error variance ≥ 2 led 

to similar efficiency across the conditions. Finally, coverage indexes were very poor in 

all conditions due to generalized underestimation of standard errors. Based on these 

findings, we make specific recommendations on how to apply the DLO model to single-

case applied research in the section “Conclusions and Recommendations”.  

Theoretical and Methodological Implications 

This paper aims to increase the accessibility of the damped linear oscillator 

model for studying the dynamics of psychological processes at the individual level. 

Although we have previously discussed that, in some circumstances, an individual-

based approach is necessary, we want to emphasize that it also implies different 

requirements, as typically more days under study and a higher sampling frequency are 

required in single-individual studies. In our simulation study, we generated data for 

hypothetical individuals with an oscillatory period of negative affect of approximately 

10 days. In this context, taking two or four daily measurements either at fixed or 

varying time intervals within the same window of 12 hours each day led to the best 

results in terms of accuracy and efficiency of the parameter estimates. 

Our results are in line with previous studies showing that a higher number of 

measurement occasions results in more accurate parameter estimates (McKee et al., 

2018). A previous simulation study on the DLO model (Voelkle & Oud, 2013) reached 

the conclusion that unequal (instead of fixed) time intervals between measurements 



result in lower bias in the parameter estimates. In that study, one DLO model (without a 

parameter for measuring error variance) was fitted in continuous time to simulated 

samples of 200 individuals measured for 11 days. Our results are not directly 

comparable, because we fitted DLO models including measurement error variance to 

single individuals evaluated for at least 14 days. However, we did find somewhat better 

performance when sampling at varying time intervals under 30 days. Importantly, the 

performance under 14-day conditions was promising. Under these conditions, when a 

minimum of two measurements were available and the dynamic variance was greater 

than 0.5, the occurrence of improper solutions did not exceed 14%. Furthermore, 

although the overall relative bias rates were not satisfactory, η and 𝞂𝞂2
r were recovered 

well in several conditions and in some conditions, although to a lesser extent, 𝞂𝞂2
q and ζ. 

Nevertheless, we found that the performance of fixed time intervals sampling improved 

with more days under study, particularly with higher values of dynamic error variance, 

to the point of obtaining lower bias than varying sampling for some combinations of 

dynamic error and number of days (see Figure 6). It must be noted, though, that, under 

many conditions, whether the measurement occasions are collected at fixed or varying 

time intervals leads to fairly similar recovery of the parameter estimates.   

In general, empirical and methodological studies do not report whether 

measurements are taken at the same time every day or at unequal intervals. In contrast 

to this, our study takes into account unequal intervals for data generation, allowing for 

more flexibility in data collection. Furthermore, methodological studies typically do not 

account for the fact that individuals are not always available to be measured. In our 

study, we considered that the individual was only available 12 hours each day, which is 

more realistic in empirical applications. 



 In brief, our study includes several factors that we believe facilitate the 

transmission of our results to the applied field. To begin with, we differentiate between 

dynamic error variance and measurement error. We think this distinction is necessary 

since, although they are both noise to the model, the source of origin is not the same and 

they impact the system under study differently. Given that, we provide the results for a 

wide range of dynamic error variance values giving information to the applied 

researcher on a variety of scenarios. In addition, we included conditions with 

measurement occasions at the same time and at different times of the days, but taking 

into consideration that participants are not available at any time of the day, thus 

generating data that are closer to substantive settings.  

In this study, we considered scenarios with one, two, and four measurement 

occasions per day. However, the number of daily measurements required to characterize 

a phenomenon depends on the timescale of the phenomenon under study. If we want to 

uncover the dynamics of a phenomenon that has a shorter timescale, such as heart rate, 

we will need a higher sampling frequency each day and probably fewer days under 

study. In contrast, if the timescale is larger, as might be the case for weight fluctuations, 

then we might need fewer measurement occasions within a day, but we will probably 

need to measure the individual for more days. Otherwise, insufficient sampling 

frequency will lead to inaccurate parameter recovery and therefore we would not be 

able to characterize the dynamics of the phenomena (Haslbeck & Ryan, 2021). Thus, 

our results apply to negative affect and other phenomena having a similar oscillation 

timescale. 

In the present study, we specified the DLO model as a state-space model in 

continuous time. As previously mentioned, the continuous-time specification has 

several advantages: (1) the underlying process is considered to evolve continuously over 



time and, therefore it is not necessary to use equal sampling intervals (although our 

results indicate that equal intervals may perform better in some conditions), (2) the 

parameters can be transformed to a discrete-time metric, and (3) it allows comparison of 

parameters estimated at different time intervals (Deboeck & Preacher, 2016; Ryan et al., 

2018; Voelkle et al., 2012; Voelkle & Oud, 2013). In addition, a SSM in continuous 

time approach allows to estimate the model through the Kalman Filter. This is one of 

the innovations of this paper, as previous studies have used others methods such as the 

local linear approximation  (see Steele & Ferrer, 2011) and the general local linear 

approximation (see Boker et al., 2010b). The estimation method applied in this paper 

has the important advantage over these other methods of simultaneously modeling both 

stochastic innovation (i.e., dynamic error variance, parameter 𝞂𝞂2
q) and measurement 

error variance (parameter 𝞂𝞂2
r) (Boker et al., 2010a).  

The application of this model is very useful for several purposes. First, this 

model could be used to conduct applied research on affect dynamics or other 

phenomena that theoretically follow an oscillatory trajectory over time, both from an 

individual-based approach and from a group-based approach. Second, based on the 

Adaptative Equilibrium Regulation framework (Boker, 2015), after characterizing a 

person’s affect dynamics, it would be possible to examine whether certain events lead to 

changes in the parameters characterizing affect dynamics (i.e., a regime change, Chow 

et al., 2018). For example, the effectiveness of a psychological intervention aimed at 

increasing the individual's emotional resilience could be assessed through a change in 

the resilience parameter estimate (ζ). Similarly, changes in the individual’s environment 

could lead to larger and more frequent perturbations in negative affect, and this could be 

reflected by a higher value in the dynamic error variance. Relatedly, an adequate 

characterization of the individual’s emotional lability and resilience would allow 



predicting the time needed for recovering their equilibrium (i.e., regulation) after a 

specific emotional shock (e.g., a one-time traumatic event such as the death of a close 

person). In fact, it would be possible to empirically test whether such a one-time shock 

leads to a stable regime change (i.e., an adaptation) or merely perturbs the trajectory at a 

given time point. Furthermore, in contexts with limited resources, characterizing the 

affective dynamics of several individuals affected by a recent event could inform how 

the resources should be allocated so the individuals most in need of a psychological 

intervention are prioritized based on their parameter estimates, as otherwise they would 

take longer to recover homeostasis after the shock. 

We note that, although this model can be very useful in applied settings, accurate 

parameter estimation is difficult in some conditions. Therefore, we advise caution in the 

parameter interpretation (particularly of the dynamic error variance), especially if they 

were estimated under conditions found to be problematic. 

Limitations and Future Directions 

According to the Adaptative Regulation Framework (Boker, 2015), affect 

dynamics can experience both regulation and adaptation over time. Regulation is the 

ability of the system to recover equilibrium in response to perturbations on a short time 

scale, whereas adaptation is the ability to manage persistent forces over the long term. 

Importantly, the processes of adaptation and regulation occur simultaneously, but on 

different timescales. In this study we have focused on regulation, and therefore our 

results are constrained to such process. In addition, they are also limited to negative 

affect and other phenomena with similar timescale. 

Of course, our findings apply to the specific conditions that we simulated. 

Although such conditions are empirically relevant, other scenarios are also possible in 

studies of emotion dynamics. For example, future research should examine the model’s 



performance in situations with more frequent sampling (e.g., 8 or 10 measurement 

occasions per day), during 14 or fewer days. Here, it is important to take into account 

the timescale of what is being studied. If the phenomenon has a very large period 

oscillation (i.e., a cycle implies many days), then by increasing the sampling frequency 

further information will not be obtained. We recommend measuring during at least one 

cycle and we consider that future research could study how many measurements are 

needed within a day to characterize phenomena with different period oscillations. 

 Other authors have conducted simulation studies to provide recommendations 

on how to measure affect with versions of the DLO model different from the 

specification proposed here. For example, McKee et al. (2018) fitted an extension of the 

damped linear oscillator that includes both regulation and adaptation processes. On their 

part, Hu & Huang (2018) conducted a simulation study with the Driven DLO, which is 

an extension of the DLO model that focuses on regulation and includes a term that 

allows for a non-zero steady state.  Additionally, the model could be extended to 

account for both time-dependent and time-invariant covariates, such as the day of the 

week or the presence of a psychological disorder, that could also explain the dynamics 

of negative affect (Adolf et al., 2017). Such covariates were not considered in our study. 

A special case worth mentioning is sleep/wake cycles. These cycles could influence the 

dynamics of negative affect by cyclically changing parameter values. This feature is 

difficult to assess because individuals are not available at any time of the day. We 

addressed this problem by considering an availability of 12 hours per day, allowing us 

to simulate a more realistic situation. Finally, the DLO can be extended to the bivariate 

case, which allows modeling two variables at the same time and examining the 

influence of each variable on the other. Some variables that would be susceptible to be 

modeled together with negative affect are, for example, stress or positive affect.  



Although not considering these scenarios is a limitation of our work, we believe 

that it is necessary to examine the model performance in a simpler scenario – a 

univariate model with one timescale and no covariates– before adding more complexity. 

Therefore, we believe that future research should focus on developing formal theories to 

guide researchers on how to time the assessments to study negative affect in the applied 

context, while methodological research in particular should focus on accounting for 

such more complex situations.  

A relevant limitation regarding the estimation method proposed in this study is 

the underestimation of the standard errors. Importantly, this limitation does not seem to 

affect the point estimates of the model parameters, but is certainly of concern, as hinders 

the construction of confidence intervals of the estimated parameters. Future research 

should explore when and why this underestimation of standard errors occurs, as well as 

compare different estimation methods. In addition, it would be particularly interesting to 

explore and develop new methods for characterizing the affect dynamics of individuals 

who have been measured during periods shorter than 60 days, either using different 

sampling schemes (e.g., measuring certain days per week), adopting an extension of the 

DLO model or applying alternative estimation methods.  

Conclusions and Recommendations  

Studying a dynamical system from and individual-based approach is necessary 

when: a) working with phenomena that present high inter- and intra-individual 

variability or b) in the context in which the research findings are to be applied, the focus 

is on the individual rather than the group. Our results support the DLO model as a 

valuable and appropriate tool for studying affect dynamics from a single-individual 

approach as long as the following requirements are met:  



1. A 14-day data collection period can prove valuable for exploratory research, 

especially if the researcher is interested in estimating those parameters that 

can be adequately recovered under such conditions, according to our results. 

However, for other purposes, the individual should be measured at least for 

30 days, two times per day.  

2. In general, studies with a duration of 30 to 90 days led to better estimates 

when combined with varying time intervals (i.e., two or more measurements 

per day, taken at random times each day within the same 12-hour window). 

3. In contrast, with more than 90 days under study, we found somewhat better 

results with fixed time intervals (i.e., two or more measurements per day, 

evenly spaced and taken at the same time every day within a fixed 12-hour 

window). 

4. Characterization of affect dynamics appears to be more difficult with very 

high and, particularly, with very low degree of stochasticity, as captured by 

the dynamic error variance parameter. We advise the researcher to base on 

their theoretical expectations, together with preliminary visual inspection of 

the longitudinal trajectory, to get a sense of the degree of stochasticity in 

their data (see Figure 4 for several examples). If a low value for the dynamic 

error variance is expected, at least 4 measurements per day and 90 days of 

study are recommended. In any case, we recommend interpreting very high 

and very low estimates for dynamic error variance with special caution. 

In recent years, single-individual research is making a resurgence and we 

encourage researchers to take part in it. In view of our results, it is possible to do 

applied research from this approach, and the gains at the theoretical level are large. We 



hope that researchers will find this study useful for designing and analyzing oscillatory 

dynamic processes in an individualized way.
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Figure 1 

Illustration of the bowl-ball metaphor based on Boker (2015) 

 

 

 

 

 

 

 

 

 

 



Figure 2 

Trajectories for three different values of emotional lability (η) 



Figure 3 

Trajectories for three different values of resilience (ζ) 

 

 

 



Figure 4 

Trajectories for four different values of dynamic error variance (𝞂𝞂2
q) 

 

 

 

 

 



Figure 5 

Trajectories for the same individual, without measurement error and with different 

values of measurement error variance (𝞂𝞂2
r) 

 

 



Figure 6 

Total Relative Bias across all conditions 

 

Note: Total Relative Bias = 2
1

K
kk

RMSRB RB K
=

= ∑  (where K = 4 is the total number 

of parameters in the model) is depicted for each condition. The horizontal red line 

indicates RBMSRB =.10. Note that the scale for the vertical axis is different for each 

value of 𝞂𝞂2
q. 



Table 1  

Percentage of improper solutions across all conditions 

O/D σ²q 
MO at Fixed Intervals MO at Varying Intervals 

14 30 60 14 30 60 

1 0.5 63 19 2 53 16 2 

2 53 9 .4 43 4 - 

4 47 8 1 43 5 1 

6 46 13 1 42 9 1 

2 0.5 35 2 .2 36 5 .2 

2 14 .2 - 17 - - 

4 11 - - 9 - - 

6 9 - - 5 - - 

4 0.5 19 1 .2 20 2 - 

2 6 - - 7 - - 

4 2 - - 2 - - 

6 1 - - 1 - - 

Note: From 60 days under study the percentage of improper solutions did not exceed 

1.8%. The dashed line indicates that there were no improper solutions in that condition. 

MO = Measurement occasions; O/D= occasions per day. 

 



Table 2  

Total Relative Bias of the DLO model across all conditions 

O/D 
 

σ²q 
  

MO at Fixed Intervals MO at Varying Intervals 

14 30 60 90 120 150 180 14 30 60 90 120 150 180 

1 

0.5 3.54 1.56 .45 .35 .22 .24 .23 5.01 1.72 .60 .31 .24 .25 .22 

2 .27 .30 .27 .24 .23 .21 .23 .74 .43 .22 .22 .19 .18 .19 

4 .28 .22 .31 .30 .31 .32 .31 .24 .26 .27 .24 .23 .24 .23 

6 .25 .26 .35 .38 .38 .38 .40 .24 .26 .29 .29 .30 .31 .30 

2 

0.5 4.97 .91 .19 .13 .08 .10 .09 3.24 .40 .19 .13 .10 .09 .09 

2 .80 .34 .09 .08 .07 .07 .05 .87 .12 .05 .04 .05 .05 .05 

4 .51 .19 .13 .10 .05 .07 .06 .20 .06 .06 .08 .08 .09 .09 

6 .36 .23 .12 .07 .07 .07 .07 .20 .06 .08 .09 .11 .11 .11 

4 

0.5 1.66 .38 .14 .11 .07 .07 .04 1.65 .38 .12 .08 .05 .04 .04 

2 .71 .17 .07 .03 .01 .01 .01 .51 .14 .03 .03 .04 .05 .04 

4 .53 .18 .03 .03 .03 .04 .03 .26 .08 .06 .05 .07 .07 .07 

6 .41 .13 .04 .04 .04 .06 .05 .18 .07 .07 .09 .09 .10 .11 

Note: Total Relative Bias, 2
1

K
kk

RMSRB RB K
=

= ∑ (where K = 4 is the total number of 

parameters in the model) is reported for each condition. Green shading (dark grey) 

indicates RMSRB <.10 and yellow shading (light gray) indicates .10 ≤ |RBMSRB| ≤ .15  . 

MO = measurement occasions; O/D= occasions per day. See the online article for the color 

version of this table 

 



Table 3 

Relative Bias of each parameter across all conditions 

O/D σ²q 
  Par MO at Fixed Intervals MO at Varying Intervals 

14 30 60 90 120 150 180 14 30 60 90 120 150 180 

1 

0.5 

ζ 3.74 1.22 .34 .27 .12 .12 .14 4.88 1.44 .48 .20 .12 .15 .08 
η .55 .11 -.02 -.03 -.04 -.04 -.03 .71 .08 .01 -.03 -.04 -.04 -.04 
σ²q 5.97 2.85 .82 .63 .40 .44 .43 8.69 3.11 1.09 .57 .44 .45 .41 
σ²r -.55 -.26 -.15 -.13 -.10 -.12 -.11 -.56 -.24 -.13 -.11 -.11 -.13 -.11 

2 

ζ .02 .23 .16 .08 .03 .04 .04 .92 .47 .11 .07 .02 -.03 -.02 
η .00 -.05 -.04 -.05 -.05 -.05 -.05 .02 -.03 -.06 -.05 -.05 -.05 -.05 
σ²q .27 .41 .38 .30 .28 .26 .28 1.06 .66 .31 .31 .26 .23 .24 
σ²r -.47 -.36 -.35 -.35 -.36 -.33 -.35 -.46 -.27 -.29 -.30 -.27 -.27 -.28 

4 

ζ -.35 -.04 .10 .03 .00 -.01 -.01 .02 .20 .09 .02 -.03 -.09 -.07 
η -.05 -.06 -.06 -.06 -.05 -.06 -.06 .00 -.08 -.06 -.07 -.06 -.07 -.06 
σ²q -.04 .04 .22 .19 .19 .20 .20 .10 .23 .22 .18 .16 .13 .13 
σ²r -.42 -.42 -.57 -.57 -.58 -.60 -.60 -.46 -.41 -.47 -.44 -.43 -.44 -.43 

6 

ζ -.35 -.12 -.02 -.02 -.07 -.07 -.06 .02 .05 .02 -.05 -.09 -.10 -.09 
η -.09 -.09 -.07 -.07 -.06 -.06 -.06 -.07 -.07 -.07 -.08 -.08 -.07 -.07 
σ²q -.19 -.05 .10 .11 .10 .12 .13 -.01 .11 .12 .11 .10 .10 .10 
σ²r -.30 -.50 -.69 -.74 -.75 -.75 -.78 -.47 -.51 -.55 -.56 -.58 -.59 -.58 

2 

0.5 

ζ 4.31 .84 .25 .17 .10 .11 .09 3.59 .43 .24 .14 .06 .05 .03 
η .50 .07 .02 .00 -.01 -.01 .00 .39 .01 -.03 -.03 -.03 -.03 -.02 
σ²q 8.94 1.62 .28 .21 .13 .17 .16 5.39 .67 .28 .23 .18 .17 .17 
σ²r -.22 -.04 -.04 -.02 -.02 -.03 -.02 -.16 -.05 -.03 -.03 -.03 -.03 -.03 

2 

ζ 1.04 .53 .13 .11 .08 .08 .02 1.29 .21 .06 -.01 -.06 -.09 -.07 
η .11 .02 -.01 -.01 -.01 -.01 -.02 .06 -.03 -.04 -.05 -.04 -.05 -.05 
σ²q 1.20 .41 .12 .10 .11 .10 .08 1.17 .12 .05 .05 .02 .01 .01 
σ²r -.16 -.08 -.05 -.05 -.06 -.06 -.06 -.10 -.03 -.05 -.05 -.05 -.04 -.04 

4 

ζ .79 .34 .21 .12 .00 .02 .00 .32 .07 -.04 -.12 -.12 -.15 -.15 
η .06 .01 .00 -.02 -.02 -.01 -.01 .00 -.05 -.07 -.05 -.05 -.06 -.05 
σ²q .63 .15 .12 .11 .04 .06 .05 .21 -.06 -.06 -.07 -.07 -.07 -.07 
σ²r -.16 -.11 -.10 -.11 -.10 -.11 -.10 -.10 -.05 -.06 -.05 -.05 -.05 -.05 

6 

ζ .63 .40 .16 .05 .02 .01 -.03 .38 .07 -.10 -.13 -.17 -.16 -.18 
η .03 .01 -.02 -.02 -.02 -.02 -.01 -.02 -.07 -.05 -.06 -.06 -.06 -.07 
σ²q .32 .19 .09 .03 .03 .03 .03 .09 -.05 -.10 -.09 -.12 -.11 -.11 
σ²r -.16 -.15 -.15 -.12 -.13 -.14 -.14 -.07 -.05 -.03 -.05 -.05 -.05 -.06 

4 

0.5 

ζ 2.35 .61 .25 .18 .10 .10 .05 2.29 .62 .20 .12 .06 .01 -.01 
η .19 .04 .01 .00 .00 .00 -.01 .19 .02 -.01 -.02 -.02 -.02 -.02 
σ²q 2.35 .46 .12 .12 .09 .10 .06 2.38 .44 .13 .10 .08 .07 .08 
σ²r -.05 .00 -.01 -.01 -.01 -.01 -.01 -.04 -.02 -.01 -.01 -.01 -.01 -.01 

2 

ζ 1.31 .33 .13 .05 .00 .00 -.02 .95 .28 .05 -.02 -.06 -.08 -.07 
η .10 .00 .00 .00 -.01 -.02 -.01 .04 -.02 -.03 -.03 -.04 -.04 -.03 
σ²q .56 .10 .01 .01 .02 .00 -.01 .36 .03 -.03 -.04 -.04 -.04 -.04 
σ²r -.02 -.01 -.02 -.02 -.01 -.01 -.01 .00 -.01 -.01 -.01 -.02 -.01 -.01 

4 

ζ .97 .36 .06 -.03 -.02 -.05 -.05 .49 .13 -.06 -.04 -.10 -.11 -.12 
η .04 .00 -.02 -.01 -.02 -.02 -.02 .05 -.03 -.04 -.04 -.05 -.03 -.04 
σ²q .40 .06 -.03 -.05 -.04 -.05 -.04 .18 -.08 -.09 -.08 -.11 -.09 -.08 
σ²r -.03 -.01 -.02 -.02 -.01 -.02 -.01 -.03 -.02 -.01 -.01 -.01 -.02 -.01 

6 

ζ .80 .26 .03 -.01 -.05 -.09 -.07 .35 .03 -.04 -.13 -.13 -.16 -.16 
η .04 .01 -.01 -.02 -.02 -.03 -.02 .02 -.04 -.04 -.05 -.05 -.05 -.05 
σ²q .13 -.04 -.07 -.07 -.07 -.08 -.06 .04 -.12 -.12 -.12 -.12 -.13 -.13 
σ²r -.01 -.02 -.01 -.01 -.01 -.01 -.01 -.01 -.01 -.01 .00 -.01 -.01 -.01 

Note:   (θ    θ) / θestRB= − is reported for each parameter. Green shading (dark gray) 

indicates |RB|<.10 and yellow shading (light gray) indicates .10 ≤ |RB| ≤ .15 . Bold type 

indicates the conditions with acceptable, or very close to acceptable, bias in all four 

parameters (|RB|≤.13). MO = measurement occasions; O/D= occasions per day; 

Par=parameters 



Table 4 

Standard Deviation of the Relative Bias for each parameter across all conditions 

O/D σ²q 
  Par MO at Fixed Intervals MO at Varying Intervals 

14 30 60 90 120 150 180 14 30 60 90 120 150 180 

 
 
 

1 
 
  

0.5 
ζ 5.06 3.29 1.17 .83 .55 .48 .49 5.18 3.24 1.82 .85 .74 .52 .43 
η 1.15 .58 .20 .12 .10 .09 .08 1.27 .57 .29 .13 .11 .09 .08 
σ²q 8.14 7.44 2.19 1.31 .67 .63 .63 13.47 7.27 3.10 1.37 1.17 .69 .51 

 σ²r .48 .42 .28 .23 .20 .17 .16 .44 .41 .30 .25 .19 .17 .16 

2 

ζ 2.24 1.24 .78 .58 .43 .37 .37 3.55 1.79 .69 .56 .43 .37 .32 
η .50 .21 .13 .10 .08 .08 .07 .64 .29 .13 .10 .08 .07 .06 
σ²q 1.20 1.08 .77 .54 .42 .35 .33 3.47 1.92 .66 .52 .42 .35 .31 
σ²r .53 .48 .38 .27 .25 .22 .20 .53 .50 .34 .27 .24 .22 .19 

4 

ζ 2.06 .91 .67 .46 .42 .36 .30 2.30 1.09 .77 .56 .43 .32 .33 
η .36 .21 .13 .09 .08 .07 .07 .53 .20 .12 .09 .08 .07 .06 
σ²q 1.30 .61 .50 .38 .33 .29 .27 1.11 .83 .58 .42 .32 .27 .26 
σ²r .63 .59 .38 .33 .29 .25 .25 .62 .54 .35 .33 .28 .25 .23 

6 

ζ 2.40 .86 .59 .46 .36 .33 .28 2.05 1.02 .58 .47 .38 .33 .29 
η .38 .18 .12 .09 .08 .07 .06 .40 .19 .11 .09 .08 .07 .06 
σ²q .97 .50 .38 .29 .24 .22 .21 .90 .68 .39 .31 .25 .24 .22 
σ²r .82 .60 .37 .30 .27 .26 .24 .63 .54 .41 .33 .28 .26 .24 

 
 
 
2 

 
  

0.5 
ζ 5.15 2.57 .95 .64 .48 .46 .41 5.00 1.84 .85 .63 .47 .42 .39 
η 1.04 .38 .16 .12 .10 .08 .08 .94 .24 .16 .11 .10 .08 .07 
σ²q 16.01 6.23 .83 .60 .39 .41 .34 10.47 2.86 .82 .55 .40 .35 .29 

 σ²r .34 .25 .15 .13 .11 .10 .09 .29 .23 .15 .12 .11 .09 .09 

2 

ζ 3.38 1.74 .79 .52 .46 .39 .35 3.51 1.44 .67 .50 .38 .32 .30 
η .53 .23 .13 .10 .09 .08 .07 .58 .22 .13 .10 .08 .07 .07 
σ²q 3.56 1.92 .53 .34 .30 .27 .23 4.31 1.18 .40 .30 .24 .21 .21 
σ²r .37 .25 .17 .14 .12 .10 .09 .34 .24 .16 .13 .11 .10 .10 

4 

ζ 3.19 1.21 .80 .55 .40 .34 .33 2.79 1.13 .54 .41 .35 .29 .26 
η .43 .22 .13 .10 .09 .07 .07 .46 .21 .11 .10 .08 .07 .06 
σ²q 2.22 .75 .43 .31 .25 .21 .21 1.73 .55 .30 .24 .20 .18 .15 
σ²r .41 .26 .18 .16 .13 .11 .10 .34 .24 .16 .15 .12 .11 .10 

6 

ζ 2.73 1.35 .71 .49 .43 .35 .32 2.65 1.01 .52 .39 .33 .29 .26 
η .41 .22 .13 .10 .09 .08 .07 .42 .19 .12 .10 .08 .07 .06 
σ²q 1.41 .74 .38 .27 .23 .21 .18 1.37 .47 .27 .20 .17 .16 .13 
σ²r .41 .27 .18 .15 .13 .12 .11 .36 .24 .18 .14 .13 .11 .10 

4  

0.5 

ζ 4.36 1.96 .92 .60 .49 .40 .36 4.53 1.88 .83 .57 .48 .37 .32 
η .69 .29 .14 .12 .10 .08 .07 .71 .28 .14 .11 .09 .08 .07 
σ²q 5.96 1.91 .55 .41 .33 .28 .24 5.53 1.78 .63 .38 .31 .26 .24 
σ²r .21 .14 .10 .08 .07 .06 .06 .21 .15 .09 .08 .07 .06 .06 

2 

ζ 3.51 1.42 .70 .51 .39 .36 .33 3.32 1.21 .72 .44 .37 .30 .30 
η .53 .22 .13 .10 .09 .07 .07 .47 .20 .13 .10 .08 .07 .07 
σ²q 2.28 .84 .35 .26 .22 .20 .18 1.92 .62 .34 .24 .20 .17 .17 
σ²r .22 .14 .10 .08 .07 .07 .06 .21 .14 .11 .08 .07 .06 .06 

4 

ζ 3.18 1.45 .61 .45 .37 .32 .28 2.78 1.09 .55 .45 .39 .32 .28 
η .41 .21 .13 .10 .09 .07 .07 .41 .21 .12 .10 .09 .07 .07 
σ²q 2.01 .74 .30 .21 .19 .16 .15 2.14 .50 .26 .21 .18 .15 .15 
σ²r .22 .15 .11 .08 .08 .06 .06 .21 .14 .10 .09 .08 .07 .06 

6 

ζ 2.85 1.10 .62 .49 .38 .31 .28 2.55 .87 .57 .40 .34 .30 .27 
η .43 .21 .13 .10 .09 .08 .07 .35 .19 .13 .10 .08 .07 .07 
σ²q 1.09 .46 .26 .21 .17 .14 .14 1.35 .38 .24 .18 .16 .15 .13 
σ²r .23 .16 .10 .09 .07 .07 .06 .22 .14 .11 .08 .08 .07 .06 

Note: [ ]    (     ) /estSDRB SD= θ −θ θ  is reported for each parameter. MO = measurement 

occasions; O/D= occasions per day; Par=parameters. 



Table 5 

Coverage for each parameter across all conditions 

O/D σ²q 
  Par MO at Fixed Intervals MO at Varying Intervals 

14 30 60 90 120 150 180 14 30 60 90 120 150 180 

1 

0.5 

ζ 94 92 95 96 94 97 95 97 94 93 95 97 95 94 
η 96 90 89 91 91 90 91 95 88 90 92 89 89 90 
σ²q 96 88 95 96 98 99 98 98 91 93 96 98 98 99 
σ²r 79 87 89 87 89 87 87 85 85 91 86 86 83 86 

2 

ζ 90 94 95 95 97 96 95 88 94 95 93 94 94 95 
η 90 89 91 90 88 86 84 93 90 89 91 85 87 85 
σ²q 84 88 95 98 98 98 98 83 88 95 96 98 97 97 
σ²r 82 86 81 72 65 64 58 84 90 81 75 75 68 65 

4 

ζ 82 90 94 97 95 95 96 85 95 92 92 93 92 89 
η 85 88 89 88 86 82 82 85 87 89 83 85 76 80 
σ²q 76 85 97 96 98 98 96 79 88 94 96 98 96 97 
σ²r 88 88 78 63 52 41 36 89 90 76 68 65 54 50 

6 

ζ 80 91 94 94 94 94 96 85 91 93 93 91 93 91 
η 86 85 86 86 85 82 82 85 87 89 84 80 76 71 
σ²q 72 88 95 97 98 99 99 78 89 94 96 97 97 97 

 σ²r 92 94 83 62 44 31 21 93 93 76 62 53 41 37 

 
2 

0.5 

ζ 94 91 96 95 94 97 95 96 91 94 94 95 96 94 
η 95 90 92 92 92 94 94 95 89 90 93 91 90 93 
σ²q 93 84 91 93 95 96 96 93 87 92 94 97 97 98 
σ²r 86 91 91 91 93 91 94 79 88 94 91 92 92 94 

2 

ζ 90 94 96 96 95 96 95 92 93 95 93 93 92 92 
η 90 92 94 93 93 94 92 90 90 90 86 90 87 83 
σ²q 81 86 92 96 96 96 96 83 86 92 94 94 95 93 
σ²r 86 89 91 90 93 92 88 85 89 89 89 89 92 89 

4 

ζ 87 95 94 96 95 95 94 85 88 94 90 89 91 89 
η 88 91 94 92 89 96 92 88 86 89 86 85 80 81 
σ²q 78 88 94 96 94 97 96 74 82 88 87 89 88 90 
σ²r 86 89 86 84 83 79 79 84 90 89 87 89 90 88 

6 

ζ 90 94 95 96 94 94 92 87 91 91 91 87 87 86 
η 91 91 92 92 93 91 91 87 88 88 84 83 81 75 

 σ²q 81 89 95 93 95 94 95 74 84 85 86 83 82 83 
 σ²r 88 85 84 85 79 71 71 86 90 89 89 89 88 85 

4 
 

0.5 

ζ 92 92 97 97 95 95 95 88 94 95 95 95 96 95 
η 91 90 94 92 93 94 94 91 91 90 92 92 93 93 
σ²q 85 84 93 94 94 97 95 84 88 91 95 94 95 97 
σ²r 91 95 93 94 94 95 94 89 90 95 95 92 95 94 

2 

ζ 91 94 94 95 94 94 93 88 94 93 96 93 93 92 
η 88 92 94 93 90 93 94 88 92 90 90 91 91 88 
σ²q 81 89 89 93 95 92 92 75 85 89 91 91 93 91 
σ²r 92 93 92 94 94 93 95 94 95 92 95 93 95 95 

4 

ζ 89 94 95 93 94 92 96 89 94 94 94 89 91 89 
η 91 95 92 92 91 93 92 91 88 91 89 84 89 85 
σ²q 79 89 89 90 90 90 92 73 82 85 86 84 86 84 
σ²r 92 94 93 93 94 93 94 93 94 95 93 92 93 96 

6 

ζ 91 95 93 93 93 93 94 87 94 94 90 87 88 86 
η 90 90 93 91 92 89 92 90 88 87 87 88 87 81 
σ²q 83 86 88 88 89 88 89 76 81 84 82 80 75 75 
σ²r 93 92 94 93 95 95 93 93 95 92 95 94 95 93 

Note: Coverage is the proportion of 95% confidence intervals around the estimated 

parameter value that include the true parameter value. Green shading (dark gray) 

indicates 95% or higher coverage rates. MO = measurement occasions; O/D= occasions 

per day; Par=parameters. 



Table 6 

Relative Bias of Standard Errors for each parameter across all conditions 

O/D σ²q 
  Par MO at Fixed Intervals MO at Varying Intervals 

14 30 60 90 120 150 180 14 30 60 90 120 150 180 
  ζ -.76 -.90 -.87 -.88 -.86 -.86 -.87 -.77 -.89 -.88 -.89 -.90 -.87 -.86 

1 

0.5 η -.30 -.65 -.66 -.60 -.62 -.61 -.59 -.44 -.62 -.45 -.65 -.67 -.61 -.61 
 σ²q .59 -.60 -.60 -.60 -.51 -.53 -.58 -.11 -.56 -.62 -.68 -.72 -.58 -.52 
 σ²r .87 -.10 -.18 -.24 -.26 -.24 -.22 .53 -.11 -.24 -.32 -.26 -.25 -.26 
 ζ -.84 -.85 -.86 -.86 -.85 -.84 -.86 -.85 -.85 -.85 -.86 -.85 -.85 -.85 
2 η -.67 -.64 -.60 -.63 -.61 -.63 -.61 -.71 -.65 -.62 -.62 -.62 -.63 -.60 
 σ²q 2.43 1.54 1.03 .94 .99 1.10 1.02 2.22 2.01 1.02 .94 .89 .92 1.02 
 σ²r .15 -.08 -.21 -.17 -.25 -.21 -.25 .16 .09 -.24 -.25 -.26 -.31 -.25 
 ζ -.84 -.85 -.86 -.86 -.85 -.84 -.86 -.85 -.85 -.85 -.86 -.85 -.85 -.85 
4 η -.67 -.64 -.60 -.63 -.61 -.63 -.61 -.71 -.65 -.62 -.62 -.62 -.63 -.60 
 σ²q 2.43 1.54 1.03 .94 .99 1.10 1.02 2.22 2.01 1.02 .94 .89 .92 1.02 
 σ²r .15 -.08 -.21 -.17 -.25 -.21 -.25 .16 .09 -.24 -.25 -.26 -.31 -.25 
 ζ -.87 -.83 -.84 -.84 -.84 -.85 -.83 -.84 -.84 -.84 -.85 -.85 -.85 -.84 
6 η -.68 -.63 -.63 -.62 -.63 -.64 -.61 -.67 -.63 -.61 -.63 -.65 -.64 -.64 
 σ²q 6.78 7.73 6.39 6.49 6.53 6.17 6.04 10.33 7.26 6.24 5.65 5.76 5.37 5.23 

  σ²r .14 .30 .21 .15 .05 -.01 -.04 .60 .23 -.07 -.13 -.15 -.20 -.21 
  ζ -.78 -.90 -.87 -.86 -.85 -.86 -.86 -.83 -.89 -.86 -.87 -.86 -.86 -.86 

2 

0.5 η -.61 -.72 -.62 -.63 -.62 -.60 -.62 -.63 -.64 -.65 -.60 -.64 -.60 -.61 
 σ²q -.12 -.73 -.52 -.58 -.49 -.56 -.52 -.40 -.71 -.56 -.54 -.50 -.50 -.46 
 σ²r -.05 -.30 -.24 -.28 -.28 -.25 -.23 -.22 -.30 -.23 -.25 -.25 -.20 -.23 
 ζ -.86 -.89 -.87 -.85 -.86 -.86 -.86 -.85 -.89 -.86 -.86 -.85 -.84 -.85 
2 η -.69 -.62 -.62 -.61 -.62 -.61 -.61 -.69 -.66 -.63 -.64 -.62 -.62 -.63 
 σ²q 1.22 .20 .76 1.05 .98 .95 .99 .96 .23 .99 1.01 1.08 1.05 .87 
 σ²r -.23 -.27 -.26 -.27 -.23 -.22 -.23 -.27 -.28 -.26 -.26 -.25 -.24 -.29 
 ζ -.86 -.86 -.88 -.86 -.85 -.84 -.86 -.88 -.87 -.84 -.85 -.85 -.84 -.84 
4 η -.64 -.64 -.62 -.61 -.65 -.60 -.62 -.71 -.67 -.60 -.66 -.64 -.65 -.63 
 σ²q 3.84 2.61 2.82 2.99 2.88 3.28 2.86 2.21 2.64 3.02 2.90 3.07 2.87 3.13 
 σ²r -.20 -.23 -.25 -.30 -.26 -.23 -.26 -.26 -.26 -.25 -.31 -.25 -.28 -.25 
 ζ -.86 -.88 -.87 -.85 -.86 -.85 -.86 -.86 -.86 -.85 -.84 -.84 -.84 -.84 
6 η -.64 -.63 -.62 -.63 -.62 -.64 -.65 -.66 -.65 -.64 -.66 -.65 -.65 -.65 
 σ²q 6.13 4.37 4.81 5.06 4.84 4.87 5.18 4.66 4.77 4.87 5.39 5.05 4.80 5.37 

  σ²r -.20 -.23 -.22 -.23 -.23 -.25 -.27 -.28 -.24 -.28 -.26 -.29 -.29 -.29 
  ζ -.85 -.89 -.88 -.86 -.86 -.85 -.85 -.84 -.89 -.87 -.86 -.86 -.85 -.84 

4 

0.5 η -.67 -.67 -.61 -.64 -.63 -.61 -.62 -.65 -.67 -.63 -.62 -.62 -.61 -.61 
 σ²q -.50 -.66 -.52 -.52 -.52 -.49 -.49 -.35 -.64 -.59 -.51 -.50 -.49 -.49 
 σ²r -.26 -.20 -.27 -.26 -.24 -.26 -.23 -.27 -.30 -.20 -.24 -.29 -.25 -.25 
 ζ -.87 -.87 -.86 -.86 -.85 -.86 -.86 -.87 -.87 -.88 -.85 -.85 -.84 -.85 
2 η -.68 -.64 -.63 -.60 -.62 -.62 -.61 -.67 -.62 -.63 -.63 -.63 -.61 -.63 
 σ²q .86 .76 .94 1.03 1.07 .94 .97 .91 .80 .89 1.06 1.08 1.11 .96 
 σ²r -.25 -.22 -.27 -.22 -.25 -.27 -.24 -.21 -.22 -.29 -.21 -.24 -.21 -.22 
 ζ -.87 -.88 -.86 -.85 -.85 -.85 -.84 -.87 -.87 -.85 -.86 -.86 -.85 -.85 
4 η -.62 -.63 -.64 -.64 -.64 -.63 -.62 -.67 -.66 -.63 -.63 -.67 -.64 -.66 
 σ²q 2.35 2.42 2.76 3.18 3.02 3.09 3.00 2.85 2.38 2.91 3.00 2.92 3.03 2.79 
 σ²r -.25 -.26 -.27 -.24 -.27 -.22 -.24 -.21 -.23 -.23 -.25 -.29 -.25 -.23 
 ζ -.87 -.86 -.86 -.86 -.85 -.84 -.84 -.88 -.85 -.86 -.85 -.85 -.85 -.85 
6 η -.65 -.64 -.65 -.63 -.65 -.65 -.63 -.63 -.65 -.66 -.65 -.63 -.64 -.66 
 σ²q 5.15 4.51 4.92 4.88 5.06 5.52 5.05 4.06 4.86 5.04 5.05 5.04 4.66 4.96 

  σ²r -.25 -.27 -.22 -.25 -.20 -.26 -.27 -.24 -.20 -.27 -.22 -.27 -.24 -.25 
                 

Note: ( ) /SESERB SDRB SDRB= θ −  is reported for each parameter (SDRB = Standard 

Deviation of the Relative Bias).. Green shading (dark gray) indicates |SERB|<.10. MO = 

measurement occasions; O/D= occasions per day; Par=parameters.  
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