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Abstract

Large-scale real-time streaming data pose major challenges to forecasting, in
particular, defying the presence of human experts to perform the required
analysis. We present here a class of models and methods used to develop an
automated, scalable, and versatile system for large-scale forecasting oriented
toward network safety and security monitoring. Our system provides short- and
long-term forecasts and uses them to detect issues, well in advance, that might
take place in relation with multiple Internet-connected devices.
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1 INTRODUCTION

As outlined in the work of Mortenson et al,1 leveraging big data and real-time analytics constitute two main current
research venues. Information and communication technologies (ICT) have experienced an exponential growth in the
last few decades and most human activities, businesses, and devices strongly depend on them.2 With the advent of the
Internet of Things (IoT), this interrelation will become even more evident and change dramatically the way in which dif-
ferent components of business and service systems interact. In parallel, risks concerning the security of ICT systems are
also growing, as pointed out, eg, in the work of The Geneva Association.3 Such cyber risks can be of natural origin or
man-made, the latter potentially originating from human failure or intentional threats, as in cyber crime. These actually
constitute a current major global trend, as reflected, eg, in the Global Risks Map.4 As an example, the technical report of
McAfee and CSIS,5 catalogs around 70 new potential cyber threats per minute and estimates the annual cost to the global
economy from cyber crime to be above 400 billion USD. This impact highlights the need for developing solid cyberse-
curity risk management frameworks and the central role that these will play in business and industrial security in the
near future. In addition, the increasing significance and availability of data in every business-related activity emphasizes
data-driven approaches to improve cybersecurity decision making. As an example, Sedgewick6 provides a set of standards
and guidelines supporting such frameworks, covering key cybersecurity activities. Two of them refer to continuous safety
monitoring of Internet-connected devices (ICDs) and anomaly detection. This has led to the development of tools that
periodically collect high-frequency information from the ICDs of an organization to support their monitoring. Given the
increasing relevance of ICT, we may need to face organizations with several hundred thousands of such devices, from
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which we obtain tens of variables every few minutes. This poses tremendous challenges in processing such enormous
amounts of data and making the relevant forecasts and decisions in real time to mitigate, sufficiently in advance, poten-
tial, or actual safety and security issues in a network. In particular, it is virtually impossible to analyze each individual
device time series through people, creating the need for an automated framework and system. Moreover, within this
context, many standard time series analysis models become useless either because they cannot tackle a huge amount of
high-frequency data or because they cannot be used in an automated fashion because of the versatility of the series that
need to be faced.

We introduce in this paper a framework for time series monitoring and anomaly detection, which serves as basis for a
system for large-scale safety and security network monitoring. Functionally, we require the system to be:

• Automatic. Given the huge amount of series to be monitored, intervention of humans in the process should be kept to
a minimum.

• Versatile. Time series may be of different nature and have different characteristics such as linear growth, seasonality, or
outbursts. The approach should be able to deal with all these particularities in an automated fashion. In addition, the
time series features may change over time and, thus, the framework should be able to adapt fastly and automatically.

• Scalable. The approach should scale both in time and memory space. It should be fast enough to be able to cope with
many very high-frequency time series. In addition, because of the huge amount of time series to be monitored, it should
be able to summarize each series with just a few parameters, avoiding storage of the whole series.

• Accurate. Besides, we would also like the system to fulfill the required good statistical properties in relation with the
predictive accuracy of the provided forecasts.

Earlier work in network monitoring does not fully cover the above requirements. In his classic paper,7 Brutlag pro-
posed a simple approach based on Holt-Winters forecasting; however, model parameters need to be set and tuned for each
model to work well, complicating automation. In addition, his technique is not capable of tracking several seasonal peri-
ods, reducing its versatility. Taylor and Letham8 recently proposed an analyst-in-the-loop algorithm, which makes use of
human and automated tasks, precluding full automation. Moreover, they essentially frame the monitoring problem as a
curve-fitting exercise using Generalized Additive Models, not fully taking into account the temporal dependence structure
in the data. This way, the dynamic nature of the algorithm and its adaptability to sudden changes are essentially lost. In
the work of Vallis et al,9 a tool is presented for anomaly detection based on a seasonal trend loess decomposition together
with the Generalized Extreme Student Deviation (GESD) test to detect anomalies. This algorithm handles anomaly detec-
tion issues but does not accomplish other important monitoring tasks in relation with forecasting potentially dangerous
future events. The main shortcoming is its rigidity in adapting to situations, in which the signal features change consid-
erably. Classification and regression trees10 are also popular methods for anomaly detection. They may be used to provide
point and interval forecasts as well as detect anomalies through GESD or Grubbs' tests; their main disadvantage is that,
a growing number of features can impact computational performance, quickly jeopardizing scalability. Autoregressive
integrated moving average (ARIMA) models have also been widely used in this area.11 These models assume that the sig-
nal under study is stationary, possibly after differencing, which is not always the case in many network monitoring time
series. In addition, numerous parameters such as the number of differences should be selected in advance, complicating
automation. Finally, long short-term memory neural networks, if properly built, may perform successfully in anomaly
detection tasks.12 However, their main drawback stems from the complex work required to adjust them to reach a proper
performance level, rendering automation virtually infeasible.

Our approach represents a step toward the achievement of a completely automated, scalable, and versatile system for
large-scale time series monitoring and anomaly detection in the specific area of network safety and security monitoring.
In this domain, aberrant behavior identification is often based on heuristic methods developed by analysts and usually
lacks predictive capabilities. The framework we propose aims at providing such predictive power to the monitoring system
in an automated way. For that purpose, we use a Bayesian approach differentiating between continuous and discrete
series. For continuous ones, we use a modified version of dynamic linear models (DLMs)13 that incorporates the eventual
existence of regular outbursts originated by physical processes such as backups or compressions, especially relevant in
our application domain. The main advantage of DLMs is that they can be constructed using different blocks capturing
each of the specific features of the time series typical of our domain. We provide an effective way to automatically identify
the involved models. In addition, these summarize the relevant aspects of the series in a few parameters, facilitating space
scalability. Moreover, computation of the predictive distributions is relatively fast, thus making the approach time scalable
after appropriate tuning. For discrete series, we use discrete time Markov chains,14 which fulfill also our aforementioned
desiderata. We emphasize that our aim with our approach is not that of providing a more accurate time series class of
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models to the previously existing ones, but rather to mix existing solutions in this automated fashion to create a framework
that meets the aforementioned requirements.

The structure of this paper is as follows. A description of the models and their goals are given in Section 2, together with
how they are identified and how forecasts are made. This helps us in covering the versatility and automaticity require-
ments. We then discuss implementation details in Section 3, covering scalability requirements while in Section 4, we
analyze the predictive accuracy performance requirements through empirical tests in different series. We end up with
some remarks.

2 PROBLEM FORMULATION AND MODEL DESCRIPTION

Consider, for the moment, the case of monitoring a single time series that, in our domain, will refer to some performance
measure of an ICD, say the number of users connected to a device or the percentage of disk storage occupied. Associated
with the series, there are two reference values, designated W (warning) and C (critical), linked with observation levels
such that, if exceeded, should lead to issuing warning and critical signals, respectively. For example, for a storage disk,
we could be monitoring its usage and set C = 0.95, meaning that when we reach a saturation of 95%, disk performance
might degrade and even collapse, inducing a loss. Such thresholds will depend on the device and its overall relevance.
Observe that we have established a two-level alarm system to try to provide richer information about potential failures
of the monitored device. In the aforementioned example, setting W = 0.9 would allow us to raise awareness before it is
too late.

As pointed out, several key network monitoring cybersecurity activities are related with safety monitoring and anomaly
detection within time series, which, in turn, we shall base on:

a. Making short term forecasts. These allow us to:

• Identify anomalous behavior of the series when observed values do not lie within predictive intervals. This is related
with security and could be useful in pointing critical issues in advance or detecting intruders in a system.

• Identify unsafe behavior when the predictive intervals actually cover the W and/or C thresholds.

b. Making long term forecasts. These allow us to foresee critical issues sufficiently in advance when the W and/or C
thresholds appear in long-term predictive intervals: critical values that lie within them point to potentially problematic
behavior in the distant future.

To accomplish such tasks, we need procedures to make point and interval predictions of the involved time series. The
width of the intervals should be adaptable to control for false positives, as well as to take into account the value of the
corresponding asset. Whenever the predictions reach either level W or level C, an alarm should be issued, being stronger
in the latter case. In addition, we should emphasize alarms whenever several of them occur at consecutive time periods.

Depending on the specific nature of the series considered, a suitable model will be proposed. We first describe the
models used for continuous time series and, then, those for discrete series. Their specific structure is based on extensive
analysis performed with actual series in our domain, such as illustrated in Section 4.

2.1 Continuous time series
Typical continuous time series examples in our domain include device load and disk storage. For a given organization,
let Zn be the nth observation of a relevant continuous variable monitored. If h is the monitoring period, as configured by
the user, Zn represents the observation at time n ·h. Dn represents the values observed before such time and is recursively
defined through Dn = Dn− 1 ∪ {zn}.

2.1.1 Model definition
We have identified the following relevant types of continuous time series in high-frequency network traffic monitoring:

• Series with a level or linear trend, possibly varying in time.
• Series with a level or linear trend together with 1 (or more) seasonal terms, typically describing daily and/or weekly

patterns.
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FIGURE 1 Continuous time series with linear and outburst terms

• Series with a level or linear trend together with several outburst terms, typically associated with compression or backup
processes.

• Series with a level or linear trend together with 1 (or more) seasonal blocks as well as several outburst terms.

As an example, Figure 1 shows the average load of a device that goes through a backup process every night around
2:00 am producing instantaneous load outbursts. This series would lie within the third type above.

As a consequence, the general expression that we shall adopt for our models will be

Zn = Yn + Sn + Bn + 𝜖n,

where Yn designates a linear trend block; Sn designates the seasonal block(s); Bn designates the outburst block(s); and,
finally, 𝜖n designates a noise term. Note that not all three blocks will need to be included in all cases. We describe a
procedure to automatically identify the required blocks in Section 2.1.2. We sketch first their definition.

The trend and seasonal terms are specifications of DLMs.13 We consider for them the general, normal DLM with uni-
variate observation Xn, where Xn corresponds either to the linear trend or the seasonal term. They are characterized by
the quadruple {Fn,Gn,Vn,Wn}: for each n, Fn is a known vector of dimension m × 1, Gn is a known m × m matrix, Vn is
a known variance, and Wn is a known m × m variance matrix. The model is then succinctly written as

Observation: Xn|𝜃n ∼ N(F′
n𝜃n,Vn),

State: 𝜃n|𝜃n−1 ∼ N(Gn𝜃n−1,Wn),
Prior: 𝜃0|D0 ∼ N(m0,C0),

where 𝜃n represents the state variable at time n. We specify now the general model for the required blocks, which we may
combine using the superposition principle.13(p186-188) The trend model is a specification of the DLM with constant Fn and
Gn through

F =
[

1 0
]
, G =

[
1 1
0 1

]
.

In turn, the basic seasonal model with period s is a specification of the DLM with constant Fn and Gn

F =
[

1 0 … 0
]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
s−1

, G =

⎡⎢⎢⎢⎢⎣
−1 −1 −1 … −1
1 0 0 … 0
0 1 0 … 0
⋮ ⋮
0 0 … 1 0

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

s−1

.

Typical periods that we incorporate are s = 288 for 5-minute data, s = 144 for 10-minute data and s = 48 for 30-minute
data. For larger periods, we might use a Fourier decomposition and work with a few of the Fourier components.15(p102-109)

For both models, we use Vn = 1; however, this parameter could be assessed using, eg, maximum likelihood estimation.
The variance matrix Wn is defined through the discount principle with discount factor of 0.95.13(p193-200)
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FIGURE 2 Sample autocorrelation function of a network monitoring series with seasonal component. The period is 48, corresponding to
measuring the series twice every hour for a full day

In case some outburst processes are detected, then at the corresponding times, the DLM model is turned off and the
analysis of these points is made separately. To this end we use a normal model for each particular outburst process

Bnp ∼  (𝜇, 𝜎2),

with mean 𝜇 and variance 𝜎2. Here, np would represent the index of the pth outburst of a given type.

2.1.2 Model identification
By default, we use as baseline a linear trend block on top of which we add seasonal and outburst blocks when such effects
seem relevant. These are identified as follows:

• Seasonal component: We store the lags ti at which sign changes in the sample autocorrelation function of the series
take place. We then calculate the difference between the closest nonconsecutive lags, (ti + 2 − ti) for i = {1, … , j − 2},
assuming that there are j changes, and compute the mean (m) and variance (s2) of differences. If s∕m < r, where r
is an adjustable threshold, we include a seasonal component with nearest integer to m as the estimated seasonality.
Figure 2 represents the autocorrelation of a series of period 48 in a specific example.

• Outbursts: We first search through the dataset looking for times in which the data lie outside 𝛾 standard deviations
from the estimated mean of the series, with 𝛾 an adjustable threshold. For these times we record how many instances
bj of the same type of outburst occur; for example, when analyzing daily-regular outbursts, we take a certain number
of days and count in how many of them does a peak appear at the same hour. After a sufficiently long time, we declare
that this is an identified regular outburst process if

b𝑗

b
> q, (1)

where b is the number of periodical time intervals in the data used for model identification purposes, eg, the total
number of days in our previous example. q is a repetition threshold that can be tuned to make peak selection stricter.
Condition (1) suggests that peaks need to appear, at least, q × b times throughout the data timespan to be considered
part of a regular outburst process.

We have also considered the use of Holder exponents to characterize the appearance of outbursts in our time series, a
fairly popular approach for this problem as well.16 As they are constructed by comparing the data with an approximating
(smooth) polynomial function, they could represent a general method for recognizing outbursts. However, we deemed
that this was not necessary for the series we have analyzed so far. In our case, we knew that the underlying process
generating our peaks was substantially different from the process that ruled the rest of the series; thus, a simple estimate
as the one presented above is more than enough to tell these peaks apart from the rest of the data. Moreover, the peaks
appear regularly at fixed times in each series and, consequently, they are relatively simple to identify. The analysis of these
outbursts with Holder exponents could however still be performed but to do so, we would have to make sure that this
approach also fulfills the requirements we have made (low running time and memory-efficient calculations), which may
not be trivial since the corresponding estimates may depend on much heavier calculations.
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436 NAVEIRO ET AL

For this identification process, we use a large enough amount of data, able to capture the main features of the time
series under study. In our application domain, where daily and weekly effects are the most relevant, five weeks have been
usually sufficient.

2.1.3 Priors
It could be the case that we have available prior information for specific monitored series. This will typically entail
improved performance in terms of faster fitting. However, to automate the approach, we need to be generic and have
adopted specific priors as follows:

Linear term. The adopted prior is  (m0,C0), where

m0 =
[

0 0
]
, C0 =

[
107 0
0 107

]
.

Seasonal term. We use again a  (m0,C0) prior. s being the period, we adopt as m0 a vector of 0's of dimension s − 1.
The covariance matrix, of dimension (s − 1) × (s − 1), takes the form

C0 =
⎡⎢⎢⎢⎣

A B … B
B ⋱ ⋮
⋮ ⋱ B
B … B A

⎤⎥⎥⎥⎦ ,
where A is a large positive value and B is a negative value defined so that the sum of every row and column is zero. Thus,
we set B = − A

s−2
.

Outburst term. We use a noninformative prior

Π(𝜇, 𝜎2) ∝ 1
𝜎2 .

2.1.4 Model forecasting
We describe how we make forecasts with the aforementioned models. Petris et al15(p53–55) provide closed forms of the
one-step-ahead predictive distribution  (𝑓n,Qn) of Xn|Dn− 1, affecting both the trend and seasonal terms, and their
superposition thereof. As a consequence:

• The pointwise forecast at the next period n is E[Xn|Dn− 1] = fn.
• If un and ln represent, respectively, the upper and lower bounds of the expected predictive interval with probability

content 𝛼, they are defined through

un = 𝑓n + z1−𝛼∕2 Q1∕2
n ,

ln = 𝑓n − z1−𝛼∕2 Q1∕2
n ,

(2)

where z1− 𝛼/2 is the 1 − 𝛼∕2 quantile of the standard normal distribution, being 𝛼 the desired probability level of the
predictive interval, which may be chosen by design, eg, depending on the asset value of the corresponding device. By
default, we use 𝛼 = 0.95.

k-step ahead forecasts are also relevant in our context. If we use an(k) = E[𝜃n + k|Dn], fn(k) = E(Yn + k|Dn), and Qn(k) =
Var(Yn + k|Dn), Petris et al15(p70-71) provide closed forms for such means and variances. As a consequence:

• The k-step ahead point forecast for the trend term at time n is

𝑓n(k) = an(0) + an(1)k. (3)

• The k-step point forecast for the seasonal term at time n is

𝑓n(k) = an(0)k mod s. (4)

Prediction intervals take a form similar to (2).
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NAVEIRO ET AL 437

For the outbursts, for simplicity, we index the peaks of a particular type with p, the number of observed outbursts of
such type until the corresponding time. Then,

Bp+1|Dp ∼ 𝜇p + tp−1

√(
1 + 1

p

)
𝜎2

p ,

where 𝜇p is the sample mean after observing p outbursts of the corresponding type, and 𝜎2
p is the sample variance. We

update recursively the parameters through

𝜇p+1 =
p𝜇p + Xp+1

p + 1
, 𝜎2

p+1 =
𝜎2

p(p − 1) + k𝜇2
p + X2

p − (p + 1)𝜇2
p+1

p
,

where Xp is the value of the series at the time corresponding to the pth outburst of the given type. Then,

• The point forecast is E[Bp + 1|Dp] = 𝜇p.
• The interval forecast is

up+1 = 𝜇p + t1− 𝛼

2
,p+1

√(
1 + 1

p

)
𝜎2

p ,

lp+1 = 𝜇p − t1− 𝛼

2
,p+1

√(
1 + 1

p

)
𝜎2

p ,

(5)

where t1− (𝛼/2),p + 1 is the 1 − 𝛼∕2 quantile of the t-distribution with p − 1 degree-of-freedom, with 𝛼 as above.

Finally, for general forecasts, we first distinguish between regular points and outbursts. For regular points, the predic-
tion is based on the superposition of the involved DLM components. However, if the prediction refers to an outburst, the
DLM model is switched off and the outburst forecast is used.

2.2 Discrete time series
We briefly sketch the approach with this type of series. For further details see the work of Insua et al.14 We use finite, time
homogeneous Markov chains {Xn}, with states {1, … ,K}, where K = C + c is the stated critical level plus a small integer
c. We write the transition matrix as P = ( pij), where pij = P(Xn = j|Xn− 1 = i), for i, j ∈ {1, … ,K}. Should it exist, the
stationary distribution 𝜋 is the unique solution of 𝜋 = 𝜋P, 𝜋i ≥ 0,

∑
𝜋i = 1.

We assimilate the monitored data Dn to observing n successive transitions of the Markov chain, say X1 = x1, … ,Xn =
xn, given the known initial state X0 = x0. A natural prior for P is defined by letting pi = ( pi1, … , piK) have a Dirichlet
distribution pi ∼ Dir (𝜶i), where 𝜶i = (𝛼i1, … , 𝛼iK) for i = 1, … ,K. Then, the posterior is pi|Dn ∼ Dir(𝜶′

i) where
𝛼′

i𝑗 = 𝛼i𝑗 + ni𝑗 for i, j = 1, … ,K; being nij ≥ 0 the number of observed transitions from state i to state j. Specifically, the
prior adopted is given by the coefficients of the corresponding Dirichlet distributions presented in the following K × K
matrix:

⎡⎢⎢⎢⎢⎣
𝛼 𝛽 𝛾 𝛾 … 𝛾
𝛽 𝛼 𝛽 … 𝛾
𝛾 𝛽 ⋱ ⋮
⋮ ⋮ 𝛽
𝛾 𝛾 … 𝛽 𝛼

⎤⎥⎥⎥⎥⎦
.

In our case, because of the high frequency of the time series involved, the most-likely behavior for a certain state is to
remain in its position, followed by one-state transitions. The rest of transitions are less likely. We model this behavior by
setting 𝛼 > 𝛽 > 𝛾 . In particular, our default values are 𝛼 = 10, 𝛽 = 8, and 𝛾 = 2. As before, the proposed prior is
general, flexible, and useful to deal with the cases we have found in network monitoring, facilitating a generic automated
approach.

 15264025, 2019, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asm

b.2436 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [18/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



438 NAVEIRO ET AL

We predict the next value of the Markov chain, at time n + 1, using our estimates of the transition probabilities

P(Xn+1 = 𝑗|Dn) = ∫ pxn𝑗𝑓 (P|Dn)dP =
𝛼xn𝑗 + nxn𝑗

𝛼xn• + nxn•
≡ p̂n𝑗 ,

where 𝛼i• =
∑K

𝑗=1 𝛼i𝑗 and ni• =
∑K

𝑗=1 ni𝑗 . The pointwise prediction will then be
∑K

𝑗=1 𝑗 · p̂n𝑗 . Once the prediction of the
next value is performed, we can also calculate the prediction interval around such estimation. If i is the last visited state
and 𝛼 is the probability of the one-step-ahead predictive interval, we get its upper and lower bounds un + 1 and ln + 1, using
Algorithm 1. Note that discrete time series have both maximum and minimum states, here, K and 1, respectively.

k > 1- step-ahead predictions are more complex. For small k, we can use

P(Xn+k = 𝑗|Dn) = ∫
(
Pk)

xn𝑗
𝑓 (P|Dn)dP,

giving a sum of Dirichlet expectation terms. However, as k increases, the evaluation of this expression becomes compu-
tationally infeasible in our domain. Thus, we perform approximately by calculating the kth power P̂k of the matrix of
expected values of the probabilities and using

P(Xn+k = 𝑗|Dn) ≈
(

P̂k)
n𝑗 .

Our interest also lies in the stationary distribution of the chain. For high-dimensional chains as the ones we need to deal
with, we use the approximation

𝜋̂ = 𝜋̂P̂,∑
i
𝜋̂i = 1,

𝜋̂i ⩾ 0.

(6)

Once this equation is solved, we can use 𝜋̂i ⩾ 0, the approximate stationary distribution, to produce long-term forecasts.

2.3 General scheme
The general strategy followed for each time series is described in Figure 3 (note that this whole procedure is applied in an
automated fashion to each new time series inputted to the system). Once the series is in, a first distinction is made between
whether it is continuous or discrete. In this last case, the system uses the Markov model in Section 2.2. Otherwise, the
model identification process presented in Section 2.1.2 is applied. Once the blocks have been identified, the appropriate
dynamic model in Section 2.1.1 is used. After fitting the corresponding models based on a sufficient amount of data,
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NAVEIRO ET AL 439

FIGURE 3 General scheme

forecasts may be made and alarms raised in case an anomalous behavior is detected or reaching critical values is predicted,
both in the short or medium terms.

3 IMPLEMENTATION

We now describe the implementation and use of our approach. We present here issues in relation with having to deal
with several hundred thousands of monitored series sampled over periods ranging from 1 to 30 min, depending on the
criticality of the corresponding device. We thus cover the aforementioned speed and space scalability requirements.

The implementation has been carried out through the creation of an object-oriented python package linked with the
core monitoring system. Each monitored time series will be associated with an object that includes all methods required
to accomplish predictive monitoring tasks. The package is structured as in Figure 4. The main code blocks are the classes
gen and classifier. The main code receives the data and timestamps of the training period of each series and generates a
classifier object. Its attributes contain the characteristics needed to identify the class of models to be used in the analysis
of that particular time series. Once this object is constructed, using it together with the data and timestamps, a gen object
is created. This is the general class whose methods depend on the model relevant for the given time series, which will
ultimately be used to undertake the forecasting, anomaly, and critical value detection tasks. Among these, we highlight
the update method, which incorporates new data to the current model and updates the parameters in a Bayesian manner,
and the predict method, which performs k-step ahead predictions, returning point, and interval forecasts, providing the
basis to construct the specific critical and anomaly detection functions that raise the alarms.

Short-term forecasts are needed for safety and security purposes. Given Dn, we produce forecasts using the predict
method for future observations xn + 1, xn + 2, xn + 3, … up to a certain time (n + k) · h, with k defined by the user. k = 3 is
the default value. Forecasts are delivered as predictive intervals [ln + i,un + i] with probability level configurable by the user.

FIGURE 4 Structure of the python package for time series monitoring and anomaly detection
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440 NAVEIRO ET AL

FIGURE 5 Short-term forecasting using 95% one-step-ahead predictive intervals. A, Continuous time series; B, Discrete time series

These could be used to detect aberrant behavior within the time series: when the next observation xn + 1 does not lie in
the predictive interval [ln + 1,un + 1], a warning concerning unexpected behavior is displayed pointing to a potential secu-
rity issue. Our implementation modulates the warning depending on the number of consecutive intervals in which it
needs to be launched. Therefore, as to control for false positives, alarms could be issued just when the number of vio-
lations exceeds certain threshold within a moving window with fixed number of time steps, as suggested in the work
of Brutlag.7 Short-term predictions also serve for safety monitoring tasks. Specifically, when W or C lie within a predic-
tive interval [ln + j,un + j] for one j ∈ {1, 2, … , k}, an alarm pointing to potentially high values of x should be issued. The
higher the number of intervals covering the particular level, the more intense would be the alarm. We illustrate both func-
tionalities through a practical example in Figure 5A. In this case, an intense unexpected behavior alarm would be issued
around 2:00 am as there are four measurements outside the corresponding predictive intervals. In addition, an alarm con-
cerning a potentially high value of the series would be issued at 1:40 am, as the predictive intervals exceed the warning and
critical levels at 1:50 am and 2:00 am, respectively. A similar example using discrete time series is displayed in Figure 5B.

Long-term forecasts are used to accomplish safety monitoring tasks: we try to ascertain whether critical levels will be
reached with sufficiently high probability in the long term. In principle, it could be done using predictive intervals as
we do with short-term predictions and illustrated in Section 2.1.4. However, since the system must monitor so many
high-frequency time series in real time and, consequently, must perform under a very narrow time window, we need to
make a compromise: although the calculation of predictive intervals is doable as in Section 2.1.4, here, we will just focus
on point forecasts. This allows for a drastic improvement in the computational costs of running the involved algorithms,
as we can use explicit expressions to make the forecasts obviating the costly computation of predictive variances. We use
as point forecasts zn + j, the midpoint of intervals [ln + j,un + j], and try to find out the first j1 such that zn+𝑗1 > W and the
first j2 such that zn+𝑗2 > C. This allows us to identify, well in advance, time instants, in which critical values might be
reached, as we may provide explicit expressions of such inequalities. Indeed, in the linear case, from (3), we try to find
the first ji, i = 1, 2, such that

𝑗1 >
W − an(0)

an(1)
, 𝑗2 >

C − an(0)
an(1)

,

assuming that an(1) > 0. Similarly, with a seasonal block, from (4), we try to find the first ji, i = 1, 2 such that

an(0)𝑗1 mod s > W , an(0)𝑗2 mod s > C,

if any. Finally, when the model contains linear and seasonal blocks, we compute j1 (and similarly j2) through
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FIGURE 6 Long-term forecast for continuous time series

FIGURE 7 Long-term forecast for discrete time series

where a′
n(0) are the parameters of the pointwise k-step ahead forecasts for the seasonal term, and an(0) and an(1) are

those of the linear trend.
A practical example of this type of forecast is illustrated in Figure 6. There, the time series is not expected to cross

neither warning nor critical levels in the next five hours. However, if the linear growth in the main trend continues, both
levels could possibly be reached in the future. To control for false positives, we could define a relevance time window, only
raising an alarm when anomalous behavior occurs repeatedly inside it and neglecting them otherwise.

For long-term forecasting with discrete time series, we use the stationary distribution in (6). If the sum of probabilities
assigned to the states that lie above the warning (critical) level is higher than a certain preestablished threshold, an alarm
would be raised. This is illustrated in Figure 7. In this case, an alarm should be raised if the warning (critical) threshold
is at 0.07 or lower.

We assessed the time performance of our approach with stress tests. For different models, we have sequentially added
15 000 new data points through the update method, performing a short-term prediction (30 min) and a long-term predic-
tion (5 hours) at each iteration. In particular, we tested four models: one with a linear trend; one with a linear trend and
a seasonal block with period 144; a model with a linear trend and an outburst block; and, finally, a Markov chain model
with 50 states. In Table 1, we show the mean, median, min, and max times of the whole operation (update + short-term
prediction + long-term prediction) for each of the models used. Time calculations have been performed in an Intel Core
i7-3630UM, 2.40GHz × 8 machine.
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442 NAVEIRO ET AL

TABLE 1 Mean, median, min, and max times in seconds of update,
short-term and long-term predictions for different models

Mean Median Min Max

Linear 4.03 · 10−4 3.97 · 10−4 3.76 · 10−4 9.12 · 10−4

Linear + Seasonal 2.50 · 10−2 2.49 · 10−2 2.43 · 10−2 4.60 · 10−2

Linear + Outburst 4.42 · 10−4 4.35 · 10−4 2.73 · 10−4 8.38 · 10−4

Markov Chain 8.81 · 10−4 8.06 · 10−4 7.70 · 10−4 1.96 · 10−3

The algorithm is fast enough, and consequently, able to cope with the typical very high-frequency data in the network
monitoring domain. Note though that the model including the seasonal trend is remarkably slower than the rest of the
models. This is to be expected since it includes a seasonal term with long period, which involves performing several
operations with high-dimensional matrices. Should better performance be required, we could use a Fourier decomposition
of the seasonal trend, and work with a few of the most relevant Fourier components,15(p102–109) although this would require
a method to automate identification of such components.

In terms of memory, the whole approach is constructed so that a fixed number of parameters are stored at any step of the
calculations to further improve its performance. In the case of continuous time series, the linear part of the DLM stores
two 2-component vectors, the vector F, and the mean of the state distribution m; three 2 × 2 matrices, the matrix G, the
covariance matrix C of the state distribution, and the system covariance; and a parameter corresponding to the observation
variance. Similarly, the seasonal part stores two (s − 1)-component vectors, three (s − 1) × (s − 1) matrices, and one
parameter. The outburst term holds only two parameters corresponding to the mean and variance of the corresponding
distribution, for each recurrent peak detected. Finally, the Markov model for discrete time series employs a k × k matrix
that is updated at each step, where k corresponds to the number of states considered in the chain. This all means that in
the worst case scenario, the model needs to store in memory (s2) parameters for the continuous case and (k2) for the
discrete case, which is feasible within the architecture developed.

These remarks, together with the time performance measures previously presented, suggest that the algorithm fulfills
the time and space scalability requirements.

4 EMPIRICAL TEST FOR ACCURACY

This section provides empirical support for the accuracy of the proposed framework for network monitoring, fulfilling
our fourth requirement. It also illustrates how the approach adopted was designed based on modeling numerous series
in our domain to obtain the relevant features.

To that end, we use as benchmark the four time series plotted in Figure 8, which are representative of the aforemen-
tioned characteristics in network traffic monitoring (linear trends, seasonal behaviors, outbursts, and discrete processes).
In this way, we show that our automated framework meets the aforementioned properties of scalability and versatility,
being able to deal with time series of very different nature.

To assess the overall accuracy of our approach, we use some of the traditional performance metrics for point forecasts.
In particular, we shall use the mean absolute error, the mean square error, and the mean absolute percentage error. We
compare our modeling framework with some of the traditional methodologies mentioned in the introduction, specifically
ARIMA and exponential smoothing (ES), as there are open source automated implementations available. Specifically, we
shall use the forecast R package.17,18 In our case, for the comparison, it is important to use monitoring methods that are
able to deal in a completely automated fashion with large amounts of different time series.

Note first that our forecast, in contrast to these provided by the other methods, is a full predictive distribution rather
than a single-point forecast. Then, if we want to compute the aforementioned performance metrics, we need to summarize
our predictive distribution with a single point. To that end, we shall choose the point that minimizes the corresponding
expected loss under the predictive distribution.*

Figure 9 plots the different performance metrics versus the forecast horizon from 1- to 10-step-ahead for the first three
time series in Figure 8. Notice that the accuracy of our method is deemed competitive. In particular, our approach notably

*It is well known that the predictive median is optimal under absolute loss; the mean, under squared loss, and the ( − 1)-median under the absolute
percentage loss, that is the median of the p.d.f. g( y) ∝ p( y)∕y, where p( y) is the forecast distribution.
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FIGURE 8 Time series used for the comparisons

outperforms ARIMA and exponential smoothing in cases 1 and 3. In the first case, this is because of the fact that we are
capable of accounting for the outburst process in such sample. Modeling these regular outbursts separately makes all
the difference here. For sample 2, all methods have a similar performance in all three metrics, due to its simpler nature.
However, for sample 3, the automated approach implemented in the forecast R package for ARIMA and exponential
smoothing was not capable of recognizing the seasonal component in such data. Therefore, the difference in performance
is because of the fact that our approach is correctly identifying the seasonal component and the error remains more stable
through the number of steps ahead of the predictions.

To further study sample 3 results, we also computed these performance metrics for ARIMA and ES, tuning them man-
ually to explicitly account for the corresponding seasonal behavior. Results are presented in Figure 10. Here, we see that
once ARIMA and ES are given this information, their performance in the long-term predictions improves sharply. How-
ever, even in this case our approach, still being completely automatic, remains competitive. Moreover, if we also consider
the scalability requirement, both ES and ARIMA have much higher running times, being especially high in the case of
ARIMA. Therefore, even though we had to intervene the ARIMA and ES models to correct them and gave them much
more running time to produce the forecasts, our method still performs well enough while fulfilling the requirements of
automaticity and scalability.

Finally, we also calculated the performance metrics for the fourth sample in Figure 11. However, neither ARIMA nor
ES are prepared to deal with discrete time series. Therefore, here, we only present the results for our method. As expected,
our method performs better in short-term predictions than in the long-term ones. As mentioned, when dealing with
long-term forecasts in the discrete case, it may be more sensible to work with the stationary distribution described in (6).
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FIGURE 9 Point forecast performance comparison for the continuous time series. ARIMA, autoregressive integrated moving average; ES,
exponential smoothing; MAE, mean absolute error; MAPE, mean absolute percentage error; MSE, mean square error
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FIGURE 10 Point forecast performance comparison for sample 3 using hand-crafted features for autoregressive integrated moving average
(ARIMA) and exponential smoothing (ES) models versus the automatic fitting of our approach (forcing seasonality and giving the period of
this seasonal component). MAE, mean absolute error; MAPE, mean absolute percentage error; MSE, mean square error
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FIGURE 11 Point forecast performance comparison for the discrete time series. MAE, mean absolute error; MAPE, mean absolute
percentage error; MSE, mean square error

A key aspect that differentiates our methodology from the rest is that, it produces full predictive distributions, with
reasonable uncertainty quantification, rather than point forecasts. Such distributions play an important role in anomaly
detection as pointed out in Section 2. To perform probabilistic forecast evaluations, we plot in Figure 12 the empirical
coverage against the width of the predictive distributions, for 1-, 5-, and 10-step-ahead predictions in each of the cases
studied. As can be seen, our approach is working properly in the continuous case as the coverage curve is very close
to the 45-degree line (ideal coverage). In the discrete time series case, we observe overcoverage especially for 5- and
10-step-ahead forecasts. This is a consequence of how the credible intervals are constructed in such case (Algorithm 1).
If we want to obtain an 𝛼 probability predictive interval, we will keep on adding states to the interval until the probability
of the system staying in any of those states is at least 𝛼. However, we have point probability masses because of the discrete
nature of the series and, therefore, the addition of a discrete number of these will make the real probability of the predictive
interval bigger than 𝛼 since we only stop adding states once 𝛼 is surpassed to make sure that we cover at least such level.
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446 NAVEIRO ET AL

FIGURE 12 Empirical coverage for 1-, 5-, and 10-step-ahead predictive distributions [Colour figure can be viewed at
wileyonlinelibrary.com]

5 DISCUSSION

Based on the features typical of network monitoring time series, we have provided a framework to identify safety and
security issues within a large number of ICDs. The framework has been implemented and operates as part of a sys-
tem controlling–a network with more than three hundred thousand devices, even taking into account that each of them
provides several very high-frequency time series.

The framework presented is very flexible when it comes to identify and model different behaviors that can be described
in terms of basic components, as it happens in our application domain. This would allow for wide use through different
environments beyond it, as we may use the same approach to monitor very distinct time series with intrinsic varying
nature. Moreover, since the procedure just needs to store a few parameters for each time series, we can say that it is
scalable, both in terms of memory and runtime. The framework is amenable of parallel processing, making possible to
monitor different batches of series in different cores, reinforcing this way the scalability request. In addition, thanks to
our model identification procedure; our approach is able to work automatically without human supervision. Another
interesting advantage refers to updating series with missing data, which happens relatively frequently in our domain. In
presence of such missing values, the state carries no information and, therefore, the filtering distribution at such time is
just the one-step-ahead predictive distribution of the previous step.

Improvements in the algorithm can still be performed, especially if we take into account specifics of the cases moni-
tored. To this extent, using the eventual hierarchy between monitored devices, model identification could be optimized,
for example, allowing for a faster regular outburst detection. Moreover, should there exist correlated time series in the
database, such correlations could be used similarly to our advantage. For this, we would need coupling-decoupling strate-
gies of the type described in, eg, the work of Berry and West.19 It is also possible to carry out an automatic performance
evaluation of the algorithm. This could be done by computing the autocorrelation function of the residuals within a
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certain time window. If, for instance, a strong correlation in the first few lags is encountered, an autoregressive term could
be added to the model. In other cases, when model performance deteriorates too much, an alarm could be issued, finally
demanding the intervention of a human analyst. It may be also interesting to adjust in real time the width of the predic-
tive probability intervals taking into account the particular potential economical losses of false positives and negatives of
the system. From this point of view, we may also find interesting to rebuild the structure of the algorithm to try to produce
long-term forecasts including the probability intervals as well, moving beyond the point-wise predictions here proposed
for practical implementation.
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