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Abstract—This paper proposes a novel single-level robust
mathematical approach to model the RES-only Virtual Power
Plant (RVPP) bidding problem in the simultaneous Day Ahead
Market (DAM) and Secondary Reserve Market (SRM). The
worst-case profit of RVPP due to uncertainties related to
electricity prices, Non-dispatchable Renewable Energy Sources
(ND-RES) production, and flexible demand is captured. In
order to find the worst-case profit in a single-level model, the
relationship between price and energy uncertainties leads to
some non-linear constraints, which are appropriately linearized.
The simulation results show the superiority of the proposed
robust model compared to those in the literature, as well as
its computational efficiency.

Index Terms—Renewable-only virtual power plant, single-level
model, robust optimization, uncertainty, worst-case profit.

I. INTRODUCTION
A. Motivation

THE penetration of ND-RESs has experienced a remark-
able growth in the last decades. However, the stochastic

nature of these sources implies that ND-RESs are less reliable
when it comes to predictable and controllable power injection
over a given period of time [1]. This makes ND-RESs par-
ticipation in the energy and Ancillary Service Market (ASM)
difficult, as failure to meet with the contracted energy and
reserve in the market will lead to penalties if not suspension
from future market activities. However, by integrating multiple
portfolios of ND-RESs and other flexible assets as an RVPP,
the performance and competitiveness of ND-RESs in these
markets can be significantly improved [2].

The viability of RVPP depends on its economic perfor-
mance, related to benefits and costs. Different markets bring
different benefits according to the bidding/offering ability
of RVPP and its ability to provide what is promised [3].
However, in addition to the internal uncertainties of RVPP
units in their production and demand, there are various external
uncertainties in the markets, such as the energy and reserve
electricity price uncertainties [4]. Therefore, the development
of bidding approaches for RVPP participation in different
markets taking into account the characteristics of RVPP units,
market rules, and internal and external uncertainties has at
most important for RVPP operators and researchers [5].

B. Literature Review

Many papers in the literature use mathematical optimiza-
tion models to capture different uncertainties associated with
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Virtual Power Plant (VPP) due to ease of implementation, con-
vergence to the global optimum, and computational efficiency
of these models [6]. In this context, Robust Optimization
(RO) programming is an efficient way to deal with different
sets of uncertainties that vary in their possible values. The
goal of RO is to find the worst case of the optimization
problem to minimize the negative impact of uncertainties on
the solution [7]. However, the definition of the worst case
can vary depending on how the optimization is implemented,
whether it is single-level or multi-level, and can lead to
different solutions in each approach. The authors in [8]–
[15] develop a single-level optimization problem for the VPP
market bidding problem to find the worst case of energy
of ND-RESs. The literature addresses VPP scheduling and
bidding problems by considering different uncertainty char-
acterizations in demand [8]–[10], [13], [15], ND-RES produc-
tion [9]–[15], and electricity price [11]–[13], [15], focusing
on multi-market [8], [9], [11]–[15], multi-objective [10], and
multi-energy models [12], [13]. The main advantages of the
mentioned single-level RO programming in [8]–[15] are the
possibility to consider multiple uncertainties, simplicity of
implementation, global optimality, and calculation efficiency.
However, a simplified definition of the worst case of energy
for the severe scenarios is implemented. In fact, the worst case
of energy defined for ND-RESs in the above papers does not
lead to the worst condition of profit, considering the possibility
of different values of electricity prices. For instance, in a case
where the electricity price is low in a certain period, even
though the energy of a ND-RES can deviate significantly in
this period, the resulting loss for RVPP might not be significant
compared to a period with much higher electricity price and
average or low energy deviation.

Multi-level RO models provide more flexibility to find the
actual worst-case of the VPP bidding problem compared to
single-level models. This is due to the definition of a new
level for the optimization problem that models the behavior
of uncertain parameters (both electrcity price and energy
uncertainties). Therefore, the objective function of this level
can be defined to find the worst case of energy or profit of
VPP. In addition, another level for the problem can be included
to define the corrective or remedial actions after the occurrence
of uncertainties.

The literature on multi-level models proposes mathemat-
ical techniques, including Adaptive [16], [17] and Stochas-
tic [4], [18], [19] RO to account for various uncertainties
in ND-RES production [4], [16]–[19], demand [16], [19],
electricity prices [4], [18], and reserve deployment or dispatch
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order of Transmission System Operator (TSO) [4], [17], [18].
The proposed models are implemented for the multi-market
participation of VPP [4], [16], [18] and for multi-energy
VPPs [19]. Different techniques, including Benders and other
decomposition techniques [4], [16], the Column Constraint
Generation algorithm [18], and improved versions of these
algorithms [17], [19], are proposed to accelerate the solution
time of the optimization problem. The main limitations of the
multi-level approaches in general, and in the above works in
particular, are the complexity of programming and the fact that
the size of the problem grows with the number of iterations
in the solving procedure. In addition, they usually imply long
computational times, which can compromise applications such
as sensitivity analysis.

C. Approach and Contributions

To avoid the difficulties of implementing a multi-level
model and the computational complexity for practical applica-
tions, this paper models the worst-case profit of RVPP against
uncertainties by means of a novel single-level Mixed Integer
Linear Programming (MILP) problem. The equations related
to the uncertain parameters in the objective function of the
optimization problem (equations related to the energy and
reserve price uncertainties) as well as the equations related to
the uncertain parameters in the constraints (equations related
to the ND-RES and demand uncertainties) are defined by
developing the approach in [11], [15], [20] and by developing
on the idea from the big M method [21]. The proposed
implementation of robust constraints makes it possible to
capture the relationship between different uncertain parameters
in the objective and constraints of the optimization problem,
and to find the exact worst case profit of RVPP. Finally,
defining the relationship between uncertain parameters in order
to find the worst case leads to some non-linear constraints,
which are linearized by using well-established methods.

The contributions of this paper are threefold:
• Modeling the worst-case profit robustness of an RVPP

with a single-level Mixed Integer non-Linear Program-
ming (MINLP) model. As opposed to other single-level
models in the literature, the proposed model maximizes
the expected profit of RVPP for the simultaneous DAM
and SRM participation against the worst-case profit ro-
bustness of different uncertainties on prices and energy
(ND-RES production and demand).

• Addressing the non-linear couplings between various
uncertainties within the optimization problem, and subse-
quently formulating an equivalent MILP problem for the
initial MINLP one.

• The proposed single-level MILP model has high compu-
tational efficiency and simpler implementation compared
to the multi-level optimization models in the literature.

D. Paper Organization

The reminder of the paper is organized as follows. A con-
ceptual comparison of energy and profit robustness approaches
is presented in Section II. The proposed single-level robust
bidding problem of RVPP for DAM and SRM participation is
formulated in Section III. An illustrative example is given in

Section IV to show the performance of the proposed robust
model in finding the worst-case profit. The simulation results
are presented in Section V. Finally, the conclusions are drawn
in Section VI.

II. COMPARING ENERGY AND PROFIT ROBUSTNESS

Figure 1 shows the structure of a deterministic RVPP
bidding problem and a comparison between the energy and the
profit robustness approaches. In the deterministic approach, a
single value (usually the median or average) of the forecast
data is considered to solve the optimization problem. The
constraints are related mainly to the operation of the RVPP
units, and supply-demand balance [22]. When considering the
uncertainties, depending on whether the uncertainties affect
the objective function or the constraints of the optimization
problem, different sets of constraints need to be defined in
each of the RO approaches. The uncertainties related to the
energy/reserve electricity price affect the objective function of
the optimization problem, whereas the uncertainties associated
with the ND-RES generation and demand consumption affect
the constraints.

Fig. 1. A comparison between the energy and profit robustness approaches.

In the energy robustness approach, those periods that result
in more deviation of the energy/reserve electricity price vari-
ance multiplied by the total traded energy/reserve of RVPP
are selected as the worst-case scenarios of the electricity
price [15]. In the energy robustness constraints, the periods that
have higher deviation of energy are selected as the worst case
of ND-RESs production or demand regardless of the electricity
price.

In the profit robustness approach proposed in this paper
and for the uncertain parameters in the objective function
of the optimization problem (energy/reserve electricity price),
the worst case is defined according to the final value of the
energy/reserve electricity price by means of binary variables.
The final value of the energy electricity price is also used to
calculate the worst case of profit/cost of each unit (uncertainty
of ND-RES and demand in the constraints of the optimization
problem). For this purpose, the final energy electricity price is
multiplied by the energy variable of ND-RES/demand and is
limited by the profit reduction effect due to ND-RES/demand
uncertainty.

In the following section, the proposed profit robustness
approach is formulated as a single-level optimization problem.
In Section IV, these two approaches are compared using an
illustrative example.
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III. PROFIT ROBUSTNESS FORMULATION

A. Nomenclature

This subsection presents the notation and nomenclature used
in the remainder of the paper.

General Notation Concepts
• An uncertain parameter with a tilde symbol denotes the

median value in the forecast distribution, representing a
point where half of the observations are lower (Ã);

• the hat/inverse hat symbol on uncertain parameters sig-
nifies the greatest positive/negative permitted deviation
from the forecast’s median (Â, Ǎ);

• parameters with an upper/lower bar represent their up-
per/lower bounds of parameter A (Ā,

¯
A);

• upward/downward arrows indicate up/down direction of
regulation in variables and parameters (a↑, A↑/a↓, A↓).

Indexes and Sets
d ∈ D Set of demands
p ∈ P Set of daily load profiles
r ∈ R Set of ND-RESs
t ∈ T Set of time periods
ΞDA+SR Set of decision variables of DAM and SRM

Parameters
CR

r Operation and maintenance costs of ND-RES r
[C/MWh]

Cd,p Cost of load profile p of demand d [C]
Ed Energy consumption of demand d throughout the

planning horizon [MWh]
M Very big positive value [C]
Pd Power consumption of demand d [MW]
Pr Power production of ND-RES r [MW]
Pd,p,t Profile p of demand d prediction during period t

[MW]
Pr,t ND-RES r production prediction during period t

[MW]
Rd Ramp rate of demand d [MW/hour]
RSR

r(d) Secondary Reserve (SR) ramp rate of ND-RES r
(demand d) [MW/min]

T SR Required time for SR action [min]
∆t Duration of periods [hour]
ΓDA/SR DAM/SRM price uncertainty budget [-]
Γr(d) ND-RES r production (demand d) uncertainty

budget [-]
κ User-defined parameter to set the limit of up

reserve traded in the SRM as a percentage of total
power capacity of RVPP [%]

ε Very small positive value [C]
ϱt Coefficient to calculate the ratio of down-to-up

reserve requested by the TSO during period t [%]
βd,t Percentage of flexibility of demand d during period

t [%]
λ
DA/SR
t DAM/SRM price prediction during period t

[C/MWh]/[C/MW]

Continuous Variables
pDA
t Total traded power by RVPP in the DAM during

period t [MW]
pDA
r(d),t Production of ND-RES r (consumption of demand

d) in the DAM during period t [MW]
rSRt Total SR traded by RVPP for different TSO calls

on conditions during period t [MW]
rSRr(d),t SR provided by ND-RES r (demand d) for differ-

ent TSO calls on conditions during period t [MW]
y
(′)DA
t RVPP profit affected by DAM negative (positive)

price uncertainty during period t [C]
ySRt RVPP profit affected by SRM price uncertainty

during period t [C]
yr(d),t RVPP profit (cost) affected by ND-RES r produc-

tion (demand d) uncertainty during period t [C]
η
(′)DA
t Dual variable to model the negative (positive) price

uncertainty of DAM during period t [C]
ηSRt Dual variable to model the price uncertainty of

SRM during period t [C]
ηr(d),t Dual variable to model the ND-RES r production

(demand d) uncertainty during period t [C]
νDA/SR Dual variable to model the price uncertainty of

DAM/SRM [C]
νr(d) Dual variable to model the ND-RES r production

(demand d) uncertainty during period t [C]
Binary Variables
ud,p Indicator of selection of profile p of demand d [-]
χ
(′)DA
t Binary variable that is 1 if DAM negative (posi-

tive) price robustness constraints are active during
period t, and 0 otherwise [-]

χSR
t Binary variable that is 1 if SRM price robustness

constraints are active during period t, and 0 oth-
erwise [-]

χr(d),t Binary variable that is 1 if ND-RES r (demand d)
robust constraints are active during period t, and
0 otherwise [-]

B. Price Robustness (Objective Function)

The objective function of simultaneous RVPP participation
in the DAM and SRM, as well as the associated robust
constraints, are presented in this section.

The objective function (1) maximizes the benefits of RVPP
in the DAM and SRM. The first and second lines of (1)
calculate the expected RVPP incomes from bidding in the
DAM and from up and down SR provision, respectively,
considering the corresponding robustness cost of asymmetric
electricity price uncertainties. The third line in (1) defines
the operation costs of ND-RESs, and the costs of selecting
a particular load profile. Note that the implementation of
variables yDA

t , y′DA
t , ySR,↑

t , and ySR,↓
t in the objective function

is one of the main differences between the proposed model
and the common approach to model the price robustness in
the literature [11], [15]. By means of these variables, the
final value of the DAM/SRM electricity price and the traded
energy/reserve of RVPP are used to calculate the worst-case
scenarios.
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max
ΞDA+SR

∑
t∈T

[
λ̃DA
t pDA

t ∆t− yDA
t − y′DA

t

]
+
∑
t∈T

[
λ̃SR,↑
t rSR,↑

t + λ̃SR,↓
t rSR,↓

t − ySR,↑
t − ySR,↓

t

]
−
∑
t∈T

∑
r∈R

CR
r pDA

r,t ∆t−
∑
d∈D

∑
p∈P

Cd,pud,p (1)

The set of constraints (2) is related to the uncertainties of
the DAM electricity price and are written by developing the
approach in [11], [15], [20] and elaborating on the big M
method [21].

λDA
t = λ̃DA

t − λ̌DA
t χDA

t + λ̂DA
t χ′DA

t , ∀t (2a)
νDA + ηDA

t ≥ λ̌DA
t pDA

t ∆t , ∀t (2b)
νDA + η′DA

t ≥ −λ̂DA
t pDA

t ∆t , ∀t (2c)
yDA
t ≥ νDA + ηDA

t −M(1− χDA
t ) , ∀t (2d)

y′DA
t ≥ νDA + η′DA

t −M(1− χ′DA
t ) , ∀t (2e)

ε(χDA
t ) ≤ ηDA

t ≤ M(χDA
t ) , ∀t (2f)

ε(χ′DA
t ) ≤ η′DA

t ≤ M(χ′DA
t ) , ∀t (2g)

−M(1− χDA
t ) ≤ λ̌DA

t pDA
t ∆t− νDA ≤ M(χDA

t ) , ∀t (2h)

−M(1− χ′DA
t ) ≤ −λ̂DA

t pDA
t ∆t− νDA ≤ M(χ′DA

t )∀t (2i)∑
t∈T

(χDA
t + χ′DA

t ) = ΓDA , (2j)

χDA
t + χ′DA

t ≤ 1 , ∀t (2k)
νDA, ηDA

t , η′DA
t , yDA

t , y′DA
t ≥ 0 , ∀t (2l)

χDA
t , χ′DA

t ∈ {0, 1} , ∀t (2m)

Constraint (2a) determines the DAM electricity price in each
time period according to the condition of binary variables χDA

t

and χ′DA
t , which are related to the negative and positive price

volatility, respectively. Constraints (2b) and (2c) model the
impact of the absolute value of negative and positive price
volatility on profit reduction when the electricity price takes
its worst condition. Constraints (2d) and (2e) set a lower
bound for the profit reduction variables yDA

t and y′DA
t due

to the negative and positive price uncertainty, respectively.
When the binary variable χDA

t

(
χ′DA
t

)
is 1, constraint (2d)

(constraint (2e)) is active. Depending on whether RVPP sells or
buys electricity on the market, the worst DAM price conditions
occur at the price values λ̃DA

t − λ̌DA
t and λ̃DA

t + λ̂DA
t ,

respectively. The dual variables ηDA
t and η′DA

t , related to
the negative and positive deviations of the electricity price,
are logically constrained by (2f) and (2g), respectively, based
on the active or non-active status of the periods to comply
with the robustness budget defined in (2j). Constraints (2h)
and (2i) define the lower and upper bounds for the differences
between the possible profit reductions (due to the negative
price deviation λ̌DA

t pDA
t ∆t and the positive price deviation

−λ̂DA
t pDA

t ∆t) and the dual variable νDA. According to these
constraints, the possible profit reductions must be greater than
or equal to the dual variable νDA for those periods that the
electricity price fluctuates to its worst case. Constraints (2h)
and (2i) are thus essential to avoid selecting incorrect peri-
ods for the worst case of profit deviations, especially when

other uncertain parameters such as ND-RESs production and
demand (see Sections III-D and III-E) affect the total power
traded by RVPP (pDA

t ). The robustness budget ΓDA in (2j) is a
user-defined parameter that determines the number of periods
in which the electricity price can deviate to its worst condition.
ΓDA is thus a particularly relevant parameter in this model.
Constraint (2k) prevents positive and negative electricity price
deviations in the same period. Constraints (2l) and (2m) define
the nature of positive dual variables and binary variables,
respectively. The use of two binary variables to define the
negative and positive price deviations and the implementation
of constraints (2h) and (2i) to avoid illogical condition for the
price deviations is another significant improvement compared
to previous robust formulations in the literature [11], [15].

The set of constraints (3) related to the uncertainty in the
up and down SRM price is defined similarly to (2). The
only difference is that for both up and down SRM price,
only the negative SRM price deviations due to uncertainty are
considered in (3a) and (3b), respectively. This is due to the fact
that the positive SRM price deviations always result in more
benefit for RVPP. Therefore, the maximum possible profit
deviations λ̌SR,↑

t rSR,↑
t and λ̌SR,↓

t rSR,↓
t are calculated based

on the negative upward and downward SRM price deviations
λ̌SR,↑
t and λ̌SR,↓

t in constraints (3c) and (3d), respectively.

λSR,↑
t = λ̃SR,↑

t − λ̌SR,↑
t χSR,↑

t , ∀t (3a)

λSR,↓
t = λ̃SR,↓

t − λ̌SR,↓
t χSR,↓

t , ∀t (3b)

νSR,↑ + ηSR,↑
t ≥ λ̌SR,↑

t rSR,↑
t , ∀t (3c)

νSR,↓ + ηSR,↓
t ≥ λ̌SR,↓

t rSR,↓
t , ∀t (3d)

ySR,↑
t ≥ νSR,↑ + ηSR,↑

t −M(1− χSR,↑
t ) , ∀t (3e)

ySR,↓
t ≥ νSR,↓ + ηSR,↓

t −M(1− χSR,↓
t ) , ∀t (3f)

ε(χSR,↑
t ) ≤ ηSR,↑

t ≤ M(χSR,↑
t ) , ∀t (3g)

ε(χSR,↓
t ) ≤ ηSR,↓

t ≤ M(χSR,↓
t ) , ∀t (3h)

−M(1− χSR,↑
t ) ≤ λ̌SR,↑

t rSR,↑
t − νSR,↑ ≤ M(χSR,↑

t )∀t (3i)

−M(1− χSR,↓
t ) ≤ λ̌SR,↓

t rSR,↓
t − νSR,↓ ≤ M(χSR,↓

t )∀t (3j)∑
t∈T

χSR,↑
t = ΓSR,↑ , (3k)∑

t∈T

χSR,↓
t = ΓSR,↓ , (3l)

νSR,↑, νSR,↓, ηSR,↑
t , ηSR,↓

t , ySR,↑
t , ySR,↓

t ≥ 0 , ∀t(3m)

χSR,↑
t , χSR,↓

t ∈ {0, 1} , ∀t (3n)

C. Supply-demand and Traded Constraints

The supply-demand balancing constraint of RVPP units is
defined in (4a). All RVPP units are assumed to be connected
to a single node. The variable rSR

t related to the total traded
reserve of RVPP and the variables rSR

r,t and rSR
d,t related to

the reserve of RVPP units are defined according to different
reserve activation scenarios similar to [15]. Constraints (4b)
and (4c) assign the upper and lower bounds of traded energy
and reserve by RVPP, respectively. Constraint (4d) defines the
proportion of down and up reserve requested by TSO. The up
reserve provided is limited by (4e) to a fraction of the total
capacity of the generating units of RVPP.



5

∑
r∈R

(pDA
r,t + rSR

r,t )−
∑
d∈D

(pDA
d,t − rSR

d,t ) = pDA
t + rSR

t ,∀t (4a)

pDA
t + rSR,↑

t ≤
∑
r∈R

P̄r , ∀t (4b)

−
∑
d∈D

P̄d ≤ pDA
t − rSR,↓

t , ∀t (4c)

rSR,↑
t = ϱtr

SR,↓
t , ∀t (4d)

rSR,↑
t ≤ κ

∑
r∈R

P̄r , ∀t (4e)

D. ND-RES Profit Robustness

The profit robustness formulation of ND-RESs is given
in (5). Constraint (5a) is the lower bound on the ND-RESs
output power. Constraint (5b) sets the ND-RESs output
through the median forecast generation of ND-RESs P̃r,t and
the possible negative power deviation χr,tP̌r,t (active when
χr,t = 1). The binary variable χr,t is determined according
to the profit robustness constraints (5c)-(5j) proposed in this
work. Constraint (5c) limits the profit of ND-RESs for each
time period by considering the robustness of the problem
against uncertain parameters of ND-RESs production. The
upper bound of this constraint is computed as the median
profit minus the profit reduction due to the negative deviation
of power forecast of ND-RESs, yr,t. The median profit is
calculated by multiplying the electricity price λDA

t and the me-
dian production of ND-RESs minus the provided up reserve,
both multiplied by the time period duration (P̃r,t− rSR,↑

r,t )∆t.
Constraint (5c) is a non-linear expression that is linearized in
Section III-F. Constraint (5d) assigns the upper bound of the
dual variable yr,t to the negative profit deviation λDA

t P̌r,t∆t
of each ND-RESs due to uncertainty. To model the worst-case
scenarios of profit reduction for each ND-RES, only negative
power deviations are considered in this constraint, since posi-
tive deviations will usually benefit the RVPP. Constraint (5e)
determines the lower bound of the dual variable yr,t according
to the dual variables νr and ηr,t, and the condition of the binary
variable χDA

r,t . Constraint (5f) assigns the lower bound of the
sum of the dual variables νr and ηr,t to the maximum profit
reduction for each ND-RES in each time period. According
to constraint (5g), the dual variable ηr,t is defined based on
the active or non-active status of the profit reduction due to
the robustness of the production of ND-RESs. Constraint (5h)
defines the profit robustness budget for each ND-RES.

¯
Pr ≤ pDA

r,t − rSR,↓
r,t , ∀r, t (5a)

pDA
r,t + rSR,↑

r,t = P̃r,t − χr,tP̌r,t , ∀r, t (5b)

λDA
t pDA

r,t ∆t ≤ λDA
t (P̃r,t − rSR,↑

r,t )∆t− yr,t , ∀r, t (5c)

yr,t ≤ λDA
t P̌r,t∆t , ∀r, t (5d)

yr,t ≥ νr + ηr,t −M(1− χr,t) , ∀r, t (5e)
νr + ηr,t ≥ λDA

t P̌r,t∆t , ∀r, t (5f)
εχr,t ≤ ηr,t ≤ Mχr,t , ∀r, t (5g)∑
t∈T

χr,t = Γr , ∀r (5h)

νr, ηr,t, yr,t ≥ 0 , ∀r, t (5i)
χr,t ∈ {0, 1} , ∀r, t (5j)

E. Demand Cost Robustness

The demand cost robust formulation is illustrated in (6),
which is based on the deterministic model presented in [23].
Constraint (6a) assigns the demand for each period to pre-
defined demand profiles, taking into account the median and
positive demand forecasts. Only positive demand deviations
are considered for the worst-case cost robustness scenarios,
since the negative demand deviations (i.e., lower consumption)
usually result in lower costs for RVPP. Constraint (6b) ensures
that the algorithm selects only one demand profile among
several profiles. When the binary variable χd,t in (6a) for a
certain period is 1, the possible positive deviation of the de-
mand becomes active. The binary variable χd,t is determined
according to the cost robustness constraints (6c)-(6h) proposed
in this work. Constraint (6c) sets the lower bound on the cost
of buying electricity from DAM to supply demand, which
equals the cost of buying electricity for the median demand
forecast λDA

t

∑
p∈P

(P̃d,p,tud,p)∆t plus the additional cost of

positive demand fluctuation due to uncertainty represented
by the dual variable yd,t. The additional cost of buying
electricity for positive demand fluctuation due to uncertainty
λDA
t

∑
p∈P

(P̂d,p,tud,p)∆t is assigned as the upper bound of the

dual variable yd,t by constraint (6d). On the other hand, the
lower bound of the dual variable yd,t is given by constraint (6e)
to find the worst cases of demand cost robustness. The dual
variables νd and ηd,t are logically constrained in (6f) and (6g)
to determine those periods that positive demand deviations
lead to the worst cost robustness scenarios. Constraint (6h)
assigns the user-defined parameter of the robustness budget Γd

to set the number of periods allowed for positive deviations
in demand due to cost robustness. Constraints (6i) and (6j)
confine the demand up reserve according to the percentage
of downward demand flexibility and the minimum possible
demand, respectively. Constraints (6k) and (6l) are similarly
defined to limit the down reserve considering the opposite
direction of demand flexibility and the maximum possible
demand. The worst conditions of ramp-up and ramp-down
in two consecutive periods considering the reserve activation
are defined in constraints (6m) and (6n), respectively. The
capability of demand to provide up and down reserve is defined
by constraints (6o) and (6p), respectively. Constraint (6q)
limits the minimum energy that each demand should use for
the entire period. Constraints (6r) and (6s) describe the nature
of positive dual variables and binary variables, respectively.

pDA
d,t =

∑
p∈P

(P̃d,p,tud,p + χd,tP̂d,p,tud,p) , ∀d, t (6a)∑
P∈P

ud,p = 1 , ∀d (6b)

λDA
t pDA

d,t ∆t ≥ λDA
t

∑
p∈P

(P̃d,p,tud,p)∆t+ yd,t , ∀d, t (6c)

yd,t ≤ λDA
t

∑
p∈P

(P̂d,p,tud,p)∆t , ∀d, t (6d)

yd,t ≥ νd + ηd,t −M(1− χd,t) , ∀d, t (6e)

νd + ηd,t ≥ λDA
t

∑
p∈P

(P̂d,p,tud,p)∆t , ∀d, t (6f)
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εχd,t ≤ ηd,t ≤ Mχd,t , ∀d, t (6g)∑
t∈T

χd,t = Γd , ∀d (6h)

rSR,↑
d,t ≤

¯
βd,t

∑
p∈P

(P̃d,p,tud,p) , ∀d, t (6i)

rSR,↑
d,t ≤ pDA

d,t −
¯
Pd , ∀d, t (6j)

rSR,↓
d,t ≤ β̄d,t

∑
p∈P

(P̃d,p,tud,p) , ∀d, t (6k)

rSR,↓
d,t ≤ P̄d − pDA

d,t , ∀d, t (6l)

(pDA
d,t + rSR,↓

d,t )− (pDA
d,(t−1) − rSR,↑

d,(t−1)) ≤ R̄d∆t , ∀d, t (6m)

(pDA
d,(t−1) + rSR,↓

d,(t−1))− (pDA
d,t − rSR,↑

d,t ) ≤
¯
Rd∆t , ∀d, t (6n)

rSR,↑
d,t ≤ TSR

¯
RSR

d , ∀d, t (6o)

rSR,↓
d,t ≤ TSRR̄SR

d , ∀d, t (6p)

¯
Ed ≤

∑
t∈T

(pDA
d,t ∆t− rSR,↑

d,t ) , ∀d (6q)

νd, ηd,t, yd,t ≥ 0 , ∀d, t (6r)
χd,t ∈ {0, 1} , ∀d, t (6s)

F. Coping with Non-linear Constraints

This section discusses the derivation from the non-linear
terms in sets of equations (5) and (6) to obtain a single-level
MILP problem with an exact solution. The set of equations (5)
contains two non-linear terms on the left and right hand
sides of (5c) due to the multiplication of the electricity price
variable λDA

t and the continuous variables pDA
r,t and rSR,↑

r,t .
By substituting the electricity price from constraint (2a) into
the non-linear terms, the profit robustness constraint (5c) can
be rewritten as (7a). In equation (7a), the non-linear terms
λ̌DA
t χDA

t (pDA
r,t +rSR,↑

r,t )∆t and λ̂DA
t χ′DA

t (pDA
r,t +rSR,↑

r,t )∆t are
the multiplications of binary and continuous variables. Note
that the consideration of discrete rather than continuous values
for the electricity price in (2a) is relevant to the robustness
concept, since the worst-case scenarios occur in the boundary
values of electricity price. Finally, the non-linear equation (7a)
can be replaced by the set of linear constraints (7b)-(7h) using
the method in [21].

λ̃DA
t (pDA

r,t + rSR,↑
r,t )∆t

− λ̌DA
t χDA

t (pDA
r,t + rSR,↑

r,t )∆t

+ λ̂DA
t χ′DA

t (pDA
r,t + rSR,↑

r,t )∆t

≤ λDA
t P̃r,t∆t− yr,t , ∀r, t (7a)

λ̃DA
t (pDA

r,t + rSR,↑
r,t )∆t− λ̌DA

t pDA,Q
r,t ∆t

+ λ̂DA
t p′DA,Q

r,t ∆t ≤ λDA
t P̃r,t∆t− yr,t , ∀r, t (7b)

pDA,Q
r,t = pDA

r,t + rSR,↑
r,t − pDA,A

r,t , ∀r, t (7c)

¯
Prχ

DA
t ≤ pDA,Q

r,t ≤ P̃r,tχ
DA
t , ∀r, t (7d)

¯
Pr(1− χDA

t ) ≤ pDA,A
r,t ≤ P̃r,t(1− χDA

t ) , ∀r, t (7e)

p′DA,Q
r,t = pDA

r,t + rSR,↑
r,t − p′DA,A

r,t , ∀r, t (7f)

¯
Prχ

′DA
t ≤ p′DA,Q

r,t ≤ P̃r,tχ
′DA
t , ∀r, t (7g)

¯
Pr(1− χ′DA

t ) ≤ p′DA,A
r,t ≤ P̃r,t(1− χ′DA

t ) , ∀r, t (7h)

The auxiliary variables pDA,Q
r,t and pDA,A

r,t with the same
possible lower and upper bounds as the term pDA

r,t + rSR,↑
r,t

are defined to determine the final result of the non-linear term
λ̌DA
t χDA

t (pDA
r,t + rSR,↑

r,t )∆t. When the binary variable χDA
t

related to the negative electricity price deviation is 1, equa-
tions (7c)-(7e) set pDA,Q

r,t = pDA
r,t +rSR,↑

r,t and pDA,A
r,t = 0. On the

other hand, for χDA
t = 0, equations (7c)-(7e) lead to pDA,Q

r,t =
0 and pDA,A

r,t = pDA
r,t +rSR,↑

r,t . Similarly, the auxiliary variables
p′DA,Q
r,t and p′DA,A

r,t in equations (7f)-(7h) can define the
final result of the non-linear term λ̂DA

t χ′DA
t (pDA

r,t + rSR,↑
r,t )∆t

in (7a). Therefore, the linear equations (7b)-(7h) can replace
the non-linear constraint (7a).

The demand robust cost formulation proposed in (6) in-
cludes non-linear terms in (6a), (6c), (6d), and (6f). The
non-linear term λDA

t pDA
d,t ∆t in (6c) can be linearized in the

same way as in (7) by introducing new auxiliary variables.
In addition, each of the non-linear terms

∑
p∈P

(χd,tP̂d,p,tud,p)

in (6a), and, by including the expanded term of the elec-
tricity price λDA

t from constraint (2a), the non-linear terms
λDA
t

∑
p∈P

(P̃d,p,tud,p)∆t in (6c), and λDA
t

∑
p∈P

(P̂d,p,tud,p)∆t

in (6d) and (6f) includes only the multiplication of two binary
variables. To linearize these binary multiplication terms, three
new binary variables zd,p,t, wd,p,t, w′

d,p,t are introduced as
the final result of binary multiplications of χd,tud,p, χDA

t ud,p,
and χ′DA

t ud,p, respectively. Furthermore, the set of linear
constraints (8) is added to (6), which simulate the possible
results of multiplying two binary variables by the newly
defined binary variables zd,p,t, wd,p,t, w′

d,p,t.

zd,p,t ≤ χd,t , ∀d, p, t (8a)
zd,p,t ≤ ud,p , ∀d, p, t (8b)
zd,p,t + 1 ≥ χd,t + ud,p , ∀d, p, t (8c)
wd,p,t ≤ χDA

t , ∀d, p, t (8d)
wd,p,t ≤ ud,p , ∀d, p, t (8e)
wd,p,t + 1 ≥ χDA

t + ud,p , ∀d, p, t (8f)
w′

d,p,t ≤ χ′DA
t , ∀d, p, t (8g)

w′
d,p,t ≤ ud,p , ∀d, p, t (8h)

w′
d,p,t + 1 ≥ χ′DA

t + ud,p , ∀d, p, t (8i)

Finally, by substituting the linear equivalent of con-
straints (5) and (6) with (7) and (8), problem (1)-(6) can be
written as an MILP problem solvable with available MILP
solvers such as CPLEX.

IV. PROFIT ROBUSTNESS EXAMPLE

This section presents a simple illustrative example to show
the performance of the proposed robust formulation in finding
the worst-case profit robustness scenarios by considering the
asymmetry of the DAM electricity price. The example pro-
vides a detailed description of how the worst cases of the
electricity price deviations affect the worst cases of energy
deviations. In this context, an RVPP with two ND-RESs and
one demand in a sample period of 5 hours is considered. The
forecast bounds of production and demand of the RVPP units
and the DAM electricity price are shown by the dashed/solid
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lines in Figure 2. Five cases are defined below to compare dif-
ferent conditions for the values of energy and price uncertainty
budgets and to compare the results of the proposed model by
the model in [15]:

• Case 1: Deterministic case (i.e., ΓDA = Γr = Γd = 0);
• Case 2: Only the DAM electricity price uncertainty is

considered. It is assumed that the values of the DAM
electricity price can deviate from the median to the worst
case values in three periods (i.e., ΓDA = 3 and Γr =
Γd = 0);

• Case 3: Only the uncertainty of ND-RES units energy and
demand is considered. It is assumed that the production
values of ND-RES 1 and ND-RES 2 and the demand
can deviate from the median to the worst case values in
three, one, and two periods, respectively (i.e., ΓDA = 0
and Γr1 = 3, Γr2 = 1, and Γd = 2);

• Case 4: Both price and energy uncertainties are consid-
ered. The electricity price, the production of ND-RES
1 and ND-RES 2, and the demand values can deviate
from the median to the worst case values (ΓDA = 3 and
Γr1 = 3, Γr2 = 1, and Γd = 2).

• Case 5: The energy robustness problem presented in [15]
is solved for the same uncertainty budgets as in Case 4.

Figure 2 shows the final results of DAM electricity price,
ND-RESs energy, and demand for different cases proposed
in this example. The final values of the above variables,
corresponding to the whole period in each hour, are shown by
different bars in this figure. If the value of a variable is equal
to the median of the forecast (solid black line in the figure),
it means that the corresponding period is not selected as the
worst case. Figure 3 shows the values of the dual variables
y
(′)DA
t and yr(d),t related to the profit/cost affected by different

uncertainties for all defined cases except for Case 5. Note that,
in the model in [15], these variables are either not defined or
defined for energy robustness; therefore, the comparison is
only provided for the first four cases.

A. Case 1: The RVPP obtains a profit of C56 by bidding its
median values of ND-RES production according to Figure 2.
The final values for the DAM electricity price are also obtained
as the median values as the length of all bars is equal to the
median. As shown in Figure 3, due to not considering the
robustness, all dual variables y

(′)DA
t and yr(d),t are equal to

zero, since the problem is a deterministic optimization one.
B. Case 2: In Case 2, the RVPP profit in the DAM is

-C12, where the negative value means that the cost of buying
electricity to supply demand is higher than the profit obtained
by selling electricity on the market. The algorithm chooses
periods 3 and 4 for the negative price fluctuation and period 2
for the positive price fluctuation. Therefore, the final electricity
prices in periods 3 and 4 (2) are decreased (increased) to their
minimum (maximum) values compared to Case 1. Note that
the maximum possible profit reduction in each period can be
calculated by finding the maximum value of λ̌DA

t pDA
t ∆t for

the negative price deviation and −λ̂DA
t pDA

t ∆t for the positive
price deviation. Therefore, the algorithm correctly identifies
the periods that lead to the worst cases of profit reduction due
to price uncertainty.

C. Case 3: In Case 3, the RVPP profit in the DAM is -
C166. The maximum possible profit reduction for each period
can be calculated by λDA

t P̌r,t∆t for ND-RES and the maxi-
mum possible cost increase for demand can be calculated by
λDA
t P̂d,t∆t. The worst cases of profit reductions for ND-RES

1 occur in periods 3, 4, and 5, whereas for ND-RES 2 this
occurs in period 4. The worst cases of demand cost occur
in periods 2 and 5, resulting in maximum demand in these
periods. It can be easily verified that the algorithm correctly
selects the worst periods in terms of profit reduction for
ND-RES or cost increase for demand.

D. Case 4: The RVPP profit in the DAM is -C279. This case
shows one of the significant differences between the proposed
model and the models in the literature [15] (by comparing
the black (Case 4) and white (Case 5) bars), where instead
of selecting the periods with higher energy reductions, the
proposed algorithm selects the periods that result in higher
profit reductions. For instance, the worst case of ND-RES 2
production occurs in period 4 with profit reduction of C60
and energy reduction of 4 MW. However, the period 3 with
the highest amount of energy deviation (5 MW) in Case 5 is
selected as the worst case.

In Case 5, those periods that result in more deviations of
ND-RES production and demand are selected as the worst
cases. Moreover, the worst cases of electricity price deviations
are determined according to the final values of ND-RES
production and demand. Considering the different selection of
worst-case periods for Cases 4 and 5, the RVPP obtains a profit
of -C279 in the former, which is lower than the profit of -C223
obtained in Case 5. Note that the profit obtained is for bidding
in the market and is different from the profit from clearing the
market. Suppose the RVPP uses the bidding strategy proposed
in this paper, even though its profit is lower. In this condition,
it reduces the risk of significant losses and penalties (e.g., due
to buying energy in real time or penalties for the energy it
promised to provide but cannot) for not considering the actual
worst cases. Moreover, the results indicate that the energy
robustness approach cannot fully cope with the actual worst
cases for both energy (ND-RESs production and demand)
and price uncertainty. On the contrary, the profit robustness
approach proposed in this paper considers the worst cases
of profit/cost deviations for ND-RESs/demand instead of the
maximum energy deviation. As a final remark, illustrative
results indicate that the proposed algorithm accurately selects
the worst-case profit for different uncertainty budgets, and
shows better performance in finding the worst-case scenarios
compared to the model in [15]. These finding will be thor-
oughly analyzed in successive sections.

V. SIMULATION RESULTS

This section presents the simulation results of the proposed
single-level robust bidding model for different case studies.
The RVPP is located in southern Spain and includes a wind
farm, two solar PV plants, and a flexible demand. The produc-
tion forecast data of the wind farm and the solar PV plants,
representing a sample day of the spring season in Spain, are
taken from [24], [25]. The solar PV plants and the wind farm
each have a rated capacity of 50 MW and operating costs of 5
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Fig. 2. Final values of DAM electricity price and RVPP units output energy
in different case studies.

Fig. 3. The profit/cost dual variables affected by different uncertainties in
different case studies.

C/MWh and 10 C/MWh, respectively. A residential aggregator
profile for the flexible demand is considered according to [23].
The demand owner allows a 10% tolerance for additional
demand flexibility, which is allocated for the possible SR
provision. All energy forecast data related to RVPP units is
shown in Figure 4. The price forecast data for DAM and SRM
are taken from the Red Eléctrica de España (REE) website,
and are shown in Figure 5 for illustration purposes [26].

Two case studies are performed to analyze the performance
of the proposed model. In the first case study, different
values for all uncertain parameters related to the DAM and
SRM electricity prices, ND-RESs energy, and demand are
considered to show the behaviour of the proposed model in
different uncertain environments. In the second case, by means
of an out-of-sample assessment, the bidding approach of this
paper is compared with two models in the literature. The
detailed description of the input parameters for the above cases
is highlighted below:

• Case 1.1: Deterministic case (ΓDA/SR = Γr = Γd = 0);

Fig. 4. The energy forecast data.

• Case 1.2: Only the uncertainties of the energy of
the ND-RES units and the demand are considered
(ΓDA/SR = 0 and Γr = Γd = 5);

• Case 1.3: Only the DAM and SRM electricity price uncer-
tainties are considered (ΓDA/SR = 5 and Γr = Γd = 0);

• Case 1.4: Both DAM and SRM electricity price and
energy uncertainties are considered (ΓDA/SR = Γr =
Γd = 5);

• Case 2: The results of the proposed model for ΓDA/SR =
Γr = 0, 1, 2, ..., 9 are compared with models in [15]
and [18] using an out-of-sample assessment.

Simulations are performed on a Dell XPS with an i7-
1165G7 2.8 GHz processor and 16 GB of RAM using the
CPLEX solver in GAMS 39.1.1.

A. Case 1

Figure 5 shows the RVPP traded energy and reserve versus
the electricity price for Cases 1.1 through 1.4. The general
results for all cases show that between hours 8-11, when the
demand is high and the production of ND-RES units is not
enough to supply all demand, the RVPP is an energy buyer
in the electricity market. Between hours 12-15, although the
demand is high, the production and demand of RVPP are ap-
proximately equal, and RVPP does not trade too much energy
in most cases. However, in these hours the consideration of
different uncertain parameters in Cases 1.1 through 1.4 has a
significant effect on the trading direction of RVPP (whether
RVPP is a seller or a buyer of energy). Between hours 16-
19, as the demand decreases, the RVPP becomes a seller of
energy in most of the cases. The results for traded SR shows
that between hours 9-20, that RVPP has high production, it
provides more up and down SR to the market.

The total sold energy of RVPP in Cases 1.2 through 1.4 is
decreased by 52.0%, 0%, and 51.7%, respectively, compared to
Case 1.1, whereas the total bought energy of RVPP is increased
by 74.2%, 0%, and 66.3%, respectively. The total up (down)
SR provided by RVPP in Cases 1.2 through 1.4 is decreased
by 0 (0)%, 2.2 (1.5)%, and 7.5 (7.1)%, respectively, compared
to Case 1.1.

The results for each case study show that in the deterministic
case (Case 1.1) and in the hours when RVPP is an energy seller
in the market, RVPP usually sells more energy and reserve
than in Cases 1.2 and 1.4. However, if RVPP is an energy
buyer, the energy bought in Case 1.1 is usually less than in
Cases 1.2 and 1.4. The reason is that in the deterministic
case, the RVPP always takes an optimistic approach because
it does not consider any uncertain parameter. In Case 1.2,
considering the energy deviation of ND-RESs and demand
results in a lower amount of energy sold and a higher amount
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Fig. 5. RVPP traded energy and reserve versus electricity price in different case studies.

of electricity purchased from the market compared to Case
1.3, where only DAM and SRM electricity price uncertainties
are considered. According to the comparison of Cases 1.1 and
1.3, considering only the electricity price uncertainty results in
a lower amount of purchased energy only in some hours, e.g.
hour 10, compared to Case 1.1. The reason is that this hour
is one of the hours in which the electricity price goes to its
worst case. Therefore, the RVPP prefers to supply its demand
with its production and also to provide less SR. In other hours
(except hours 1-6 and 12 with small differences) there are not
too many differences between RVPP traded energy in Cases
1.3 and 1.1. The reason is that although the electricity price
goes to the worst cases in some hours in Case 1.3, the RVPP
must supply its demand or it can sell energy to the market with
lower benefit. Considering all energy and price uncertainties
in Case 1.4 results in a different bidding approach in some
hours (e.g., hours 9, 10, 12, 14, and 15) compared to Case 1.2,
which considers only energy uncertainty. Hours 9, 10, and 14
are exactly the hours where the worst cases of electricity price
occur, forcing the RVPP to increase or decrease its bid amount.
Note that the worst cases of DAM electricity price occur in
hours 8-11 and 14 (which are different from the worst cases
of electricity price in Case 1.3).

B. Case 2

Figure 6 compares the results of an out-of-sample assess-
ment for the proposed model and models in [15] and [18] for
different values of uncertainty budgets between 0 and 9. In
the figure, Πav represents the operating profit (no penalization
applied), Kav is the penalization cost for not complying with
the energy bid, and the net profit of RVPP is represented
by Πav − Kav . In [15], the energy robustness approach is
adopted. The authors in [18] use a multi-level optimization
problem which implements an RO approach to model the
ND-RES units uncertainties, and a Stochastic Optimization
(SO) to capture the electricity price uncertainties. Therefore,
the uncertainty budget in Figure 6 for model [18] refers
only to the production of ND-RES units. To model the price
uncertainty in their SO model, 200 scenarios are considered
according to the REE website [26]. For the out-of-sample
assessment, 1000 scenarios are generated based on the hourly

distributions of uncertain parameters related to the DAM and
SRM electricity prices and ND-RESs production. The Weibull
distribution, with its ability to model different degrees of
skewness and tails, is used to generate scenarios to better
capture the asymmetric behavior of uncertain parameters. Note
that an equal value for all time periods, such as in [15]
and [18], can be considered for the penalty cost. However, the
penalty cost related to the energy that is not provided is set to
three times the DAM median price forecast in this paper. In
this way, the deviation in the hours when the electricity price
is higher leads to more penalty for RVPP.

The net profit of RVPP for uncertainty budget 0 in the pro-
posed model and model [15] is the same as the deterministic
components in both models are the same. However, the model
in [18] results in a lower value of net profit for uncertainty
budget 0 compared to the proposed model and [15] due to
the use of a different reserve provision strategy. In this paper
and in [15], the production plus the reserve provided by each
RVPP unit is limited by the maximum production of each
unit, while in [18] this constraint is not defined and only
the reserve provision limit by the entire RVPP is considered.
Therefore, for an uncertainty budget of 0, using the proposed
model or the model in [15] results in a lower energy bid in
the DAM in several hours compared to [18]. By increasing the
uncertainty budget, the proposed model leads to a higher net
profit obtained compared to model [15].

The better results in terms of net profit by using the
model [18] compared to the proposed model is, to some
extent, expected. This is due to the use of a more sophis-
ticated approach to find the worst case of uncertainties of
ND-RESs production, and the consideration of the possibility
of rescheduling the RVPP units in the third level of the
model [18]. However, the proposed model shows a closely
aligned results compared to [18] even in some cases the
obtained results in the proposed model are better than model
in [18] (see e.g. results for uncertainty budgets 0, 3, 4, and 5).

From the computational standpoint, the simulation time of
different cases of the model [15] is less than 2 s due to the
simplified approach to identify the worst case of the opti-
mization problem. The simulation time of the model proposed
in this paper is less than 90 s in all cases, which meets the
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Fig. 6. The out-of-sample assessment for proposed model and the models
in [15] and [18] (ΓDA/SR = Γr = 0, 1, 2, ..., 9).

acceptable criteria for the RVPP bidding problem when, e.g.,
different strategies need to be analyzed and compared before
submitting the bid to the market operator. The simulation
time of the model [18] reaches 90 min in some cases. In
summary, the proposed approach demonstrates outstanding
computational performance against more intricate approaches
such as [18], while providing results that compete in terms
of profits with the model in [18] and reducing the risk of
penalization compared with [15].

VI. CONCLUSION

In this paper, a novel, computationally efficient, single-
level robust bidding method is proposed to capture multiple
uncertainties in the DAM and SRM electricity prices as
well as ND-RES production and demand of an RVPP. The
non-linear couplings between different uncertainties in the
objective function and constraints of the optimization problem
are addressed by developing an accurate linear model based
on the big M method. The obtained results show that the
uncertainty of ND-RES and demand has the highest impact
on the bidding approach of RVPP compared to the electricity
price uncertainty. Furthermore, the sensitivity analysis shows
that the RVPP operator can significantly increase its net profit
by considering even a low or median value for the risk measure
parameter (uncertainty budget). In addition, the simulation re-
sults show the computational efficiency of the proposed model
as well as high consistency results with more complicated
multi-level models. In the future works, the authors aim to
optimize the risk measure parameter so that the RVPP operator
obtains a certain desired profit.
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