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A B S T R A C T

The massive deployment of microgrids could play a significant role in achieving decarbonization of the electric
sector amid the ongoing energy transition. The effective operation of these microgrids requires an Energy
Management System (EMS), which establishes control set-points for all dispatchable components. EMSs can be
formulated as classical optimization problems or as Partially-Observable Markov Decision Processes (POMDPs).
Recently, Deep Reinforcement Learning (DRL) algorithms have been employed to solve the latter, gaining
popularity in recent years. Since DRL methods promise to deal effectively with nonlinear dynamics, this paper
examines the Twin-Delayed Deep Deterministic Policy Gradient (TD3) performance – a state-of-the-art method
in DRL – for the EMS of a microgrid that includes nonlinear battery losses. Furthermore, the classical EMS-
microgrid interaction is improved by refining the behavior of the underlying control system to obtain reliable
results. The performance of this novel approach has been tested on two distinct microgrids – a residential one
and a larger-scale grid – with a satisfactory outcome beyond reducing operational costs. Findings demonstrate
the intrinsic potential of DRL-based algorithms for enhancing energy management and driving more efficient
power systems.
1. Introduction

Transitioning to cleaner energy sources worldwide in order to re-
duce CO2 emissions requires increasing the penetration of Renewable
Energy Sources (RESs) into the power generation mix. In fact, during
the last two decades, the share of renewable generation in the energy
mix has increased significantly. For example, in 2004, the share of
renewable generation in Europe was 9.6% of the total generation, while
it was 21.3% in 2021, and it is targeted to reach at least 42.5% in
2030 [1]. The majority of this renewable energy production comes from
Photovoltaic Panels (PVs) and Wind Turbines (WTs), both of which
may be installed within the distribution network as Distributed Gen-
erators (DGs), close to loads. Additionally, more conventional power
generation units are still required during periods of high demand or
low renewable generation.

Energy Storage Systems (ESSs) such as batteries or flywheels play
a crucial role when RESs are present. In electric power networks, ESSs
may increase frequency stability, provide demand flexibility, and store
the energy surplus of renewable generation.
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A microgrid is a localized, small-scale power grid that can func-
tion either independently or in connection with conventional grids.
It usually comprises various DGs and ESSs, which are connected in
close proximity to the loads they serve. Moreover, they may support
well the integration of RESs, thereby contributing to the reduction
of dependence on fossil fuels. Fig. 1 illustrates a typical microgrid
setup. Microgrids must manage power generation, distribution, and
consumption within their defined boundaries. With effective operation,
they can enhance reliability, resilience, and energy efficiency, [2,3]. For
instance, microgrids can work disconnected from the main grid during
outages or emergencies, ensuring a continuous power supply to critical
systems, [4]. Furthermore, they are particularly beneficial in remote
areas where extending the main grid is not possible.

A microgrid necessitates a sophisticated digital system that controls
each component dynamically and continuously. Microgrid control hier-
archy typically consists of three levels, each addressing different aspects
of the microgrid’s operation, [5]. Primary control is responsible for
the fast, local regulation of voltage and frequency, ensuring stable and
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Notation

Sets and indexes

𝑡 ∈ 𝑇 Time periods from 1 to |𝑇 | (= 8760 for
hours in one year)

𝑟𝑒𝑠 ∈ 𝑅𝑒𝑠 Renewable Energy Sources installed in the
microgrid

𝑔 ∈ 𝐺 Non-renewable generator installed in the
microgrid

Parameters:

Time series:
𝐷𝑡 Total load of the microgrid at time period 𝑡,

[kW]
𝑃 𝑝𝑣
𝑡 Maximum available PV power generation at

time period 𝑡, [kW]
𝑃𝑤𝑡
𝑡 Maximum available WT power generation

at time period 𝑡, [kW]
Model boundaries:
𝑃 𝑝𝑣
𝑚𝑎𝑥 Nominal rate of the solar panel, [kW]

𝑃𝑤𝑡
𝑚𝑎𝑥 Nominal rate of the wind turbine, [kW]

𝑃 𝑔
𝑚𝑎𝑥 Maximum output power of the generator

𝑔 ∈ 𝐺, [kW]
𝑃 𝑔
𝑚𝑖𝑛 Minimum output power of the generator

𝑔 ∈ 𝐺, [kW]
𝑃 𝑏←
𝑚𝑎𝑥 Maximum power the ESS 𝑏 ∈ 𝐵 can charge,

[kW]
𝑃 𝑏→
𝑚𝑎𝑥 Maximum power the ESS 𝑏 ∈ 𝐵 can

discharge, [kW]
𝑆𝑏
𝑚𝑎𝑥 Maximum energy capacity in the ESS 𝑏 ∈ 𝐵,

[kWh]
𝑆𝑏
𝑚𝑖𝑛 Minimum energy capacity in the ESS 𝑏 ∈ 𝐵,

[kWh]
Model dynamics:
𝛿𝑔2 Quadratic term of the generator 𝑔 ∈ 𝐺 cost

function, [e/kW2]
𝛿𝑔1 Linear term of the generator 𝑔 ∈ 𝐺 cost

function, [e/kW]
𝛿𝑔0 No-load term of the generator 𝑔 ∈ 𝐺 cost

function when committed, [e]
𝜂𝑏 Charge linear efficiency of the ESS 𝑏 ∈ 𝐵

[Unitless]
𝜁𝑏 Discharge linear efficiency of the ESS 𝑏 ∈ 𝐵

[Unitless]
𝐶𝑛𝑠𝑒 Cost of Not Supplied Energy, [e/kWh]
𝛥𝑡 Temporal space between two contiguous

time periods: 𝑡 and 𝑡 + 𝛥𝑡, [h]
Starting point:
𝑆𝑏
0 Initial energy stored inside each ESS 𝑏 ∈ 𝐵,

[kWh]

alanced operation of the microgrid. It includes decentralized control
trategies, such as droop control for distributed generation units and
eactive power control for maintaining voltage stability. Secondary
ontrol focuses on restoring frequency and voltage deviations that occur
fter the primary control actions. It involves centralized or distributed
ommunication-based control schemes aiming at keeping energy bal-
nce and optimizing the power flow within the microgrid. Finally,
ertiary control, also known as EMS, is responsible for the economical
nd efficient operation of the microgrid, [5,6].
2

Relationships:
𝑆𝑂𝐶𝑏

𝑡 = 𝑆𝑏
𝑡 ∕𝑆

𝑏
𝑚𝑎𝑥 State of charge of the ESS at time period 𝑡

Variables

EMS set-points:
𝑃 𝑔
𝑡 EMS set-point given to the non-renewable

generator 𝑔 ∈ 𝐺 at time period 𝑡, [kW]
𝑃 𝑏
𝑡 EMS set-point given to the ESS 𝑏 ∈ 𝐵 at time

period 𝑡, [kW]
Microgrid components:
𝑃 𝑏
𝑡 Output power of the 𝑏 ∈ 𝐵 at time period 𝑡,

[kW]
𝑃 𝑏←
𝑡 Charge power of 𝑏 ∈ 𝐵 at time period 𝑡,

[kW]
𝑃 𝑏→
𝑡 Discharge power of 𝑏 ∈ 𝐵 at time period 𝑡,

[kW]
curt𝑡 Total curtailment applied to the power

generation at time period 𝑡, [kW]
𝑃 𝑟𝑒𝑠
𝑡 Power utilization of each RES 𝑟𝑒𝑠 ∈ 𝑅𝐸𝑆 at

time period 𝑡, [kW]
𝑆𝑏
𝑡 Energy available inside each ESS 𝑏 ∈ 𝐵 at

time period 𝑡, [kWh]
nse𝑡 Not supplied energy at time period 𝑡, [kWh]

Fig. 1. Microgrid scheme.

EMS design can be very challenging as it requires finding not only
feasible but also optimal decisions for scheduling and dispatching the
available generation resources, carrying out load management, if pos-
sible, and managing ESSs. EMSs should also coordinate with the main
grid, managing energy imports and exports based on grid requirements
and market conditions.

Literature shows that EMSs for isolated microgrids can be addressed
through various optimization techniques and artificial intelligence
methods [7,8]. Classical optimization techniques, such as Mixed In-
teger Linear Programming (MILP) [9,10], or Mixed Integer Quadratic
Programming (MIQP) [11], offer deterministic or stochastic approaches
to find optimal solutions. On the other hand, metaheuristic algorithms
such as Particle Swarm Optimization (PSO), [12], explore the search
space more flexibly to identify near-optimal solutions. Vilaisarn et al.
[13] apply a combined approach where samples of the inner-level
problem of a bilevel optimization are learned by Deep Learning (DL).
Artificial intelligence methods, particularly DRL, have gained interest
due to their ability to learn optimal control policies by interacting
with the environment, making them suitable for managing complex,
dynamic, and uncertain scenarios, [14–17]. In addition, as noted by
Sutton and Barto in their seminal book on Reinforcement Learning
(RL) [18], the trial-and-error nature of the technique lends itself well
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to the development of EMS controllers that can then be applied to
a wide range of microgrids without requiring tailor-made models
or advanced computational capabilities. This characteristic could be
extremely valuable in enabling the deployment and scaling up of the
microgrid concept within future power systems.

From the modeling point of view, EMSs for microgrids face a
significant challenge when it comes to accurately representing battery
losses, among others, as they are nonlinear in nature. Linear modeling
for optimization struggles to adequately incorporate these losses, where
a common approach is to assume fixed efficiencies for the charge and
discharge processes. As a result, there may be significant deviations
between the expected and actual behavior in microgrids, thereby giving
suboptimal results. This underscores the need for more sophisticated
modeling techniques, although increasing the computational burden of
the solution would be undesirable.

Theoretically, DRL techniques are able to address nonlinear dynam-
ics in the environment because neural networks can capture nonlinear-
ities. Several works utilize DRL or Dynamic Programming (DP)-based
methods for the EMS problem [19–28], but few use a highly nonlinear
model of the microgrid [22,24,25,28]. Actually, none of them analyzes
the impact of a simplified linear model in the nonlinear nature, partic-
ularly on batteries, which have an important role when using RES. [19]
utilizes a Deep Q-Network (DQN) for the EMS of a residential microgrid
with a quadratic diesel cost. [20] proposes a TD3 for the EMS of a
residential and a Low-Voltage Microgrid Benchmark (CIGRE) – as the
proposed in this paper – with a quadratic diesel cost. [21] models a
grid-connected microgrid with linear dynamics. Its authors compare
several DRL algorithms over a time span of up to 168 h. [22] includes
a nonlinear model of a thermostatically controlled load in its EMS,
although the battery dynamics are linear. The span optimized is 10 days
with an episode horizon of 24 h in each run, starting from the first hour
of each day and selecting the day randomly. They propose to enhance
the DRL algorithms used with a prioritized Experience Replay (ER)
memory. [23] includes prices in its grid-connected microgrid model,
includes future information, prices. The Proximal Policy Optimization
(PPO) method proposed uses reward shaping but do not assess its
benefits. [24] models a quadratic cost of the diesel, linear losses of the
battery and nonlinearities in the power flow. The DRL algorithm used
is MuZero. [25] uses the same model as [24] but with a custom DQN-
based algorithm. [26] uses a similar model as ours, but with a linear
model of the battery. Additionally uses an hydrogen electrolyzer/Fuel
Cell (FC). [27] models a quadratic cost of the diesel. The algorithm used
is not RL but a DP approach, that needs a model based on Markov De-
cision Process (MDP) as in RL. [28] models the nonlinear dynamics of
the battery and a quadratic diesel cost. They do not uses a DRL, instead
they use an Approximated Dynamic Programming (ADP) approach.

This paper introduces a novel approach to energy management in
microgrids, utilizing DRL techniques. The main innovation lies in ap-
plying DRL, accounting for the nonlinear dynamic equations of battery
losses in the microgrid system. This approach provides an approxi-
mated nonlinear model of real battery behavior, keeping the nonlinear
complexity, which is crucial for the effective performance of energy
management systems in real-world scenarios. Building upon previous
works [19,20], in this study we have chosen the TD3 algorithm among
others studied, due to its stability and capability of making decisions
in the continuous domain [29].

The main contributions of this paper can be summarized as follows:

• First of all, a microgrid model that includes the nonlinear behav-
ior of Lithium-Ion (Li-ion) batteries is proposed for the training of
the TD3 algorithm. This model extends the POMDP of the micro-
grid, developed previously [19,20], with the nonlinear equations
of the battery losses.

• Secondly, a methodology to evaluate the extent to which the
3

proposed algorithm improves with respect to EMSs models with
linear battery losses. Additionally, this work proposes a novel con-
sideration of the control system in the microgrid model, which im-
proves the robustness of the proposed method and the reliability
of the results.

• Thirdly, this method is extended to manage a microgrid of re-
alistic size, ensuring that the proposed method is valid for both
a residential microgrid and a low-voltage distribution network
extended into a microgrid.

This paper is organized as follows: Details about issues regarding
battery modeling are summarized in Section 2. Section 3 describes
the MDP model used for the EMS problem. Section 4 describes the
control strategy underneath the EMS as part of the MDP model and its
implications in the optimization process. The study case and results can
be found in Section 5. Finally, conclusions are summarized in Section 6.

2. Battery operation model

Batteries play a pivotal role in electrical energy storage due to their
ability to store and release energy in a highly controllable manner. The
intermittent and fluctuating nature of PV and WT systems require the
deployment of efficient ESSs, and in this context, batteries, particularly
Li-ion variants, have emerged as a promising solution to address these
challenges. A battery is a highly complex system, and its modeling
should be tailored to the specific application for which it is intended
in order to ensure that the chosen model adequately represents battery
behavior and performance characteristics relevant to the desired use
case, balancing accuracy and computational efficiency. In [30], the
authors present a review of the literature on different approaches to
model Li-ion batteries. Broadly speaking, one can distinguish between
Electrochemical Models (EMs) and electrical Equivalent Circuit Models
(ECMs). For an EMS in a microgrid, it is sufficient to use an ECM
to represent the voltage, the State of Charge (SoC), and the power
capabilities of the battery rather than using a detailed EM. Hence, an
ECM has been used in the work reported here.

2.1. Equivalent circuit model

The Shepherd model [31] describes the output voltage of a battery
in the discharge process as:

𝑉𝑏𝑎𝑡𝑡(𝑡) = 𝐸𝑜 − 𝑅 ⋅ 𝑖(𝑡) −𝐾
𝑄(𝑡)

𝑄(𝑡) − 𝑖𝑡(𝑡)
𝑖(𝑡) + 𝐴 ⋅ 𝑒−𝐵⋅

𝑖𝑡(𝑡)
𝑄(𝑡) (1)

where 𝑉𝑏𝑎𝑡𝑡 is the voltage of the battery, 𝐸𝑜 is the constant potential of
the cell, 𝑅 is the internal resistance, 𝑖 is the current withdrawn from the
battery, 𝐾 is the polarization coefficient, 𝑄 is the amount of available
charge, 𝑖𝑡 is the total electrical charge extracted from the battery at time
𝑡 measured from the moment that the discharge started (𝑖𝑡 = ∫ 𝑖𝑑𝑡), and
𝐴 and 𝐵 are constants to model the initial exponential drop expressed
in the last term of (1). The values of 𝐸𝑜, 𝐾, 𝑄, 𝑅, 𝐴, and 𝐵 must be
determined empirically.

In [32], the authors start from an equation similar to (1) in which
they introduce some improvements that consider not only a constant
discharge current but also the case of a variable charging or discharging
current. The authors of Nguyen and Crow [33] take the equations
from Tremblay and Dessaint [32] and derive simplified expressions
of the voltage drop in the battery that is used to estimate the dis-
charge/charge losses. Shuai et al. [28] refine previous expressions to
obtain the following nonlinear equations of battery losses that will be
used in this paper:

𝑃 𝑏←
𝑙𝑜𝑠𝑠 =

103(𝑅𝑖𝑛 +
𝐾

1.1−𝑆𝑂𝐶 )

𝑉 2
𝑟

(𝑃 𝑏←)2

+
103𝑆𝑏

max𝐾(1 − 𝑆𝑂𝐶)
2

𝑃 𝑏←

(2)
𝑆𝑂𝐶 ⋅ 𝑉𝑟
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𝑃 𝑏→
𝑙𝑜𝑠𝑠 =

103(𝑅𝑖𝑛 +
𝐾

𝑆𝑂𝐶 )

𝑉 2
𝑟

(𝑃 𝑏→)2

+ (
103𝑆𝑏

max𝐾(1 − 𝑆𝑂𝐶)
𝑆𝑂𝐶 ⋅ 𝑉 2

𝑟
)𝑃 𝑏→

(3)

where

• 𝑃 𝑏←: power consumed by the battery in [kW]
• 𝑃 𝑏←

𝑙𝑜𝑠𝑠: power losses while charging [kW]
• 𝑃 𝑏→: power generated by the battery [kW]
• 𝑃 𝑏→

𝑙𝑜𝑠𝑠: power losses while discharging [kW]
• 𝑅𝑖𝑛: internal resistance [Ohm]
• 𝑆𝑂𝐶: state of charge expressed in terms of the estimated stored

energy [%]
• 𝑉𝑟: nominal voltage rate of the battery [V]
• 𝑆𝑏

max: nominal capacity rate of the battery [kWh]

As explained in [34], the second terms of expressions (2) and (3) could
be dismissed in order to obtain a more accurate model of the losses.
This would result in the following expressions of the losses:

𝑝←𝑙𝑜𝑠𝑠 = 103(𝑅 + 𝐾
1.1 − 𝑆𝑂𝐶

)(
𝑝←𝑡
𝑉𝑟

)2 (4)

𝑝→𝑙𝑜𝑠𝑠 = 103(𝑅 + 𝐾
𝑆𝑂𝐶

)(
𝑝→𝑡
𝑉𝑟

)2 (5)

Using the expressions of the losses, the energy stored in the battery
𝑆𝑏 changes according to (6) and (7) for the charge and discharge,
respectively.

𝑑𝑆𝑏

𝑑𝑡
= 𝑃 𝑏← − 𝑃 𝑏←

𝑙𝑜𝑠𝑠 (6)

𝑑𝑆𝑏

𝑑𝑡
= −𝑃 𝑏→ − 𝑃 𝑏→

𝑙𝑜𝑠𝑠 (7)

Energy flows in a battery are depicted in Fig. 2.
Discrete-time versions of (6) and (7) for the charge and discharge

process, respectively, can be written as:

𝑆𝑏
𝑡+1 − 𝑆𝑏

𝑡 = [𝑃 𝑏←
𝑡 − 𝑃 𝑏←

𝑙𝑜𝑠𝑠(𝑃
𝑏←
𝑡 , 𝑆𝑏

𝑡 )]𝛥𝑡 (8)

𝑆𝑏
𝑡+1 − 𝑆𝑏

𝑡 = [−𝑃 𝑏→
𝑡 − 𝑃 𝑏→

𝑙𝑜𝑠𝑠(𝑃
𝑏→
𝑡 , 𝑆𝑏

𝑡 )]𝛥𝑡 (9)

These discrete-time equations are more convenient than the
continuous-time ones in the context of this paper while being accurate
enough. Therefore, from now on, magnitudes that express power as 𝑃
will represent the average power in the discrete-time interval between
𝑡 and 𝑡 + 𝛥𝑡, i.e.:

𝑃𝑡𝛥𝑡 = ∫

𝑡+𝛥𝑡

𝑡
𝑃𝑑𝑡 (10)

Similarly, energy 𝑆 at time 𝑡 in the battery 𝑏 will represent the energy
at the beginning of the continuous interval between 𝑡 and 𝑡 + 𝛥𝑡.

3. EMS of a microgrid using DRL

Microgrids combine several components that interact with each
other, sharing energy at controllable power levels. These are classified
into power generation units, ESSs, and loads. In the DRL context,
the EMS represents the agent that interacts with each one of the
controllable components within the microgrid. This process is denoted
as MDP.

3.1. Markov decision process

The microgrid management is modeled as a discrete-time process
using the MDP notation, i.e., a set of states S, a set of actions A, a
reward function 𝑅∶ S × A × S → R that assigns a reward value to
each transition (𝑠, 𝑎, 𝑠′), and a set of conditional transition probabilities
𝑇 (𝑠′|𝑠, 𝑎). Each of these elements is detailed below.
4

Fig. 2. Energy flow in a battery using the nomenclature defined in this paper.

3.1.1. State definition
The state gives full information about the problem to solve, satisfy-

ing the Markov Property [18,35]. In the EMS, the state is composed of
exogenous and endogenous variables and may comprise the temporal
dimension, i.e., information from the past. Exogenous variables corre-
spond to the power dispatched by RESs and loads in the microgrid,
whereas endogenous state variables quantify the energy stored in each
of the ESSs.

Formally, the average active power in 𝑡 for each RES 𝑟𝑒𝑠 ∈ 𝑅𝑒𝑠 in
the microgrid is defined as 𝑃 𝑟𝑒𝑠

𝑡 . Likewise, the demand for each load
𝑙 ∈ 𝐿 over 𝑡 is 𝑃 𝑙

𝑡 . The energy stored inside each ESS 𝑏 ∈ 𝐵 at the
beginning of each period 𝑡 is defined as 𝑆𝑏

𝑡 .
The domain of each variable is:

𝑃 𝑟𝑒𝑠
𝑡 ∈ R+ ∀𝑟𝑒𝑠 ∈ 𝑅𝑒𝑠,∀𝑡 ∈ 𝑇

𝑃 𝑙
𝑡 ∈ R+ ∀𝑙 ∈ 𝐿,∀𝑡 ∈ 𝑇

𝑆𝑏
𝑡 ∈ (𝑆𝑏

min, 𝑆
𝑏
max) ∀𝑏 ∈ 𝐵,∀𝑡 ∈ 𝑇 (11)

3.1.2. Action definition
In the MDP context, actions are set-points that the EMS sends to

each component controller. These actions are defined as:

𝑎𝑡 = {𝑃 𝑎 ∣ 𝑎 ∈ 𝐺 ∪ 𝐵} (12)

where 𝑃 𝑔
𝑡 , 𝑔 ∈ 𝐺 is the active power generation set-point given for the

controllable generator 𝑔 and 𝑃 𝑏
𝑡 , 𝑏 ∈ 𝐵 is the active power dispatch or

consumption set-point for the ESS 𝑏.
These set-points sent to each controllable component may differ

from the achievable values. Control systems could be forced to deviate
from the set-point given in order to ensure the stability of the com-
ponent. Therefore, for each set-point given 𝑃 𝑎

𝑡 , there is a consequent
value 𝑃 𝑎

𝑡 computed at the end of the period [𝑡, 𝑡 + 𝛥𝑡] corresponding
to the component 𝑎 ∈ 𝐺 ∪ 𝐵. This behavior is formalized as a general
function 𝑔:

𝑃 𝑎
𝑡 = 𝑔(𝑃 𝑎

𝑡 ,…) ∀𝑎 ∈ 𝐺 ∪ 𝐵, 𝑡 ∈ 𝑇 (13)

and further detailed in Section 4.
Formally, the action domain, defined by its parts, is as follows:

𝑃 𝑎
𝑡 ∈ R ∀𝑎 ∈ 𝐺 ∪ 𝐵

𝑃 𝑔
𝑡 ∈ {0} ∪ [𝑃 𝑔

min, 𝑃
𝑔
max] ∀𝑔 ∈ 𝐺,∀𝑡 ∈ 𝑇

𝑃 𝑏
𝑡 ∈ [−𝑃 𝑏←

max, 𝑃
𝑏→
max] ∀𝑏 ∈ 𝐵,∀𝑡 ∈ 𝑇 (14)

where 𝑃 𝑔
min and 𝑃 𝑔

max are the minimum and maximum power values
that the power generator can dispatch when it is on. Additionally, the
generators can be turned off; thereby, the 0 value is considered in the
action domain. 𝑃 𝑏←

max and 𝑃 𝑏→
max are the maximum power values when

charging and discharging the battery, respectively.
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3.1.3. Reward definition
The agent is designed to achieve a main goal and is guided toward

this objective by reward signals, which the agent perceives immediately
after making a decision. These signals indicate how well the agent’s
action is aligned with the goal. In the microgrid, where the agent is the
EMS, this goal is to minimize the operational costs. Notice that these
costs are negative rewards, encouraging the agent to reduce them.

Formally, the reward value 𝑟𝑡, which corresponds to the cost of
energy produced from 𝑡 up to 𝑡 + 𝛥𝑡, is given by:

𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

= −
𝐺
∑

𝑔
𝐶𝑔(𝑃 𝑔

𝑡 ) ⋅ 𝛥𝑡 − 𝐶nse ⋅ nse𝑡 (15)

where 𝐶𝑔 is the cost function of the generator that depends on the
power dispatched 𝑃 𝑔

𝑡 in the same period 𝑡. 𝐶𝑛𝑠𝑝 is the cost for a unit of
energy not supplied nse𝑡.

The cost of each generator is modeled as a quadratic function
defined by its coefficients 𝛿𝑖 [27]:

𝐶𝑔(𝑃 ) =

{

𝛿𝑔2 (𝑃 )
2 + 𝛿𝑔1𝑃 + 𝛿𝑔0 if 𝑃 > 0

0 if 𝑃 = 0
(16)

3.1.4. Transition definition
In MDPs, transitions link states and actions, and they can be repre-

sented as directional graphs where each node represents either a state
or an action. Each transition is characterized by a probability of evolv-
ing from one system state to another in response to a particular control
action. In the EMS example, these transitions represent the dynamics of
the different components and the intermittency of renewable sources.
The dynamics of the microgrid components have been defined by the
equations below. In contrast, the intermittency of renewable sources
has not been modeled by equations but by using time-series data as
in [26].

The energy inside battery 𝑏 satisfies the following energy balance
equation:

𝑆𝑏
𝑡+1 = 𝑆𝑏

𝑡 +

[

𝑃 𝑏←
𝑡 ⋅ 𝜂𝑏(𝑃 𝑏←

𝑡 , 𝑆𝑏
𝑡 ) − 𝑃 𝑏→

𝑡
1

𝜁𝑏(𝑃 𝑏→
𝑡 , 𝑆𝑏

𝑡 )

]

𝛥𝑡 (17)

where 𝑃 𝑏←
𝑡 and 𝑃 𝑏→

𝑡 are the charge and discharge battery power, and 𝜂𝑏
and 𝜁𝑏 are the corresponding nonlinear efficiency values for the charge
and discharge processes, respectively. In particular, these efficiencies
are defined as follows:

𝜂𝑏(𝑃 𝑏←, 𝑆𝑏) =
𝑃 𝑏← − 𝑃 𝑏←

𝑙𝑜𝑠𝑠(𝑃
𝑏←, 𝑆𝑏)

𝑃 𝑏← (18)

𝑏(𝑃 𝑏→, 𝑆𝑏) = 𝑃 𝑏→

𝑃 𝑏→ + 𝑃 𝑏→
𝑙𝑜𝑠𝑠(𝑃

𝑏→, 𝑆𝑏)
(19)

for all 𝑏 ∈ 𝐵, using the Eqs. (2) and (3). In batteries, the charge and
discharge processes cannot happen at the same time, that formally can
be modeled with the following constraint:

𝑃 𝑏←
𝑡 ⟂ 𝑃 𝑏→

𝑡 ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (20)

which represents that these two variables are orthogonal w.r.t. each
other, i.e., at least one variable has to be 0. Hence, 𝑃 𝑏

𝑡 is defined from
𝑏←
𝑡 and 𝑃 𝑏→

𝑡 by the equation:
𝑏
𝑡 = 𝑃 𝑏→

𝑡 − 𝑃 𝑏←
𝑡 ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (21)

Additionally, the load balance equation must be satisfied in every
eriod 𝑡:

𝐷𝑡 + curt𝑡)𝛥𝑡 = (𝑃𝑅𝑒𝑠
𝑡 + 𝑃𝐺

𝑡 + 𝑃𝐵
𝑡 )𝛥𝑡 + nse𝑡 ∀𝑡 ∈ 𝑇 (22)

here curt𝑡 is the power curtailment in the microgrid during the period
and 𝐷𝑡, 𝑃𝐺

𝑡 , 𝑃𝑅𝑒𝑠
𝑡 , and 𝑃𝐵

𝑡 are the totals in 𝑡 for each component kind,
nd mathematically defined as:

total load) 𝐷𝑡 =
𝐿
∑

𝑃 𝑙
𝑡 ∀𝑡 ∈ 𝑇 (23)
5

𝑙

total fuel-based gen.) 𝑃𝐺
𝑡 =

∑

𝑔∈𝐺
𝑃 𝑔
𝑡 ∀𝑡 ∈ 𝑇 (24)

total RES gen.) 𝑃𝑅𝑒𝑠
𝑡 =

∑

𝑟𝑒𝑠∈𝑅𝑒𝑠
𝑃 𝑟𝑒𝑠
𝑡 ∀𝑡 ∈ 𝑇 (25)

total ESS gen./load) 𝑃𝐵
𝑡 =

∑

𝑏∈𝐵
𝑃 𝑏
𝑡 ∀𝑡 ∈ 𝑇 (26)

.2. Partially observable Markov decision process

Since the microgrid state is not fully observable [15], the problem
ust be modeled using a POMDP, which is a generalization of the
DP. In addition to the elements of MDPs, POMDPs include a set

f observations 𝛺 and a set of conditional observation probabilities
[36].
To increase the likelihood over the information input, a set of ℎ

onsecutive observations are stacked:

𝑡 = (𝑜𝑡−ℎ+1,… , 𝑜𝑡−1, 𝑜𝑡) ∀𝑡 ∈ 𝑇 (27)

In the EMS, the observations for each period 𝑡 are defined as,

𝑜𝑡 = (𝐏𝑅𝑒𝑠
𝑡−1 ,𝐏

𝐿
𝑡−1,𝐒

𝐵
𝑡 ) ∀𝑡 ∈ 𝑇 (28)

where

𝐏𝑅𝑒𝑠 = {𝑃 𝑟𝑒𝑠
| 𝑟𝑒𝑠 ∈ 𝑅𝑒𝑠}

𝐏𝐿 = {𝑃 𝑙
| 𝑙 ∈ 𝐿}

𝐏𝐵 = {𝑃 𝑏
| 𝑏 ∈ 𝐵} (29)

Notice that the exogenous variables 𝑃 𝑟𝑒𝑠
𝑡 and 𝑃 𝑙

𝑡 are unknown at the
eginning of any period 𝑡, and therefore, 𝑡 − 1 information is used

instead.

3.3. DRL using TD3

DRL are based on learning by trial-and-error, i.e., by the interaction
between the agent and the environment. From this interaction, the
agent perceives rewards that help to improve its next actions [18].

In this work, the EMS is optimized by the TD3, which extends
the well-known DQN technique, famous for surpassing the human
performance in 49 Atari Games [37]. TD3 mainly adds the ability to
deal with actions in a continuous domain [29,38], which is a critical
feature in EMSs [20].

Previous results with the TD3 [20] motivated the authors of this
paper to apply the same base algorithm. However, in that work, battery
dynamics were modeled by linear equations. Given the fact that DRL
can capture nonlinear relationships, this paper extends the previous
microgrid model with nonlinear equations for battery dynamics to have
a more realistic scenario.

4. Including the control system in the model

Practical approaches for implementing a controller include, beyond
the EMS, an underlying real-time control system that will eventually
guarantee the balance between generation and loads. Due to the battery
operation flexibility, this is traditionally done by letting the control
system directly manage the battery and excluding the battery action as
a decision for the RL-based EMS [26], i.e., the battery is not given any
reference by the EMS. This approach can be generalized by selecting
any other component of the microgrid, instead of the battery, to take
care of the balance in real-time. To avoid the complications when the
balancing device saturates, this paper proposes using more than one
component to take care of the balance.

4.1. Modeling the control system by using a priority list

Any EMS set-points may be ignored for the benefit of safety. When a

component saturates, i.e., it cannot keep the balance without violating
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Fig. 3. Microgrid CIGRE.
its physical constraints, another component must replace the role of the
saturated one. For this purpose, a priority list of components is defined
to reinforce balance stability as much as possible. For example, let us
consider the isolated microgrid of Fig. 1 using the components that are
connected. When the battery is full, and the diesel unit has reached its
power limit, if the demand is suddenly reduced, the microgrid will have
an energy surplus that the battery cannot store. In this situation, the
classical approach would spill the energy surplus. On the contrary, if
there were a priority list of components, the diesel unit could be chosen
to take care of the balance in this example, i.e., the control system
would decrease the diesel power, thereby minimizing the operation
costs. This behavior has been added in the RL environment-agent loop
of the proposed POMDP in (13).

Although this approach protects the EMS and reduces the opera-
tional costs, it may also damage the trial-and-error learning process of
the DRL agent since the error perceived after making a bad decision
is reduced. Technically, the agent will perceive a more sparse reward,
which does not benefit the learning process [39]. The strategy used
in this paper during the experiments is to combine both approaches,
i.e., to apply the classical approach during the agent’s training and val-
idate its performance with the second approach using the priority list.
This combination takes the best of both worlds: it avoids slowing down
the learning process while correctly assessing the agent performance on
the more realistic microgrid operation.

In a real-time scenario, the chosen balancing device will need a
primary controller to stabilize the frequency. A detailed model of this
lower-level control is beyond the scope of this paper.
6

5. Performance comparison between linear vs. nonlinear Li-Ion
battery models

This section highlights the advantages of using DRL methods for
an EMS when considering Li-ion batteries. These methods employ
Neural Networks (NNs) at their core, whose proficiently approximate
nonlinear dynamics, as the Universal approximation theorem states.
This ensures an enhanced adaptation to the complex behavior of the
batteries, optimizing the EMS performance and reliability in real-world
applications. The simulation experiments consider two isolated micro-
grids of different configuration sizes: a residential microgrid and the
CIGRE [40].

The residential microgrid constitutes a typical demand pattern in a
household with a PV, a Diesel Generator (Di-Gen), and a Li-ion battery,
which is depicted in Fig. 1 considering only the components that are
connected by lines in that figure, whereas the CIGRE constitutes a
bigger microgrid, which is depicted in Fig. 3. The parameters of all
elements in both case studies are shown in Table 1.

The datasets used in each microgrid for the demand, the PV and
the WT, are composed of three hourly years. PV and demand datasets
come from François-Lavet et al. [26], whereas the WT dataset comes
from Renewables Ninja [41,42].

Given the limited data, it is necessary to assess the generalization
capacity of the model [43,44] and a Machine Learning (ML) method-
ology has been used for this purpose. The dataset is divided into
three distinct subsets: the training set, the validation set, and the test
set. These subsets facilitate implementing a robust model validation
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Table 1
Component specifications of the microgrid.

Element Parameter Resi. CIGRE Unit

Load (total) 𝐷max 2.1 40.0 [kW]
PV (total) 𝑃 𝑝𝑣

max 6.0 13.0 [kW]
WT 𝑃 𝑝𝑣

max 6.0 10.0 [kW]
Di-Gen/Microturbine (MT) 𝑃 𝑑∕𝑚𝑡

max 1.0 30.0 [kW]
𝑃 𝑑∕𝑚𝑡
min 0.1 3.0 [kW]

𝛿𝑑∕𝑚𝑡0 0.0157 0.4710 [e]
𝛿𝑑∕𝑚𝑡1 0.1080 0.1080 [e/kW]
𝛿𝑑∕𝑚𝑡2 0.3100 0.0103 [e/kW2]

FC 𝑃 𝑓𝑐
max – 10.0 [kW]

𝑃 𝑓𝑐
min – 0.0 [kW]

𝛿𝑓𝑐0 – 0.0 [e]
𝛿𝑓𝑐1 – 0.2 [e/kW]
𝛿𝑓𝑐2 – 0.0 [e/kW2]

Li-ion 𝑆max 3.3 33.0 [kWESSh]
𝑆min 0.4 4.0 [kWESSh]
𝑆0 0.4 4.0 [kWESSh]
𝑃 𝑏←
max 3.0 30.0 [kW]

𝑃 𝑏←
min 0.0 0.0 [kW]

𝑃 𝑏→
max 3.3 33.0 [kW]

𝑃 𝑏→
min 0.0 0.0 [kW]

𝜂-linear 0.9 0.9 [kWESSh/kWh]
𝜁 -linear 0.9 0.9 [kWh/kWESSh]
number of cells 1 10 [p.u.]

Li-ion individual cell internal resistance cons. (𝑅𝑖𝑛) 0.01 0.01 [𝛺]
(nonlinear) nominal voltage (V) 51.8 51.8 [V]

polarization constant (K) 0.06 0.06 [V/Ah] [𝛺]
NSE 𝐶nse 1 10 [e/kWh]
Table 2
Yearly cost of each algorithm.

Obj. F. ↔ Cost [e]

Algorithm Training 1st-Year 2nd-Year 3rd-Year

TD3 Linear 1665.46 1442.65 1545.39
TD3 Nonlinear 1628.42 1431.44 1518.12
Upper Bound – 1569.67 1367.50 1427.66

process complemented by the early stopping technique to mitigate the
risk of overfitting. Specifically, the dataset is divided uniformly using
contiguous data; each subset represents a one-year span with hourly
data points. More details are available in [20].

The following subsections analyze the results obtained from ap-
plying the TD3 method to two different battery models: a linear and
a nonlinear model. First of all, the methodology to compare the ap-
proach with both battery models is detailed in Section 5.1. Secondly,
the operation costs comparing both battery-loss models are discussed
in Section 5.2 for each study case. Finally, in Section 5.3, the bat-
tery efficiency and energy losses are analyzed and compared between
models.

5.1. Comparison methodology

The comparison made in this paper involves two POMDP ap-
proaches for the microgrid system, each characterized by a different
energy loss model of the battery, i.e., using Eqs. (19) and (18) for the
efficiencies in the nonlinear model, and constant values for the linear
one. Consequently, these variations lead to differential behaviors in the
microgrid system. In this sense, the TD3 trained using the linear model
of the battery (TD3-L) and the same but using the nonlinear model
of the battery (TD3-NL) are both evaluated in the microgrid using the
nonlinear model of the battery, allowing a fair and reliable comparison
since the same microgrid is used and that microgrid model is the closer
to a real one. Fig. 4 depicts the comparison methodology.

Regarding the control system detailed in Section 4, the priority
list to select the component responsible for taking care of the balance
should be predefined for the evaluation stage. In this paper, for the
residential microgrid, the battery comes first, and the diesel group
7

Fig. 4. Train-eval methodology.

second, while for the CIGRE microgrid, the battery comes first, the
microturbine second, and the fuel cell comes third. This order has been
chosen with the aim of using the most flexible and cheapest first.

5.2. Operation costs

5.2.1. Residential microgrid
Table 2 shows the total operational cost of operating the microgrid

over three years. Additionally, the table includes the results from using
a MIQP model, solved with the Gurobi solver [45] in a fully informed
deterministic scenario. This last method is combined with a rolling
horizon of 24 hours [46,47], and serves as an approximated upper
bound to elucidate the goodness of the TD3. Notice that the MIQP
cannot handle the nonlinear equation (17), and the following linear
equation is used instead:

𝑆𝑏
𝑡+1 = 𝑆𝑏

𝑡 + 𝜂𝑏𝑃 𝑏← − 𝑃 𝑏→
𝑡

1
𝜁𝑏

∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (30)

where 𝜂 and 𝜁 are constants, which both take the value of 0.9.
The results in Table 2 show that the TD3-NL outperforms the TD3-

L when both are tested with a nonlinear battery model. Compared
with the TD3-L, the TD3-NL costs are reduced by 37.04e, 11.21e and
27.27e in each consecutive year. In addition, both TD3 configurations
perform quite efficiently in the third year (the test dataset) when
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Table 3
Yearly cost of each algorithm (CIGRE).

Obj. F. ↔ Cost [e]

Algorithm Training 1st-Year 2nd-Year 3rd-Year

TD3 Linear 34 044.10 31 293.51 33 793.13
TD3 Nonlinear 33 279.29 30 633.29 33 158.29

Table 4
Energy losses of each algorithm and the difference between them (Residential).

Energy Losses [kWh]

Model 1st-Year 2nd-Year 3rd-Year

Linear 473.1695 502.5786 510.7831
Nonlinear 298.8784 285.2664 300.2103
Difference 174.2911 217.3122 210.5728

compared with the first and second years (the training and evaluation
datasets). For instance, as the percentage relative error (RE) (see for-
mula in (31)) with respect to the Upper Bound (the theoretical best),
TD3-L has an RE of 8.25% in the third year versus 6.10% and 5.50%
in the first and second year respectively. Similarly, TD3-NL has 6.34%
in the third year versus the 3.74% and 4.68% in the first two. These
results imply savings of 2.31% the first year, 0.82% the second, and
1.91% the third when using nonlinear battery dynamics in the model.

𝑅𝐸 =
|measure − theoretical|

theoretical ⋅ 100% (31)

5.2.2. CIGRE microgrid
The CIGRE microgrid’s results mirror the residential case on a

proportional scale. Table 3 shows savings of 764.81e, 660.22e and
34.84e in each consecutive year when using the TD3-NL. These
avings correspond to the 2.25%, 2.11%, and 1.88% with respect to
he TD3-L costs using the formula in (31).

The TD3-NL performs better when operating the larger microgrid,
ndicating that the algorithm can handle different-size problems seam-
essly. An extended analysis can be found in Appendix.

.3. Battery efficiency and energy losses

Beyond the total costs, this paper analyzes additional metrics related
o battery management, such as battery efficiency during charge and
ischarge processes, and the energy loss in the battery after each
harge/discharge operation. Efficiency and energy loss metrics are
trongly related to energy utilization (by Eqs. (6) and (7)) and can
e used to analyze battery management performance. Efficiency helps
isualize the operation patterns, whereas energy loss helps to quantify
hese patterns.

.3.1. Residential microgrid
Regarding the residential case study, Figs. 5 and 6 show histograms

f the battery efficiency during the discharge and charge processes,
here each bar of the histogram corresponds to the number of hours

he battery was operated with a particular efficiency (see formulas (18)
nd (19)). These histograms are also combined with the Kernel Density
stimation (KDE) curve and its average value (the vertical dashed line),
nd include both TD3-NL and TD3-L results.

For the discharge process, the TD3-NL average efficiency is 0.9055,
hereas that of the TD3-L is 0.8508 (an improvement of 6.4%); mean-
hile, during the charge process, the TD3-NL achieves an average
fficiency of 0.8092 whereas that of the TD3-L is 0.6822 (an improve-
ent of 18.6%). These experiments indicate that the model approach
ot only reduces operational costs but increases battery efficiency as a
onsequence.
8

Fig. 5. Discharge efficiency comparison of TD3 trained using the linear and nonlinear
battery model in a residential microgrid for the 3rd year.

Fig. 6. Charge efficiency comparison of TD3 trained using the linear and nonlinear
battery model in a residential microgrid for the 3rd year.

Fig. 7 shows a 3D scatter plot with the discharge efficiencies for
the TD3-L(a) and TD3-NL(b). Similarly, Fig. 8 shows the same for the
charge process. In both figures, the axes in the base represent the power
and the SoC, and the vertical axis the efficiency, which also uses a color
gradient to help visualize them (lighter means higher efficiency)

In Fig. 7(a), dots are sparse in the center of the area and more
populated in the edges, whereas in (b) they are clustered in the high-
efficiency area and in the low-power situations. Fig. 8 shows similar
differences but more prominently since the charge process can reach
very low efficiencies. These figures make visible the large change in
the operation patterns of the battery.

Regarding battery energy losses, Table 4 shows that the considera-
tion of the nonlinear battery model can drive the EMS to reduce the
losses substantially. In particular, the TD3-L energy loss percentage
over the total energy stored in the battery is 34.59%, 34.30%, 34.87%
in each one of the three years, whereas the TD3-NL reduces it down to
24.17%, 22.96%, and 23.36%.
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Fig. 7. 3D discharge efficiency for the TD3 in residential microgrid.
Fig. 8. 3D charge efficiency for the TD3 in residential microgrid.
5.3.2. CIGRE microgrid
Figs. 9 and 10 show the histograms corresponding to the CIGRE

case study. KDE and the average value are depicted as in Figs. 5 and 6.
During discharge, TD3-L achieves an average efficiency value of 0.9170
whereas TD3-NL achieves an average of 0.9421 (i.e., a 2.7% improve-
ment). During charge, TD3-L achieves an average of 0.8246 whereas
TD3-NL achieves an average of 0.9054 (i.e., a 9.8% improvement).

Regarding the energy losses of the battery in the CIGRE case, TD3-L
obtains 26.67%, 26.46% and 26.65% of energy losses over the total
energy stored in the battery, for each one of the three years whereas
TD3-NL reduces it to 15.72%, 15.57% and 15.60%. The total energy
losses by year are displayed in Table 5.
9

Table 5
Energy losses of each algorithm and the difference between both (CIGRE).

Energy Losses [kWh]

Model 1st-Year 2nd-Year 3rd-Year

Linear 6043.8106 5917.9887 6050.7169
Nonlinear 2585.0424 2524.1663 2561.6490
(Difference) 3458.7681 3393.8224 3489.0678

In conclusion, the results from the CIGRE case study are proportion-
ally similar to the residential case study but with an absolutely huge
difference given the scale between both.
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b

Fig. 9. Discharge efficiency comparison of TD3 trained using the linear and nonlinear
attery model in CIGRE microgrid (3rd year).

Fig. 10. Charge efficiency comparison of TD3 trained using the linear and nonlinear
battery model in CIGRE microgrid (3rd year).

6. Conclusion

This paper introduces an application of the TD3 algorithm to an
EMS in a microgrid and compares its performance using a linear
(TD3-L) and a nonlinear (TD3-NL) Li-ion battery-loss model.

The research addresses several critical questions:

1. To what extent can the DRL-based algorithm comprehend and
adapt to the inclusion of nonlinear battery loss dynamics, espe-
cially considering its limited information?

2. What is the behavior of the TD3 when integrated with a real-time
control system that adjusts EMS decisions?

3. How effectively is the battery managed by the algorithm?

Our experiments provide satisfactory answers to these queries. The
TD3 algorithm demonstrates a capacity to synergize with the control
system, yielding near-optimal results in a highly uncertain environ-
ment. Moreover, the inclusion of nonlinear dynamics helps the algo-
rithm to obtain even better results due to its ability to discern and
leverage these nonlinear dynamics.

The findings reveal that incorporating nonlinear battery losses can
result in approximately 2% savings in total microgrid operational costs,
10
without comprising computational performance. Furthermore, the TD3-
NL model significantly enhances battery efficiency, leading to around
50% in energy losses compared with the TD3-L. This translates to a
savings of about 10% in energy losses over the total energy utilized
through the battery.

An important observation is that the modeling efforts and compu-
tational resources required by the learning algorithm are similar in
handling linear or nonlinear equations. This stands out as a major
benefit over other optimization techniques.
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Appendix. Extended experimental results

This section analyzes several experiments on the CIGRE case in
order to study the variability of the training and evaluation process
using the DRL approach proposed. In particular, 6 learning trials with
the linear model and another 6 with the nonlinear model of the battery.
During this process, for each trial, the data from year 1 is used for
training, and data from year 2 is used for validation (this is the same
setup used for the results in Section 5). Once the models have been
adjusted, they can be applied to any data series. Thus, they have been
applied to year 1, year 2, and finally to year 3. It is worth mentioning
that the time series data from last year 3 were not considered at
any stage of the model adjustment, and therefore, it provides a good
indicator of the model performance. The simulation results are depicted
in Tables A.6 and A.7. Table A.6 shows the accumulated reward (in
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Table A.6
Results from 6 trials using the linear model. Performance of the trained model (in
euros) for each year.

Obj. F. ↔ Cost [e]

Linear 1st-Year 2nd-Year 3rd-Year

Trial 1 33138.86 30462.88 32962.70
Trial 2 33113.54 30388.39 32988.47
Trial 3 33242.64 30526.44 33107.89
Trial 4 34115.57 31449.56 33831.69
Trial 5 33306.55 30584.21 33219.58
Trial 6 33402.46 30614.49 33235.40

Average 33386.30 30671.00 33224.29
Std 372.75 390.12 318.33

Table A.7
Results from 6 trials using the nonlinear model. Performance of the trained model (in
euros) for each year.

Obj. F. ↔ Cost [e]

Nonlinear 1st-Year 2nd-Year 3rd-Year

Trial 1 32748.90 30096.43 32620.46
Trial 2 33326.87 30700.60 33090.92
Trial 3 32688.01 30119.19 32628.19
Trial 4 32749.10 30086.15 32617.68
Trial 5 32782.68 30125.02 32656.95
Trial 6 32816.07 30170.34 32705.12

Average 32851.94 30216.29 32719.89
Std 236.52 239.05 184.71

Fig. A.11. Computational burden required to train the model, measured in timesteps.

euros) for each of the 6 adjusted models with the linear losses applied
for each one of the available years. Table A.7 shows the same results
for the nonlinear case.

In each table, the variability of the results is due to the random
initialization of the neural network and other random processes during
the training, such as the exploration of the algorithm and the sampling
from the ER memory. However, while this variability is a well-known
characteristic that occurs every time a DRL model is adjusted, it is
interesting to note that the obtained standard deviation is small. The
absolute values of the coefficients of variation (i.e., the ratio between
the standard deviation and the mean) are 1.12%, 1.27%, and 0.96%
for the linear losses, and 0.72%, 0.79%, and 0.56% for the nonlinear
losses.

So, we can say that the results are quite similar between differ-
ent trials, concluding that the approach is stable, i.e., there is high
confidence in a single trial to obtain an acceptable performance. Addi-
tionally, the table comparison shows that the nonlinear approach leads
11
to better performance on average. Comparing the mean values for each
year, the nonlinear model outperforms the linear one by 1.60%, 1.48%,
and 1.52% for years 1, 2, and 3, respectively.

Moreover, these executions show the overhead in training the
proposed approach. Fig. A.11 shows the computational burden, in
timesteps, required to train the model and the performance of the
best-chosen model. More details about the training process are in [20].

This figure shows that considering a nonlinear model of the Li-ion
battery losses instead of a linear model does not imply an extra burden
in the learning process. From the data observed, the average number of
timesteps needed with the linear model is 29.38 million, and with the
nonlinear model is 13.80 million. Besides, the same figure corroborates
the outperforming of using the nonlinear model to train the proposed
DRL approach.
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