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Abstract 

This study explores the application of Deep Reinforcement Learning (DRL) to optimize 

the management of fixed-income portfolios, with a particular focus on U.S. Treasury 

bonds. Using the Proximal Policy Optimization (PPO) algorithm, a trading agent was 

trained in a custom environment that simulates bond market dynamics based on real 

historical data. The agent's performance was benchmarked against two reference 

strategies: a passive hold policy and a random trading policy.  

Results indicate that the PPO agent achieved superior cumulative returns, supported by 

stable training diagnostics such as explained variance, KL divergence, and clip fraction. 

Although the limited number of training runs reduces the statistical power of the inference 

tests, the evidence suggests that the learned policy consistently outperforms the baselines. 

These findings support the rejection of the null hypothesis and validate PPO as a 

promising tool for active fixed-income portfolio optimization. 
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Resumen 

Este estudio explora la aplicación del Aprendizaje por Refuerzo Profundo (DRL) para 

optimizar la gestión de carteras de renta fija, con un enfoque particular en los bonos del 

Tesoro de los Estados Unidos. Utilizando el algoritmo Proximal Policy Optimization 

(PPO), se entrenó un agente de negociación en un entorno personalizado que simula la 

dinámica del mercado de bonos a partir de datos históricos reales. El desempeño del 

agente se comparó con dos estrategias de referencia: una política pasiva de mantenimiento 

y una política de negociación aleatoria.  

Los resultados indican que el agente PPO logró rendimientos acumulados superiores, 

respaldados por métricas de entrenamiento estables como la varianza explicada, la 

divergencia KL y la fracción de recorte. Aunque el número limitado de ejecuciones de 

entrenamiento reduce la potencia estadística de las pruebas de inferencia, la evidencia 

sugiere que la política aprendida supera consistentemente a los referentes. Estos hallazgos 

respaldan el rechazo de la hipótesis nula y validan a PPO como una herramienta 

prometedora para la optimización activa de carteras de renta fija. 
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de Carteras, Gradiente de Política.  



1. INTRODUCTION AND SCOPE OF THE STUDY 

 

1.1. Research Objectives 

The main objective of this research is to evaluate the viability of using a Deep 

Reinforcement Learning (DRL) model, specifically the Proximal Policy Optimization 

(PPO) algorithm, for optimizing the returns of fixed income portfolios. The study aims to 

determine whether such a model can outperform two benchmark strategies: a random 

trading policy (random) and a passive strategy that does not engage in market activity 

(hold), selected to provide a baseline for performance evaluation. The random policy 

represents uninformed trading behavior, while the hold strategy serves as a minimal-

activity reference, allowing the model's added value through active decision-making to 

be clearly measured. By assessing the PPO agent’s performance in a simulated U.S. 

Treasury bond environment, the study intends to contribute to the growing body of work 

that explores the application of DRL in portfolio management.  

As discussed in the literature review, numerous reinforcement learning models have been 

proposed for portfolio management and trading. However, most of these applications 

focus predominantly on stocks and currencies, with comparatively limited attention given 

to fixed-income assets. This gap highlights the need for tailored approaches that address 

the unique characteristics and challenges of fixed-income portfolio optimization.  

Additionally, this research is conceived as a steppingstone, providing empirical evidence 

and a reproducible framework that can motivate future developments toward more 

sophisticated models capable of operating in real-world public fixed income markets. 

 

1.2. Hypotheses 

To test the objective of the research, we formally define the following hypotheses: 

Null Hypothesis (H₀): 

The PPO agent does not achieve significantly higher cumulative returns 𝑅𝑃𝑃𝑂 than the 

benchmark strategies 𝑅𝑟𝑎𝑛𝑑𝑜𝑚, 𝑅ℎ𝑜𝑙𝑑. 

𝑅𝑃𝑃𝑂 ≤ max⁡(𝑅𝑟𝑎𝑛𝑑𝑜𝑚, 𝑅ℎ𝑜𝑙𝑑) 

Alternative Hypothesis (H₁): 

The PPO agent achieves significantly higher cumulative returns than both benchmarks. 

𝑅𝑃𝑃𝑂 ≥ max⁡(𝑅𝑟𝑎𝑛𝑑𝑜𝑚, 𝑅ℎ𝑜𝑙𝑑) 

These hypotheses are tested using statistical inference methods, specifically t-tests, to 

assess whether the observed differences in performance can be attributed to the learning 

capabilities of the PPO agent rather than random variation. 

 



1.3. Methodology 

To test the hypothesis and structure the investigation, the methodology is divided into the 

following steps, combining theoretical review and experimental validation: 

1. Literature Review. An examination of existing research on the use of DRL for 

portfolio management and market trading strategies. This also includes 

foundational work on classical portfolio theory. 

2. Understanding Fixed Income Markets. A detailed explanation of the fixed income 

market is provided, covering the scale of U.S. Treasury instruments and the 

mathematical construction of bond pricing. Key pricing variables such as yield, 

duration, and coupon structures are identified to ensure a clear understanding of 

the domain where the PPO agent is applied. 

3. Reinforcement Learning and PPO Foundations. The study introduces the 

conceptual basis of Reinforcement Learning (RL), followed by a focused 

explanation of the PPO algorithm, its clipped objective function, and associated 

metrics which are used to monitor training stability and performance. 

4. Model Design and Dataset Construction. The paper outlines the construction of a 

custom OpenAI Gym environment tailored to U.S. Treasury bonds. This includes 

selecting relevant bond identifiers, structuring observation and action spaces, and 

detailing the state variables used. The dataset is derived from Bloomberg terminal 

exports, filtered for consistent structure and date coverage, and split into training 

and evaluation sets. 

5. Performance Evaluation. The PPO agents are trained on the training dataset and 

evaluated on a holdout test set. Their cumulative returns are compared against 

random and passive benchmarks. Statistical testing is used to evaluate the 

significance of the results, supported by training diagnostics that include 

explained variance, KL divergence and clip fraction, to ensure both the stability 

and efficacy of learning. 

 

 

 

 

 

 

 

 



2. LITERATURE REVIEW 

 

2.1. Portfolio Theory 

Modern portfolio theory provides a systematic framework for constructing investment 

portfolios that optimize returns relative to risk. The foundational premise of the theory is 

that investors should not focus on individual assets in isolation, but rather consider how 

the entire portfolio performs in terms of expected return and risk, measured by the 

variance of returns (Markowitz, 1952). A key insight is that the combination of assets can 

reduce overall portfolio risk through diversification, as long as the returns of the assets 

are not perfectly correlated. The efficient frontier, a central concept in this framework, 

represents the set of portfolios offering the highest expected return for a given level of 

risk. This concept is formalized through quadratic optimization techniques to identify 

portfolios that minimize variance subject to an expected return constraint (Markowitz, 

1952). 

 

Markowitz (1952) demonstrates that diversification is not merely a heuristic but a 

mathematically grounded outcome of optimizing the trade-off between expected return 

and variance. The set of efficient portfolios is derived from the feasible combinations of 

assets, where no other allocation offers higher expected return without also increasing 

risk. 

 

The Capital Asset Pricing Model (CAPM) extends this framework by introducing a linear 

relationship between the expected return of an asset and its systematic risk, quantified by 

beta (Sharpe, 1964). CAPM assumes the existence of a risk-free rate and a market 

portfolio comprising all investable assets. In equilibrium, all investors hold a combination 

of the risk-free asset and the market portfolio, with the expected return of any asset 

determined by its sensitivity to market movements. This implies that only systematic risk 

is priced, while unsystematic risk can be diversified away. The model yields the Security 

Market Line, which represents the equilibrium trade-off between risk and return for any 

individual asset or portfolio (Sharpe, 1964). 

Later refinements of Modern Portfolio Theory (MPT) have focused on the practical 

difficulties of implementation, particularly in estimating input parameters such as 

expected returns, volatilities, and correlations. Fabozzi et al. (2002) illustrate that relying 

solely on historical performance to derive these estimates can lead to significant 

inaccuracies, as asset class returns and risk measures vary considerably across time 

periods. This variability challenges the reliability of mean-variance optimization 

outcomes. To address this issue, practitioners often adjust inputs based on forward-

looking expectations or impose constraints on certain asset classes to reflect the degree 

of confidence in their estimates. These adjustments aim to improve the robustness of the 

optimization process and reflect the growing sophistication of investment professionals 

in applying MPT principles in real-world portfolio management (Fabozzi et al., 2002). 



2.2. Rl and DRL for Portfolio Management 

Deep Reinforcement Learning (DRL) has emerged as a powerful paradigm for portfolio 

optimization, enabling autonomous agents to learn optimal asset allocation strategies by 

interacting with dynamic financial environments. Jiang (2017) propose a fully end-to-end 

DRL framework using policy-gradient methods, allowing agents to directly learn 

cryptocurrency portfolio weights from historical market data. This dynamic approach 

enables real-time adaptation to evolving market conditions, outperforming traditional 

static strategies. 

Guo et al. (2018) propose a robust reinforcement learning-based strategy for portfolio 

management over constituent stocks of the CSI 300 index, which combines a log-optimal 

strategy with a convolutional neural network. Their method aims to maximize long-term 

capital growth by optimizing the expected logarithmic rate of return, and it demonstrates 

empirical robustness to estimation noise. Although transaction costs are assumed to be 

zero and volatility is not directly modeled, the design includes regularization to help 

mitigate overfitting in non-stationary financial environments. 

Huang (2018) formulates financial trading as a Markov Decision Process (MDP) and 

applies a modified Deep Recurrent Q-Network (DRQN) to model it as a sequential 

decision-making task under uncertainty. The agent is trained to maximize cumulative 

currency portfolio returns while accounting for transaction costs, using techniques like 

action augmentation and longer training sequences to handle the complexity of financial 

markets. The framework is entirely model-free and does not rely on classical Markowitz-

type assumptions. 

Soleymani (2020) present a deep reinforcement learning framework, DeepBreath, which 

integrates online learning and restricted stacked autoencoders to tackle the non-

stationarity of stocks financial markets. Their system performs dimensionality reduction 

to extract informative latent features from high-dimensional financial data, which are then 

used to train the portfolio policy. The agent adapts effectively to evolving market 

conditions, improving rebalancing efficiency and achieving superior returns compared to 

traditional expert strategies. 

Yang et al. (2021) propose an ensemble DRL approach that combines three actor-critic 

algorithms. By aggregating the outputs of these distinct agents, their method improves 

both generalization and robustness. Applied to stock markets, the performance of the 

trading agent with different reinforcement learning algorithms is evaluated and compared 

with the Dow Jones Industrial Average index. Empirical results show that the ensemble 

model outperforms each individual algorithm as well as traditional benchmarks. 

 

 



2.3. Rl and DRL for Trading 

Huang (2018) reformulates financial trading as a Markov Decision Process and applies a 

modified Deep Recurrent Q-Network (DRQN) to the foreign exchange market. The study 

introduces several innovations, including a reduced replay memory, longer sequence 

sampling for recurrent training, and a novel action augmentation technique that allows 

the agent to learn effectively without relying on random exploration. These modifications 

enable the model to operate in a fully online learning setting, making real-time 

deployment more feasible. The proposed Financial DRQN agent achieves positive returns 

on 12 currency pairs under transaction costs, demonstrating strong empirical performance 

and robustness. The author also reports competitive Sharpe and Sortino ratios, with some 

strategies showing low correlation with traditional baselines. 

Yang et al. (2021) emphasize the value of ensemble models in trading systems, showing 

that the combination of multiple DRL agents significantly outperforms both individual 

strategies and market indices. Their method demonstrates robustness across different 

market regimes, a crucial advantage in volatile financial environments. 

Ozbayoglu et al. (2020) conduct a comprehensive review of deep learning applications in 

finance. They observe that these models can capture temporal dependencies, regime 

shifts, and nonlinear patterns more effectively than traditional machine learning methods. 

Sarlakifar et al. (2024) propose a novel deep reinforcement learning architecture for 

automated stock trading, combining xLSTM networks with Proximal Policy 

Optimization. Their model outperforms classic LSTM-based agents across several 

metrics, including Sharpe ratio and cumulative return, when applied to volatile stock 

markets. 

Nabipour et al. (2020) present a comprehensive comparative analysis of nine machine 

learning models and two deep learning architectures (RNN and LSTM) for stock market 

trend prediction. Utilizing ten years of historical data from the Tehran Stock Exchange 

and ten technical indicators, they evaluate performance under two input settings: 

continuous and binary data. Their empirical findings reveal that deep learning models, 

particularly LSTM and RNN, consistently outperform traditional machine learning 

techniques in terms of accuracy. The study highlights the effectiveness of deep learning 

in capturing temporal dependencies in financial time series, especially when enhanced 

through data preprocessing techniques like binarization. 

 

 

 

 

 



3. FIXED INCOME MARKET 

 

Fixed income refers to a category of financial instruments that provide investors with 

regular, predetermined payments and the return of principal upon maturity. These 

instruments are most commonly issued by governments, corporations, or financial 

institutions to raise capital for funding operations or public initiatives. The name “fixed 

income” originates from the consistent cash flows these assets typically generate, usually 

in the form of fixed interest (coupon) payments made at regular intervals (Bolsas y 

Mercados Españoles [BME], n.d.). 

The fixed income market is also one of the largest and most liquid segments of the global 

financial system. As of early 2024, the U.S. fixed income market represents 

approximately 40% of the more than $130 trillion in outstanding global debt securities, 

making it more than twice the size of the next largest market, the European Union. 

Combined, the bond markets of the U.S., EU, China, and Japan account for over 80% of 

all outstanding global fixed income securities (MUFG, 2024). 

Source: MUFG 

Given their global scale and systemic relevance, fixed income markets play a fundamental 

role in capital formation, monetary policy transmission, and financial stability. Their 

predictable cash flows and structured features make them a cornerstone of both public 

and private investment strategies. 

Developing an optimization model for fixed income portfolios represents a strategic 

opportunity within the financial domain. Although debt instruments typically offer lower 

returns compared to equities, this difference is justified by their reduced risk profile, 

stemming from their senior position in a company’s capital structure. In the event of 

bankruptcy, creditors have legal priority over shareholders in recovering their 

investments, which grants bonds a higher likelihood of repayment. This hierarchy within 

the capital structure explains the lower yields demanded by the market for debt securities 

relative to equity. Nevertheless, this stability creates a window for deploying optimization 

Figure 1. Global fixed income securities outstanding 



strategies aimed at maximizing risk-adjusted returns in one of the largest and most 

essential sectors of the global financial system. 

However, fixed income securities are not free from financial risk. Several forms of risk 

may impact the performance or valuation of these instruments: 

▪ Inflation Risk: Inflation refers to the general increase in price levels over time. 

Since most fixed income securities offer nominal (non-inflation-adjusted) 

payments, rising inflation diminishes the real purchasing power of future cash 

flows, reducing the instrument’s attractiveness to investors. 

▪ Interest Rate Risk: If interest rates rise after a bond is issued, newly available 

bonds may offer higher yields, making existing lower-yield bonds less valuable in 

the secondary market. 

▪ Default Risk: Refers to the possibility that the issuer may fail to meet its financial 

obligations, either by missing interest payments or defaulting on the principal. 

Securities with higher perceived default risk typically offer higher yields to 

compensate for this uncertainty. 

▪ Exchange Rate and Capital Control Risk: When fixed income instruments are 

denominated in a foreign currency, investors face the additional risk that exchange 

rate fluctuations could erode returns. In some cases, governments may impose 

capital controls that restrict investors’ ability to repatriate funds or liquidate 

investments (Corporate Finance Institute, n.d.). 

 

Long-term government debt instruments, such as bonds with maturities of up to 30 years, 

pay fixed semiannual interest. Their extended duration makes them highly sensitive to 

changes in interest rates, increasing both their return potential and associated risk. In this 

study, we focus specifically on bonds due to their standardized structure, deep market 

liquidity, and long maturities, which enable consistent valuation across investment 

horizons. These characteristics make bonds particularly suitable for modeling within our 

reinforcement learning framework. 

 

3.1. Bonds Structure 

Bond valuation relies on the discounted cash flow approach, which accounts for the time 

value of money. A bond generates a stream of future payments, typically fixed periodic 

coupons and a lump-sum principal repayment at maturity, which are discounted back to 

their present value using the prevailing market yield. This yield, often referred to as the 

required rate of return, incorporates the bond’s risk profile and reflects investor 

expectations (Petitt et al., 2015). 

In the case of a standard fixed-rate bond, its price is determined by summing the present 

values of all coupon payments and the face value repayment. When the bond's coupon 

rate is below the current market rate, it sells at a discount; if it exceeds the market rate, it 

trades at a premium; and if the rates are equal, it trades at par. This pricing dynamic is 

fundamental to fixed income valuation (Petitt et al., 2015). 



The general pricing formula is: 

(1) Bond Pricing Formula 

𝑃𝑉 = ⁡
𝑃𝑀𝑇

(1 + 𝑟)1
+

𝑃𝑀𝑇

(1 + 𝑟)2
+
𝑃𝑀𝑇 + 𝐹𝑉

(1 + 𝑟)𝑁
 

Where: 

PV: The current value of the bond, representing its market price 

PMT: The fixed interest payment made by the bond at each period 

FV: The amount the bondholder receives at maturity 

R: Market discount rate or required rate of return per period 

N: Total number of equal time intervals until the bond matures 

 

This framework applies across global markets, regardless of whether coupons are paid 

annually or semiannually. 

 

3.2. Bond Metrics and Characteristics 

In fixed income analysis, evaluating the performance and sensitivity of bonds requires 

the use of specific analytical metrics. Among the most critical are Yield to Maturity 

(YTM), Duration, and Convexity, which together provide a comprehensive understanding 

of a bond’s return profile and its reaction to interest rate changes. 

1. Yield to Maturity (YTM) 

Yield to Maturity is the most widely referenced yield metric in bond valuation. It 

represents the internal rate of return that equates the present value of all expected future 

cash flows of a bond, including periodic coupon payments and the repayment of principal 

at maturity, with its current market price. YTM is also referred to as the redemption yield, 

and it is typically expressed on an annualized basis. It offers a theoretical projection of 

the yield an investor would receive by buying the bond at its present market price and 

holding it until maturity, assuming all payments occur as planned (Petitt et al., 2015). 

Figure 2. Bond price vs. Yield to Maturity 

Source: Own elaboration 



There exists an inverse relationship between bond prices and their yield to maturity. When 

YTM increases, the present value of future cash flows declines, leading to a lower bond 

price. This relationship plays a central role in market pricing and return expectations, 

especially in anticipation of interest rate movements. 

The sensitivity of the inverse relationship between a bond’s price and its yield is primarily 

determined by two key metrics: duration and convexity. These tools estimate how 

pronounced price changes will be in response to shifts in yield. For this reason, they are 

considered critical variables in the construction of the PPO model, as they provide 

structural information on interest rate risk and enable the reinforcement learning agent to 

learn more effective policies to maximize risk-adjusted returns within the fixed income 

environment. 

 

2. Duration and Modified Duration 

Duration represents the weighted average time over which a bondholder receives the 

bond’s expected cash flows. It serves as a key indicator of a bond’s sensitivity to interest 

rate changes, quantifying the estimated change in price resulting from a marginal shift in 

yield. For zero-coupon bonds, duration matches the bond’s maturity, as all cash flows 

occur at the end. In contrast, bonds that pay periodic coupons exhibit shorter durations, 

since portions of the investment are repaid before maturity (Hull, 2018). 

 

The basic idea behind duration is that it calculates a weighted average of all payment 

dates, using the present value of each payment as its weight. This makes duration a useful 

approximation of the first-order price change of a bond due to changes in interest rates. 

This is mathematically (continuously compounded) expressed as: 

 
(2) Macaulay Duration under Continuous Compounding 

𝐷 =⁡
∑ 𝑡𝑖𝐶𝑖𝑒

−𝑦𝑡𝑖𝑛
𝑖=1

𝐵
 

Where: 

 

𝐷: Macaulay duration 

𝑛: total number of cash flows 

𝑡𝑖: time (in years) to the i th cash flow 

𝐶𝑖: amount of the i th cash flow 

𝑦: continuously compounded yield 

𝐵: current bond price 

𝑒: Euler’s number (base of natural logarithms) 

 

 

 

 

 



For a small change in yield Δy, the change in bond price ΔB can be approximated as: 
(3) First-Order Price Approximation (Taylor Expansion) 

𝛥𝐵 ≈⁡
𝑑𝐵

𝑑𝑦
⁡𝛥𝑦 

Where: 

𝛥𝐵: approximate change in bond price 
𝑑𝐵

𝑑𝑦
: derivative of the bond price with respect to the yield 

𝛥𝑦: small change in yield 

 

To reflect the relationship between price and yield more practically, we use the duration-

based estimate under continuous compounding: 
(4) Duration-Based Price Approximation (Continuous Compounding) 

𝛥𝐵 ≈ ⁡−𝐵𝐷𝛥𝑦 

Here, 𝐷 is the Macaulay duration under continuous compounding, and the minus sign 

reflects the inverse relationship between price and yield. 

However, since most yields are expressed with periodic compounding rather than 

continuous compounding, we often use modified duration, which adjusts standard 

duration to reflect the bond’s compounding frequency.  
(5) Duration-Based Price Approximation (Periodic Compounding) 

𝛥𝐵 ≈ ⁡
−𝐵𝐷𝛥𝑦

1 + 𝑦
 

And more generally, if the compounding frequency is 𝑚 times per year: 
(6) Duration-Based Price Approximation with m Compounding Periods per Year 

𝛥𝐵 ≈ ⁡
−𝐵𝐷𝛥𝑦

1 +
𝑦
𝑚

 

To simplify this expression, the Modified Duration 𝐷∗is defined as: 
(7) Modified Duration 

𝐷∗ =⁡
𝐷

1 +
𝑦
𝑚

 

This allows us to express the price change more compact, when y is expressed with a 

compounding frequency of m times per year, as: 
(8) Price Approximation Using Modified Duration 

𝛥𝐵 ≈ ⁡−𝐵𝐷∗𝛥𝑦 

Modified duration gives a more practical estimate of the percentage change in bond price 

for a 1% change in yield. For example, if a bond has a modified duration of 2.5, a 1% (or 

100 basis points) increase in yield would result in an approximate 2.5% decrease in the 

bond’s price, all else being equal. This makes modified duration a critical tool for interest 

rate risk management (Hull, 2018). 

 



3. Convexity 

While duration is a useful approximation, it is most accurate only for small changes in 

yield. For larger shifts, the bond price-yield relationship becomes nonlinear. This 

curvature is captured by a second-order measure called convexity. Convexity quantifies 

how the duration of a bond changes as yields change, offering a correction to the duration-

based estimate of price sensitivity (Hull, 2018). 

 

From Taylor series expansions we obtain:  
(9) Second-Order Approximation Using Taylor Polynomial (Including Convexity) 

𝛥𝐵 =⁡
𝑑𝐵

𝑑𝑌
⁡𝛥𝑦 +

1

2

𝑑2𝐵

𝑑𝑦2
𝛥𝑦2 

This leads to: 
(10) Relative Price Change Including Duration and Convexity 

𝛥𝐵

𝐵
= ⁡−𝐷⁡𝛥𝑦 +

1

2
𝐶(𝛥𝑦)2⁡ 

 

Source: Asymmetry Observations (2019) 

 

Higher convexity implies a bond is less sensitive to interest rate risk than a bond with 

lower convexity, assuming the same duration. It becomes particularly important in 

scenarios involving significant yield changes, as it allows for a more accurate prediction 

of price fluctuations. Bonds with evenly distributed payments over time tend to exhibit 

higher convexity than those with concentrated cash flows. 

 

 

Figure 3. Bond Price-Yield Relationship: Duration and Convexity 



3.3. Metrics in Portofolios 

In portfolio management, the duration of a bond portfolio is calculated as the weighted 

average of the durations of its component bonds, with weights based on each bond’s 

market value within the portfolio. This composite duration provides a measure of the 

portfolio’s overall price sensitivity to minor, consistent shifts in interest rates. However, 

this method relies on the assumption of a parallel yield curve movement, where interest 

rates across all maturities change by roughly the same magnitude. This assumption holds 

reasonably well when bonds have similar maturities but may not be reliable when the 

portfolio contains instruments with highly diverse durations (Hull, 2018).  

 

To mitigate interest rate risk, financial institutions often structure portfolios where the 

duration of assets matches that of liabilities, thereby achieving what is known as net 

duration neutrality. In this case, the portfolio becomes immune to small parallel shifts in 

interest rates, although it remains exposed to non-parallel or large shifts. Moreover, 

convexity also plays a critical role: portfolios with evenly distributed cash flows tend to 

exhibit higher convexity, enhancing protection against more substantial parallel 

movements. When both net duration and net convexity are set to zero, a portfolio may 

achieve a higher level of immunization, although full protection against all yield curve 

shifts remains theoretically unattainable (Hull, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. REINFORCEMENT LEARNING 

 

Before delving into the structure and functioning of the PPO algorithm, it is essential to 

establish the theoretical foundations upon which the model is built. In this context, 

Reinforcement Learning (RL) and its extension, Deep Reinforcement Learning (DRL), 

provide the conceptual and computational framework that enables the agent to learn 

optimal portfolio allocation strategies through interaction with a dynamic financial 

environment. The following section explores these paradigms in detail, laying the 

groundwork for understanding how PPO operates within this framework to enhance 

fixed-income portfolio performance. 

Reinforcement Learning (RL) is a field of machine learning in which an agent learns by 

interacting with an environment. Unlike supervised learning, where models are trained 

on pre-labeled datasets, RL does not require such datasets. Instead, it depends on feedback 

signals generated by the agent's actions within the environment. This characteristic allows 

RL to be applied to a broader range of problems where labeled data may not be available 

(Plaat, 2022).  

However, it also introduces challenges. Without guidance, an agent may become overly 

reliant on actions that yield immediate rewards, avoiding actions that might lead to better 

long-term outcomes. Balancing exploration and exploitation is a crucial aspect of RL 

(Plaat, 2022). 

The following section is based entirely on the work of Gosavi (2014): 

Reinforcement Learning (RL) addresses the Markov Decision Problem (MDP) or its 

variant, the Semi-Markov Decision Problem (SMDP), by leveraging the theory of 

dynamic programming (DP) and artificial intelligence (AI). The framework of the MDP 

consists of several key elements: (1) state, (2) actions, (3) transition probabilities, (4) 

transition rewards, (5) policy, and (6) performance metric. These components are 

typically modeled using a Markov chain, a stochastic process that forms the basis for 

MDPs. 

5.1. MDP and SMDP framework 

1. State (𝑆) 

The state represents the system's configuration at any given time, formally 

denoted as 𝑠𝑡 ∈ 𝑆, where 𝑆⁡is the state space. It is a parameter (or set of 

parameters) that fully describes the current condition of the system. In dynamic 

systems, the state evolves over time, meaning the system's state changes in 

response to various factors. 

2. Actions (𝐴) 

The action 𝑎𝑡 ∈ 𝐴(𝑠𝑡) is the decision or control applied at state 𝑠𝑡. Each state may 

allow multiple actions, influencing the system's transition to the next state. The 

set 𝐴(𝑠𝑡) defines the possible actions for each state 𝑠𝑡. The goal is to select actions 

that optimize the long-term performance of the system. 



3. Transition Probabilities (𝑃) 

The transition probability 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) represents the likelihood of moving from 

state 𝑠𝑡 to 𝑠𝑡+1 after taking action 𝑎𝑡. This function defines the stochastic 

dynamics of the system, where each action has an associated probability of 

leading to a subsequent state. 

4. Immediate Rewards (𝑅) 

The reward 𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)⁡is the immediate feedback or benefit obtained after 

transitioning from state 𝑠𝑡 to state 𝑠𝑡+1 under action 𝑎𝑡. The reward quantifies how 

favorable or unfavorable a particular state transition is, often representing costs or 

benefits. 

5. Policy⁡(𝜋) 

A policy 𝜋 is a mapping that specifies the action to be taken at each state. It can 

be deterministic (𝜋(𝑠𝑡) = ⁡𝑎𝑡) or stochastic (𝜋(𝑎𝑡|𝑠𝑡)), defining the agent's 

strategy for making decisions based on the current state. The objective is to find 

an optimal policy 𝜋∗ that maximizes performance over time. 

6. Performance metric⁡(𝜌) and time of transition  

a)  Average Reward: 

The average reward is used to evaluate the long-term effectiveness of a policy 𝜋 

over an infinite time horizon, measuring the reward accumulated per transition. 

• In MDPs, since the time between transitions is constant, the average reward is 

calculated by summing the immediate rewards over an infinite sequence of 

transitions and dividing by the total number of transitions. The formula for the 

average reward is: 
(11) Average Reward in MDPs 

𝜌𝑖 ⁡= lim
k→∞

⁡
1

𝐾
⁡𝔼 [⁡∑𝑟(𝑥𝑠, 𝜋(𝑥𝑠), 𝑥𝑠+1)

𝑘

𝑠=1

|⁡𝑥1 = 𝑖⁡] 

 

where 𝑟(𝑥𝑠, 𝜋(𝑥𝑠), 𝑥𝑠+1)⁡represents the immediate reward for transitioning 

from state 𝑥𝑠 to state 𝑥𝑠+1 under action 𝜋(𝑥𝑠). The 𝔼 operator denotes the 

expected value of the sum of rewards, considering the stochastic nature of the 

transitions. 

• In SMDPs, where the time between transitions is variable, the average reward 

is modified to account for the time spent in each transition. The formula for 

the average reward in SMDPs becomes: 
(12) Average Reward in SMDPs 

𝜌𝑖 ⁡= lim
k→∞

𝔼 [⁡∑ 𝑟(𝑥𝑠, 𝜋(𝑥𝑠), 𝑥𝑠+1)
𝑘

𝑠=1
|⁡𝑥1 = 𝑖⁡]

𝔼 [⁡∑ 𝑡(𝑥𝑠, 𝜋(𝑥𝑠), 𝑥𝑠+1)
𝑘

𝑠=1
|⁡𝑥1 = 𝑖⁡]

 

 

Here, 𝑡(𝑥𝑠, 𝜋(𝑥𝑠), 𝑥𝑠+1)⁡represents the time spent in each transition, and the 𝔼 

operator accounts for the expected value of both the rewards and the transition 

times. This formula ensures that the reward is evaluated in relation to the time 



taken for each transition, which is critical in systems where transition 

durations are not uniform. 

 

b) Discounted Reward 

The discounted reward metric is used when future rewards are less valuable than 

immediate rewards, reflecting the time value of rewards in decision-making. 

• In MDPs, the discounted reward is calculated by applying a discount factor 

𝛾 ∈ (1,0)⁡to future rewards. The formula for the discounted reward in MDPs 

is: 
(13) Discounted Reward in MDPs 

𝜓𝑖 ⁡= lim
k→∞

𝔼 [⁡∑𝛾𝑠−1𝑟(𝑥𝑠, 𝜋(𝑥𝑠), 𝑥𝑠+1)

𝑘

𝑠=1

|⁡𝑥1 = 𝑖⁡]⁡ 

where 𝛾𝑠−1 discounts future rewards, with 𝔼 representing the expected value 

of the sum of rewards over time. The expectation ensures that the rewards are 

averaged according to the probabilistic nature of state transitions. 

• In SMDPs, the discounted reward is adjusted to consider the variability in 

transition times. The formula for the discounted reward in SMDPs is: 
(14) Discounted Reward in SMDPs 

𝜓𝑖 ⁡= lim
k→∞

𝔼 [𝑟(𝑥1, 𝜋(𝑥1), 𝑥2) +∑𝑟(𝑥𝑠, 𝜋(𝑥𝑠), 𝑥𝑠+1)

𝑘

𝑠=2

∫ 𝑒−𝜇𝜏𝑑𝜏
𝜏𝑠+1

𝜏𝑠

|⁡𝑥1 = 𝑖⁡]⁡ 

Here, 𝑒−𝜇𝜏 represents the continuously compounded discount factor applied 

over the transition time τ. The expectation operator 𝔼 accounts for the 

expected value of the rewards and the time-dependent discounts, reflecting the 

random nature of transitions and their durations. 

In MDPs, where transition times are assumed to be constant, the performance 

metrics (average reward and discounted reward) are calculated using simple 

summation of rewards over time. However, in SMDPs, where transition times 

vary, the performance metrics are adjusted to account for the variable transition 

times. This is done by incorporating time directly into the average reward and 

discounted reward formulas, ensuring that the evaluation of policies in SMDPs 

accounts for the duration of each transition. 

In this text, 𝑠𝑡  and  𝑥𝑠 both denote the system's state. They differ only by indexing: 

𝑡 for time steps and 𝑠⁡for transitions, but are otherwise equivalent. 

 

 

 



5.2. Reinforcement Learning Framework 

The Reinforcement Learning (RL) can be applied to both Semi-Markov Decision 

Processes (SMDPs) and Markov Decision Processes (MDPs). In SMDPs, transition times 

are variable, meaning the time spent in each state transition depends on the action taken. 

However, if 𝑡(𝑖, 𝑎, 𝑗)⁡for all values of 𝑖, 𝑗, and 𝑎, the problem simplifies to a MDP, where 

the transition times are constant. Therefore, the algorithm described can easily be adapted 

to both SMDPs and MDPs by setting 𝑡(𝑖, 𝑎, 𝑗) = 1. 

An important aspect of RL is that transition probabilities and rewards are not required in 

certain cases. Specifically, if: 

1. The system can be directly interacted with, where actions are chosen and the 

resulting rewards are observed. 

2. A simulator of the system is available, which can model the system dynamics 

based on easily accessible parameters (such as distribution functions for inter-

arrival times or service times). 

In RL, the key idea is to store a Q-factor for each state-action pair in the system. The Q-

factor, denoted as 𝑄(𝑖, 𝑎), represents the expected cumulative reward for taking action 𝑎 

in state 𝑖. Initially, these Q-factors are set to small values, typically zero, and they are 

updated as the system interacts with the environment. 

At each state visited, an action is selected and the system transitions to the next state. The 

immediate reward and transition time generated from this transition are recorded as 

feedback. The feedback is then used to update the Q-factor for the action selected in the 

previous state. The Q-factor is adjusted through a reward-punishment mechanism, where: 

• If the feedback is favorable (higher rewards or shorter transition times), the Q-

factor for the selected action is increased (rewarded). 

• If the feedback is unfavorable (lower rewards or longer transition times), the Q-

factor is decreased (punished). 

This updating process follows the Relaxed-SMART algorithm, which refines the Q-factor 

by incorporating both the immediate rewards and the transition times observed. The 

learning process continues through multiple state transitions, with the Q-factors being 

gradually refined. 

After a large number of transitions, the Q-factors converge to the optimal values. The 

optimal policy is then determined by selecting the action with the highest Q-factor for 

each state, ensuring that the agent maximizes its cumulative rewards. Importantly, this 

RL strategy does not require knowledge of transition probabilities, making it adaptable to 

real-time systems or simulations where such probabilities may be unknown or difficult to 

model. This concludes the overview adapted from Gosavi 2014. 

 

 



5. DEEP REINFORCEMENT LEARNING 

 

Deep Reinforcement Learning (DRL) represents the integration of deep learning and 

reinforcement learning into a unified framework. The principal aim of DRL is to 

determine optimal actions that maximize cumulative rewards across all possible states an 

environment can assume. This process requires the agent to interact with complex and 

high-dimensional environments, experimenting with different actions and refining its 

behavior based on the feedback received.  Deep learning, as a field, focuses on 

approximating functions in contexts where the dimensionality and complexity of the 

problem make traditional, tabular methods infeasible. It employs deep neural networks to 

construct function approximations capable of handling large-scale and intricate datasets, 

as seen in domains such as image classification and natural language processing (Plaat, 

2022). 

Reinforcement learning, in contrast, centers on learning through feedback, utilizing trial-

and-error methods. Unlike supervised learning, reinforcement learning does not depend 

on a pre-compiled dataset for training. Instead, it autonomously selects actions and 

updates its strategies based on the rewards or penalties provided by the environment. 

During this exploration process, agents inevitably commit errors; however, learning to 

succeed often stems from effectively processing both positive and negative 

experiences. In recent developments, deep learning and reinforcement learning have 

merged, giving rise to new algorithms that leverage deep neural networks to approximate 

solutions to high-dimensional problems, based on the feedback from the agent’s 

interactions, this convergence has advanced several subfields, including policy 

optimization (Plaat, 2022). 

 

5.1. Proximal Policy Optimization 

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm designed to 

improve policy performance while maintaining training stability (Schulman et al., 2017). 

It was introduced by researchers at OpenAI in response to the limitations of earlier policy 

gradient methods such as Trust Region Policy Optimization (TRPO), which required 

complex second-order computations. PPO offers a more accessible alternative by using a 

simpler objective function that still limits drastic changes to the agent’s behavior between 

updates (Schulman et al., 2017). 

One of the main contributions of PPO is the use of a probability ratio to compare the new 

and old policies.This ratio reflects how much the new policy changes the likelihood of 

taking a specific action in a given state compared to the previous policy (Such Ballester, 

2024).  

 

 



The probability ratio is defined as: 
(15) Probability Ratio for PPO Policy Update 

𝑟𝑡(𝜃) =
𝜋(𝜃)(𝑎𝑡⁡|⁡𝑠𝑡)

𝜋(𝜃𝑜𝑙𝑑)(𝑎𝑡⁡|⁡𝑠𝑡)
 

 

where 𝜋(𝜃)(𝑎𝑡⁡|⁡𝑠𝑡) is the probability of taking action 𝑎𝑡 in state 𝑠𝑡under the new policy, 

and 𝜋(𝜃𝑜𝑙𝑑)(𝑎𝑡⁡|⁡𝑠𝑡)⁡is the same under the old policy (Schulman et al., 2017). 

This ratio allows the algorithm to detect whether the policy is changing too much in a 

single update, which could harm learning stability. To prevent this, PPO introduces a 

clipping mechanism that restricts how far the probability ratio can deviate from 1. The 

clipped surrogate objective function ensures that updates remain within a safe region 

around the previous policy (Schulman et al., 2017). This function is written as: 
(16) Clipped Objective Function for PPO 

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸̂𝑡[min⁡(𝑟𝑡(𝜃)⁡𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡] 
 

Where: 

𝜃: is the vector of policy parameters 

𝐸̂𝑡: denotes the empirical expectation over a batch of timesteps 

𝑟𝑡(𝜃): is the probability ratio under the new and old policies, respectively 

𝐴̂𝑡: is the estimated advantage at timestep t, representing how favorable an action was 

𝜖: s a small positive hyperparameter (commonly 0.1 or 0.2) used to clip the ratio range 

This formulation prevents the policy from being updated too aggressively, even if the 

advantage estimate suggests a strong reward signal. In this way, PPO avoids overfitting 

to recent experiences and reduces the risk of policy collapse (Schulman et al., 2017). 

González Oviedo (2023) notes that PPO is especially valued in practical applications 

because it combines good learning performance with ease of implementation. The 

algorithm has been widely used in training agents for video games, control environments, 

and simulations requiring either continuous or discrete actions. Its balance between 

computational simplicity and training robustness makes it suitable for both academic 

research and applied reinforcement learning projects (González Oviedo, 2023; Such 

Ballester, 2024). 

Finally, PPO does not rely on complex mathematical constraints like KL divergence 

penalties or Lagrangian multipliers, which were necessary in earlier algorithms like 

TRPO (Schulman et al., 2017). Instead, it controls policy change using a clipping 

approach that is both intuitive and effective (Schulman et al., 2017). This simplicity has 

contributed to its status as one of the most popular algorithms in Deep Reinforcement 

Learning (González Oviedo, 2023). 

 

 

 

 

 

 



6. MODEL TRAINING FRAMEWORK 

 

6.1. Data Preprocessing 

The dataset used in this study consists of 33 fixed-income instruments issued by the 

United States government. This sample was obtained from the iShares U.S. Treasury 

Bond ETF, an exchange-traded fund managed by BlackRock that invests exclusively in 

U.S. Treasury securities. The objective of this ETF is to replicate the performance of an 

index composed of public debt instruments issued by the U.S. Department of the Treasury, 

thus providing diversified exposure to the government fixed-income market. Although 

this fund was not used as a performance benchmark in the study, it served as a reference 

source for selecting a representative and realistic portfolio of sovereign bonds with 

diverse characteristics. The selected instruments are bonds with maturities ranging from 

20 to 30 years. This choice responds to a methodological necessity: fixed-income 

instruments have a limited lifespan, and to ensure consistency and completeness of the 

observations over time, it was essential to use data from assets with continuous 

availability throughout the entire analysis period, which spans from January 2017 to 

February 2024. 

Each row in the dataset represents a trading day, and each column contains specific 

information about a variable corresponding to a given bond. In this way, for each date, 

the values of all relevant metrics for the 33 bonds are collected sequentially, allowing the 

reinforcement learning model to observe the full state of the market. 

The variables included in the dataset are as follows: 

• PX_LAST: Represents the last market price of the bond on the corresponding 

date. It reflects the price at which the asset was traded on the secondary market 

and is expressed in U.S. dollars. 

• YLD_YTM_MID: Corresponds to the yield to maturity (YTM), calculated 

based on the mid-market price. This indicator reflects the effective return rate 

an investor can expect if the bond is held to maturity. It is expressed as an 

annualized percentage. 

• DUR_MID: Indicates the bond’s duration, a measure of price sensitivity to 

interest rate changes. Duration is fundamental for assessing interest rate risk 

and is expressed in years. 

• CNVX_MID: Measures the bond’s convexity, a characteristic that refines the 

duration estimate by considering the curvature in the price-yield relationship. 

This variable is dimensionless and improves the estimation of the impact of 

interest rate changes on bond prices in high-volatility environments. 

• CPN: Represents the bond’s coupon rate, the percentage of the face value 

periodically paid by the issuer as interest. It is also expressed as an annual 

percentage and is a fixed characteristic of the bond. 



• ISSUE_DT: Indicates the bond’s issue date, when it was introduced to the 

market. This variable is recorded in standard date format (DD/MM/YYYY). 

• MATURITY: Corresponds to the bond’s maturity date, marking the moment 

the issuer must repay the face value to the holder. It is also represented in 

standard date format. 

The selection of these variables is based on technical criteria aimed at capturing the 

fundamental dynamics of fixed-income instruments. Since a bond’s price is inversely 

correlated with interest rates, as is it well-documented during this study, the explanatory 

variables included in the dataset are designed to reflect each bond’s level of exposure to 

interest rate movements. Metrics such as duration and convexity are therefore essential 

for enabling the agent to learn and anticipate the impact of macroeconomic changes on 

the value of the assets comprising the portfolio. 

 

6.2. Training Agent 

To simulate the investment process over time, a custom environment named 

FixedIncomeEnv was developed by Eduardo Garrido. This environment models the 

trading of a fixed-income portfolio composed of U.S. Treasury bonds, leveraging the 

historical dataset described above as its market data source. 

6.2.1. Environment Design and State Representation 

State Observation 

At each time step, the observation returned by the environment is a numerical array 

representing recent prices of a subset of bonds. In this implementation, the portfolio is 

restricted to three specific Treasury bonds, so the state focuses on those three instruments. 

For each of the three bonds, the state includes its current price and a one-day lagged price, 

the previous trading day's price. By including lagged prices, the state provides the agent 

with a notion of short-term price momentum or trend. This results in an observation vector 

of size 6 (for three bonds, each with two price values). All static bond attributes such as 

coupon rate, issue date, or maturity date are excluded from the state. These features were 

originally considered but later removed in the code because they did not improve learning 

performance. The observation is purely numerical and is cleaned of any invalid values: 

any NaNs or infinite values in the price data are sanitized before use, ensuring the agent 

always receives well-defined numeric inputs. 

 

Portfolio Variables 

The environment maintains an internal state of the agent’s portfolio, consisting of a cash 

balance and holdings of each of the three bonds. At the start of an episode, the agent is 

given an initial cash balance, with no bonds held initially. The initial cash provides capital 

that the agent can deploy to buy bonds. Throughout the episode, the environment 

continuously updates the portfolio state based on the agent’s actions: bond holdings can 

increase or decrease and the cash balance is debited or credited accordingly. The total 

portfolio value at any time is calculated as the sum of remaining cash plus the market 



value of all bond holdings, computed as number of units of each bond held multiplied by 

that bond’s current price. 

 

6.2.2. Action Space and Reward Mechanism 

At every trading day (time step), the agent must decide how to manage the portfolio by 

choosing an action for each of the three bonds. The action space is defined as a discrete 

choice for each bond, and we uses a Gym MultiDiscrete space to represent the joint action. 

Specifically, the action space is MultiDiscrete([3] * n_bonds), which in this case is 

MultiDiscrete() for the three bonds. This means the agent outputs a vector of three actions 

[𝑎1, 𝑎2, 𝑎3], one for each bond, and each component can take one of three integer values: 

• 0 = BUY: Purchase one unit of the bond. If this action is selected for a bond, the 

environment will attempt to buy one unit of that bond on the market. The bond’s 

price, from the current day, is subtracted from the cash balance, and the holding 

count for that bond is increased by one. The code ensures that a buy action is only 

effective if there is sufficient cash available; otherwise, if the agent tries to buy 

with insufficient cash, the environment may prevent the trade. 

• 1 = HOLD: Take no action for that bond. This means the agent neither buys nor 

sells the bond on that day. The portfolio remains unchanged for that instrument, 

holdings and cash are unaffected, aside from any market-driven price change that 

will be reflected in the portfolio value at the next step. A hold action effectively 

means the agent is satisfied with its current position in that bond for the day. 

• 2 = SELL: Sell one unit of the bond. If this action is chosen, the environment will 

sell one unit from the agent’s holdings of that bond, if the agent currently holds at 

least one. The bond’s current price is added to the cash balance, and the holding 

count for that bond decreases by one. The environment enforces a no short selling 

rule, so it will not allow the agent’s holdings to go negative.  

By using a MultiDiscrete action space, the agent makes simultaneous decisions for all 

three bonds at each step. The environment processes all three sub-actions and updates the 

portfolio accordingly. 

 

Reward Function  

The reward at each time step is designed to encourage the agent to increase the total 

portfolio value. The reward is defined as the change in the portfolio’s total value from the 

previous day to the current day. Formally, if 𝑉𝑡⁡is the total portfolio value (cash + market 

value of all bond holdings) at time 𝑡, then the reward 𝑟𝑡⁡ =⁡𝑉𝑡 −⁡𝑉𝑡−1⁡.⁡This reward is 

essentially the daily profit or loss of the portfolio.  

Positive rewards are earned when the portfolio’s value grows and negative rewards are 

incurred when the portfolio value falls. There are no transaction costs in this simulation, 

so buying or selling does not incur any fee. Moreover, since short selling is not allowed, 

the agent’s strategy is constrained to hold long positions or cash. Over an episode, the 



cumulative reward will equal the total profit achieved from start to finish. The episode 

concludes at the end of the dataset after the last trading day, at which point the final 

portfolio value can be compared to the initial value to assess overall return. 

 

6.2.3. Training Setup with Proximal Policy Optimization (PPO) 

To train the trading agent, the implementation employs the Proximal Policy Optimization 

(PPO). In this code, two independent PPO agents are trained with identical parameters 

but different random seeds to ensure robustness of results. Each agent interacts with the 

FixedIncomeEnv environment configured on the historical data excluding the final testing 

period and learns a trading policy over many iterations. 

Training Episodes and Timeline 

The total training length is specified in terms of time steps: each PPO agent is trained for 

300,000 time steps. A time step corresponds to one day and one set of actions for the three 

bonds, so 300k steps covers many passes through the dataset. During training, PPO 

optimizes the policy neural network which decides actions given state observations and a 

value neural network which estimates future returns to maximize expected rewards. 

During training, the algorithm interacts with the environment as follows: at each time 

step, the agent produces an action vector [𝑎1, 𝑎2, 𝑎3] given the current observation, current 

and previous prices for each bond. The environment applies these actions, transitions to 

the next day’s state, and returns a reward, the change in portfolio value. PPO collects 

these (state, action, reward, next state) transitions in a rollout buffer. 

 

6.2.4. Evaluation and Benchmarking Performance 

After training the PPO agents, we evaluate their performance on a held-out test dataset. 

This simulates how the agent would perform on new, unseen market data, and it serves to 

validate the generalization of the learned trading strategy. The evaluation process is as 

follows: 

1. Testing Environment 

A new instance of the FixedIncomeEnv is initialized for the test period. The initial 

portfolio conditions, initial cash and zero bond holdings are reset. From that point, 

the agent will step through each trading day of the test year exactly once, without 

any learning updates, pure evaluation mode. 

Each trained PPO agent is run on the test environment. In evaluation, the agent 

can operate in deterministic mode, meaning it selects the action with highest 

probability, instead of sampling randomly from its policy, to produce a consistent, 

greedy strategy. 

 

 

 

 



2. Benchmark Strategies  

To put the PPO agent’s performance in context, the evaluation includes two 

baseline strategies run on the same test environment: 

▪ Random Policy Benchmark 

This baseline involves an agent that takes random actions for each bond at 

each time step. In practice, the code samples actions uniformly from the 

discrete action space for each bond: 0, 1, or 2 with equal probability each 

day, independently for each bond. This simulates a naive trader that makes 

uninformed buy/hold/sell decisions. 

 

▪ Always-Hold Policy Benchmark 

This strategy represents a no-trading policy. The agent chooses the HOLD 

action (1) for all bonds at every step, meaning no transactions occur 

throughout the episode. In the environment as defined, the portfolio is 

initialized with all cash and zero bond holdings. Since the HOLD action 

does not initiate any purchases, the agent retains the full cash position 

without ever entering the bond market. As a result, the always-hold policy 

leads to zero exposure to bond price movements and yields no return. It 

serves as a lower bound on performance, against which the effectiveness 

of dynamic strategies like PPO can be compared. 

 

3. Performance Comparison 

Once the PPO agents and the two benchmarks have been run on the test set, we 

compare their cumulative returns over the evaluation period. The results from the 

two PPO agents that are trained with a different random seed are averaged to 

provide a single representative performance metric. By aggregating the PPO 

outcomes, the evaluation accounts for variability due to stochastic training, 

offering a more robust estimate of the algorithm's effectiveness. The hold policy 

will have a single deterministic outcome on the test the return is straightforwardly 

0. 

We perform a statistical analysis to determine if the PPO agent’s performance is 

significantly better than the baselines. In particular, it conducts t-tests to compare 

the returns: 

• A t-test between the PPO agent’s returns and the random policy’s returns. 

• A t-test between the PPO agent’s returns and the hold policy’s returns. 

The t-test assesses whether the difference in mean return between PPO and the 

baseline is statistically significant, not attributable to random chance. A low p-

value from these t-tests would indicate that the PPO agent yields significantly 

different returns than the baseline strategies at a 95% confidence level. 

 



7. TRAINING MONITORING AND CONCLUSIONS 

 

7.1. Results of the research 

Throughout training, detailed diagnostics were logged to track the PPO agent’s learning 

progress and stability. These metrics were visualized with Matplotlib to assess 

performance over time. Evaluation of the trained agent on a held-out test dataset revealed 

superior performance compared to basic reference strategies While the p-values obtained 

from statistical tests were close to the 5% threshold, the limited sample size (n = 2 agents) 

reduces the statistical power of these results. Thus, although the differences are not 

definitively significant, they do suggest a meaningful advantage in favor of the trained 

agent, warranting further investigation with a larger set of runs.  

 

Strategy 
Accumulated 

Return (%) 
T-test vs PPO 

0      PPO 2.744141 None 

1   Random -2.128125 0.052861 

2  Uniform 0.000000 [0.0573890] 

 

To further verify the robustness of the learning process, key training metrics, explained 

variance, KL divergence, and clip fraction, were analyzed. These diagnostics reinforce 

the stability and effectiveness of the training, as described below: 

• Explained Variance: Explained variance is a metric that quantifies the extent to 

which a machine learning model captures the variability of the target variable 

through its predictions. It indicates how effectively the model accounts for 

fluctuations in the actual data. A value of 1.0 signifies perfect predictive 

performance, where the model explains all variations in the outcomes. A value of 

0 suggests the model is no better than predicting the average of the target variable, 

while negative values reveal performance worse than this baseline. This metric is 

especially valuable for assessing how well the model reflects the underlying 

patterns in the data (KoshurAI, 2024). 

In our training, the explained variance of the value function increased steadily over the 

first 150,000 training steps, eventually surpassing 40% and stabilizing thereafter. This 

indicates that the critic network learned to estimate future returns with increasing 

accuracy, which is essential for computing reliable advantage values in PPO. 

• KL Divergence: In the context of Proximal Policy Optimization (PPO), the 

Kullback–Leibler (KL) divergence measures how much the new policy deviates 

from the previous one during each update. This divergence acts as a surrogate for 

trust-region constraints, with PPO implicitly defining a "safe" update region 



through clipping or by monitoring the KL distance between policies (Hsu et al., 

2021). A low KL value indicates that policy updates are conservative and may 

slow learning, whereas high values suggest that updates are too aggressive, risking 

instability or performance collapse. Therefore, maintaining KL divergence within 

a moderate range is essential to ensuring training stability and preserving the 

effectiveness of the learning process (Hsu et al., 2021). 

In our experiments, the KL divergence remained low and stable from early in the training 

process. No spikes were observed, indicating that policy updates stayed moderate and 

well within the safety margin defined by the algorithm. This supports the overall stability 

of the learning process. 

• Clip Fraction: In the context of Proximal Policy Optimization (PPO), the clip 

fraction is a metric that indicates how often the algorithm’s clipping mechanism 

is activated during training. PPO updates policies based on a probability ratio 

between the new and old policies, and this ratio is constrained within a specified 

range to prevent overly large and potentially destabilizing updates. The clip 

fraction measures the proportion of update steps in a batch where the policy 

change exceeded this range and was consequently clipped. This metric provides 

insight into the degree of constraint imposed by the algorithm and is monitored to 

evaluate whether the policy updates are appropriately scaled (Schulman et al., 

2017). 

In our training runs, the clip fraction dropped rapidly to zero in the early stages and 

remained at that level throughout the remainder of training. This behavior suggests that 

most policy updates fell within the acceptable range and did not require clipping. It 

confirms that the learning rate and exploration parameters were well balanced, preventing 

the agent from making overly large updates. 

Figure 4. Training PPO metrics 



7.2. Conclusions 

Altogether, these findings indicate that the training process was stable, gradual, and free 

from collapse or overfitting. The learned policy consistently aligned with the overarching 

objective of maximizing portfolio returns within a fixed income investment context. The 

smooth evolution of performance metrics, further reinforces the notion of a well-behaved 

optimization process. Although the limited sample size constrains the statistical power of 

the hypothesis tests and cautions against overgeneralization, the observed results and the 

trajectory of training indicators support the conclusion that deep reinforcement learning, 

specifically through the PPO algorithm, represents a viable and promising methodology 

for the active management of U.S. Treasury securities portfolios.  

Therefore, based on the empirical evidence collected, we reject the null hypothesis (H₀) 

that there are no significant differences in performance between PPO and the benchmark 

strategies. The superior returns obtained by PPO suggest that the agent learned a non-

trivial policy capable of adapting to dynamic market conditions and outperforming both 

random and passive hold strategies in a consistent manner. 

 

7.3. Perspectives for future research 

Future work in this area can build upon the results obtained by exploring several key 

extensions: 

1) Research should progressively expand the portfolio by incrementally introducing 

more bonds, which increases the dimensionality of the action and state spaces and 

thus demands longer training horizons to ensure proper exploration.  

 

2) Additionally, evaluating alternative reward functions that incorporate transaction 

penalties and risk-adjusted metrics, such as the Sharpe and Sortino ratios, could 

promote more stable and realistic trading behavior.  

 

3) Finally, benchmarking PPO against other advanced Deep Reinforcement Learning 

algorithms like DDPG, SAC, and TD3 would provide valuable comparative 

insights into their suitability for fixed income portfolio optimization. 

 

Broadening the methodological scope will also help assess the full potential and 

limitations of reinforcement learning in this financial domain. 
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