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Abstract—This paper investigates the optimal placement and
sizing of Distributed Generation (DG) in power distribution
networks using various metaheuristic algorithms. It introduces
a novel method for optimizing Hosting Capacity, which helps
Distribution System Operators (DSOs) improve long-term grid
planning and delay the need for grid upgrades. The study
establishes a common benchmarking tool to test several algo-
rithms, including Particle Swarm Optimization (PSO), Genetic
Algorithm (GA), Grey Wolf Optimizer (GWO), Differential Evo-
lution (DE), Coyote Optmization Algorithm (COA), and Artificial
Bee Colony (ABC). The results indicate that PSO is the most
effective method for enhancing grid stability and efficiency as
it consistently minimizes costs and improves voltage profiles,
making it a reliable choice for DG optimization. The study also
highlights the potential of hybrid approaches and the need to
address dynamic grid conditions. Despite the effectiveness of
these algorithms, challenges such as scalability and parameter
adjustment remain.

Index Terms—Distributed Generation, Metaheuristic Algo-
rithms, Particle Swarm Optimization, Power Distribution Net-
works, Grid Optimization

I. INTRODUCTION

A. Motivation and Incitement

The global energy landscape is undergoing a significant
transition driven by the increasing emphasis on sustainability
and the need to address climate change. Traditionally, power
generation was centralized, with electricity being generated
at large plants and transmitted over long distances to con-
sumers. Distribution System Operators (DSOs) planned grid
investments based on predictable patterns of demand growth
and reinforcement needs. However, the increasing penetra-
tion of Distributed Energy Resources (DERs) has introduced
significant variability and complexity into the grid. This has
made traditional grid planning methodologies inadequate for
managing the dynamic nature of modern distribution networks.
Additionally, unbundling plays a crucial part by splitting the
roles each part now can take in the system. In Europe, due to
the unbundling of activities, DSOs have seen their discretion
or authority to oversee generation investments limited. This
separation of activities is a necessary step that comes with both
advantages and disadvantages. This structural separation is
aimed at ensuring that generation and distribution functions are
conducted independently to create a level playing field in the
market. However, this also means that DSOs need interactive

solutions that require collaboration between both the DSOs
and the DERs.

Our electricity distribution networks play a vital role in
our daily lives, ensuring that power generated from various
sources reaches us reliably and efficiently. There’s a growing
global demand for renewable energy, as it’s a cleaner and
more sustainable alternative to fossil fuels. This surge presents
both opportunities and challenges for our existing power
grids. Distribution System Operators (DSOs) face significant
challenges in integrating Distributed Generation (DG) into
the grid. The current infrastructure and validation processes
often struggle to keep up with the increasing number of DG
connection requests.

The use of renewable energy is becoming critical in this
transformation, influencing the way power is produced and
distributed. Distributed Generation (DG) has emerged as a
key player in this shift, where electricity is generated near the
point of consumption rather than at centralized power stations.
This method involves renewable energy sources like solar
photovoltaic, wind turbines, and bio-energy systems, which
can reduce transmission losses and increase the reliability of
power supply by diversifying energy sources.

Hosting Capacity (HC) is defined as the maximum amount
of generation a power distribution system can accommodate
without exceeding operational limits [1]. These limits include
voltage stability, thermal capacity of lines, and other critical
parameters. HC is a crucial concept, particularly in the in-
tegration of renewable energy sources into the grid. When a
distribution network reaches its HC, any additional generation
can lead to issues such as voltage violations, line overloading,
and power quality problems.

The integration of DG into current distribution networks
presents both advantages and challenges. On the one hand,
DG can decrease energy losses, improve voltage profiles,
and enhance the overall efficiency for certain low penetration
levels in the power distribution system. However, the intermit-
tent nature of renewable-based DG requires advanced control
strategies to maintain grid stability and ensure operations stay
within set limits.

Randomly locating these resources on the grid leads to
an electrically and economically inefficient scenario. Conse-
quently, innovative optimization algorithms have been devel-
oped to optimize the placement, sizing, and operation of DG



units, aiming to reduce operational costs and improve power
system efficiency.

B. Literature Review

The research in optimizing DG placement and sizing builds
on a wide array of methods:

• Classical methods, such as linear and nonlinear pro-
gramming, provide a solid foundation but often lack the
flexibility needed for modern power systems [2]. These
methods struggle with the non-convex, multi-objective,
and mixed-integer nature of real-world, specially medium
and large, power system optimization problems.

• Sensitivity analysis-based approaches focus on finding
the optimal location for DG units by using a sensitivity
index to identify the most sensitive locations [3]. While
sensitivity analysis offers low computational time, the
degree of optimality of the solutions is uncertain, and
these methods typically do not determine the optimal size
of DG units, therefore, they need to be combined with
other methods.

• Metaheuristic algorithms are advanced search algorithms
designed for optimization problems. They are particularly
useful for complex, medium-scale systems where tradi-
tional methods fall short. These are usually population-
based stochastic approaches that do not impose pre-
conditions on objective functions or constraints [4]. These
methods are highly effective in solving DG allocation
problems and are among the most commonly used ap-
proaches [5].

• Hybrid approaches combine classical methods with mod-
ern algorithms to leverage the strengths of both [6]. These
approaches aim to improve efficiency and effectiveness
by addressing the limitations of individual techniques.

Classical approaches to DG sizing and placement have been
explored for many years. Some notable applications can be
seen in various studies. For example, [7] uses power flow
continuation to identify the most sensitive buses to voltage
collapse, thus improving voltage profiles and enhancing sta-
bility margins. [8] employs Sequential Quadratic Programming
(SQP) to optimize both DG and battery storage capacities
simultaneously, emphasizing the critical role of battery storage
in managing generation variability. Additionally, research in
[9] uses Mixed-Integer Nonlinear Programming (MINLP) to
minimize power losses and generation costs, significantly
reducing search space and computational time.

However, classical methods face several challenges as cov-
ered in some modern papers. Newer approaches based on [4]
and [5] typically rely on gradient-based techniques that can be-
come trapped in local optima, failing to find the global solution
[4]. Furthermore, classical methods struggle with optimization
problems that involve both mixed integer and continuous
variables. They are generally designed for continuous variables
and require complex modifications to handle discrete variables,
making them less suitable for problems involving genera-
tor statuses, switch positions, or other binary decisions [5].
Lastly, multi-objective optimization involves finding solutions

that balance multiple goals at once, such as cost, reliability,
and environmental impact. Traditional optimization methods
struggle with these problems, especially when dealing with
discontinuous or concave Pareto fronts. Power systems often
need to address these competing objectives, which classical
methods cannot handle easily without major simplifications or
adjustments. [4], [5].

The rise of metaheuristic methods like Particle Swarm
Optimization (PSO), Genetic Algorithms (GA), and Grey Wolf
Optimizer (GWO) have shown significant promise in handling
complex, multi-objective optimization problems where tradi-
tional approaches fail to work.

It is clear that various metaheuristic methods have been
applied to major optimization tasks in the smart grid. However,
it is impossible to single out one method or class of methods
that performs better across all tasks, as highlighted by the
”no free lunch” theorem [10]. This principle implies that
no algorithm will perform equally well across all types of
problems. As a result, the literature in this field explores many
algorithms for the same applications.

For instance, [11] was among the first to implement PSO
to minimize power losses in a 33-bus system, demonstrating
the algorithm’s robustness. Over the years, PSO has remained
one of the most tested and developed algorithms. [12] and
[13] reviewed the algorithm’s suitability for this application
in larger test systems and with different objective functions,
including not only system power losses but also improved
voltage profiles and load management with Battery Storage
Systems (BES). Other authors have developed iterations of
this algorithm, such as the Crow Search Algorithm Auto-Drive
PSO (CSA-PSO) in [14], or compared it with other algorithms
to determine which had better suitability, as seen in [15] and
[16].

Genetic Algorithms (GA) are particularly effective in ex-
ploring large solution spaces and have been widely used for
DG optimization, as demonstrated in [15]. They work by mim-
icking the process of natural selection, making them robust in
finding near-optimal solutions for complex problems. In [17],
a hybrid approach utilizing both GA for location and power
factor, combined with analytical methods for active power
optimization, effectively minimized system losses compared
to methods using only GA or only analytical approaches.
Differential Evolution (DE) is another powerful metaheuristic
that optimizes problems by iteratively improving candidate
solutions with regard to a given measure of quality. DE has
been applied successfully in various studies to minimize power
losses and optimize DG placement, as seen in [18].

Other novel approaches failed to remain successful even
though they showed promising results, simply because other
algorithms performed better. An example of this is [19], where
the Cuckoo Search Algorithm was used to minimize total real
power losses and improve voltage stability by determining
the optimal location and size of PQ-type DG units. However,
research on more renowned algorithms was published shortly
after, leading to this research being almost immediately dis-
carded and never continued.
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Hybrid approaches started to become popular as knowledge
in this field grew. With a better understanding of how algo-
rithms work, techniques were developed that combined the
best attributes of various methods. One example is combining
Loss Sensitivity Factor (LSF) with Simulated Annealing (SA),
as seen in [20], which has proven effective in reducing power
losses and improving voltage profiles in various test systems.
Another example is the hybrid method in [6], which integrates
Sequential Quadratic Programming with a Branch and Bound
algorithm to solve the Mixed Integer Nonlinear Programming
(MINLP) formulation, reducing real power losses and opti-
mizing DG distribution. Examples of these mixed techniques
are scattered throughout the literature, but they have been
less implemented due to their added complexity compared to
simpler techniques using a single algorithm.

Recent advancements include innovative algorithms like the
Grey Wolf Optimizer (GWO), utilized in [21] to minimize
reactive power losses and improve voltage profiles. In [22],
GWO is used to enhance voltage stability and reduce losses
across various scenarios in 33-bus and 69-bus networks. And
more recently in [23], GWO effectively minimized costs by
optimizing generation and load management, demonstrating
substantial cost reductions compared to traditional manage-
ment methods. Some other novel algorithms include The
Ant Lion Optimization Algorithm (ALOA), applied in [24],
minimizes total power losses and enhances voltage profiles
by optimizing the size and location of wind turbines (WT)
and photovoltaic (PV) DGs. War Optimization, applied in [25]
provided high-quality solutions, outperforming other meta-
heuristics in terms of power loss reduction and voltage stability
improvement. Or the Coyote Optimization Algorithm (COA)
in [26] which tries to minimize power losses by optimizing
voltage regulator tap changes. These newer algorithms have
shown very promising results.

These studies underscore the evolution of methodologies
over time and highlight areas where current research excels
and where gaps still exist. Through this extensive review, the
following gaps in current research have been identified:

• Handling dynamic grid conditions,
• Managing large-scale integration of DG and,
• The lack of common benchmarking standards.

These gaps are critical as they highlight the areas where
further research is needed to improve the practical implemen-
tation of optimization algorithms in real-world power grids.
By addressing these gaps and leveraging the strengths of
various optimization algorithms, this research aims to enhance
the efficiency, reliability, and sustainability of power system
operations.

This paper contributes establishing a baseline for common
benchmarking different metaheuristic algorithms for the opti-
mal placement and sizing of DG units in power distribution
networks. The goal is to determine the best algorithm to
enhance the hosting capacity of distribution networks, thus
improving grid stability and efficiency while minimizing the
need for costly grid reinforcements. The optimization model
selected in this research is intended to serve as a tool for DSOs

to establish criteria for making the most of the existing net-
work hosting capacity and accelerating the network connection
request process.

Section II details the problem formulation, including the
objective function and constraints, and the implementation
approach. Section III discusses the test systems used for vali-
dation. Section IV presents the outcomes of the implemented
algorithms. Section V summarizes key findings, contributions,
and suggestions for future research.

This structured approach ensures a comprehensive explo-
ration of the optimal DG placement in distribution networks,
from theoretical foundations to practical applications and
market considerations.

II. METHODOLOGY

A. Problem Formulation

This section outlines the formulation and implementation of
the optimization problem focused on Distributed Generation
optimal dispatch. The problem at hand is to identify the best
points to connect DG in a given distribution network. This
will help to optimally utilize the current hosting capacity or
minimize the need for network reinforcements.

The main objective is to minimize power losses and en-
sure voltage stability under high demand conditions without
additional technical solutions like reactive power injection, tap
changing, or reconfiguration. This objective function is used
when the DSO seeks to determine the optimal configuration of
the distribution network to maximize HC. The function aims to
increase the integration of DG units, enhancing the network’s
capacity to host renewable energy sources, while maintaining
system reliability.

The primary goal is to determine the optimal number,
placement, and size of DG units to be dispatched in the grid.

Due to the nature of metaheuristics, typical optimization
problem constraints must be applied as a penalization over
the objective function. Thus, the objective function is defined
as the sum of two parts: one part representing the direct cost
f(x), and the other part representing the associated penalties
g(x):

min
x

f(x) + g(x) (1)

The direct cost f(x) includes the following terms: IGen

incentivizes DG integration, CPL evaluates power losses,
CV∆

quantifies voltage deviations CBal represents the cost
associated with power imbalances. It is presented as follows:

min
x

f(x) = IGen + CPL + CV∆ + CBal (2)

Additional Power: This term represents the cost associated
with the additional power generation required, calculated by
multiplying the total additional generation capacity (Pg) by
the injection cost1.

1Average European Injection Cost is 0.22 C/MWh [27]
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IGen = −CGen ×
∑
g

Pg (3)

Power Losses: This term represents the cost associated with
power losses due to resistance in the distribution lines (Pin,j ,
Injected Power in a given line (j) and Pout,j , Output Power in
a given line (j)). It is calculated based on the cost of energy
in the wholesale market (Ce).

CPL = Ce ×
∑
j

(Pin,j − Pout,j) (4)

Voltage Stability: This term quantifies the cost associated
with voltage deviations from the target value of 1 pu. Signif-
icant deviations exceeding 0.05 pu are penalized to maintain
a stable voltage profile. Therefore, bus voltage in pu Vm is
multiplied by the penalty cost Cv and by the voltage base
Vbase.

CV∆
= Cv × (

∑
m

|Vm − 1|)× Vbase ∀V m / |Vm − 1| > 5% (5)

Balance: This term represents the cost associated with
the mismatch between feeder power, encouraging a balance
between generation and demand with zero net imports or
exports. Consequently, net power through the feeder Pfeeder

is multiplied by the penalty CBal.

CBal = CBal × Pfeeder (6)

To ensure a feasible and practical solution, voltage and
thermal limits need to be satisfied. These limits must be
enforced through penalties in the objective function g(x).
To calculate these penalties, a power flow analysis must be
conducted using an external tool. This analysis determines if
the proposed solution remains within the specified voltage and
thermal ranges. Based on the results, the corresponding penalty
is applied, and the value of the objective function or cost is
obtained. If these conditions are not met, the objective function
of the metaheuristic assigns a very high cost to these results,
effectively marking them as infeasible for the algorithm.

The constraints checked by the power flow are described in
the following equations [28]:

s. t. g(x) = 0 , (7a)
h(x) ≤ 0 (7b)

The equality constraints in (7a) are real and reactive power
balance equations. These ensure that the real and reactive
power generation equals the total power demanded at each
bus (accounting for power losses).

gP (Θ, Vm, Pg) = Pbus(Θ, Vm) + Pd − CgPg = 0 (8a)
gQ(Θ, Vm, Qg) = Qbus(Θ, Vm) +Qd − CgQg = 0 (8b)

The inequality constraints in (7b) limit the apparent power
flow on each transmission line to stay within safe operating
limits to prevent equipment damage.

hf (Θ, Vm) = |Ff (Θ, Vm)| − Fmax ≤ 0 (9a)
ht(Θ, Vm) = |Ft(Θ, Vm)| − Fmax ≤ 0 (9b)

The overload condition constraint ensures no transmission
line operates above its nominal rating, preventing wear and
tear, higher stress levels, and potential regulatory fines. By
ensuring that no line exceeds its nominal rating, this constraint
helps maintain the integrity and reliability of the power system.
The cost associated with overloads includes maintenance costs,
potential fines, and the cost of accelerated asset depreciation.
These costs are typically internalized by the DSO and can vary
significantly depending on the situation.

Additionally, some variable limits must be set to tackle
voltage phase and magnitude limits. These constraints ensure
that the voltage magnitude at each bus stays within specified
lower and upper bounds for proper operation of power sys-
tem equipment. For instance, voltage deviation is measured
against the nominal voltage level (1 per unit, p.u.). Deviations
exceeding 0.05 p.u. significantly reduce system efficiency and
are penalized. Maintaining acceptable voltage levels is crucial
for system reliability and efficiency. Voltage fluctuations are
penalized when the voltage rises or falls outside the set band.
These costs may differ, but penalties are usually determined
by the cost of equipment damage, decreased efficiency, and
potential lost time. In some regions, fines can vary between
several hundred to several thousand euros, depending on the
nature and extent of the deviation.

θref
i ≤ θi ≤ θref

i , i ∈ Iref (10a)
vi,min
m ≤ vim ≤ vi,max

m , i = 1, . . . , nb (10b)

Furthermore, some additional constraints must be set to
limit the search space. Given the metaheuristic approach used
to solve this optimization problem, it is essential to define clear
boundaries for the search space. Metaheuristic algorithms rely
on exploring a limited search space to find optimal or near-
optimal solutions efficiently. In this context, constraints are
imposed on the maximum number of DGs that can be placed
within the network and on their maximum capacity. These
boundaries are predetermined based on system requirements
and operational considerations, ensuring the feasibility and
practicality of the solutions obtained.

2 ≤ pLi ≤ Nbuses i = 1, . . . , ng (11a)
pCmin ≤ pCi ≤ pCmax i = 1, . . . , ng (11b)

The decision variables for this optimization problem in-
clude:

• Number of DGs: The total number of DG units to be
installed.

• DG Bus Locations: Each DG is assigned a specific bus
number.

• DG Sizes: The capacity of each DG in MW.
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A typical decision variable vector is
[ng, p

L
1 , p

C
1 , . . . , p

L
ng
, pCng

]. Where ng is the number of
DGs, pLi and pCi are the corresponding found best particle
location and capacity respectively.

This objective function aims to determine the optimal al-
location strategy for DG units within the distribution system.
The resulting allocation plan will serve a dual purpose. Firstly,
it will inform the DSO’s own DG deployment decisions in
the countries where there is no market unbundling. Secondly,
if market unbundling exists, the plan can be used to guide
market participants towards the most suitable DG options for
the system.

B. Implementation
The implementation of the optimization problem uses MAT-

LAB, leveraging the MATPOWER toolbox for power flow
simulation and analysis. The process involves several steps
and applies to all tested metaheurstics:

Fig. 1. Block diagram of the optimization process.

1) Initialize the Algorithm: Load the MATPOWER case file
to define the power grid structure and set up algorithm
parameters. Create an initial population of potential solu-
tions, representing different bus locations and capacities
for the DG units.

2) Power Flow Analysis: Perform an initial power flow
analysis using the initial population to determine power
distribution across the grid.

3) Constraint Checking: Ensure the system operates within
its technical constraints, checking voltage and thermal
limits. Calculates associated penalties for constraint vi-
olations.

4) Fitness Function Evaluation: Evaluate the fitness func-
tion for each individual in the population. If any con-
straints are not met, a penalty is applied to the fitness
score, and further calculations are skipped. Otherwise,
the cost for each particle is calculated solely based on
eq. (2).

5) Population Update: Update the population based on
the fitness function, using the corresponding algorithm
operations, eg. crossover and mutation in the case of
GA.

6) Iteration: Proceed to the next iteration if stopping criteria
have not been met, such as a maximum number of
iterations or a convergence threshold.

7) Final Solution: Conclude the optimization process once
the stopping criteria are satisfied, outputting the best so-
lution found, which represents the optimal bus location

and sizing for the DG units under the given load profile
and constraints.

This structured approach ensures that the optimization pro-
cess is thorough and the solutions obtained are practical and
effective in real-world power distribution networks.

C. Evaluation

The selection of an appropriate optimization algorithm is
crucial for the efficient operation of distribution networks.
This paper outlines a systematic grading system designed to
evaluate and compare different optimization algorithms based
on several key criteria. The grading system aims to ensure that
the chosen algorithm aligns with the specific characteristics
and requirements of the distribution network. It is based on
five weighted criteria (weights in parentheses):

• Cost (30%): The algorithm’s ability to achieve the defined
objective function effectively. This measures how well the
algorithm minimizes cost in achieving the optimization
goals for the distribution network. The lower the cost the
better.

Cost = f(x) + g(x) (12)

• Robustness (20%): This checks how well the algorithm
handles larger population sizes. It looks at whether in-
creasing the number of particles leads to a lower cost
and considers the trade-offs involved.

Robustness = Cost200 − Cost500 (13)

• Consistency (20%): This evaluates how repeatable the
results are by measuring the variation in cost across
different tries under the same conditions. It shows the al-
gorithm’s stability despite its random nature. It compares
standard deviation σCost across all trials (10 trials per
algorithm, 3 configurations, and 3 case studies, totaling
90 trials).

Consistency =
1

90

90∑
i=1

σC (14)

• Scalability (15%): The algorithm’s adaptability to in-
creasing network sizes. This looks at how well the
algorithm performs when applied to different network
configurations and test systems. It assesses if the al-
gorithm consistently achieves low costs across various
scenarios. It ranks from best to worst (in term of lower
cost) the performance of each algorithm in the different
test scenarios and compares the average position Pos.

• Time (15%): This measures how quickly the algorithm
reaches an optimal solution. It considers the time and
resources needed, which is important for practical use. It
compares average time T .

D. Algorithms

Metaheuristic algorithms are broadly classified into three
categories: Evolutionary Algorithms, Physical Algorithms, and
Behavior Algorithms.
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• Evolutionary Algorithms: Inspired by biological evolu-
tion and natural selection. Examples include Genetic
Algorithms (GA) and Differential Evolution (DE).

• Physical Algorithms: These simulate physical processes.
Examples include Simulated Annealing and Gravitational
Search Algorithms.

• Behavior Algorithms: Mimic the behavior of social ani-
mals and other collective systems. Examples include Par-
ticle Swarm Optimization (PSO), Grey Wolf Optimizer
(GWO), and Artificial Bee Colony (ABC).

For this paper, the following algorithms have been selected
due to their effectiveness and popularity in optimization prob-
lems related to power systems:

• Particle Swarm Optimization (PSO): Chosen for its sim-
plicity and ability to efficiently explore large search
spaces.

• Genetic Algorithm (GA): Selected for its robustness in
finding globally optimal solutions in complex problems.

• Artificial Bee Colony (ABC): Preferred for its ability
to balance exploration and exploitation through social
behavior mimicking.

• Grey Wolf Optimizer (GWO): Included for its innovative
approach based on the social hierarchy and hunting
strategies of grey wolves.

• Differential Evolution (DE): Picked for its effectiveness
in handling continuous and non-differentiable optimiza-
tion problems.

• Coyote Optimization Algorithm (COA): Added for its
unique approach inspired by coyote social behavior, de-
spite being relatively new.

These algorithms are compared to determine the most effective
method for optimal DG placement and sizing in power grids.

Some attention should be paid to these algorithms as the
complexity of metaheuristic algorithms like PSO and GWO
can make them challenging to implement, requiring significant
computational resources. Scalability issues also arise, as some
algorithms may not perform consistently with larger networks
or higher numbers of DG units. Additionally, the performance
of these algorithms is often sensitive to the parameters set for
their operation, necessitating careful tuning to achieve optimal
results.

III. CASE STUDIES

This section discusses the test systems and algorithms
used to validate the proposed validation methodology for DG
placement and sizing.

A. Test Systems

The IEEE 33-bus [29], 69-bus [30] and 141-bus [31] dis-
tribution systems will be used as case studies. These systems
are selected for their similarity to real distribution networks
and their complexity, which makes them suitable for testing
advanced optimization algorithms. Table I provides a first
overview of these test systems. Additionally, Figs. 2, 4, 6
provide the single line diagram of all test systems.

TABLE I
TEST SYSTEMS

33-Bus
System

69-Bus
System

141-Bus
System

Base Voltage 12.66 kV 12.66 kV 12.47 kV
Base Generation 3.92 MW 4.03 MW 12.58 MW
Power Factor ≈0.85 ≈0.85 ≈0.85
Base Demand 3.72 MW 3.80 MW 11.94 MW
Base Losses 202.68 kW 224.99 kW 632.69 kW
Min Voltage 0.9131 pu 0.9092 pu 0.9279
Characteristics Radial Radial Radial
Advantages Simple Test

Network
Balanced
complexity

Large and
complex

Fig. 2. 33-bus Test Systems Single Line Diagram.

For this problem, a specific load profile representing a
high demand scenario without additional technical solutions
is selected for al test systems (see Figs. 3, 5, 7). This profile
is used to simulate system conditions and identify the best
dispatch strategy for DG units to maintain voltage stability.

Initially, algorithms are compared to identify the best-
performing one. The selected algorithm is then evaluated
under different load profiles across various times and seasons
to ensure a comprehensive understanding of its effectiveness
under varying conditions.

By applying the proposed optimisation algorithms to these
test systems, conclusive results can be drawn and identify
which is more effective in improving the operational efficiency
and stability of distribution networks with high penetration of
DG units. Detailed results and analysis are presented in the
following section.

Fig. 3. 33-bus Test System Base Voltage Profile.

6



Fig. 4. 69-bus Test Systems Single Line Diagram.

Fig. 5. 69-bus Test System Base Voltage Profile.

Fig. 6. 141-bus Test Systems Single Line Diagram.

Fig. 7. 141-bus Test System Base Voltage Profile.

IV. RESULTS AND BENCHMARKING OF THE ALGORITHMS

This section presents a comparative analysis of the different
optimization algorithms applied to the two problems described
previously. The primary objective is to assess the performance
of each algorithm in terms of their ability to find optimal
solutions for DG placement and dispatch under specified
conditions. The evaluation is based on the results obtained
from multiple runs of the algorithms, ensuring robust and
reliable performance metrics. Each algorithm was executed
several times (10) to account for variability in performance
due to the stochastic nature of the metaheuristic methods.
This approach provides a comprehensive understanding of the
algorithms’ consistency and effectiveness. Half the times the
algorithm runs with a small population size (200 particles) the
other half with a big one (500 particles).

Each test system was evaluated by testing configuration
with one, three, and an unrestricted optimal number of DG
units. This helped me assess the algorithms’ ability to manage
multiple DG units and their impact on the power grid’s
stability and efficiency.

To ensure reliable results given the stochastic nature of
these algorithms, the outcomes from 10 executions for each
algorithm were averaged. This process was repeated for both
population sizes, all algorithms, the three DG configuration,
and the three test systems. In total, 540 trials were conducted,
generating over 3000 data points to thoroughly assess the
efficiency of each algorithm.

The primary performance metric analysed is the cost as-
sociated with each algorithm under different configurations.
Cost metrics are critical as they directly show the value of
the objective function, which represents the efficiency of the
algorithm in DG placement and sizing. Fig. 8 shows the
mean cost for each algorithm across different test systems.
PSO demonstrated the lowest mean costs across different
configurations, making it a reliable choice for minimizing
expenses. GA shows higher variability compared to other algo-
rithms. COA provided good cost metrics with some variability,
indicating potential but not the best performance, expected
for such a new algorithm. ABC showed extreme variability
in costs, with some configurations resulting in much higher
expenses, additionally with more decision variables and a
narrower search space, the algorithm would not run. However,
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Fig. 8. Mean Cost Graph per Test System

if correctly optimized and set to operate it was showing
promising results in terms of computational efficiency. DE
had good cost metrics but with notable variability, indicating
inconsistency in performance, moreover, it is the algorithm
with longer operating times. GWO Balanced cost metrics with
moderate consistency, making it a good alternative.

Overall, PSO and GWO emerged as the algorithms with
the most favourable cost metrics, with PSO showing superior
consistency.

Fig. 9. Robustness Analysis

Robustness is assessed by comparing cost metrics for differ-
ent population sizes (200 vs 500) in Fig. 9. PSO maintained the
lowest costs consistently, demonstrating excellent scalability.
GA also scaled well but with higher costs than PSO. COA
showed variability with larger populations, indicating potential
scalability issues. ABC experienced errors with larger pop-
ulations, suggesting poor scalability. DE had mixed results,
with some improvement in costs but increased variability
with larger populations. GWO scaled well, showing moder-
ate increases in cost and variability but the best percentage
improvement.

Consistency is measured by the standard deviation of the
results across different trials, as shown in Table II. PSO,

TABLE II
STANDARD DEVIATION OF RESULTS

33 69 141 AVG

PSO 0,014 0,023 0,075 0,037
GWO 0,074 0,075 0,108 0,086
COA 0,613 0,094 0,098 0,269
DE 0,650 0,008 0,225 0,295
GA 0,838 0,407 0,309 0,518
ABC 2,933 21,261 3,125 9,107

followed by GWO, showed superior reliability with lower
standard deviations.

Fig. 10. Mean Time Across All Test Systems

Computational efficiency is evaluated by comparing the
number of iterations and execution time against performance
metrics like cost and losses. PSO achieved low costs with
fewer iterations and reasonable execution time, indicating high
computational efficiency. GA required more iterations and time
but delivered competitive costs, showing moderate efficiency.
COA had moderate efficiency, with some configurations taking
longer to converge. ABC showed potential for quick execution
but had extremely variable performance. DE showed mixed
efficiency, with some scenarios converging quickly and others
taking longer. GWO balanced efficiency, achieving reasonable
costs with moderate iterations and time. As illustrated in Fig.
10, PSO and GWO maintained reasonable execution times
with consistent performance, highlighting their computational
efficiency.

The Pareto front in Fig. 11 illustrates the relationship be-
tween cost and computation time for different algorithms and
population sizes in the 141-bus test system with 3 DGs. There
is no significant trade-off between smaller (200 particles) and
larger (500 particles) population sizes when the smaller sizes
already identify near-optimal solutions. Increasing particle size
extends computation time without substantial cost reduction
benefits. Therefore, smaller population sizes are preferred
for speed-efficient processes, balancing optimal results and
manageable computation times.

8



Fig. 11. Pareto Front

Table II provides a detailed comparison of the performance
differences between the algorithms.

TABLE III
ALGORITHM SELECTION RESULTS

PSO GA COA DE GWO ABC

Cost 30% 39,67 40,28 39,93 39,89 39,90 45,42
Robustness 20% 0,00 0,12 0,03 0,08 0,08 2,67
Consistency 20% 0,02 0,52 0,27 0,29 0,09 9,11
Scalability 15% 1,33 4,67 3,33 3,33 4,00 4,33
Time 15% 56,18 52,12 32,10 91,64 23,34 15,58

In Table III, the raw scores represent the various per-
formance metrics for all algorithms. Each algorithm has a
different raw score for each metric. The goal is to convert
the raw performance scores from Table III into a common
scale, making it easier to compare different algorithms.

The normalization process is used to scale the raw scores to
a common range. This allows for a fair comparison between
algorithms across different metrics. The normalization formula
used is:

NX = 10− 10× (X −min(X1, X2, . . . , Xn))

max(X1, X2, . . . , Xn)−min(X1, X2, . . . , Xn)
(15)

Where, X is the raw score for a specific algorithm and
metric from Table III, and (X1, X2, . . . , Xn) are the raw
scores for that metric across all algorithms.

Each algorithm is scored from 1 (poor performance) to 10
(excellent performance) for each criterion. The scores are then
multiplied by the weights and summed to obtain a total score.

The comparative analysis highlights the strengths and weak-
nesses of each algorithm across various metrics:

PSO demonstrated quick convergence and was particularly
effective in minimizing the objective function. It showed
robustness in finding near-optimal solutions across different
test systems. Stands out for its excellent performance across
all metrics, achieving high scores in cost efficiency, robust-
ness, consistency, scalability, and computational efficiency.

TABLE IV
ALGORITHM SELECTION RESULTS NORMALIZED

PSO GA COA DE GWO ABCa

Cost 30% 10,0 8,9 9,6 9,6 9,6 0,0
Robustness 20% 10,0 9,6 9,9 9,7 9,7 0,0
Consistency 20% 10,0 9,4 9,7 9,7 9,9 0,0
Scalability 15% 10,0 0,0 4,0 4,0 2,0 1,0
Time 15% 4,7 5,2 7,8 0,0 9,0 10,0

100% 9,52 7,27 8,56 7,37 8,45 1,65
aThe algorithm is difficult to set up, often failing with large
samples and not producing analysable results.

The downside is that PSO sometimes converged prematurely
to local optima, especially in more complex scenarios with
higher numbers of DG units.

GA was effective in exploring large solution spaces and
avoiding local optima due to its stochastic nature. It provided
a good balance between exploration and exploitation. GA
required similar computational time compared to PSO, how-
ever it showed more variability of the results, finding worse
solutions.

GWO was also effective in handling the objective func-
tion with multiple parameters, balancing power losses, and
voltage stability. It showed better performance in scenarios
with significant variability in load and generation. The con-
vergence rate of GWO was faster compared to PSO, requiring
more iterations to reach an optimal solution but lower times.
Nevertheless, while PSO was consistently among the best
algorithms, GWO did not perform equally good in every tested
scenario, lacking scalability potential. Overall, it offers a well-
rounded performance with high computational efficiency and
strong consistency, making it a reliable alternative to PSO.

DE was highly effective in minimizing power losses and
improving voltage profiles. It was particularly robust in finding
global optima due to its differential mutation strategy. DE
required careful tuning of parameters and had a relatively
extremely high computational cost.

COA, despite being the newest and least develop algorithm,
demonstrates good computational efficiency and robustness,
but needs improvement in consistency and scalability to be-
come more competitive.

Lastly, ABC displays moderate performance in computa-
tional efficiency but falls short in other metrics, particularly in
cost efficiency, robustness, and consistency. Difficulties to set
up might have affected its performance.

PSO emerges as the most reliable and efficient algorithm for
DG placement and sizing, with GWO as a potential alternative.
COA, despite being a new method, stands in second place with
very promising results. Further research could explore hybrid
approaches to combine the strengths of different algorithms
for enhanced performance in power grid optimization at the
cost of an increased complexity in the implementation.

V. RESULTS

The best-performing algorithm, PSO, is tested in a realistic
long-term planning scenario using time and solar profiles for
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a detailed electrical analysis.
To incorporate a time-based analysis, the objective function

needs slight adaptation. Previously, it focused on the worst-
case high demand scenario. Now, the objective function for
Enhanced PSO must minimize costs for each hour and the
total cost across all hours. Therefore, eq. (1) is thus modified
accordingly:

min
x

t∑
f(x) + g(x) (16)

A. Time and Solar Profiles

To simulate realistic operation, load profiles based on sea-
sonal and daily variations are used. The base load is adapted
using load factors derived from historical data, reflecting
typical demand patterns throughout the day and across seasons.
Different profiles are created for winter, spring, summer, and
fall, as shown in Fig. 12. This ensures accurate assessment of
network performance under varying conditions.

Fig. 12. Applied Load Factors to adapt test system’s base load [32]

Average energy consumption is higher in summer and win-
ter due to air conditioning and heating, with peak demand in
the mid-afternoon during summer and morning and afternoon
peaks in other seasons.

Solar irradiance data, provided by AEMET for Madrid,
models potential power generation from PV systems. Monthly
values are grouped into seasons. Average global irradiance is
calculated for each season, refined for daily variations. Table
V summarizes irradiance values and sunlight hours.

TABLE V
SEASONAL IRRADIANCE

Season kWh/m²/day From To Hours

Winter 2.46 7 17 10
Spring 5.67 6 19 13
Summer 7.59 5 21 16
Fall 3.82 6 18 12

The irradiance data is used to estimate daily solar power
generation, considering system efficiency. Fig. 13 illustrates
the implemented solar capacity.

Fig. 13. Implemented Solar Capacity

The electrical analysis of the results involves evaluating the
performance of different distribution network configurations
under various scenarios. The trials include different test sys-
tems with varying numbers of DGs and load profiles, both
with and without solar profiles.

B. IEEE 33-bus

The results from the metaheuristic exploration in the first
case study involves implementing a single 2.1 MW solar
DG unit at bus 15 in the 33-bus test system. The results
indicate that during low demand, no solar generation occurs,
and all power comes from the substation (see Fig. 14). In high
demand scenarios, solar generation helps, but additional power
is still needed from the substation. At peak solar generation,
there is slightly higher solar output and reduced substation
power import. Solar integration significantly reduces midday
loads and improves voltage profiles, but potential overvoltages
during low demand times are a concern.

Fig. 14. 33-Bus Test System 1 DG Generation and Demand at each bus

In the second case study, the algorithm implements three DG
units: 1.05 MW at bus 13, 0.62 MW at bus 17, and 1.5 MW
at bus 32. This setup significantly reduces power imported
from the substation, distributes generation more evenly, and
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improves voltage stability across the network, particularly at
tail buses. The total system losses are reduced by 29%, from
202.7 kW to 144.9 kW.

Fig. 15. 33-Bus Test System 7 DGs Generation and Demand at each bus

Fig. 16. 33-Bus Test System 7 DG Summer Bus Voltage Profile (12pm, max
solar generation)

The final case study aims to maximize PV generation with
seven DG units to eliminate active power imports from the
substation. This configuration maintains a flat voltage profile
and optimally distributes generation, reducing total power
losses to 119.64 kW (see Fig. 15). However, beyond this point,
additional PV units lead to increased power losses, highlight-
ing a trade-off between voltage stability, system efficiency,
and complexity. The optimal balance depends on the DSO’s
priorities and goals.

C. IEEE 141-bus

The IEEE 141-bus test system evaluates the impact of DG
allocation in a real MV distribution grid. In the first case,
the algorithm locates a single 2.1 MW PV plant at bus 86
which reduces power losses by 51.5% to 307.16 kW. Although
this configuration improved voltage profiles and reduced load
during peak solar generation, it highlighted the need for
additional backup systems like BESS to handle periods when
solar generation does not align with peak demand.

Incorporating only PV showed significant load reductions
during daylight hours but also created valleys in the load
profile that require other power sources for balance. Demand
Response Programs can help by shifting energy usage to off-
peak times, such as incentivizing daytime use when solar
power is abundant.

The voltage profile with a single DG showed improvement
but still had seasonal fluctuations. The algorithm found that
introducing five DGs (2.06 MW at bus 44, 2.00 MW at
bus 64, 2.06 MW at bus 71, 2.05 MW at bus 76, and 2.06

Fig. 17. 145-Bus Test System 5 DG Spring Bus Voltage Profile

MW at bus 71) further stabilized the voltage (see Fig. 17)
and reduced system losses to 189.48 kW, a 70.1% reduction.
This configuration showed more distributed and stable voltage
profiles, indicating the effectiveness of multiple DGs in large
systems.

However, integrating more PV without an Energy Manage-
ment System (EMS) poses a significant threat due to deep
valleys in the load profile, requiring substantial backup sys-
tems. A distributed approach with multiple DGs is preferable
for maintaining voltage stability and system reliability, though
it increases system complexity.

VI. CONCLUSION

The study underscores the importance of selecting appro-
priate algorithms for specific network conditions to improve
overall performance.

The correct comparison of algorithms, such as PSO, GA,
and GWO, highlights the strengths and weaknesses of each.
This comparison is critical for determining the best-suited
algorithm for optimizing DG placement and sizing in distri-
bution networks. Metaheuristic algorithms, particularly PSO,
show significant promise in handling complex, multi-objective
optimization problems. These algorithms excel in scenarios
where traditional methods fall short, especially in managing
the variability and complexity introduced by DERs. Although
this paper demonstrates that PSO is the most complete algo-
rithm for this particular application, it is followed by GWO
as a very complete and powerful algorithm, especially for
large test systems. On the other hand, it emphasises the great
capacity of COA despite being a very new algorithm and it is
hoped that its development will reduce the small failures that
it has when it gets lost in the local optimum.

The paper shows the integration of DG using optimized
algorithms can lead to reduced power losses, improved voltage
profiles, and increased reliability of the power supply. This
optimization is crucial for modernizing electrical distribution
networks to handle the dynamic nature of renewable energy
sources.

The are several limitation in this study. The paper only
serves as a benchmark for a specific application. Moreover, test
systems used only cover grids with nodes up to a certain size,

11



whereas there are much bigger ones. Additionally, constraints
were incorporated as penalties in the objective function, which
might not fully capture all real-world complexities. This
narrow focus means the results may not be broadly applicable
to all types of distribution networks or configurations.

Future research should explore hybrid approaches that
combine the strengths of multiple metaheuristic methods to
enhance performance. Another important area for future study
is modeling problems that also address the flexibility of
demand or generation (curtailment), which aligns well with
European Union guidelines. Instead of focusing solely on real-
time optimization and dynamic grid conditions, integrating
advanced techniques to handle demand flexibility and gen-
eration curtailment could improve the overall reliability and
efficiency of the power distribution network. This direction
offers a promising path for future research.

By addressing these limitations and exploring new research
directions, future studies can further enhance the application
of optimization algorithms in electrical power systems.
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