
Electrical Power and Energy Systems 160 (2024) 110080

0
n

Contents lists available at ScienceDirect

International Journal of Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Analyzing the computational performance of balance constraints in the
medium-term unit commitment problem: Tightness, compactness, and
arduousness
Luis Montero a,∗, Antonio Bello a, Javier Reneses b

a Institute for Research in Technology (IIT), ICAI School of Engineering, Comillas Pontifical University, 28015, Madrid, Spain
b Simulart Energy S.L., 28034, Madrid, Spain

A R T I C L E I N F O

Keywords:
Arduousness
Balance equation
Computational efficiency
Demand-constraint analysis
Medium-term representation
Optimization
Power systems
Thermal generation
Unit commitment

A B S T R A C T

Since its beginning, the computational performance of numerical optimization techniques has depended
on utilizing efficient mathematical formulations to deal with large-size problems successfully. This fact is
manifested in the unit commitment literature. Several approaches have been proposed to handle the complexity
of accurately modeling real power systems. However, most of these methodologies focus on strengthening
the technical features’ representations by reducing the number of constraints and variables of the associated
optimization problem or approximating its relaxed feasible region to the integer one to improve resolution
processes. Hence, the state-of-art of these effective procedures is periodically studied under operational research
and commercial solvers developments. Nevertheless, the formulation comparisons frequently obviate analyzing
the impact of the balance equations on the computational burden of the unit commitment problem. This
constraint links every single technical restriction along the time span and sometimes provides an ample
optimization space, sometimes a narrow one, directly affecting resolution proceedings. It can impose an
electricity generation equal to demand, allow production excesses, include non-served energy, or establish
profit-based relationships. This paper presents a computational analysis of the most popular balance equations,
detailing solver performances and determining these methodologies’ tightness, compactness, and arduousness.
Therefore, 1010 case studies were run utilizing different input profiles and optimality-convergence criteria.
1. Introduction

The efficient management of power systems requires the optimiza-
tion of thermal generation. Accordingly, the unit commitment problem
has been studied in-depth in operational research as a powerful tool to
find the most profitable schedule [1]. Several approaches have been
applied in the literature, and it is possible to discern that the more
rigorous the methodology is, the higher the quality of the obtained
solution.

The unit commitment problem is frequently addressed as an opti-
mization problem [2]. The available resolution techniques’ state-of-art
highlights the convenience of using numerical optimization resources
since evolutionary optimization algorithms cannot categorically guar-
antee the quality of the solution [3]. Moreover, the great advances in
commercial solvers during the last decades allow their convergence
towards a global-optimal solution in reasonable run times when uti-
lizing mixed integer linear programming (MILP). However, the high
computational burden associated with this methodology demands a
trade-off between detail modeling, run time, and solution accuracy [4].

∗ Corresponding author.
E-mail addresses: luis.montero@iit.comillas.edu (L. Montero), antonio.bello@iit.comillas.edu (A. Bello), javier.reneses@simulart.es (J. Reneses).

In this way, several MILP formulations have been proposed to
improve the performance of commercial solvers and exploit their fea-
tures [5–9]. These methodologies merge theoretical concepts of numer-
ical optimization and solvers’ mathematical backgrounds to enhance
the resolution process. Thus, different alternatives to model the same
technical issues concerning the thermal units have been proposed,
trying to reach the leading representation. Nevertheless, the litera-
ture usually focuses on ramp constraints [10], time-up and time-down
constraints [11], start-up and shut-down representation [12–15], or
their inter-relationships [15–17], ignoring the impact of the selection
of a specific balance equation, or its substitution by a profit-based
optimization. Then, a lack of information about how this choice affects
the resolution performance of the unit commitment methodologies is
identified.

Furthermore, the implications of utilizing stable or high intermit-
tency demand profiles should also be considered when analyzing mod-
eling efficiency, as exposed in [18]. Besides, unit commitment formu-
lations are frequently tested with large generation portfolios that entail
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Nomenclature

A. Sets

𝑔 ∈ 𝐺 Set of indexes of generating units.
𝑠 ∈ 𝑆 Set of indexes of start-up segments.
𝑡 ∈ 𝑇 Set of indexes of hourly periods of the time span.

B. Parameters

𝐶𝐹
𝑔 Fuel cost of unit 𝑔 [$/MMBtu].

𝐶𝐿𝑉
𝑔 Linear variable production cost of unit 𝑔 [$/MWh].

𝐶𝑁𝐿
𝑔 Fixed production cost of unit 𝑔 [$/h].

𝐶𝑁𝑆𝐸 Cost of non-served energy [$/MWh].
𝐶𝑆𝐷
𝑔 Shut-down cost of unit 𝑔 [$].

𝐶𝑆𝑈
𝑔,𝑠 Start-up cost for the start-up type 𝑠 of unit 𝑔 [$].

𝐷𝑡 Load demand in period 𝑡 [MWh].
𝐹𝐿𝑉
𝑔 Linear variable production fuel-consumption of unit

𝑔 [MMBtu/MWh].
𝐹𝑁𝐿
𝑔 Fixed prod. fuel-consumption of unit 𝑔 [MMBtu/h].

𝐹𝑆𝐷
𝑔 Shut-down fuel-consumption of unit 𝑔 [MMBtu].

𝐹𝑆𝑈
𝑔,𝑠 Start-up fuel-consumption for the start-up type 𝑠 of

unit 𝑔 [MMBtu].
𝐿𝑡 Electricity price in period 𝑡 [$/MWh].
𝑃𝑔 Maximum power output of unit 𝑔 [MW].
𝑃𝑔 Minimum power output of unit 𝑔 [MW].
𝑃 0
𝑔 Power output of unit 𝑔 in the first period 𝑡 [MW].

𝑅𝐷𝑔 Ramp-down limit of unit 𝑔 [MW/h].
𝑅𝑈𝑔 Ramp-up limit of unit 𝑔 [MW/h].
𝑆𝐷𝑔 Shut-down capability of unit 𝑔 [MW].
𝑆𝑈𝑔 Start-up capability of unit 𝑔 [MW].
𝑇 𝑆𝑈
𝑔,𝑠 Minimum time period that unit 𝑔 must be offline for

the start-up type s [h].
𝑇𝐷𝑔 Minimum down time of unit 𝑔 [h].
𝑇𝐷0

𝑔 Offline hours of unit 𝑔 in the first period 𝑡 [h].
𝑇𝐷𝑅

𝑔 Number of hours that unit 𝑔 must remain offline [h].
𝑇𝑈𝑔 Minimum up time of unit 𝑔 [h].
𝑇𝑈0

𝑔 Online hours of unit 𝑔 in the first period 𝑡 [h].
𝑇𝑈𝑅

𝑔 Number of hours that unit 𝑔 must remain online [h].
𝑈0
𝑔 Commitment status of unit 𝑔 in the first period 𝑡.

C. Variables

(1) Positive and continuous variables
𝑐𝑃𝑔,𝑡 Production cost of unit 𝑔 in period 𝑡 [$].
𝑐𝑆𝐷𝑔,𝑡 Shut-down cost of unit 𝑔 in period 𝑡 [$].
𝑐𝑆𝑈𝑔,𝑡 Start-up cost of unit 𝑔 in period 𝑡 [$].
𝑛𝑠𝑒𝑡 Non-served energy in period 𝑡 [MW].
𝑝𝑔,𝑡 Power output above the minimum output of unit 𝑔

in period 𝑡 [MW].
(2) Binary variables
𝛿𝑔,𝑠,𝑡 Start-up type s of unit 𝑔 in period 𝑡
𝑢𝑔,𝑡 Commitment decision of unit 𝑔 in period 𝑡.
𝑣𝑔,𝑡 Start-up decision of unit 𝑔 in period 𝑡.
𝑤𝑔,𝑡 Shut-down decision of unit 𝑔 in period 𝑡.

large-size optimization problems. However, some base thermal units
are often replicated to construct these portfolios. This fact introduces
symmetry effects in the resolution processes, whose efficient treatment
is still under study [19–21], and categorical conclusions have not
been reached yet. For that reason, it would also be desirable to test
2

methodologies with large-size unsymmetrical input data, which can
be achieved through a horizon expansion instead of a thermal unit
replication.

Therefore, this article intends to fulfill these research gaps by ana-
lyzing the unit commitment formulations’ most popular balance equa-
tions and establishing a comparison benchmark to determine their
corresponding computational implications. The main contributions of
this paper are summarized below:

• Different balance equations are evaluated under the same techni-
cal representation of the unit commitment problem to study their
effect on the computational performance. Consequently, their
feasible regions are uniquely modified by utilizing one constraint
or another, allowing the isolation of their implications.

• Each approach’s tightness and compactness (T&C) are also ana-
lyzed. These criteria are widely utilized in the unit commitment
literature to characterize expectable model behaviors. However,
the inherent uncertainty of dealing with mixed integer program-
ming (MIP) problems makes T&C sometimes fail when predicting
success. For that reason, the concept of arduousness is introduced
in this paper to provide information about how a formulation’s
T&C is related to the computational performance in numerical
optimization. Thus, this additional metric contributes to better
intuiting a methodology resolution process.

• Different generation portfolios are represented under real mar-
ket conditions, manifesting the solver’s capabilities to manage
stable load curves and high intermittence demand profiles in
medium-term horizons. The portfolios do not replicate generation
units in these cases, so symmetry effects in MILP resolutions
are avoided. Moreover, the models presented in this paper are
also tested in large-size case studies with traditional short-term
horizons and large portfolios with unit replication to compare
their computational performances.

• The operation at each formulation, portfolio, and input profile
is optimized to various convergence criteria, running a total of
1010 real-size case studies to establish a theoretical framework
of the unit commitment’s response to specific input parameters
and modeling options.

Section 2 presents the mathematical formulations compared in this
report. Later, the case studies are exposed in Section 3, followed by
the illustration of the resolution performance and a result discussion.
Finally, conclusions are shown in Section 4.

2. Methodology

This section presents a common framework for representing the
technical aspects involved in the unit commitment problem. Accord-
ingly, the renowned mathematical formulation exposed in [7] is chosen
to fulfill this task given that its computational efficiency has been
widely demonstrated [15–17]. Thereafter, the different balance equa-
tions and the corresponding objective function (OF) are described from
Sections 2.1 to 2.5, establishing a benchmark to perform the modeling
comparison.

The technical constraints utilized in this common framework are
gathered below. The feasibility of the operational schedules is guar-
anteed by constraints (1)–(18) at the optimization step. Meanwhile,
Eqs. (19)–(24) are used before the resolution process to calculate some
needed input parameters. Note that the subset 𝐺1 comprises thermal
units with 𝑇𝑈𝑔 equal 1, which means that the thermal unit can start
p and shut down in the same hourly period.

• Production cost: a linear equation is employed to simplify the
formulation. Piecewise or quadratic functions can make the reso-
lution processes more difficult, and this is an aspect that is out of
the paper’s scope.

𝑐𝑃 = 𝑢 𝐶𝑁𝐿 + (𝑢 𝑃 + 𝑝 )𝐶𝐿𝑉 ∀𝑔, 𝑡 (1)
𝑔,𝑡 𝑔,𝑡 𝑔 𝑔,𝑡 𝑔 𝑔,𝑡 𝑔
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• Generation limits: these tight and compact constraints need to be
separated for those thermal units that are not able to start-up and
shut-down in the same hourly period (Eq. (2)) and those that can
(Eqs. (3), (4)).

𝑝𝑔,𝑡 ≤ 𝑢𝑔,𝑡(𝑃𝑔 − 𝑃𝑔) − 𝑣𝑔,𝑡(𝑃𝑔 − 𝑆𝑈𝑔) −𝑤𝑔,𝑡+1(𝑃𝑔 − 𝑆𝐷𝑔) ∀𝑔 ∉ 𝐺1, 𝑡

(2)

𝑝𝑔,𝑡 ≤ 𝑢𝑔,𝑡(𝑃𝑔 − 𝑃𝑔) − 𝑣𝑔,𝑡(𝑃𝑔 − 𝑆𝑈𝑔) ∀𝑔 ∈ 𝐺1, 𝑡

(3)

𝑝𝑔,𝑡 ≤ 𝑢𝑔,𝑡(𝑃𝑔 − 𝑃𝑔) −𝑤𝑔,𝑡+1(𝑃𝑔 − 𝑆𝐷𝑔) ∀𝑔 ∈ 𝐺1, 𝑡

(4)

• Ramping constraints: up- and down-ramps are formulated per 𝑡 ∈
[2, 𝑇 ] because the ramping capacity of each thermal unit at the
initial hourly period (𝑡 = 1) depends on the power output param-
eter for 𝑡 = 0. The ramping constraints for 𝑡 ∈ [1, 2) are presented
with the initial condition constraints.

𝑝𝑔,𝑡 − 𝑝𝑔,𝑡−1 ≤ 𝑅𝑈𝑔 ∀𝑔, 𝑡 ∈ [2, 𝑇 ] (5)

−𝑝𝑔,𝑡 + 𝑝𝑔,𝑡−1 ≤ 𝑅𝐷𝑔 ∀𝑔, 𝑡 ∈ [2, 𝑇 ] (6)

• Shut-down cost: this cost, frequently obviated in many unit com-
mitment formulations, is modeled by a single-step cost for each
thermal unit.

𝑐𝑆𝐷𝑔,𝑡 = 𝑤𝑔,𝑡𝐶
𝑆𝐷
𝑔 ∀𝑔, 𝑡 (7)

• Start-up cost: the start-up cost depends on the time that a gener-
ator has been offline. For that reason, different start-up types ‘s’
are defined in the following stairwise function:

𝑐𝑆𝑈𝑔,𝑡 =
∑

𝑠∈𝑆
𝛿𝑔,𝑠,𝑡𝐶

𝑆𝑈
𝑔,𝑠 ∀𝑔, 𝑡 (8)

• Start-up constraints: (Eqs. (9), (10)) constitute one of the most
efficient ways to model the correspondence between an offline
time and its start-up segment determination in MILP formulations.

𝛿𝑔,𝑠,𝑡 ≤
𝑇𝑆𝑈
𝑔,𝑠+1−1
∑

𝑖=𝑇𝑆𝑈
𝑔,𝑠

𝑤𝑔,𝑡−𝑖 ∀𝑔, 𝑠 ∈ [1, 𝑆𝑔), 𝑡 ∈ [𝑇 𝑆𝑈
𝑔,𝑠+1, 𝑇 ] (9)

𝑣𝑔,𝑡 =
∑

𝑠∈𝑆𝑔

𝛿𝑔,𝑠,𝑡 ∀𝑔, 𝑡 (10)

• Logic constraint: defines the chronological behavior of commit-
ments, start-up, and shut-down processes. It also needs an initial
parameter for 𝑡 = 1.

𝑣𝑔,𝑡 −𝑤𝑔,𝑡 = 𝑢𝑔,𝑡 − 𝑢𝑔,𝑡−1 ∀𝑔, 𝑡 ∈ [2, 𝑇 ] (11)

• Minimum time up/down constraints: these operational constraints
manifest an efficient performance dealing with the minimum
times that thermal units should be online/offline after starting-up
or shutting-down.

𝑡
∑

𝑖=𝑡−𝑇𝑈𝑔+1
𝑣𝑔,𝑖 ≤ 𝑢𝑔,𝑡 ∀𝑔, 𝑡 ∈ [𝑇𝑈𝑔 , 𝑇 ] (12)

𝑡
∑

𝑖=𝑡−𝑇𝐷𝑔+1
𝑤𝑔,𝑖 ≤ 1 − 𝑢𝑔,𝑡 ∀𝑔, 𝑡 ∈ [𝑇𝐷𝑔 , 𝑇 ] (13)

• Initial condition constraints: the optimization needs initial parame-
ters to work with the operational decisions at 𝑡 = 1 properly.

𝑣𝑔,𝑡 −𝑤𝑔,𝑡 = 𝑢𝑔,𝑡 − 𝑈0
𝑔 ∀𝑔, 𝑡 ∈ [1, 2) (14)

𝑝𝑔,𝑡 − (𝑃 0
𝑔 − 𝑈0

𝑔 𝑃𝑔) ≤ 𝑅𝑈𝑔 ∀𝑔, 𝑡 ∈ [1, 2) (15)

−𝑝 + (𝑃 0 − 𝑈0𝑃 ) ≤ 𝑅𝐷 ∀𝑔, 𝑡 ∈ [1, 2) (16)
3

𝑔,𝑡 𝑔 𝑔 𝑔 𝑔
• Operational-coherence constraints at the beginning: according to the
initial status of the thermal units, certain commitment and start-
up-type conditions have to be accomplished at the beginning of
the time span to guarantee operational coherence.

𝛿𝑔,𝑠,𝑡 = 0 ∀𝑔, 𝑠 ∈ [1, 𝑆𝑔), 𝑡 ∈ (𝑇 𝑆𝑈
𝑔,𝑠+1 − 𝑇𝐷0

𝑔 , 𝑇
𝑆𝑈
𝑔,𝑠+1) (17)

𝑢𝑔,𝑡 = 𝑈0
𝑔 ∀𝑔, 𝑡 ∈ [1, 𝑇𝑈𝑅

𝑔 + 𝑇𝐷𝑅
𝑔 ] (18)

− Determination of the pre-optimization parameters:

In order to keep the coherence between the magnitudes used in the
athematical formulations and the technical information provided for

hermal generators, the fuel consumption of their operations has to be
ransformed into costs:

𝐶𝐿𝑉
𝑔 = 𝐹𝐿𝑉

𝑔 𝐶𝐹
𝑔 ∀𝑔 (19)

𝑁𝐿
𝑔 = 𝐹𝑁𝐿

𝑔 𝐶𝐹
𝑔 ∀𝑔 (20)

𝐶𝑆𝐷
𝑔 = 𝐹𝑆𝐷

𝑔 𝐶𝐹
𝑔 ∀𝑔 (21)

𝐶𝑆𝑈
𝑔,𝑠 = 𝐹𝑆𝑈

𝑔,𝑠 𝐶𝐹
𝑔 ∀𝑔, 𝑠 (22)

In turn, the hours that the units must remain online or offline
t the beginning of the problem have to be determined from the
nitial-condition information:

𝑈𝑅
𝑔 = 𝑚𝑎𝑥{0, (𝑇𝑈𝑔 − 𝑇𝑈0

𝑔 )𝑈
0
𝑔 } ∀𝑔 (23)

𝑇𝐷𝑅
𝑔 = 𝑚𝑎𝑥{0, (𝑇𝐷𝑔 − 𝑇𝐷0

𝑔)(1 − 𝑈0
𝑔 )} ∀𝑔 (24)

− Determination of the resolution accuracy:

This paper analyzes the convergence of these methodologies toward
an optimal solution with different numerical tolerances. The optimality
gap (OG) is chosen as the stopping criterion for these MILP opti-
mizations [22]. Therefore, up to three different OGs are selected for
each base case to accurately study the solver’s performances with their
respective settings.

2.1. Equal to Demand Unit Commitment (EDUC)

The EDUC formulation imposes a total power output equal to de-
mand at every time period of the horizon. This obligation can cause
infeasible situations due to the problem inflexibility, like the unavail-
ability to satisfy the exact demand as a result of ramping limitations.
These approaches are valuable for power systems with a high thermal
generation in which the demand profiles are remarkably homogeneous.
The EDUC approach comprises the constraints (1)–(24), the balance
Eq. (25) and the objective function (26), as employed in [5]:

𝐷𝑡 =
∑

𝑔∈𝐺
𝑢𝑔,𝑡𝑃𝑔 + 𝑝𝑔,𝑡 ∀𝑡 (25)

𝑚𝑖𝑛

(

∑

𝑔∈𝐺

∑

𝑡∈𝑇
𝑐𝑃𝑔,𝑡 + 𝑐𝑆𝐷𝑔,𝑡 + 𝑐𝑆𝑈𝑔,𝑡

)

(26)

2.2. Equal to Demand Unit Commitment with Non-Served Energy (EDUC-
N)

The EDUC-N formulation is more flexible than the EDUC. It avoids
infeasible situations through the introduction of non-served energy
(NSE) terms, penalized in the OF. Nevertheless, there are circumstances
where it is more profitable not to meet demand. That entails a risk to
the security of supply. Moreover, restrained values have to be assigned
to the non-served energy term. Too low costs can distort the input
profiles compared to the final power output. Extremely high values can
lead to underestimating the rest of the involved costs because of numer-
ical difficulties in the solver’s performance. The EDUC-N methodology,
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utilized in [7], comprises constraints (1)–(24), the balance Eq. (27) and
the objective function (28):

𝐷𝑡 − 𝑛𝑠𝑒𝑡 =
∑

𝑔∈𝐺
𝑢𝑔,𝑡𝑃𝑔 + 𝑝𝑔,𝑡 ∀𝑡 (27)

𝑚𝑖𝑛

(

∑

𝑔∈𝐺

∑

𝑡∈𝑇
(𝑐𝑃𝑔,𝑡 + 𝑐𝑆𝐷𝑔,𝑡 + 𝑐𝑆𝑈𝑔,𝑡 ) +

∑

𝑡∈𝑇
𝑛𝑠𝑒𝑡𝐶

𝑁𝑆𝐸

)

(28)

2.3. Greater than Demand Unit Commitment (GDUC)

The GDUC formulation manifests a more flexible and actual behav-
ior. It avoids infeasibilities by the allowance of a power output surplus.
Accordingly, the thermal units assume an extra production cost instead
of falling into more expensive start-up and shut-down processes to meet
the instantly exact demand. This approach assures the security of sup-
ply and allows a more efficient power system operation. In turn, storage
technologies like batteries or pumping facilities can leverage the gen-
eration surplus. This modeling is valuable for representing electricity
markets with a high penetration of non-dispatchable resources, given
its strengthened robustness against sudden demand variations [18]. The
GDUC method comprises constraints (1)–(24), the balance Eq. (29) and
the objective function (30). It is important to note that this formulation
assumes that the generation surpluses can be unlimitedly taken by
storage facilities or compensated through renewable curtailment (at
zero cost) to guarantee the security of the system’s operation. For the
sake of clarity, these facilities are not represented in this paper.

𝐷𝑡 ≤
∑

𝑔∈𝐺
𝑢𝑔,𝑡𝑃𝑔 + 𝑝𝑔,𝑡 ∀𝑡 (29)

𝑖𝑛

(

∑

𝑔∈𝐺

∑

𝑡∈𝑇
𝑐𝑃𝑔,𝑡 + 𝑐𝑆𝐷𝑔,𝑡 + 𝑐𝑆𝑈𝑔,𝑡

)

(30)

.4. Greater than Demand Unit Commitment with Non-Served Energy
GDUC-N)

The GDUC-N formulation allows a generation surplus when it is
rofitable for the system and non-served energy situations too. It is the
ost flexible approach analyzed in this paper. The GDUC-N provides

mple space for optimization, bringing the advantages of high-flexible
odeling with their corresponding difficulties in adjusting the problem.
he GDUC-N comprises constraints (1)–(24), the balance Eq. (31) and
he OF (32):

𝑡 − 𝑛𝑠𝑒𝑡 ≤
∑

𝑔∈𝐺
𝑢𝑔,𝑡𝑃𝑔 + 𝑝𝑔,𝑡 ∀𝑡 (31)

𝑚𝑖𝑛

(

∑

𝑔∈𝐺

∑

𝑡∈𝑇
(𝑐𝑃𝑔,𝑡 + 𝑐𝑆𝐷𝑔,𝑡 + 𝑐𝑆𝑈𝑔,𝑡 ) +

∑

𝑡∈𝑇
𝑛𝑠𝑒𝑡𝐶

𝑁𝑆𝐸

)

(32)

2.5. Profit Based Unit Commitment (PBUC)

The PBUC formulation has been frequently used in the unit commit-
ment problem. It differs from the previously described methodologies
by not considering demand-satisfaction profiles in the approach. In-
stead, electricity price inputs are utilized to guide the optimization of
operational decisions. Therefore, the generation is addressed from a
profitability perspective along the time span without any balance con-
straint. This formulation is quite valuable for situations where a market
player with a thermal portfolio (small enough not to alter the market
trends) desires to maximize the benefits of their asset management.
It comprises constraints (1)–(24) and the objective function (33), like
in [13]:

𝑚𝑎𝑥

(

∑

𝑔∈𝐺

∑

𝑡∈𝑇
𝐿𝑡(𝑢𝑔,𝑡𝑃𝑔 + 𝑝𝑔,𝑡) − 𝑐𝑃𝑔,𝑡 − 𝑐𝑆𝐷𝑔,𝑡 − 𝑐𝑆𝑈𝑔,𝑡

)

(33)

Fig. 1 illustrates this article’s methodology. It focuses on analyzing
the most common alternatives to model the balance constraints when
4

the unit commitment is addressed as an optimization problem. The
tightness and compactness of the different approaches are studied to-
gether with the resolution processes’ performance. Furthermore, a new
metric is introduced to improve predictions about the computational
efficiency in numerical optimization.

3. Case studies and computational performance

This article focuses on analyzing the computational burden asso-
ciated with the election of the balance equation in the unit commit-
ment problem. For that reason, several case studies are run using
the previously described methodologies. With the aim of performing
an accurate and thorough comparison, different generation portfolios
are employed in each base case, as shown in Section 3.1. In turn,
different demand and electricity-price profiles are evaluated in the
case studies. Section 3.2 gathers high-renewable-intermittence (HRI)
profiles with the gas-fired demand and the prices of a real power
system. Besides, stable thermal generation (STG) profiles are also con-
sidered in order to contrast the resolution processes. The constitution of
medium-term and short-term horizons is described in this section. The
numerical results and the computational performances are discussed in
Section 3.3 (medium-term cases) and in Section 3.4 (short-term against
medium-term).

3.1. Description of the thermal portfolios

Four different generation portfolios are utilized in the case studies to
evaluate the possible influence of their system sizes or characteristics.
Table 1 exposes the technical information of the thermal units. Some
of these operational data are provided in fuel-consumption magnitudes
to facilitate a later adjustment to the casuistry of each case, given
the fluctuation of electricity prices and thermal demand with the high
volatility of fuel cost. It is important to note that two start-up types
𝑠 (hot and cold) are used. Therefore, a hot or cold fuel consumption
(𝐹𝑆𝑈

𝑔,ℎ𝑜𝑡 or 𝐹𝑆𝑈
𝑔,𝑐𝑜𝑙𝑑) will be assumed in start-ups, depending on whether

he offline hours are greater or lower than 𝑇 𝑆𝑈
𝑔,𝑐𝑜𝑙𝑑 .

• Portfolio 1 (P1): comprises Unit A to G. It was presented in [23],
where operational costs were calculated assuming a natural gas
price of 5 $/MMBtu, as it is manifested in the fuel consumption
exposed in [18]. These generation units correspond to real com-
bined cycle gas turbines (CCGTs) that are placed in the Iberian
Power System. They constitute a thermal portfolio of large-size
power plants (𝑃𝑔 > 400 MW). Generally, large thermal units
have lower operational costs than small- and medium-size. How-
ever, they often show higher fuel consumption for start-up and
shut-down processes.

• Portfolio 2 (P2): comprises Unit 1 to 8. It has been widely em-
ployed in the literature. This paper takes the data from [7]. Ac-
cording to the portfolio’s power capacities and technical features,
a fuel price of 2.5 $/MMBtu is considered to obtain their oper-
ations’ fuel consumption. This portfolio includes large-, medium-
(𝑃𝑔 = 100–400 MW) and small-size gas-fired generators (𝑃𝑔 < 100
MW). One of these units can start-up and shut-down in the same
hourly period, producing at its maximum capacity if desired. It
brings a high operational flexibility to the problem. Nevertheless,
this unit also entails more significant fuel consumption.

• Portfolio 3 (P3): gathers Portfolio 1 and Portfolio 2. Despite that
the number of thermal units is not high enough to represent a
complex power system, each generator is unique, and symmetry
effects are avoided in the resolution processes. Furthermore, it
would be easy to replicate power plants if the representation of
greater electricity markets is preferred.

• Portfolio 4 (P4): comprises 35 times Portfolio 3. It represents
a complex system with 525 thermal units. Hence, their corre-
sponding case studies will manifest remarkable generation flex-
ibility when optimizing operational decisions in the unit commit-
ment problem. On the other hand, resolution processes could be

affected by symmetry effects.
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Fig. 1. Illustrative description of the paper’s methodology and main contributions.
Table 1
Technical data of the thermal units.

Thermal
unit

𝐹𝐿𝑉
𝑔 𝐹𝑁𝑉

𝑔 𝐹 𝑆𝑈
𝑔,ℎ𝑜𝑡 𝐹 𝑆𝑈

𝑔,𝑐𝑜𝑙𝑑 𝐹 𝑆𝐷
𝑔 𝑃𝑔 𝑃𝑔 𝑅𝐷𝑔 𝑅𝑈𝑔 𝑆𝐷𝑔 𝑆𝑈𝑔 𝑇𝐷𝑔 𝑇𝑈𝑔 𝑇 𝑆𝑈

𝑔,𝑐𝑜𝑙𝑑 𝑃 0
𝑔 𝑇𝐷0

𝑔 𝑇𝑈 0
𝑔 𝑈 0

𝑔

[MMBtu
/MWh]

[MMBtu
/h]

[MMBtu] [MMBtu] [MMBtu] [MW] [MW] [MW/h] [MW/h] [MW] [MW] [h] [h] [h] [MW] [h] [h] [ad.]

Unit A 6.6 300 2891 4893 1100 412 157 215 215 157 157 7 7 12 314 0 7 1
Unit B 6.2 460 2798 5474 1100 390 135 200 200 135 135 5 5 79 270 0 5 1
Unit C 5.4 820 3996 8654 1900 856 285 425 425 285 285 11 11 20 570 0 11 1
Unit D 6.4 320 2737 3618 1100 402 112 200 200 112 112 6 6 61 224 0 6 1
Unit E 6.8 280 3239 4121 1200 413 157 215 215 157 157 7 7 88 314 0 7 1
Unit F 6.2 360 3483 6148 1200 427 163 225 225 163 163 8 8 103 326 0 8 1
Unit G 5.6 740 5992 7887 1900 796 225 385 385 225 225 10 10 91 450 0 10 1
Unit 1 6.5 400 1800 3600 0 455 150 225 225 150 150 8 8 14 300 0 8 1
Unit 2 6.9 388 2000 4000 0 455 150 225 225 150 150 8 8 14 300 0 8 1
Unit 3 6.6 280 220 440 0 130 20 50 50 20 20 5 5 10 40 0 5 1
Unit 4 6.6 272 224 448 0 130 20 50 50 20 20 5 5 10 40 0 5 1
Unit 5 7.9 180 360 720 0 162 25 60 60 25 25 6 6 11 50 0 6 1
Unit 6 8.9 148 68 136 0 80 20 60 60 20 20 3 3 8 40 0 3 1
Unit 7 11.1 192 104 208 0 85 25 60 60 25 25 3 3 6 50 0 3 1
Unit 8 10.4 264 12 24 0 55 10 135 135 10 10 1 1 2 20 0 1 1
5
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Table 2
Hub trading, currency exchange rates and fuel prices.

J F M A M J J A S O N D

MIBGAS [€/MWht] 11.879 9.817 8.563 7.482 5.331 6.426 6.435 9.187 11.310 13.441 14.500 18.184
Exchange Rate [€/$] 0.901 0.917 0.904 0.921 0.917 0.889 0.873 0.845 0.848 0.849 0.845 0.822
Fuel Price [$/MMBtu] 3.864 3.138 2.776 2.381 1.704 2.118 2.160 3.186 3.909 4.639 5.029 6.483
3.2. Description of the demand and electricity-price profiles

3.2.1. Medium-term horizons
Every time span evaluated in the medium-term case studies com-

prises one month on an hourly basis. Consequently, large-size problems
are generated to study the unit commitment formulations’ balance
equations properly. Furthermore, this detailed representation of tech-
nical and economic features in medium-term horizons can be used to
illustrate the ongoing trends in real power systems. For that reason,
considering longer time spans was prioritized over the duplication of
thermal units in order to prepare large-size problems. In addition,
this decision avoids the appearance of symmetry effects during the
solver performance [4]. Finally, fifteen base cases are established in
this analysis benchmark. Their characteristics are following described:

• The first twelve cases employ input profiles taken from a real
power system with a high penetration of non-dispatchable gen-
erators. Each case represents a month of 2020 in the Iberian
Electricity Market (MIBEL), capturing thermal intermittence and
seasonality trends, an increasingly important matter in unit com-
mitment [24–26]. In accordance, the gas-fired generation in the
MIBEL [27] is scaled through Eq. (34), employed in [18], and uti-
lized as demand profiles in EDUC, EDUC-N, GDUC, and GDUC-N
formulations. Moreover, the corresponding electricity-price infor-
mation [28] is used at PBUC. These are the so-called HRI cases.

𝐷𝑡 =
𝐺𝑎𝑠 𝐹 𝑖𝑟𝑒𝑑 𝑃 𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡

𝑚𝑎𝑥{𝐺𝑎𝑠 𝐹 𝑖𝑟𝑒𝑑 𝑃 𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡}
0.95

∑

𝑔∈𝐺
𝑃𝑔 (34)

• The last three cases take profiles from the literature about systems
with stable thermal generation. These are the so-called STG cases.
Some papers repeat daily curves on an hourly basis to extend the
time span. The same procedure is assumed in this report when
necessary. Case X utilizes profile [6] for demand and [12] for
prices. Case Y takes [7,13] respectively. Case Z employs [8,14].

• The fuel costs of the HRI cases are taken from the Iberian Gas
Market (MIBGAS) to assure operational coherence. The monthly
average prices negotiated in the hub [29] are used in each case.
Table 2 gathers them and the currency exchange rates to calculate
fuel costs in $/MMBtu and the hourly electricity prices in $/MWh.
Regarding the STGs, a fuel cost of 2.5 $/MMBtu is employed in
these cases.

These proceedings establish fifteen medium-term base cases to test
he approaches employing different generation portfolios and optimiza-
ion options. Fig. 2 reports four monthly HRI demand curves (one per
eason of the year) and the STG load profiles. It can be appreciated
ow HRI internalizes the high renewable penetration in modern power
ystems, diminishing the thermal demand and making it significantly
ore intermittent when compared to conventional STGs.

.2.2. Short-term horizons
Besides, 71 short-term base cases are also established to compare

he computational performance of the described methodologies with a
ifferent time span duration:

• The short-term HRI cases are prepared by randomly choosing
five daily profiles from each medium-term HRI case. The unique
condition is that the load profile cannot be zero to avoid valueless
cases. Then, the corresponding electricity price series are chosen
6

Fig. 2. Monthly load profiles for EDUC, EDUC-N, GDUC, and GDUC-N methodologies
on an hourly basis.
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Table 3
Run time comparison.

# EDUC EDUC-N GDUC GDUC-N PBUC

Optimality gap Optimality gap Optimality gap Optimality gap Optimality gap

10−2 10−4 10−6 10−2 10−4 10−6 10−2 10−4 10−6 10−2 10−4 10−6 10−2 10−4 10−6

Portfolio 1

J 20.9 446.5 510.6 38.8 1407.0 1526.7 26.1 150.7 157.9 45.8 201.1 224.6 9.8 9.8 9.8
F 12.7 24.6 30.6 18.5 63.4 66.4 19.2 41.4 41.4 28.5 53.4 53.9 10.1 10.1 10.1
M 17.1 333.2 333.2 42.2 754.9 754.9 27.8 596.5 599.0 48.0 572.6 579.2 10.2 10.2 10.2
A 21.7 21.7 21.7 19.1 79.6 79.6 35.9 674.3 674.3 63.0 608.9 608.9 10.6 10.7 10.7
M 15.8 162.0 162.0 27.1 218.1 218.5 25.0 180.7 180.8 27.6 319.8 326.5 10.2 10.2 10.3
J 16.5 145.5 145.5 37.2 218.7 223.8 23.0 187.8 193.0 42.8 247.6 265.7 9.9 9.9 9.9
J 16.0 190.1 200.7 23.3 267.2 322.5 15.9 206.6 296.4 26.3 275.1 312.8 9.8 9.8 9.8
A 12.6 51.8 86.0 24.9 57.4 59.9 12.9 102.2 107.0 20.7 44.1 48.3 9.8 9.8 9.8
S 13.1 112.0 119.2 26.4 143.8 166.7 16.9 234.0 269.3 31.4 398.1 481.9 10.1 10.1 10.1
O 13.6 115.9 121.7 28.8 324.7 363.7 25.5 132.8 134.4 31.8 151.1 165.2 10.1 10.1 10.2
N 16.2 308.4 317.9 27.0 2055.5 2074.0 25.9 6905.0 (0.0080%) 36.7 3850.1 4232.6 10.1 10.1 10.2
D 10.2 18.0 22.9 20.1 98.4 102.2 26.0 481.1 500.2 36.6 1114.7 1145.6 10.4 10.4 10.4
X 10.6 13.1 14.0 19.6 20.8 20.0 10.5 12.8 14.8 19.5 19.4 21.2 9.8 9.8 9.8
Y 11.4 15.6 16.4 21.8 21.7 23.0 11.2 15.2 16.5 20.7 20.6 22.2 9.9 9.9 9.9
Z 10.2 14.9 16.4 22.0 30.0 31.2 9.8 14.3 15.8 21.8 30.0 31.6 10.1 10.4 10.4

Portfolio 2

J 62.6 (0.1454%) (0.1454%) 94.0 (0.1653%) (0.1653%) 49.7 (0.0166%) (0.0166%) 66.9 (0.0124%) (0.0124%) 7.3 7.3 7.3
F 29.9 224.9 319.3 43.9 1624.6 2453.2 21.6 2340.5 2530.1 27.0 3200.7 3548.0 7.4 7.4 7.4
M 45.2 (0.0801%) (0.0801%) 50.5 (0.0888%) (0.0888%) 70.5 3449.5 3537.4 59.5 (0.0320%) (0.0320%) 7.8 7.9 8.0
A 24.2 1317.6 1317.6 31.5 (0.0106%) (0.0106%) 92.6 3565.7 3561.0 91.0 5080.6 5014.9 7.4 7.4 7.4
M 19.5 65.7 67.1 29.0 157.3 162.0 21.7 459.2 468.2 19.1 333.7 333.7 7.7 7.7 7.7
J 18.2 2403.8 2829.1 42.8 3070.0 3969.7 24.7 1037.1 1205.9 50.4 847.8 1195.0 7.3 7.3 7.3
J 14.6 615.7 3026.7 36.1 1376.2 2207.1 14.3 577.1 3182.2 31.5 1504.7 2910.8 7.2 7.2 7.2
A 10.8 60.2 77.8 26.9 75.3 94.0 12.8 50.1 59.6 26.2 85.3 102.3 7.1 7.1 7.1
S 27.4 409.3 801.2 40.6 2123.0 2506.2 32.0 3619.3 4218.7 48.5 3651.6 5648.9 7.3 7.4 7.4
O 28.9 1196.9 1403.1 40.1 2428.5 2667.6 27.7 3154.5 3415.9 34.6 5418.8 7179.5 7.8 7.8 7.8
N 35.2 1792.0 2074.3 43.2 2544.4 2677.7 15.3 730.4 853.7 19.9 2977.0 3099.4 7.5 7.6 7.6
D 12.6 45.9 46.3 26.0 58.0 58.7 27.5 1469.2 1580.3 30.0 374.4 399.3 7.6 7.6 7.6
X 11.2 11.7 15.9 18.2 18.2 21.5 9.7 15.0 15.0 10.2 21.8 25.8 7.2 7.2 7.2
Y 12.1 58.0 68.0 25.7 62.2 75.0 9.9 32.7 97.7 14.7 61.5 86.3 7.2 7.2 7.2
Z 9.0 78.0 113.4 27.1 340.5 390.7 8.9 87.1 200.6 19.0 350.2 385.4 8.2 8.2 8.2

Portfolio 3

J 241.7 (0.1145%) (0.1145%) 228.9 (0.1727%) (0.1727%) 86.4 (0.0794%) (0.0794%) 145.7 (0.0866%) (0.0866%) 24.9 24.9 24.9
F 77.7 (0.0295%) (0.0295%) 74.0 (0.0444%) (0.0444%) 44.6 (0.0557%) (0.0557%) 56.7 (0.0559%) (0.0559%) 25.4 25.4 25.4
M 194.9 (0.1954%) (0.1954%) 224.6 (0.2401%) (0.2401%) 192.2 (0.1354%) (0.1354%) 147.4 (0.1435%) (0.1435%) 25.7 25.7 25.7
A 343.0 680.8 740.3 71.0 5055.9 6044.5 124.2 5996.1 (0.0047%) 181.7 3669.7 5276.6 25.8 25.9 25.9
M 110.4 (0.0428%) (0.0428%) 153.9 (0.0695%) (0.0695%) 97.1 (0.0757%) (0.0757%) 167.8 (0.1009%) (0.1009%) 25.7 25.7 25.7
J 168.2 (0.0655%) (0.0655%) 224.7 (0.0641%) (0.0641%) 39.3 (0.0426%) (0.0426%) 65.9 (0.0469%) (0.0469%) 25.3 25.3 25.3
J 129.5 (0.0565%) (0.0565%) 143.6 (0.0499%) (0.0499%) 38.5 (0.0469%) (0.0469%) 113.6 (0.0508%) (0.0508%) 24.7 24.7 24.7
A 35.7 5866.3 (0.0050%) 123.9 4384.0 (0.0082%) 40.2 2364.8 (0.0036%) 136.3 4181.3 (0.0084%) 24.9 24.9 24.9
S 115.9 (0.0436%) (0.0436%) 167.5 (0.0482%) (0.0482%) 39.7 (0.0436%) (0.0436%) 161.6 (0.0481%) (0.0481%) 25.0 25.0 25.1
O 120.7 (0.0560%) (0.0560%) 83.9 (0.0992%) (0.0992%) 78.6 (0.0810%) (0.0810%) 91.5 (0.0855%) (0.0855%) 25.2 25.2 25.2
N 130.0 (0.0547%) (0.0547%) 142.8 (0.1166%) (0.1166%) 80.2 (0.1091%) (0.1091%) 67.9 (0.1041%) (0.1041%) 25.6 25.6 25.7
D 426.8 (0.1415%) (0.1415%) 83.4 (0.2632%) (0.2632%) 124.2 (0.2388%) (0.2385%) 120.9 (0.2015%) (0.2015%) 25.5 26.0 26.0
X 34.1 209.8 1397.4 78.6 332.1 5043.8 34.0 226.5 1462.4 83.3 422.7 (0.0008%) 26.0 26.0 26.0
Y 33.1 283.3 1882.9 94.8 291.4 (0.0006%) 33.4 282.8 1696.1 106.5 323.0 3949.7 25.5 25.5 25.5
Z 32.0 190.4 1240.8 69.3 381.2 1952.7 30.1 181.2 1062.7 66.2 357.0 3060.8 25.0 25.8 25.8
for the PBUC approach. Hence, 60 base cases with a 24-hour
horizon are generated.

• The short-term STG cases are prepared by taking the eight dif-
ferent daily demand profiles and the three daily electricity prices
from the monthly STG cases. Thus, eleven additional base cases
with a 24-hour horizon are generated.

.3. Numerical results of the medium-term case studies

Fifteen base cases are established to compare the aforementioned
alance equations in medium-term horizons. Each base case is run us-
ng five unit commitment formulations with three different optimality
aps. These setups are tested with the technical data of three thermal
ortfolios (P1, P2, and P3). Hence, 675 case studies are analyzed in this
ection.

They have been run in a computer Intel Core i7-8700 @3.20 GHz
ith 12 logical processors and 32 GB of installed RAM memory running
4-bit Windows 10 Pro, and solved with the commercial solver Gurobi
7

9.5 under GAMS. Optimality gaps of 10−2, 10−4, and 10−6 are imposed
as numerical tolerances to finish the resolution processes. In addition,
a maximum run time of 7200 s is established to end the optimization
of those excessively computationally-demanding case studies.

It is also important to mention that a value of 1000 $/MWh was
set as non-served energy cost according to the input data. This value
is frequently employed in the unit commitment literature because it
represents undesired situations (according to market conditions like
those considered in this paper) but also provides some flexibility to the
thermal operation.

3.3.1. Objective function & run time trade-offs
Despite each methodology entails a different optimization problem,

and their corresponding feasible regions cannot be directly compared, a
trade-off between the quality of the solution (influenced by the imposed
OG) and the run time employed to achieve it can be established for
each approach and parametrized case study. For the sake of clarity, this
analysis is addressed in Appendix. On the other hand, Table 3 shows
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the run times in seconds or their final OG in % when the maximum
CPU time is accomplished.

It is important to highlight that some EDUC cases constitute infeasi-
ble problems due to the aggressive thermal intermittence of some HRI
cases and their inflexibility to meet the exact demand dealing with the
portfolios’ ramping rates, minimum up and down times, or their initial
conditions. However, the cases become feasible when flexible resources
such as generation surpluses or NSE options are available.

Besides, when feasible regions are being qualitatively analyzed,
some metrics like run times, integrality gaps, or arduousness can be
evaluated in spite of utilizing a different demand profile. For that
reason, the performance of the EDUC methodology has been com-
pared to the others by modifying its infeasible demand profiles. These
feasible-made EDUC cases are included in italics in Table 3 and further.

Regarding the run times, some differences can be appreciated be-
tween 10−4 and 10−6 OGs despite both performing a one-order mag-
nitude increase from 10−2. These variations are more significant at
P2 and P3 in STG cases, which means that portfolios with small- and
medium-generation units are more difficult to optimize with strict OG
conditions than only large units. Furthermore, greater run times are
observed for P2 (whose number of units is similar to P1) and P3.

Comparing HRI and STG cases, Table 3 shows that HRI profiles,
which represent the ongoing trends in many modern power systems,
require more computational resources than STG curves. Moreover, they
frequently reach the maximum time limit in P3 with 10−4 and 10−6

OGs, a quite less common situation with STGs.
Finally, examining PBUC formulation, significantly lower run times

are required to find the optimal solution. As expected, the solver
identifies that each thermal unit can be treated individually without
any shared target (the system’s demand) to interrelate them. This
simplifies the resolution process, and tiny OGs are quickly achieved.
Consequently, there are not many differences between 10−4 and 10−6

OGs, neither between real market profiles (PBUC - HRI) and literature
curves (PBUC - STG). However, portfolios’ sizes and configurations
introduce a distinction. Larger portfolios (P3), of course, require more
run time, but surprisingly, optimizing large generation units (P1) in this
approach is more challenging to manage than a mix of small-, medium-
and large ones (P2).

After this preliminar analysis in which many results could be consid-
ered, a priori, expectable, an in-depth study and comparison between
these methodologies is shown in the following sections. The tightness
and compactness of each formulation are evaluated. Moreover, the con-
cept of arduousness is introduced to describe computational behaviors
that cannot be uniquely explained through T&C, and an analysis of
the solver performance is exposed to clarify the obtained results and
support the conclusions.

3.3.2. Tightness
The tightness of a mixed integer programming problem is frequently

defined as the closeness of the relaxed solution to the integer. It is a
desirable characteristic in MILP formulations because the obtention of
a more limited feasible region in the relaxed problems’ polytopes helps
the solver in the branch & cut processes. With the aim of comparing the
tightness of different approaches, the integrality gap (IG) was presented
in [6]:

𝐼𝐺 (%) = 100
𝑂𝐹 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 − 𝑂𝐹 𝑅𝑒𝑙𝑎𝑥𝑒𝑑

𝑂𝐹 𝐼𝑛𝑡𝑒𝑔𝑒𝑟
(35)

Eq. (35) determines the integrality gap of a MIP minimization
roblem. Meanwhile, in maximization problems, the IG is calculated
hrough:

𝐺 (%) = 100
𝑂𝐹 𝑅𝑒𝑙𝑎𝑥𝑒𝑑 − 𝑂𝐹 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

𝑂𝐹 𝑅𝑒𝑙𝑎𝑥𝑒𝑑
(36)

As previously mentioned in [17], integrality gaps can utilize the
inear programming (LP) solution or the root relaxation as the relaxed
8

Fig. 3. Integrality gaps obtained with each optimality-gap definition and run times to
reach them.

OF. In this paper, the root relaxation is employed in the IG calculations
because it offers a better idea about the solvers’ performances and
their abilities to handle these complex problems, manifesting more
realistic relaxed targets to whom approximate the integer solution
despite taking advantage of heuristics strategies to tight them.

Table 4 specifies the particular integrality gap of each case in %.
Additionally, mean IG values and the average run times to reach them
are plotted in Fig. 3 for every methodology, portfolio, and numerical
convergence criterion (10−2, 10−4 and 10−6 OGs), distinguishing be-
tween the HRI and STG cases. It is important to remember that EDUC
- HRI cases are considered in spite of using modified profiles because
the tightness is a qualitative feature that measures the relaxed-integer
proximity.

It can be appreciated that STG cases are not only generally faster
than HRI (as exposed in Table 3), but they also achieve better inte-
grality gaps. Therefore, the optimal relaxed solution in the HRI cases
is further to the integer one than in STGs. It could be explained by the
greater number of start-up and shut-down processes that entail higher
intermittency [30], which can be leveraged in the relaxed formulation
to adopt partial decisions in the corresponding binary variables. These
behaviors distance to the real operation of a thermal portfolio and
would be reduced with stable load profiles. Similarly, cheap electricity
prices in PBUC’s case Z boost the relaxed solution.
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Table 4
Tightness comparison: integrality gap of each case study.

# EDUC EDUC-N GDUC GDUC-N PBUC

Optimality gap Optimality gap Optimality gap Optimality gap Optimality gap

10−2 10−4 10−6 10−2 10−4 10−6 10−2 10−4 10−6 10−2 10−4 10−6 10−2 10−4 10−6

Portfolio 1

J 2.27 1.98 1.98 2.91 2.35 2.35 3.07 2.27 2.27 2.55 2.39 2.39 0.00 0.00 0.00
F 2.20 1.38 1.38 2.59 2.12 2.12 2.07 1.55 1.55 2.24 1.67 1.67 0.00 0.00 0.00
M 2.90 2.41 2.41 2.96 2.52 2.52 3.92 3.52 3.52 4.26 3.58 3.58 0.00 0.00 0.00
A 0.18 0.18 0.18 5.56 5.18 5.18 5.70 5.16 5.16 5.73 5.23 5.23 0.01 0.00 0.00
M 2.78 2.11 2.11 3.02 2.46 2.46 3.55 3.34 3.34 4.13 3.47 3.47 0.00 0.00 0.00
J 1.88 1.24 1.24 1.42 1.25 1.25 2.41 1.54 1.54 1.72 1.60 1.60 0.00 0.00 0.00
J 1.73 0.98 0.98 2.01 1.17 1.17 1.77 0.98 0.98 2.01 1.18 1.18 0.00 0.00 0.00
A 1.48 0.84 0.84 1.24 0.98 0.98 1.60 0.84 0.84 1.88 0.98 0.98 0.00 0.00 0.00
S 1.43 1.00 1.00 1.22 1.09 1.09 1.95 1.20 1.20 1.62 1.30 1.30 0.01 0.01 0.00
O 2.14 1.45 1.45 2.26 1.81 1.81 2.75 2.09 2.09 2.98 2.23 2.23 0.00 0.00 0.00
N 1.75 1.49 1.49 2.50 2.26 2.26 2.44 1.94 1.93 2.30 1.91 1.91 0.01 0.01 0.00
D 2.02 1.57 1.57 2.19 1.84 1.83 3.64 3.40 3.40 4.06 3.37 3.37 0.01 0.00 0.00
X 0.66 0.24 0.24 1.22 1.14 1.14 0.66 0.24 0.24 1.14 1.14 1.14 0.00 0.00 0.00
Y 0.88 0.36 0.36 1.06 1.06 1.06 0.81 0.36 0.36 1.06 1.06 1.06 0.00 0.00 0.00
Z 0.35 0.18 0.18 1.39 0.80 0.80 0.63 0.18 0.18 0.87 0.80 0.80 0.32 0.07 0.07

Portfolio 2

J 3.15 2.71 2.71 3.16 2.78 2.78 3.55 3.08 3.08 3.50 3.13 3.13 0.00 0.00 0.00
F 1.10 0.87 0.87 2.36 1.79 1.79 1.97 1.62 1.62 2.20 1.64 1.64 0.00 0.00 0.00
M 2.55 2.16 2.16 2.84 2.39 2.39 4.10 3.55 3.55 4.14 3.56 3.56 0.16 0.02 0.02
A 2.75 2.53 2.53 2.23 1.80 1.80 5.12 5.00 5.00 5.25 4.99 4.99 0.21 0.08 0.08
M 2.59 1.90 1.90 2.31 1.72 1.72 3.61 3.53 3.53 3.84 3.58 3.58 0.02 0.01 0.01
J 2.27 1.47 1.47 2.02 1.37 1.37 2.46 1.80 1.80 1.92 1.82 1.82 0.00 0.00 0.00
J 1.83 1.15 1.15 1.65 1.17 1.17 1.97 1.18 1.18 1.76 1.19 1.19 0.00 0.00 0.00
A 1.75 1.00 1.00 1.03 1.01 1.01 1.54 1.03 1.03 1.93 1.04 1.04 0.00 0.00 0.00
S 2.03 1.30 1.30 1.82 1.30 1.30 1.80 1.48 1.48 2.08 1.50 1.50 0.04 0.02 0.01
O 1.78 1.40 1.40 2.15 1.56 1.56 2.80 2.10 2.10 2.82 2.09 2.09 0.11 0.04 0.04
N 1.68 1.44 1.44 2.18 1.62 1.62 2.54 1.96 1.96 2.35 1.98 1.98 0.16 0.05 0.05
D 0.94 0.46 0.46 0.82 0.53 0.53 2.91 2.79 2.79 3.53 2.81 2.81 0.77 0.08 0.08
X 0.60 0.60 0.60 1.03 0.57 0.56 0.85 0.60 0.60 1.42 0.57 0.56 0.00 0.00 0.00
Y 0.94 0.65 0.65 0.76 0.62 0.62 1.22 0.65 0.65 1.54 0.62 0.62 0.00 0.00 0.00
Z 1.25 0.58 0.57 0.72 0.68 0.68 1.15 0.57 0.57 1.36 0.68 0.68 0.00 0.00 0.00

Portfolio 3

J 1.66 1.23 1.23 2.03 1.41 1.41 1.49 1.05 1.05 1.39 1.05 1.05 0.00 0.00 0.00
F 1.08 0.92 0.92 1.90 1.18 1.18 1.46 0.86 0.86 1.27 0.86 0.86 0.00 0.00 0.00
M 1.74 1.58 1.58 1.87 1.70 1.70 2.55 2.00 2.00 2.64 2.01 2.01 0.00 0.00 0.00
A 2.95 2.23 2.23 3.17 2.48 2.48 3.70 3.04 3.04 3.15 3.04 3.04 0.01 0.00 0.00
M 1.79 1.47 1.47 2.01 1.75 1.75 2.04 1.74 1.74 2.46 1.76 1.76 0.01 0.01 0.00
J 1.37 0.70 0.70 0.77 0.65 0.65 1.25 0.74 0.74 1.28 0.74 0.74 0.00 0.00 0.00
J 1.17 0.57 0.57 0.88 0.57 0.57 1.22 0.56 0.56 0.91 0.57 0.57 0.00 0.00 0.00
A 1.07 0.48 0.48 0.83 0.48 0.48 1.29 0.48 0.48 1.29 0.48 0.48 0.00 0.00 0.00
S 1.28 0.69 0.69 1.22 0.67 0.67 1.25 0.79 0.79 1.23 0.80 0.80 0.01 0.01 0.00
O 1.40 0.86 0.86 1.50 1.04 1.04 1.26 0.98 0.98 1.68 0.98 0.98 0.00 0.00 0.00
N 1.25 0.94 0.94 1.41 1.04 1.04 1.38 1.05 1.05 1.64 1.05 1.05 0.01 0.01 0.00
D 2.00 1.34 1.34 1.97 1.54 1.54 2.22 1.71 1.71 2.24 1.68 1.68 0.01 0.00 0.00
X 0.91 0.35 0.35 1.19 0.35 0.35 0.84 0.35 0.35 0.39 0.35 0.35 0.00 0.00 0.00
Y 0.93 0.36 0.36 1.31 0.36 0.36 0.94 0.36 0.36 0.38 0.36 0.36 0.00 0.00 0.00
Z 0.55 0.27 0.26 0.38 0.28 0.28 0.69 0.26 0.26 0.35 0.28 0.28 0.25 0.05 0.05
When the tightness of the different methodologies is studied, STG
ases reveal that they often converge to the same IG if strict OGs are
mposed. At the same time, greater variations are noticed in the more
ifficult-to-solve HRI cases. The three portfolios show that EDUC is
ighter than EDUC-N, EDUC-N is tighter than GDUC, and GDUC-N is
he less tight formulation, manifesting that inequalities in the balance
onstraint mean a more significant tightness loss than introducing NSE
erms when medium-term horizons are considered.

Finally, similar trends are observed in each portfolio. It is important
o mention that P3 achieves better IGs than P1 and P2. That must hap-
en because of the ‘thermal unit effect’: a little operational infeasibility
n the relaxed solution involves a more significant impact on smaller
eneration portfolios.

.3.3. Compactness
The compactness of an optimization problem is given by the number

f constraints (CT) and variables (binary, continuous, and/or integer)
hat constitute the problem. The approaches studied in this paper only
9

differ in their balance equation and objective function formulations.
In accordance, it would be expected that they manifest a similar com-
pactness. The methodologies with NSE terms will aggregate one more
continuous variable (CV) per time step. Meanwhile, PBUC formulation
will lose a constraint per time step due to the absence of demand
constraint.

Consequently, these approaches show a priori, a practically identical
number of constraints, binary variables (BV), and continuous variables.
However, the diverse nature of balance equations leads to different
feasible regions, which the characteristics of the input data can also
modify. Hence, it is necessary to evaluate the compactness after the
generation of the polytope that the solver will work with.

Table 5 gathers the general equations to determine the quantity
of CT, BV, and CV of each methodology. Note that these formulas
do not consider a little constraint and variable reduction following
the imposed initial conditions. (Including this reduction would be
confusing if providing a general idea is desired). Moreover, Table 5 also
illustrates the average number of constraints and variables for HRI and
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Table 5
Compactness comparison: constraints, binary, and continuous variables of each methodology.

EDUC EDUC-N GDUC GDUC-N PBUC

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

CT Compactness (𝐺1 + (6 + 𝑠) ⋅ 𝑔 + 1) ⋅ 𝑡 (𝐺1 + (6 + 𝑠) ⋅ 𝑔 + 1) ⋅ 𝑡 (𝐺1 + (6 + 𝑠) ⋅ 𝑔 + 1) ⋅ 𝑡 (𝐺1 + (6 + 𝑠) ⋅ 𝑔 + 1) ⋅ 𝑡 (𝐺1 + (6 + 𝑠) ⋅ 𝑔) ⋅ 𝑡
BV Compactness (3 + 𝑠) ⋅ 𝑔 ⋅ 𝑡 (3 + 𝑠) ⋅ 𝑔 ⋅ 𝑡 (3 + 𝑠) ⋅ 𝑔 ⋅ 𝑡 (3 + 𝑠) ⋅ 𝑔 ⋅ 𝑡 (3 + 𝑠) ⋅ 𝑔 ⋅ 𝑡
CV Compactness 𝑔 ⋅ 𝑡 𝑔 ⋅ 𝑡 + 𝑡 𝑔 ⋅ 𝑡 𝑔 ⋅ 𝑡 + 𝑡 𝑔 ⋅ 𝑡

Constraints & Variables Before Presolve [#]

CT Average 41,872 48,975 90,103 41,872 48,975 90,103 41,872 48,975 90,103 41,872 48,975 90,103 41,128 48,231 89,359
BV Average 26,040 29,760 55,800 26,040 29,760 55,800 26,040 29,760 55,800 26,040 29,760 55,800 26,040 29,760 55,800
CV Average 5208 5952 11,160 5952 6696 11,904 5208 5952 11,160 5952 6696 11,904 5208 5952 11,160

Constraints & Variables After Presolve [#]

CT HRI Avg. 24,830 26,140 62,056 29,694 30,403 64,549 34,763 38,113 76,827 37,410 40,950 78,525 5587 5745 5598
BV HRI Avg. 11,625 13,768 31,861 14,709 16,423 33,584 17,745 21,025 41,184 19,528 22,902 42,424 2854 2945 2862
CV HRI Avg. 3724 4094 9011 4657 4927 9699 4402 5050 9599 5076 5716 10,231 694 686 693
CT STG Avg. 28,425 32,377 76,480 39,894 42,903 82,053 28,423 32,377 76,478 39,892 42,903 82,051 5488 5669 5488
BV STG Avg. 10,590 15,874 37,780 19,566 22,934 42,500 10,588 15,874 37,778 19,564 22,934 42,498 2854 2945 2854
CV STG Avg. 5197 5865 11,159 5952 6696 11,904 5197 5865 11,159 5952 6696 11,904 671 671 671

After/Before Presolve Ratios

CT HRI 59% 53% 69% 71% 62% 72% 83% 78% 85% 89% 84% 87% 14% 12% 6%
BV HRI 45% 46% 57% 56% 55% 60% 68% 71% 74% 75% 77% 76% 11% 10% 5%
CV HRI 72% 69% 81% 78% 74% 81% 85% 85% 86% 85% 85% 86% 13% 12% 6%
CT STG 68% 66% 85% 95% 88% 91% 68% 66% 85% 95% 88% 91% 13% 12% 6%
BV STG 41% 53% 68% 75% 77% 76% 41% 53% 68% 75% 77% 76% 11% 10% 5%
CV STG 100% 99% 100% 100% 100% 100% 100% 99% 100% 100% 100% 100% 13% 11% 6%
STG cases for each methodology, before and after presolve, and the
percentage of reduction its performance involves.

The information obtained after the presolve performance reveals
that the different formulations’ polytopes do not similarly reduce their
size at all. Furthermore, differences can be appreciated depending on
the portfolio configuration and the nature of demand profiles.

In this section, it would be preferable to avoid comparing EDUC
- HRI because its profiles can be reduced after presolve differently.
Nevertheless, when the number of CT, BV, and CV are individually
observed in the initially feasible EDUC - HRI cases, they experienced
a practically identical performance to GDUC in each case study and
portfolio. This trend is analogous to EDUC - STG cases.

Besides that, Table 5 shows that GDUC-N is the less compact formu-
lation, as could be expected. However, the behaviors of EDUC-N and
GDUC provide unforeseen conclusions. It can be affirmed that when
NSE terms are included, STG problems barely reduce the problem size
after presolve. Meanwhile, in their absence, it is possible to achieve
a substantial reduction even if greater than equal balance constraints
are employed. It could have an origin in that NSE terms bring many
start-up and shut-down options to the problem, with the corresponding
BV and CT associated. Thus, these approaches cannot be as notably
reduced as EDUC and GDUC, in which STG profiles allow a remarkable
suppression of unnecessary start-ups and shut-downs, preventing them
from removing production decisions (modeled with CV).

Conversely, HRI profiles present EDUC-N as a more compact method-
ology than GDUC when medium-term horizons are evaluated. Here,
the solver seems to identify NSE terms uniquely as an option to make
problems feasible and gives a more ample optimization space.

Regarding PBUC, compactness results demonstrate that the solver
breaks every generator interrelation, returning tiny problems after
presolve. This reduction is more significant as the portfolio’s size grows.

Finally, when results are compared at a portfolio level, the formula-
tions that include a balance constraint reveal that greater compactness
is achieved with the presence of small- and medium-thermal units (P2).

3.3.4. Arduousness
The mathematical analysis of the feasible region is a tough task

that changes with every constraint reformulation. Furthermore, it is
also susceptible to the nature of the problem’s input data. Likewise,
apparently-similar problems experience substantial variations after the
10

presolve performance due to the complexity introduced by the election
of particular balance equations, as demonstrated in [31]. There, an
aggregated demand for the whole time horizon was imposed, leading
to remarkably different problem sizes whose resolution processes were
drastically complicated.

This scope has been further developed in this paper, given that
great discrepancies are observed in analogous-size problems whose
resolution would be expected to be uniform. That comes from the
different solver’s ability to explore the feasible regions induced by
the permissivity of the demand constraint (or its absence). For this
reason, the concept of ‘arduousness’ has been introduced as a metric
of numerical optimization performances. It is defined as:

𝐴𝑟𝑑𝑢𝑜𝑢𝑠𝑛𝑒𝑠𝑠 (#∕𝑠) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝐴𝑓𝑡𝑒𝑟 𝑃 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 (#)

𝑅𝑢𝑛 𝑇 𝑖𝑚𝑒 (𝑠)

(37)

Hence, the ability of the solver to work with the polytope of a
specific problem and to find an optimal solution can be measured
and compared. Although the arduousness will be naturally influenced
by the imposition of an optimality gap, presolve options, etcetera,
it represents an excellent indicator in formulations’ comparison. It is
important to note that arduousness considers the problem generation,
presolve, and solve time to provide a clear and entire idea of the
implications when dealing with a specific methodology.

In this section, the arduousness of managing constraints, binary,
and continuous variables has been individually calculated for each
methodology, optimality gap, and portfolio, and they are exposed in
Table 6 together with their corresponding average run times, distin-
guishing between HRI and STG cases. When arduousness is analyzed,
surprising behaviors are brought to light, especially when compared
with the expected approach performances according to their tightness
and compactness.

A clear example is EDUC-N formulation. In previous sections, a bet-
ter tightness has been obtained for EDUC and EDUC-N methodologies
with HRI profiles. Additionally, EDUC-N HRI is more compact than
GDUC HRI and GDUC-N HRI. Consequently, it would be expected for
this approach to be more efficient than the other two. Nevertheless, it
offers worse run times. Therefore, when the EDUC-N HRI performance
with strict OGs is compared, it manifests a higher arduousness for CT,
BV, and CV than the rest of the methodologies.

Another unpredictable fact is that EDUC HRI, whose tightness and
compactness are very good, reflects a worse arduousness than GDUC
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Table 6
Arduousness comparison: performance of each methodology and optimality gap.

EDUC EDUC-N GDUC GDUC-N PBUC

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

Average Run Time [s]

HRI - OG 10 15.5 27.4 174.5 27.8 42.1 143.5 23.3 34.2 82.1 36.6 42.1 121.4 10.1 7.5 25.3
HRI - OG 10 160.8 1877.7 6545.6 474.1 2921.4 6786.7 824.4 2304.4 6696.7 653.1 3156.2 6654.3 10.1 7.5 25.4
HRI - OG 10 172.7 2196.9 6661.7 496.6 3199.7 7103.7 862.8 2651.1 7200.0 703.8 3652.7 7039.7 10.1 7.5 25.4
STG - OG 10 10.7 10.8 33.1 21.1 23.7 80.9 10.5 9.5 32.5 20.7 14.6 85.3 9.9 7.5 25.5
STG - OG 10 14.5 49.2 227.8 24.2 140.3 334.9 14.1 44.9 230.2 23.3 144.5 367.6 10.0 7.5 25.8
STG - OG 10 15.6 65.8 1507.0 24.7 162.4 4732.2 15.7 104.4 1407.1 25.0 165.8 4736.8 10.0 7.5 25.8

Arduousness Constraints [#/s]

HRI - OG 10 1598.5 953.1 355.5 1068.8 723.0 449.8 1489.3 1114.4 935.8 1022.1 973.8 646.7 553.7 771.1 221.2
HRI - OG 10 154.4 13.9 9.5 62.6 10.4 9.5 42.2 16.5 11.5 57.3 13.0 11.8 553.2 768.5 220.7
HRI - OG 10 143.8 11.9 9.3 59.8 9.5 9.1 40.3 14.4 10.7 53.2 11.2 11.2 551.8 767.7 220.6
STG - OG 10 2648.3 3007.1 2312.9 1887.7 1812.8 1014.3 2706.9 3408.1 2353.2 1930.3 2931.9 961.5 552.5 752.5 215.2
STG - OG 10 1955.8 657.6 335.7 1650.8 305.8 245.0 2015.8 720.5 332.3 1709.7 296.9 223.2 547.0 752.5 213.0
STG - OG 10 1822.1 492.3 50.7 1613.0 264.2 17.3 1810.4 310.0 54.4 1595.7 258.7 17.3 547.0 752.5 213.0

Arduousness Binary Variables [#/s]

HRI - OG 10 748.4 502.0 182.5 529.4 390.6 234.0 760.2 614.8 501.6 533.6 544.6 349.4 282.8 395.2 113.1
HRI - OG 10 72.3 7.3 4.9 31.0 5.6 4.9 21.5 9.1 6.1 29.9 7.3 6.4 282.6 393.9 112.9
HRI - OG 10 67.3 6.3 4.8 29.6 5.1 4.7 20.6 7.9 5.7 27.7 6.3 6.0 281.9 393.5 112.8
STG - OG 10 986.6 1474.4 1142.6 925.8 969.0 525.3 1008.4 1671.0 1162.4 946.6 1567.2 498.0 287.3 391.0 111.9
STG - OG 10 728.7 322.4 165.8 809.6 163.5 126.9 750.9 353.3 164.1 838.5 158.7 115.6 284.5 391.0 110.8
STG - OG 10 678.8 241.4 25.1 791.1 141.2 9.0 674.4 152.0 26.8 782.6 138.3 9.0 284.5 391.0 110.8

Arduousness Continuous Variables [#/s]

HRI - OG 10 239.8 149.3 51.6 167.6 117.2 67.6 188.6 147.6 116.9 138.7 135.9 84.3 68.8 92.0 27.4
HRI - OG 10 23.2 2.2 1.4 9.8 1.7 1.4 5.3 2.2 1.4 7.8 1.8 1.5 68.8 91.7 27.3
HRI - OG 10 21.6 1.9 1.4 9.4 1.5 1.4 5.1 1.9 1.3 7.2 1.6 1.5 68.6 91.6 27.3
STG - OG 10 484.2 544.7 337.5 281.6 282.9 147.1 495.0 617.3 343.3 288.0 457.6 139.5 67.6 89.1 26.3
STG - OG 10 357.6 119.1 49.0 246.3 47.7 35.5 368.6 130.5 48.5 255.1 46.3 32.4 66.9 89.1 26.1
STG - OG 10 333.1 89.2 7.4 240.6 41.2 2.5 331.0 56.2 7.9 238.1 40.4 2.5 66.9 89.1 26.1
m

and GDUC-N. Finally, comparing GDUC and GDUC-N with HRI pro-
files, an expected result is obtained: GDUC-N’s greater arduousness
highlights that resolution processes struggle with NSE terms.

On the other hand, STG profiles exhibit a more rational behavior.
The arduousness of EDUC-N and GDUC-N formulations is consider-
ably higher than in EDUC and GDUC, which aligns with their greater
tightness and compactness. In this way, EDUC performs a similar
arduousness to GDUC and EDUC-N to GDUC-N when strict OGs are
imposed.

In general terms, STG profiles entail a lower arduousness than
HRIs when the approach has a balance equation. Additionally, the
portfolio configuration also plays a role. Arduousness increases with the
number of units. However, it can be appreciated that large units reduce
arduousness when strict OGs are defined. The amount of thermal units
is practically equal in P1 and P2. Nevertheless, P2 is more difficult to
optimize due to its small- and medium-size generators.

Finally, PBUC formulation displays similar performances for CT,
BV, and CV arduousness independently from the OG, given its fast
convergence towards a tiny gap to finish the resolution process. In-
significant differences are found when comparing real market profiles
and academic electricity prices.

As expected, the largest portfolio (P3) is the most arduous. However,
it is remarkable that P2, which has more generation units and entails
less compact problems than P1, performs a less arduous resolution.
Then, it can be affirmed that when maximizing benefits, small thermal
units are more difficult to handle, compared to larger generators,
than when operational costs are minimized. This fact could not be
concluded according to the tightness and compactness results of PBUC
formulation.

3.3.5. Evolution of the optimality gaps & OF bounding
An analysis of the resolution processes of the different method-

ologies to identify simplicities and complications is described in this
section, helping to provide a more detailed explanation for the ardu-
ousness results.
11

n

Fig. 4 illustrates the evolution of optimality gaps and objective
function bounding, upper bound (UB), and lower bound (LB), which
are examined along the run times for each generation portfolio. Some of
these data are presented in per-unit magnitudes regarding their final OF
value to establish a clearer comparison benchmark for computational
performances. It is important to mention that the EDUC approach
includes feasible-made cases, as the previous section did. Despite input
profiles being different, feasible regions are neither the same for each
formulation and insights into how the solver works can be discerned.

The illustration reveals that although EDUC-N and GDUC-N method-
ologies find ‘better’ solutions than EDUC and GDUC, they need con-
siderably greater effort to reduce OGs, especially at the beginning.
That can be explained through the initial OF raise (the primal bound
corresponds to the UB in minimization problems) when NSE situations
are allowed. It might happen because the solver focuses on finding a
feasible solution soon, which internalizes NSE as a high cost and im-
proves it step by step. Furthermore, it can be appreciated in Table A.8
that if the process finishes early (not too low OGs), the optimal solution
is ‘worse’ than in some non-NSE cases. This fact demonstrates that the
solver struggles to work with these kinds of ‘slackness’ but finally finds
better solutions when strict OGs are imposed.

However, EDUC can also be stuck at some phases of the resolu-
tion process, consuming too much CPU time in improving the OG to
continue with the optimization. That is seen in P3 and could have its
origin in the inflexibility of the EDUC’s balance equation for changing
the generation schedule at some point in the branch & cut process,
making the solver inefficient for moving to earlier nodes that were
less promising a priori but that finally allow an OG reduction after an
exhaustive possibilities examination.

Besides, the push-ups1 in the lower bounds (dual/best bound in
inimization problems) are more significant during the last conver-

1 The term ‘push-up’ is introduced in this paper to denote an event of
umerical optimization. It consists in redefining the best-bound value when
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Fig. 4. Improvements in the optimality gaps versus run time and corresponding evolution of the objective-function bounding along the optimization processes.
gence stages for all the methodologies with demand constraints. It
can be observed that when their OFs barely improve, the LBs start to
perform higher jumps at the final phase, mainly with portfolios 1 and
2. This remarkable bouncing behavior is a consequence of the thermal-
unit effect in these generation portfolios. Their smaller sizes imply
that making a little operational infeasibility in the relaxed solution

the solver understands that the found solution is not subject to many further
developments and, consequently, the optimality gap is unreachable.
12
means a higher weight in the resolution performances. Hence, push-
ups are proportionally greater and take more time to be accomplished,
respecting the evolution of the upper bounds.

On the other hand, the LB slopes of EDUC and EDUC-N are generally
greater than GDUC and GDUC-N when their optimization processes
finish. It can be concluded that the solver identifies that it is worthless
to keep trying to improve the OF and proceeds to perform these
remarkable jumps in the best-bound assumptions. Meanwhile, GDUC
and GDUC-N have more flexible optimization spaces, and their LB
jumps are softer in time.
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Hence, a relationship with the arduousness can be established: the
greater absence of ‘big LB jumps’ when the OF (UB) is stabilized means
a more accessible feasible region exploration, which is translated into
a less arduous performance despite these approaches’ worse tightness
and compactness (especially in HRI cases with strict optimality gaps).

On the other side, OFs (primal bounds) are equivalent to the lower
bounds in maximization problems, and the best bounds (dual solutions)
correspond to the upper bounds. Nevertheless, analyzing the perfor-
mance of the PBUC cases exposed in this section is not worthwhile due
to their quick convergence toward the optimal solution.

3.4. Numerical results of the short-term case studies and comparison to the
medium-term

This section evaluates the computational performance of traditional
large-size case studies in the unit commitment problem with large gen-
eration portfolios and short-term horizons (24 h). It compares their re-
sults to the medium-term horizon (MH) cases described in Section 3.3.

Accordingly, 60 hourly cases with a daily horizon (DH) are run
with each methodology (300 cases) to represent HRI short-term case
studies. Besides, eight cases are run as STG-DH profiles in EDUC, EDUC-
N, GDUC, and GDUC-N. In PBUC-STG-DH, three cases are considered.
Then, a total of 35 STG short-term cases studies are evaluated.

These 335 DH cases utilize P4 as its generation portfolio to ob-
tain large-size case studies with similar dimensions to MH-P3 before
presolve in order to make a fairer comparison. DH-P4 cases are run
on the same computer and under the same software as MH-P3. An
optimality gap of 10−4 is chosen as the stopping criterion. Finally,
Table 7 shows their results and compares them to those obtained with
MH-P3-10−4OG.

Regarding PBUC, DH and MH manifest similar run times when
managing HRI and STG cases. The PBUC-DH-P4 run times are ap-
proximately half of PBUC-MH-P3’s. The tightness of all these cases is
extremely low, and their compactness before presolve is practically
identical. Differences appear after presolve performance. DH cases
achieve a ∼50 times higher reduction of variables and constraints.
It happens because of the internal individualization of generators in
PBUC. Then, the shorter horizon in DH makes this size difference.
Therefore, when arduousness is calculated, substantial differences are
observed. Nevertheless, it is worthless to analyze them in-depth, given
that PBUC’s resolutions are practically instantaneous.

When run times are analyzed in the methodologies with a balance
constraint (EDUC, EDUC-N, GDUC, and GDUC-N), a one-order magni-
tude difference is appreciated between DH-P4 and MH-P3, being the
DH cases faster to solve. However, similar differences are observed in
the run time ratio between HRI and STG cases for both situations. STG
cases always show lower average run times. Moreover, they perform
similarly in STG-DH-P4 independently from the methodology. On the
other hand, higher run times are required in STG-MH-P3 for EDUC-N
and GDUC-N when compared to EDUC and GDUC.

Regarding the tightness, STG cases manifest lower integrality gaps
than HRI in both DH-P4 and MH-P3. However, it is important to note
that tightness in HRI-DH-P4 is very close to STG-DH-P4 in every ap-
proach, while MH-P3 shows remarkable differences. Hence, the balance
constraint and the load profile do not introduce a significant difference
in tightness when evaluating short-term horizons.

Likewise, the constraint and variable reductions after presolve in
DH-P4 manifest the same behavior. This lack of differences between
HRI and STG cases can be explained by the absence of no-load days
in the selection of the case studies. Their presence in MH-P3 cases
involves a greater reduction after presolve performance. Moreover, it
also plays a role in the difference between methodologies observed
when medium-term horizons are employed.

Therefore, it can be concluded that problems’ tightness and com-
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pactness are more predictable (by far) when short-term horizons are
considered, involving a reduction in the complexity of the unit commit-
ment problem. Meanwhile, it is important to highlight that these prac-
tically equal T&C trade-offs in DH-P4 do not lead to similar run times.
Balance constraints also entail differences in these resolution pro-
cesses. Consequently, determining arduousness is necessary to provide
improved insights about the expected computational performance.

In this way, DH-P4 clearly distinguishes the methodologies’ ardu-
ousness for constraints, binary, and continuous variables. EDUC is more
arduous than EDUC-N. For its part, EDUC-N is more arduous than
GDUC, and finally, GDUC-N is the less arduous model when working
with short-term horizons. This behavior is appreciated in both HRI
and STG cases, manifesting a difference between them of one order of
magnitude.

4. Conclusions

MILP formulations of the unit commitment problem provide valu-
able schedules to optimally manage the thermal operation in current
electricity markets. However, they also imply a high computational bur-
den when detailed representations are needed. Consequently, multiple
approaches are continuously being proposed in the literature.

This paper identifies several research gaps in the unit commit-
ment literature, like the computational implications of choosing a
specific balance-equation, dealing with high-intermittency demand pro-
files, or testing methodologies with large-size problems while avoiding
introducing symmetry effects in the resolution processes.

For that reason, an in-depth analysis of the computational perfor-
mance when utilizing different demand constraints (and price-based
relationships) is presented, clarifying differences in feasible regions,
resolution performance, and tightness & compactness of their corre-
sponding methodologies. Moreover, some T&C limitations were de-
tected when defining good practices in MIP numerical optimization.
In accordance, the concept of arduousness was introduced to enhance
computational comparisons.

Furthermore, the study exposed in this article also contemplates
analyzing differences when working with stable load profiles in the
unit commitment problem and with high intermittency demand curves.
Meanwhile, diverse portfolio configurations were also tested to discover
how they affect the resolution processes. In turn, medium-term horizons
were employed to construct large-size problems without replicating
thermal generators to avoid the presence of symmetry effects in this
study. Later, they are compared to large-size short-term cases in which
thermal units have been replicated to constitute problems whose sizes
are similar to the medium-term cases.

Thereafter, the main findings of this paper when analyzing balance
constraints in medium-term horizons are summarized below:

• Objective function and run time trade-off: although every formula-
tion entails a different feasible region and their OFs cannot be
directly compared, computational trade-offs between modeling
detail (approaches, portfolios’ size and configuration, optimal-
ity gaps, solution quality, etc.) and run times were established.
HRI profiles involve more difficult-to-optimize polytopes than
STG since they require higher computational resources to find
a solution, frequently reaching the maximum run time when
strict optimality gaps are imposed. Independently, PBUC quickly
converges to tiny OGs, given that generation decisions are not
interrelated between thermal units. Moreover, it was also de-
tected that large-generators are easier to manage than small- and
medium-units in minimization problems. However, when benefits
are maximized, large units are more difficult to handle.

• Tightness: utilizing STG profiles results in tighter problems for
each methodology than HRI curves. In turn, STG cases tend to
reach similar IGs when strict OGs are imposed. All these cases are
generally tighter than HRI. On the other hand, more significant

differences between approaches were observed when working
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Table 7
Computational performance comparison: metrics of each methodology with different time spans.

EDUC EDUC-N GDUC GDUC-N PBUC

DH P4 MH P3 DH P4 MH P3 DH P4 MH P3 DH P4 MH P3 DH P4 MH P3

Run Times [s]

HRI Average 520.0 6545.6 399.7 6786.7 229.1 6696.7 180.0 6654.3 13.9 25.4
STG Average 30.4 227.8 30.1 334.9 29.5 230.2 29.2 367.6 14.0 25.8

Integrality Gaps [%]

HRI Average 0.12 1.09 0.12 1.21 0.11 1.25 0.11 1.25 0.00 0.00
STG Average 0.10 0.32 0.10 0.33 0.10 0.32 0.10 0.33 0.03 0.02

Constraints & Variables Before Presolve [#]

CT Average 88,796 90,103 88,796 90,103 88,796 90,103 88,796 90,103 88,772 89,359
BV Average 63,000 55,800 63,000 55,800 63,000 55,800 63,000 55,800 63,000 55,800
CV Average 12,600 11,160 12,624 11,904 12,600 11,160 12,624 11,904 12,600 11,160

Constraints & Variables After Presolve [#]

CT HRI Avg. 69,305 62,056 69,305 64,549 69,235 76,827 69,235 78,525 117 5598
BV HRI Avg. 36,234 31,861 36,234 33,584 36,164 41,184 36,164 42,424 54 2862
CV HRI Avg. 12,576 9011 12,600 9699 12,576 9599 12,596 10,231 24 693

CT STG Avg. 69,305 76,480 69,305 82,053 69,235 76,478 69,235 82,051 108 5488
BV STG Avg. 36,234 37,780 36,234 42,500 36,164 37,778 36,164 42,498 58 2854
CV STG Avg. 12,576 11,159 12,600 11,904 12,576 11,159 12,600 11,904 19 671

After/Before Presolve Ratios

CT HRI 78% 69% 78% 72% 78% 85% 78% 87% 0.1% 6%
BV HRI 58% 57% 58% 60% 57% 74% 57% 76% 0.1% 5%
CV HRI 100% 81% 100% 81% 100% 86% 100% 86% 0.2% 6%

CT STG 78% 85% 78% 91% 78% 85% 78% 91% 0.1% 6%
BV STG 58% 68% 58% 76% 57% 68% 57% 76% 0.1% 5%
CV STG 100% 100% 100% 100% 100% 100% 100% 100% 0.2% 6%

Arduousness [#/s]

CT HRI 133.3 9.5 173.4 9.5 302.2 11.5 384.6 11.8 8.4 220.7
BV HRI 69.7 4.9 90.7 4.9 157.8 6.1 200.9 6.4 3.8 112.9
CV HRI 24.2 1.4 31.5 1.4 54.9 1.4 70.0 1.5 1.7 27.3

CT STG 2282.6 335.7 2305.4 245.0 2350.9 332.3 2373.1 223.2 7.7 213.0
BV STG 1193.4 165.8 1205.3 126.9 1228.0 164.1 1239.6 115.6 4.2 110.8
CV STG 414.2 49.0 419.1 35.5 427.0 48.5 431.9 32.4 1.4 26.1
with HRI cases. There, EDUC is the tightest formulation, followed
by EDUC-N. After that, GDUC is tighter than GDUC-N. It means
that an inequality in the demand constraint entails a higher
tightness loss than utilizing NSE terms in HRI cases. From a
portfolio perspective, greater portfolios achieve better tightness
because of their operational flexibility. Finally, PBUC cases offer
the best tightness independently of the input data.

• Compactness: all the formulations have similar CT, BV, and CV
numbers before presolve. Nevertheless, remarkable differences
appear after the presolve performance. As expected, PBUC is
always the most compact approach. Conversely, when NSE terms
are considered in STG cases (EDUC-N & GDUC-N), the presolve
barely reduces the optimization problem. Meanwhile, EDUC-N
is more compact than GDUC in HRI cases. Hence, NSE terms
apparently have a more significant impact in cases where start-
up and shut-down processes were, a priori, less important. At the
portfolio level, greater portfolios mean lower compactness in min-
imization methodologies. However, more substantial reductions
are appreciated for P3 rather than P1 and P2 in PBUC cases.

• Arduousness: T&C metrics do not always meet the expected reso-
lution process behaviors, especially in HRI cases. For that reason,
the concept of arduousness is introduced to provide clearer no-
tions about computational performances, making it also possible
to measure and compare the ability of the solver to work with
the problems’ polytopes and to find optimal solutions. In this
way, NSE terms increase the arduousness in STG cases. On the
other hand, HRI performances are clarified: EDUC and EDUC-N
formulations are more arduous to solve than GDUC and GDUC-
N. This surprising result could not be concluded according to
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the T&C information. From the portfolio perspective, small- and
medium-generators imply greater arduousness in minimization
problems. Meanwhile, large units are more difficult to handle in
maximization problems.

• Resolution processes: the utilization of NSE terms requires a greater
effort to reduce the optimality gap, especially at the beginning of
the optimization. On the other hand, when the solvers consider
that the relaxed solution is unreachable and it is worthless to
keep trying to improve the objective function (integer solution),
they start to perform changes in the relaxed solution, establishing
less strict targets. This phenomenon is generally more remarkable
in the final steps of EDUC-N and EDUC cases due to the greater
rigidness of their demand constraints.

• Comparison to short-term problems when problem sizes are similar:
medium-term problems manifest greater differences because of
their balance constraint than short-term cases do. They imply
differences in tightness and compactness, which are negligible
with short-term horizons independently from using HRI or STG
profiles. This fact makes arduousness an even more important
metric to provide realistic predictions of the methodologies and
case studies’ computational performance.

Finally, the conclusions manifest the usefulness and validity of the
analysis presented in the article. These highlights define several good
practices that should be taken into account when any formulation
improvement of the unit commitment problem is proposed. Moreover,
this article establishes a basis for analyzing future constraints that link
all the generators involved in the unit commitment problem, such as
reserve constraints. However, it is important to remember that solvers
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ave an internal-opaque functioning which entails some degree of
npredictability, making it imprudent to provide categorical recom-
endations. Despite that, computational implications of the different

xposed methodologies have been clarified thanks to this study, and
hey can be leveraged in future research from a qualitative perspective
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ystem operators (ISOs) and utilities.

RediT authorship contribution statement

Luis Montero: Writing – original draft, Visualization, Validation,
upervision, Software, Resources, Methodology, Investigation, Formal
nalysis, Data curation, Conceptualization. Antonio Bello: Writing –
riginal draft, Supervision, Methodology, Investigation. Javier Rene-
es: Supervision, Methodology, Investigation.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The authors are unable or have chosen not to specify which data
as been used.
15
ppendix. Computational trade-offs

Fig. A.5 illustrates the improvements in the OF regarding the reduc-
ion of the optimality gap (the ratio between the solutions and those
btained with a 10−2 OG) and the run time of each case. Furthermore,

the objective-function data are gathered in Table A.8 in $. It is impor-
tant to highlight that it would be senseless to consider the feasible-made
EDUC cases in these quantitative analyses. Nevertheless, the EDUC HRI
cases of July and August are feasible as they are, and their solutions can
be typically compared.

In this way, EDUC-N shows ‘better’ values than EDUC, as expected,
since it is a less rigid problem. Consequently, GDUC manifests ‘better’
OFs than EDUC, and GDUC-N ‘overcomes’ both EDUC and GDUC when
strict optimality gaps are defined. All these results are predictable.
However, the point of this section is to determine an OF/run time
trade-off per the imposed OGs for these methodologies.

Fig. A.5 reflects that OFs never improve more than 1% with the
10−4 and 10−6 OGs. However, this difference entails substantial rev-
nues [32] and should not be ignored. Conversely, when OFs with
0−4 and 10−6 OGs are compared, results are practically equal, and
heir series overlap in the figure. That may happen because the found
olution is not subject to many feasible further developments, and the
olver starts to perform push-ups over the best bound, getting their
alues closer and satisfying the optimality gap.
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Table A.8
Objective function comparison.

# EDUC EDUC-N GDUC GDUC-N PBUC

Optimality gap Optimality gap Optimality gap Optimality gap Optimality gap

10−2 10−4 10−6 10−2 10−4 10−6 10−2 10−4 10−6 10−2 10−4 10−6 10−2 10−4 10−6

Portfolio 1

J – – – 26,234,045 26,084,172 26,084,172 25,705,274 25,493,070 25,493,070 25,532,302 25,491,217 25,490,480 52,125,153 52,125,153 52,125,153
F – – – 23,982,465 23,867,627 23,867,627 22,577,953 22,458,768 22,458,768 22,588,914 22,459,089 22,458,768 45,250,583 45,250,583 45,251,006
M – – – 13,135,058 13,075,135 13,075,135 12,419,026 12,367,810 12,367,810 12,453,940 12,365,597 12,365,597 32,137,133 32,137,133 32,137,470
A – – – 16,363,859 16,299,429 16,299,413 7,050,090 7,010,362 7,010,362 7,045,959 7,008,632 7,008,632 11,116,399 11,117,588 11,117,588
M – – – 7,881,066 7,835,772 7,835,772 6,249,570 6,236,324 6,236,324 6,279,280 6,236,324 6,236,324 32,177,327 32,177,327 32,177,358
J – – – 19,926,539 19,891,519 19,891,519 18,501,756 18,339,137 18,339,137 18,362,576 18,338,428 18,338,428 52,665,666 52,665,666 52,665,666
J 23,963,272 23,780,779 23,780,779 23,983,850 23,780,739 23,780,739 23,970,807 23,780,779 23,780,779 23,983,535 23,780,739 23,780,739 68,077,447 68,077,447 68,077,447
A 37,952,583 37,707,084 37,707,055 37,788,007 37,688,987 37,688,815 37,997,583 37,707,228 37,707,055 38,036,039 37,689,008 37,688,815 57,290,698 57,290,698 57,290,698
S – – – 40,023,159 39,970,685 39,970,685 39,176,075 38,878,340 38,878,340 39,002,078 38,876,849 38,876,849 59,849,333 59,849,333 59,852,311
O – – – 31,341,735 31,200,757 31,200,757 28,922,470 28,727,772 28,727,772 28,932,594 28,710,224 28,710,224 34,266,833 34,266,833 34,267,393
N – – – 35,215,029 35,127,755 35,127,755 33,322,741 33,154,538 33,151,875 33,260,898 33,129,417 33,129,417 40,549,121 40,549,121 40,551,026
D – – – 30,487,726 30,377,857 30,377,556 28,042,265 27,972,430 27,972,430 28,137,905 27,936,687 27,936,687 24,802,028 24,804,985 24,804,985
X 36,321,028 36,167,522 36,167,522 36,198,272 36,169,806 36,167,522 36,320,254 36,167,522 36,167,522 36,167,522 36,167,522 36,167,522 54,785,675 54,785,675 54,785,675
Y 34,349,154 34,169,733 34,169,709 34,170,105 34,170,105 34,169,709 34,323,398 34,169,709 34,169,709 34,171,867 34,171,867 34,169,709 90,700,668 90,700,668 90,700,668
Z 36,317,268 36,257,122 36,256,547 36,472,552 36,255,870 36,255,870 36,418,841 36,257,214 36,256,547 36,281,333 36,256,101 36,255,870 11,636,906 11,665,932 11,665,932

Portfolio 2

J – – – 12,718,723 12,668,436 12,668,436 12,348,056 12,287,818 12,287,818 12,334,599 12,287,009 12,287,009 15,156,326 15,156,326 15,156,326
F – – – 11,226,578 11,161,341 11,161,341 10,828,788 10,790,854 10,790,854 10,851,848 10,790,639 10,790,639 13,848,659 13,848,659 13,848,659
M – – – 6,235,892 6,206,589 6,206,589 5,976,565 5,942,899 5,942,899 5,979,015 5,942,851 5,942,851 9,132,476 9,144,846 9,145,337
A – – – 6,220,505 6,193,192 6,193,192 3,357,734 3,353,731 3,353,731 3,362,010 3,352,834 3,352,834 2,563,022 2,566,206 2,566,206
M – – – 3,526,456 3,505,331 3,505,331 3,001,345 2,998,770 2,998,770 3,006,799 2,998,770 2,998,770 10,654,678 10,655,782 10,655,896
J – – – 9,689,371 9,625,512 9,625,512 8,931,246 8,870,811 8,870,811 8,880,220 8,870,648 8,870,648 18,083,544 18,083,544 18,083,544
J 11,605,534 11,525,377 11,525,377 11,582,373 11,525,231 11,525,231 11,618,641 11,525,377 11,525,377 11,591,233 11,525,231 11,525,231 24,216,076 24,216,076 24,216,076
A 18,477,256 18,338,099 18,337,390 18,341,836 18,337,390 18,337,390 18,432,761 18,336,931 18,336,910 18,503,124 18,337,556 18,336,910 17,991,688 17,991,688 17,991,688
S – – – 19,559,726 19,456,067 19,456,067 18,968,637 18,908,430 18,908,430 19,017,502 18,906,494 18,906,494 18,406,008 18,410,852 18,411,649
O – – – 14,218,127 14,132,410 14,132,410 13,865,077 13,765,669 13,765,669 13,865,285 13,761,656 13,761,656 8,502,650 8,509,342 8,509,342
N – – – 16,754,318 16,660,525 16,660,525 15,948,276 15,853,870 15,853,870 15,912,407 15,852,515 15,852,515 10,087,096 10,098,607 10,098,607
D – – – 14,077,949 14,037,212 14,037,212 13,159,152 13,142,995 13,142,995 13,238,350 13,140,278 13,140,278 4,558,342 4,590,361 4,590,361
X 17,461,012 17,461,012 17,460,488 17,528,597 17,447,488 17,446,705 17,503,760 17,460,488 17,460,488 17,599,095 17,448,091 17,446,705 18,345,911 18,345,911 18,345,911
Y 16,534,711 16,486,460 16,486,072 16,498,881 16,476,028 16,475,846 16,582,216 16,486,103 16,486,072 16,629,879 16,476,374 16,475,846 33,112,046 33,112,046 33,112,046
Z 17,684,060 17,564,883 17,563,778 17,567,082 17,559,776 17,559,776 17,667,054 17,564,142 17,563,778 17,680,273 17,559,776 17,559,776 3,389,575 3,389,575 3,389,575

Portfolio 3

J – – – 37,314,972 37,080,271 37,080,271 36,450,705 36,288,498 36,288,498 36,410,643 36,287,900 36,287,900 67,281,479 67,281,479 67,281,479
F – – – 33,507,031 33,261,615 33,261,615 32,433,205 32,234,937 32,234,937 32,365,925 32,234,187 32,234,187 59,099,242 59,099,242 59,099,665
M – – – 18,132,780 18,100,592 18,100,592 17,531,643 17,432,817 17,432,817 17,546,595 17,433,788 17,433,788 41,282,470 41,282,470 41,282,807
A – – – 19,396,587 19,259,445 19,259,445 9,731,651 9,665,358 9,665,358 9,674,955 9,664,520 9,664,520 13,682,701 13,683,794 13,683,794
M – – – 10,339,028 10,312,362 10,312,362 8,819,026 8,792,765 8,792,765 8,855,678 8,792,618 8,792,618 42,832,036 42,832,036 42,833,254
J – – – 28,692,156 28,655,218 28,655,218 26,500,649 26,364,274 26,364,274 26,507,973 26,363,953 26,363,953 70,749,210 70,749,210 70,749,210
J 34,597,663 34,388,674 34,388,674 34,493,760 34,386,299 34,386,299 34,615,623 34,386,299 34,386,299 34,505,331 34,386,590 34,386,590 92,293,522 92,293,522 92,293,522
A 54,925,281 54,598,894 54,598,894 54,785,977 54,598,629 54,598,629 55,044,626 54,598,894 54,598,894 55,044,269 54,598,629 54,598,629 75,282,386 75,282,386 75,282,386
S – – – 58,156,481 57,832,038 57,832,038 56,420,098 56,162,188 56,162,188 56,410,049 56,162,203 56,162,203 78,260,982 78,260,982 78,263,960
O – – – 43,120,489 42,921,059 42,921,059 41,086,711 40,968,519 40,968,519 41,258,674 40,967,132 40,967,132 42,776,175 42,776,175 42,776,734
N – – – 49,652,478 49,465,237 49,465,237 47,590,671 47,431,749 47,431,749 47,712,257 47,429,769 47,429,769 50,647,728 50,647,728 50,649,633
D – – – 42,152,530 41,966,586 41,966,586 39,638,448 39,431,730 39,431,730 39,645,911 39,419,323 39,419,323 29,392,389 29,395,346 29,395,346
X 52,448,348 52,155,356 52,155,044 52,597,222 52,155,044 52,155,044 52,411,627 52,155,044 52,155,044 52,175,032 52,155,428 52,155,044 73,131,586 73,131,586 73,131,586
Y 49,601,514 49,316,312 49,316,296 49,793,608 49,316,296 49,316,296 49,604,945 49,316,296 49,316,296 49,327,802 49,316,396 49,316,296 123,812,714 123,812,714 123,812,714
Z 52,529,411 52,380,055 52,378,012 52,433,342 52,378,636 52,378,012 52,601,880 52,379,417 52,378,012 52,415,555 52,378,425 52,378,012 15,026,481 15,055,507 15,055,507
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