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Summary

Abstract. This thesis combines computational and mathematical techniques to
investigate the structure and symmetries of moduli spaces of stable parabolic vector
bundles over smooth complex projective curves with marked points. The main ob-
jective is to classify the isomorphism types of these moduli spaces and compute their
automorphism groups, with a focus on generic weights and su�ciently large genus.

These moduli spaces vary with respect to a set of parameters called parabolic
weights, whose parameter space is divided by a �nite collection of walls into stability
chambers. Within each chamber, the moduli space remains unchanged, while cross-
ing a wall typically results in a di�erent space. However, a set of basic transforma-
tions�pullback, Hecke, tensorization, and dualization�induce isomorphisms between
di�erent chambers, grouping moduli spaces into distinct isomorphism classes.

A central contribution of this work is the development of a computational frame-
work centered on two key algorithms. The �rst is a decision tree that partitions the
weight space into stability chambers by recursively splitting polytopes. This procedure
relies on enumerating admissible selection vectors that de�ne candidate walls, and on
determining which of these walls actually a�ect the decomposition. The second algo-
rithm builds on the resulting chamber structure to compute isomorphism classes and
automorphism groups by applying all basic transformations to chamber representatives,
classifying them e�ciently using the decision tree.

The computational analysis reveals deep structural patterns and symmetries, moti-
vating a series of conjectures that are subsequently established through rigorous math-
ematical proofs. We derive a closed formula for the number of geometric walls and
present both tight bounds and asymptotic estimates for their growth. For the number
of stability chambers, we provide upper and lower bounds based on hyperplane arrange-
ment theory as a function of the number of walls. A key structural result demonstrates
that for rank greater than two, dualization does not appear in any automorphism of a
generic moduli space.

Keywords: Parabolic bundles, moduli spaces, stability chambers, geometric walls, iso-
morphism classes, automorphism groups, algebraic geometry, computational algebra,
decision trees, polytope decomposition, basic transformations, duality.
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Chapter 1: Introduction

This chapter introduces the moduli space M(r, α, ξ) of stable parabolic vector bundles
over a smooth projective curve X with marked points D. A parabolic bundle consists
of a vector bundle with �ltrations and real weights α at the marked points. Varying
α changes the stability condition, inducing a wall-and-chamber decomposition of the
weight space.

These moduli spaces arise in diverse areas of mathematics and physics, including
the theory of di�erential equations and quantum �eld theory. Their classi�cation is
highly nontrivial and often exceeds the reach of traditional mathematical techniques.
To address this challenge, the thesis develops algorithmic methods to analyze stability
chambers, isomorphism classes, and automorphism groups. These computational tools
are complemented by rigorous mathematical proofs, establishing the correctness and
depth of the results.

This work is part of the CIAMOD project at the IIT, where I cotributed as a
Student Research Assistant. An initial phase culminated in a poster presented at the
2024 RTGF meeting at ICMAT (CSIC). Now, two papers are in preparation: one on
theoretical results and the other on computational approaches.

Chapter 2: Moduli Spaces of Parabolic Bundles and Stability

This chapter introduces the moduli spacesM(r, α, ξ) of full �ag semistable parabolic
vector bundles over a smooth projective curve X of genus g ≥ 2, with marked points
D = {x1, . . . , xn}. Each bundle carries a full �ag at each parabolic point and strictly
increasing weights α ∈ An,r.

Semistability is de�ned via the parabolic slope and encoded combinatorially through
selection vectors, which govern the induced �ltrations on subbundles. The weight space
An,r is divided by a �nite set of stability walls Wn̄,d′ into numerical stability chambers,
where the moduli space remains constant. When g ≥ 1+(r−1)n, all such walls a�ect at
least one semistable parabolic bundle [AG21], thus separating di�erent moduli spaces.

We invoke an structural simpli�cation from [AG21], which states that shifting all
weights at a point by a constant preserves stability, motivating the study of weights in
the normalized subspace Ãn,r with α1(x) = 0.

Finally, we review the four basic transformations�pullback, dualization, tensor
product, and Hecke transformations� forming a group T , which act on the weights α
and give rise to isomorphisms between these moduli spaces with �xed (X,D). These
transformations preserve semistability and reduce the classi�cation problem to the case
of trivial determinant and degree d = 0.

Chapter 3: Algorithmic Exploration of Stability Chambers

This chapter develops a computational framework to study the chamber structure and
symmetries of moduli spacesM(r, α, ξ) of parabolic vector bundles. The central object
is the space of parabolic weights Ãn,r, a product of simplices partitioned by hyperplanes
Wn̄,d′ , which are de�ned via admissible selection vectors n̄ ∈ Ωn,r,r′ .

To address the combinatorial complexity, several algorithms are introduced. First,
a Monte Carlo sampling heuristically estimates chamber counts and visualizes con�gu-
rations for small n and r. Then, a key result identi�es geometric walls using intercept
bounds, allowing for an enumeration of all geometric walls. A deterministic algorithm
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replaces the Monte Carlo heuristic with an exact enumeration of chambers via recursive
polytope splitting, yielding a decision tree that classi�es chambers using exact rational
arithmetic.

The �nal section presents a graph based algorithm that applies basic transforma-
tions�pullbacks, Hecke modi�cations, and dualisation�to detect isomorphisms and
compute automorphism groups. Experimental results show that isomorphism classes
are far fewer than the total number of chambers, and for r > 2, dualisation never
appears in any chamber's automorphism group. Several observed patterns motivate
conjectures later proved in Chapters 4 and 5.

Chapter 4: Bounds on Geometric Walls and Stability Chambers

This chapter analyzes the number of walls and stability chambers in the space of
stability conditions for rank-r parabolic vector bundles over (X,D) with n marked
points and degree zero. Each wall is de�ned by a hyperplane Wn̄,d′ determined by
subbundles of subrank r′ and selection vectors n̄ ∈ Ωn,r,r′ . A key insight (Lemma 4.1.3)
shows that walls come in proportional pairs, reducing the count to subranks r′ ≤ ⌊r/2⌋.

A hyperplane contributes to the decomposition only if its intercept lies in a spe-
ci�c interval (ln̄, un̄) (Lemma 4.1.2). Summing over these intervals leads to a formula
(Lemma 4.2.4) for the total number of walls.

For the number of stability chambers, classical bounds from hyperplane arrange-
ment theory apply, giving a linear lower bound and a combinatorial upper bound based
on Schlä�i's theorem [Sch01]. Though not tight, these bounds o�er useful asymptotic
estimates. A comparison with actual data reveals that upper bounds signi�cantly
overestimate the true number, motivating further re�nements.

Overall, the chapter provides both exact formulas and asymptotic behavior, es-
tablishing a foundation for understanding the combinatorics behind wall-crossing and
chamber structure.

Chapter 5: Duality

For a smooth curve of genus g ≥ max{6, 1 + (r − 1)n} with generic weights α, the
chapter shows that any basic transformation T = (σ, s, L,H) ∈ Tξ preserving the
moduli space M(X, r, α, ξ) must satisfy s = 1 once r > 2. Lemma 5.1.1 �rst forces
the numerical condition r | |H| when deg ξ = 0. Lemma 5.1.2 then guarantees, for any
automorphism, the existence of a generic weight α′ �xed by T inside the same stability
chamber. Combining these facts, Lemma 5.1.3 shows that for r > 2 the only way to
preserve such an α′ is to keep s = 1, ruling out duality. Thus, for higher rank moduli
spaces, dualization is never part of the automorphism group.
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Resumen

Resumen. Esta tesis combina técnicas computacionales y matemáticas para inves-
tigar la estructura y las simetrías de los espacios de moduli de �brados vectoriales
parabólicos estables sobre curvas proyectivas complejas suaves con puntos marcados.
El objetivo principal es clasi�car los tipos de isomor�smo de estos espacios de moduli
y calcular sus grupos de automor�smos, centrándose en pesos genéricos y en el caso de
género su�cientemente alto.

Estos espacios de moduli varían con respecto a un conjunto de parametros llamados
pesos parabólicos, cuyo espacio de parámetros se divide mediante una colección �nita
de paredes en cámaras de estabilidad. Dentro de cada cámara, el espacio de moduli
permanece invariante, mientras que al cruzar una pared, generalmente se obtiene un
espacio distinto. Sin embargo, un conjunto de transformaciones básicas�pullback,
Hecke, tensorización y dualización�generan isomor�smos entre diferentes cámaras,
agrupando los espacios de moduli en distintas clases de isomor�smo.

Una contribución central de este trabajo es el desarrollo de un marco computacional
centrado en dos algoritmos clave. El primero es un árbol de decisión que particiona el
espacio de pesos en cámaras de estabilidad mediante la división recursiva de politopos.
Este procedimiento se basa en la enumeración de vectores de selección admisibles que
de�nen paredes candidatas y en determinar cuáles de estas afectan realmente a la de-
scomposición. El segundo algoritmo utiliza la estructura de cámaras resultante para
calcular clases de isomor�smo y grupos de automor�smos, aplicando todas las trans-
formaciones básicas a representantes de cada cámara, clasi�cándolos de forma e�ciente
mediante el árbol de decisión.

El análisis computacional revela patrones estructurales y simetrías profundas, lle-
vando a una serie de conjeturas que posteriormente se demuestran mediante pruebas
matemáticas rigurosas. Derivamos una fórmula cerrada para el número de paredes ge-
ométricas y presentamos tanto cotas ajustadas como estimaciones asintóticas para su
crecimiento. Para el número de cámaras de estabilidad, proporcionamos cotas superior
e inferior basadas en la teoría de arreglos de hiperplanos en función del número de
paredes. Un resultado estructural clave demuestra que para rangos mayores que dos,
la dualización no aparece en ningún automor�smo de un espacio de moduli genérico.

Palabras clave: Fibrados parabólicos, espacios de moduli, cámaras de estabilidad,
paredes geométricas, clases de isomor�smo, grupos de automor�smos, geometría al-
gebraica, álgebra computacional, árboles de decisión, descomposición de politopos,
transformaciones básicas, dualidad.

Capítulo 1: Introducción

Este capítulo introduce el espacio de moduli M(r, α, ξ) de �brados vectoriales parabóli-
cos estables sobre una curva proyectiva suave X con puntos marcados D. Un �brado
parabólico consiste en un �brado vectorial con �ltraciones completas y pesos reales α
en los puntos marcados. Al variar α cambia la condición de estabilidad, induciendo
una descomposición del espacio de pesos en paredes y cámaras.

Estos espacios de moduli aparecen en diversas áreas como matemática y física, in-
cluyendo la teoría de ecuaciones diferenciales y la teoría cuántica de campos. Su clasi-
�cación es altamente no trivial y a menudo supera el alcance de técnicas matemáticas
tradicionales. Para abordar este desafío, la tesis desarrolla métodos algorítmicos para
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analizar las cámaras de estabilidad, las clases de isomor�smo y los grupos de auto-
mor�smos. Estas herramientas computacionales se complementan con demostraciones
matemáticas rigurosas que establecen la corrección y profundidad de los resultados.

Este trabajo forma parte del proyecto CIAMOD en el IIT, donde participé como
Alumno Colaborador. La fase inicial culminó en un póster presentado en el encuentro
RTGF 2024 en el ICMAT (CSIC). Actualmente, están en preparación dos artículos:
uno sobre los resultados teóricos y otro sobre los enfoques computacionales.

Capítulo 2: Espacios de Moduli de Fibrados Parabólicos y Es-

tabilidad

Este capítulo introduce los espacios de moduli M(r, α, ξ) de �brados vectoriales
parabólicos semiestables con �ltraciones completas sobre una curva proyectiva suave X
de género g ≥ 2, con puntos marcados D = x1, . . . , xn. Cada �brado lleva una �ltración
completa en cada punto parabólico y pesos estrictamente crecientes α ∈ An,r.

La semiestabilidad se de�ne mediante la pendiente parabólica y se codi�ca combi-
natoriamente a través de vectores de selección, que gobiernan las �ltraciones inducidas
en los sub�brados. El espacio de pesos An,r se divide mediante un conjunto �nito de
paredes de estabilidad Wn̄,d′ en cámaras de estabilidad numérica, donde el espacio de
moduli permanece constante. Cuando g ≥ 1 + (r − 1)n, todas estas paredes afectan
a al menos un �brado parabólico semiestable [AG21], separado por tanto espacios de
moduli distintos.

Hacemos uso de una simpli�cación estructural de [AG21], que establece que de-
splazar todos los pesos en un punto por una constante preserva la estabilidad, lo cual
motiva el estudio de los pesos en el subespacio normalizado Ãn,r con α1(x) = 0.

Finalmente, repasamos las cuatro transformaciones basicas�pullback, dualización,
producto tensorial y transformaciones de Hecke�que forman un grupo T que actuan
sobre los pesos α dando lugar a los isomor�smos entre estos espacios de moduli con
(X,D). Estas transformaciones preservan la semiestabilidad y reducen el problema de
clasi�cación a determinante trivial y grado d = 0.

Capítulo 3: Exploración Algorítmica de Cámaras de Estabilidad

Este capítulo desarrolla un marco computacional para estudiar la estructura de cámaras
y simetrías de los espacios de moduliM(r, α, ξ) de �brados vectoriales parabólicos. El
objeto central es el espacio de pesos parabólicos Ãn, r, un producto de símplices par-
ticionado por hiperplanos Wn̄, d′, de�nidos mediante vectores de selección admisibles
n̄ ∈ Ωn,r,r′ .

Para abordar la complejidad combinatoria, se introducen múltiples algoritmos.
Primero, un muestreo Monte Carlo estima heurísticamente el número de cámaras y
visualiza con�guraciones para n y r pequeños. Luego, un resultado clave identi�ca
paredes geométricas mediante cotas de término independiente, permitiendo enumer-
arlas completamente. Un algoritmo determinista reemplaza la heurística de Monte
Carlo con una enumeración exacta de cámaras mediante división recursiva de polito-
pos, generando un árbol de decisión que clasi�ca cámaras usando aritmética racional
exacta.

La sección �nal presenta un algoritmo basado en grafos que aplica transforma-
ciones básicas�pullback, Hecke y dualización�para detectar isomor�smos y calcular
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grupos de automor�smos. Los resultados experimentales muestran que las clases de
isomor�smo son mucho menos numerosas que el total de cámaras, y que para r > 2,
la dualización nunca aparece en el grupo de automor�smos de ninguna cámara. Var-
ios patrones observados motivan conjeturas que se demuestran más adelante en los
Capítulos 4 y 5.

Capítulo 4: Cotas sobre Paredes Geométricas y Cámaras de

Estabilidad

Este capítulo analiza el número de paredes y cámaras de estabilidad en el espacio
de condiciones de estabilidad para �brados parabólicos de rango r sobre (X,D) con
n puntos marcados y grado cero. Cada pared está de�nida por un hiperplano Wn̄,d′

determinado por sub�brados de subrango r′ y vectores de selección n̄ ∈ Ωn,r,r′ . Una
observación clave (Lema 4.1.3) muestra que las paredes vienen en pares proporcionales,
reduciendo el conteo a subrangos r′ ≤ ⌊r/2⌋.

Un hiperplano contribuye a la descomposición solo si su término independiente cae
en un intervalo especí�co (ln̄, un̄) (Lema 4.1.2). Al sumar sobre estos intervalos se
obtiene una fórmula (Lema 4.2.4) para el número total de paredes.

Para el número de cámaras de estabilidad, se aplican resultados clásicos de teoría
de arreglos de hiperplanos para obtener una cota inferior lineal y una cota superior
combinatoria basada en el teorema de Schlä�i [Sch01]. Aunque no son cotas ajus-
tadas, ofrecen estimaciones asintóticas útiles. Comparando con datos reales observa-
mos que las cotas superiores sobrestiman signi�cativamente el número real, motivando
re�namientos adicionales.

En conjunto, el capítulo proporciona tanto fórmulas exactas como comportamiento
asintótico, estableciendo una base para comprender la combinatoria detrás del cruce
de paredes y la estructura de cámaras.

Capítulo 5: Dualidad

Para una curva suave de género g ≥ max 6, , 1 + (r − 1)n con pesos genéricos α, el
capítulo demuestra que cualquier transformación básica T = (σ, s, L,H) ∈ Tξ que
preserve el espacio de moduli M(X, r, α, ξ) debe satisfacer s = 1 cuando r > 2. El
Lema 5.1.1 impone primero la condición numérica r | |H| cuando deg ξ = 0. Luego,
el Lema 5.1.2 garantiza, para todo automor�smo, la existencia de un peso genérico α′

�jo por T dentro de la misma cámara de estabilidad. Combinando estos hechos, el
Lema 5.1.3 muestra que para r > 2 la única forma de preservar tal α′ es mantener
s = 1, descartando la dualidad. Por tanto, para espacios de moduli de rango mayor
que dos, la dualización nunca forma parte del grupo de automor�smos.
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Chapter 1

Introduction

1.1 Context and intuition

Let us begin by unpacking the terminology of the main objects of study in this paper.
Roughly speaking, a moduli space is a geometric space whose points classify, up to
isomorphism, objects of a �xed type; moving inside the space corresponds to smoothly
deforming the object one is interested in. A vector bundle (E,E•) of rank r and degree d
on a smooth projective curveX is a family of r-dimensional vector spaces parameterised
by the points of X. The degree d, also denoted deg(E), is related to how the bundle
twists around the curve, and the rank r indicates the number of dimensions in each
�bre of the bundle (See [Gro55] and [Ses82]) for more information on vector bundles).

Endowing a vector bundle with a parabolic structure involves choosing a �nite set
of marked points D = {x1, . . . , xn} ⊂ X. A parabolic structure on a vector bundle E
of rank r consists of assigning, at each point xi ∈ D, a full �ag �ltration of the �bre
E|xi

:
E|xi

= Exi,1 ⊋ Exi,2 ⊋ · · · ⊋ Exi,r ⊋ Exi,r+1 = 0,

along with a corresponding system of parabolic weights

0 ≤ α1(xi) < α2(xi) < · · · < αr(xi) < 1.

These parabolic weights are real numbers that describe how the bundle is allowed to
degenerate at the marked points.

We say a vector bundle (E,E•) is α-stable if it satis�es a certain stability condition
with respect to the parabolic weights α (see �2.1). The choice of parabolic weights
α determines which parabolic vector bundles are stable. As a result, varying α can
change the set of objects classi�ed by the moduli space, and thus alter the moduli
space itself. In this work, we treat α as one of the key structural parameters governing
the geometry and classi�cation of the moduli spaces under study.

Finally, a moduli space of stable parabolic vector bundles is a geometric space that
classi�es stable parabolic vector bundles of �xed rank r, degree d, determinant ξ and
parabolic weights α on a �xed curve X with marked points D and genus g. We will
denote this moduli space by M(r, α, ξ) (see [New78] for more details on moduli of
parabolic vector bundles).

In this paper, we will study moduli spaces with �xed determinant ξ and a su�ciently
high genus g ≥ 1 + (r − 1)n.

Assume that a curve X of high enough genus has been �xed. Throught our analysis,
we will consider the following parameters of the moduli space parabolic vector bundles:
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� Number of parabolic points n;

� Rank r of the vector bundles;

� Set of automorphisms (symmetries) of the curve X that preserve the marked
points D;

� Parabolic weights 0 ≤ α1(x) < α2(x) < . . . < αr(x) < 1 for each x ∈ D;

� Degree d of the vector bundles.

Studying moduli spaces of parabolic bundles is crucial for understanding the geom-
etry of vector bundles with �elds with singularities, and they have become a central
object of study in algebraic geometry, representation theory, and mathematical physics.
For instance, they arise naturally in the study of isomonodromic deformations of linear
di�erential equations with singularities, an area that connects deeply with Painlevé
equations and integrable systems [IIS06] (moduli space of parabolic connections). In
physics, moduli spaces of parabolic bundles appear in gauge theory and the geometric
Langlands program, where they provide key insights into dualities between quantum
�eld theories [GW22] (moduli space of Higgs bundles). Because of their deep connec-
tions across disciplines, the study of moduli spaces of parabolic bundles is an interesting
and active area of research.

When studying moduli spaces of parabolic vector bundles, we are often interested
in the following questions:

1. Under what conditions do di�erent choices of parameters (e.g., weights) yield
exactly the same moduli space object?

2. When can two moduli spaces be considered isomorphic?

3. How many distinct (non-isomorphic) moduli spaces are there when considering
a �xed set of parameters?

4. Can we classify the automorphism groups of these moduli spaces?

1.2 Motivation

The motivation behind this thesis arises from the mathematical challenges involved in
the study of moduli spaces of parabolic bundles over algebraic curves. These mod-
uli spaces encode deep geometric and topological information, and their classi�cation
remains a central problem in modern algebraic geometry. Traditional tools, although
powerful, quickly reach their limits due to the combinatorial and geometric complex-
ity that escalates even in seemingly simple cases. The spaces involved exhibit intricate
structures with walls and chambers�so-called stability chambers�that change accord-
ing to speci�c parameters and require detailed analysis to fully understand.

To address this challenge, we adopt a novel perspective that combines ideas from
computational geometry and algorithmic techniques, such as Decision Trees, to ex-
plore the structure of these moduli spaces. This approach enables us to systematically
enumerate and classify the stability chambers, understand the number and nature of
isomorphism classes, and determine the automorphism groups associated with each
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distinct moduli space. The integration of computational tools not only enhances our
capacity to manage large parameter spaces but also opens new directions in the inves-
tigation of moduli theory.

1.3 Publications

This work is part of a broader research initiative at the IIT � Institute for Research in
Technology, within the framework of the CIAMOD project. Over the past two years,
I have been involved in this initiative as a Student Research Assistant, contributing to
both theoretical and computational developments.

Notably, the �rst stage of the project culminated in the presentation of a scienti�c
poster at the 2024 Red Temática de Geometría y Física (RTGF) meeting, held at the
Institute of Mathematical Sciences (ICMAT) of the Spanish National Research Council
(CSIC). This opportunity allowed for valuable interaction with leading researchers in
the �eld and helped re�ne the objectives of the project.

The next stage of the project is the preparation of two work-in-progress papers, one
focusing on the theoretical aspects of the moduli spaces of parabolic vector bundles and
the other on the computational methods employed in their analysis, in particular, to
the Decision Tree algorithm for partitioning polytopes. These papers will be submitted
to peer-reviewed journals, contributing to the academic discourse on this topic.

1.4 Overview of the thesis

This thesis explores the structure and classi�cation of moduli spaces of parabolic vector
bundles through the lens of parabolic stability and its combinatorial manifestations,
with a particular emphasis on algorithmic enumeration.

We begin in Chapter 1 by laying out the context and motivation for the study of
parabolic vector bundles, articulating both the mathematical richness and the algo-
rithmic challenges they pose. The reader is introduced to the conceptual foundation of
parabolic stability, including how epsilon shifts a�ect the parameter space and trans-
formations that a�ect stability conditions. This introductory framework sets the stage
for transitioning smoothly from theoretical constructs to algorithmic procedures.

In Chapter 2, we delve into the de�nition and construction of moduli spaces of
parabolic vector bundles. We introduce the notion of stability chambers�regions of
the weight space that preserve stability�and explore their geometric structure. The
connection between walls and chambers is established rigorously, providing a necessary
backdrop for further computational exploration.

Chapter 3 marks a methodological shift toward algorithmic experimentation. Here,
we present a suite of algorithms designed to enumerate stability chambers and iden-
tify isomorphisms between moduli spaces. Techniques such as Monte Carlo sampling,
enumeration of selection vectors, and symmetry reduction are introduced and carefully
analyzed. The emphasis is on both correctness and computational e�ciency, showcas-
ing the interplay between mathematical theory and algorithm design.

Building on the computational insights, Chapter 4 establishes upper bounds on the
number of geometric walls and stability chambers. These bounds are not merely ab-
stract estimates�they emerge from concrete algorithms and are supported by empirical
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data. This chapter thus functions as a bridge between theory and experimentation,
a�rming the robustness of the proposed methods.

Finally, Chapter 5 investigates restrictions on the possible combinations of basic
transformations yielding automorphisms of the moduli space. In particular, we show
restrictions on the presence of Hecke transfomrations and the dual as part of automor-
phisms.

1.5 Code Availability

The full source code developed for this thesis, including algorithms for chamber decom-
position, moduli space classi�cation, and automorphism group enumeration, is openly
available at:

https://github.com/CIAMOD/stability_chambers.git

This repository contains scripts, data, and visualization tools used in the compu-
tational analysis and in generating the �gures and tables throughout this document.
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Chapter 2

Moduli Spaces of Parabolic Vector

Bundles and Parabolic Stability

Chambers

Throughout this work, let X be a smooth complex projective curve of genus g ≥ 2,
and let D = {x1, . . . , xn} be a collection of n distinct points on X, referred to as the
parabolic points.

A full �ag quasi-parabolic vector bundle of rank r over the pair (X,D) is a pair
(E,E•), where E is a vector bundle of rank r over X, equipped with additional data at
each parabolic point x ∈ D: a full �ag on the �ber E|x, that is, a decreasing sequence
of subspaces

E|x = Ex,1 ⊋ Ex,2 ⊋ · · · ⊋ Ex,r ⊋ Ex,r+1 = 0,

where each Ex,i is a subspace of dimension r − i+ 1 inside E|x.
A parabolic vector bundle is a quasi-parabolic vector bundle (E,E•) together with

a system of strictly increasing parabolic weights

0 ≤ α1(x) < α2(x) < · · · < αr(x) < 1

associated to each �ag at every parabolic point x ∈ D. We will denote the weights as
α = {αi(x)}x∈D, i=1,...,r.

If F ⊂ E is a subbundle, it inherits a parabolic structure by taking the intersection
of F |x with the �ag in E|x at each parabolic point x ∈ D, that is,

Fx,i := F |x ∩ Ex,i.

This �ltration de�nes the induced parabolic structure on F .

De�nition 2.0.1. LetM(X,D, r, α, ξ) denote the moduli space of full �ag semistable
parabolic vector bundles (E,E•) of rank r on (X,D) with parabolic system of weights
α and such that det(E) ∼= ξ. When the marked curve (X,D) is clear from the context,
we will drop it from the notation and simply writeM(r, α, ξ) :=M(X,D, r, α, ξ).

Let
An,r = {α = (αi(x)) | 0 ≤ α1(x) < . . . < αr(x) < 1}

denote the set of possible systems of parabolic weights. It is a product of simplexes
inside the hypercube [0, 1]nr. Given a �xed rank r and determinant ξ, for each α ∈ An,r

we have a potentially di�erent moduli spaceM(r, α, ξ). The main goal of this work is
to understand precisely how many di�erent isomorphism classes of such moduli spaces
there are, when α moves over An,r.
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2.1 Parabolic stability

Boden and Yokogawa [BY99] proved that the stability space An,r is divided in stability
chambers by a set of hyperplanes called stability walls, such that the moduli space
M(r, α, ξ) does not change as long as α remains inside one of these stability chambers.
In this section we will review the de�nition of parabolic stability and the stability walls
that partition the space of parabolic weights An,r into stability chambers. We will also
de�ne the selection vectors that are used to describe the stability walls.

We de�ne the parabolic degree of a parabolic vector bundle as

pardegα(E,E•) := d+
∑
x∈D

r∑
i=1

αi(x)

and its parabolic slope as the quotient

par−µα(E,E•) :=
pardegα(E,E•)

rk(E)
=

d+
∑

x∈D
∑r

i=1 αi(x)

r
. (2.1.1)

We say that a parabolic vector bundle (E,E•) is α-stable (respectively α-semistable)
if for any proper subbundle 0 ̸= F ⊊ E we have

par−µα(F, F•) < par−µα(E,E•) (respectively, ≤)

where F is given the induced parabolic structure from (E,E•). If equality is attained,
we say that (E,E•) is strictly semistable.

Selection vectors encode the choice of the induced �ltation of a rank r′ subbundle
F ⊂ E by selecting r′ components of the �ag at each parabolic point.

De�nition 2.1.1. A selection vector n̄ = (ni(x))i=1,...,r;x∈D is a tuple of integers with
ni(x) ∈ {0, 1} for each i and x, such that for some integer r′ with 1 ≤ r′ < r, we have

r∑
i=1

ni(x) = r′ for all x ∈ D.

We will denote

Ωn,r,r′ = {n = (ni(x))i,x |
r∑

i=1

ni(x) = r′ ∀x ∈ D}

to the space of all possible admissible selection vectors of subrank r′ and rank r

From [AG21, �2], forn any F ⊂ E with rank r′, ∃n̄ ∈ Ωn, r, r′ such that

pardegα(F ) = deg(F ) +
∑
x∈D

r∑
i=1

ni(x)αi(x).

Then, a parabolic vector bundle (E,E•) is semistable for the parabolic weights α if
and only if

d′ +
∑

x∈D
∑r

i=1 ni(x)αi(x)

r′
≤

d+
∑

x∈D
∑r

i=1 αi(x)

r
(2.1.2)

for all possible choices of a type n̄, a rank r′ and a degree d′ from a subbundle F ⊂ E.
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Given a selection vector n̄ ∈ Ωn,r,r′ and an integer d
′ ∈ Z, letWn̄,d′ be the hyperplane

Wn̄,d′ : r′
r∑

i=1

∑
x∈D

αi(x)− r

r∑
i=1

∑
x∈D

ni(x)αi(x) = rd′ − r′d . (2.1.3)

With a slight abuse of notation, let

Wn̄(α) = r′
r∑

i=1

∑
x∈D

αi(x)− r

r∑
i=1

∑
x∈D

ni(x)αi(x) (2.1.4)

so that
Wn̄,d′ : Wn̄(α) = rd′ − r′d.

Remark 2.1.2. We call Wn̄,d′ a numerical stability wall for the moduli space. If α and
β inside An,r are not separated by any wall Wn̄,d′, then the moduli spaces M(r, α, ξ)
andM(r, β, ξ) are exactly the same.

De�nition 2.1.3. A system of weights α is called generic in degree d if α ̸∈Wn̄,d′ for
any admissible n̄ and any d′ ∈ Z.

By [BY99], if α is generic, then the moduli space M(r, α, ξ) is smooth. In this
work we will restrict ourselves to the analysis of generic weights. As a consequence
of the previous discussion, we observe that the stability space An,r is partitioned by
the numerical walls Wn̄,d′ into a �nite set of polytopes called the numerical stability
chambers of the moduli space. We say that a stability wall Wn̄,d′ is a geometrical
stability wall if there exists a parabolic vector bundle (E,E•) and a subbundle F with
type n̄ and degree d′ such that par−µα(F, F•) = par−µα(E,E•) for some α ∈ Wn̄,d′ .
By [AG21, Theorem 10.6], if g ≥ 1+(r−1)n, then all stability wallsWn̄,d′ are geometric
walls and, therefore, separate di�erent geometrical stability chambers with potentially
di�erent isomorphism classes of moduli spaces of parabolic vector bundles.

For the entirety of this work, we will assume that the genus g is high enough so that
all stability walls are geometric. This allows us to focus on the geometric properties of
the moduli spaces and their classi�cation.

2.2 Epsilon shifts

In this section we will introduce an structural simpli�cation that will allow us to work
in a simpler space of parabolic weights, where visualizations in small dimensions are
easier to handle, and algorithmic techniques are slightly more e�cient.

To begin with, note that there exists a natural translation action on An,r which
preserves the stability of parabolic vector bundles. Given a vector ε = (ε(x))x∈D ∈ Rn,
we de�ne the shift of α by ε, denoted α[ε], as

α[ε]i(x) = αi(x) + ε(x).

Then, for any parabolic vector bundle (E,E•), we have

pardegα[ε](E,E•) = pardegα(E,E•) + r
∑
x∈D

ε(x).

7



Hence,

par−µα[ε](E,E•) = par−µα(E,E•) +
∑
x∈D

ε(x).

It follows that for any subbundle F ⊂ E, we have

par−µα[ε](E,E•)− par−µα[ε](F, F•) = par−µα(E,E•)− par−µα(F, F•),

which shows that (E,E•) is α[ε]-semistable if and only if it is α-semistable. This
provides a canonical identi�cation between M(r, α, ξ) and M(r, α[ε], ξ) for any shift
ε ∈ Rn such that α[ε] ∈ An,r. Consequently, it is natural to study our problem within
the equivalence class of An,r under the shift action. Since shifting is independent at
each parabolic point, we may, without loss of generality, assume that α1(x) = 0 for all
x ∈ D. This leads us to de�ne the subset

Ãn,r = {α ∈ An,r |α1(x) = 0 ∀x ∈ D}.

There is a natural projection π : An,r −→ Ãn,r given by

π(α)i(x) = αi(x)− α1(x) (2.2.1)

which corresponds to the shift

π(α) = α[(−α1(x1), . . . ,−α1(xn))].

In particular, this implies that a parabolic vector bundle is α-semistable if and only if
it is π(α)-semistable.

2.3 Basic transformations of quasiparabolic vector

bundles and stability weights

In [AG21], it was proven that any isomorphism (or 3-birational transformations) be-
tween two moduli spaces of parabolic vector bundles on a marked curve (X,D) can be
described as a suitable composition of four kinds of transformations

� Pullback with respect to an automorphism σ : X −→ X such that σ(D) = D,

� dualization,

� tensoring with a line bundle L on X

� Hecke transformations HH , where H is an e�ective divisor on X supported on
the parabolic points D (See [AG21, �5] for precise de�nition).

We call a composition of these four types of transformations a basic transformation. In
[AG21, �5] and [Alf22, �3], an explicit description of the composition relations between
these four basic transformations was provided and explicit presentation of the group
T of basic transformations was given. It was shown that each basic transformation T
can be characterized as a tuple T = (σ, s, L,H), where

� σ is an automorphism of (X,D),
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� s ∈ {1,−1},

� L ∈ Pic(X)

� H =
∑

x∈D hxx is an e�ective divisor on X with 0 ≤ hx < r for each x ∈ D.

The tuple T = (σ, s, L,H) described this way corresponds to the following transforma-
tion of quasi-parabolic vector bundles.

(E,E•) =

{
σ∗ (L⊗HH(E,E•)) if s = 1
σ∗ (L⊗HH(E,E•))

∨ if s = −1 , (2.3.1)

In [AG21, �5] it is shown that the group of basic transformations T acts on the
equivalence class of An,r under the shift action, and in particular, on the subset Ãn,r.
This action is de�ned as follows:

If T = (σ, s, L,H) ∈ T , then T de�nes a map T : Ãn,r −→ Ãn,r given by

T (α) = (Σσ ◦ Ds ◦ TL ◦ HH)(α),

with

Σσ(α)i(x) = αi(σ
−1(x))

Ds(α)i(x) =

{
αi(x) s = 1
αr(x)− αr−i+1(x) s = −1

TL(α) = α

Hx(α)i(y) =


αi(y) y ̸= x
1 + α1(x)− α2(x) y = x, i = r
αi+1(x)− α2(x) y = x, i < r

(2.3.2)

A direct computation shows that this map preserves Ãn,r ⊂ An,r, inducing an action
on it. It can be proven (see [AG21]) that a quasi-parabolic vector bundle (E,E•) is
α-stable (respectively α-semistable) if and only if T (E,E•) is T (α)-stable (respectively
T (α)-semistable).

Basic transformations also induce actions on the determinants and degrees of vector
bundles. Given T = (σ, s, L,H), de�ne

T (ξ) = σ∗ (Lr ⊗ ξ(−H))s (2.3.3)

T (d) = s(deg(L) + d− |H|) (2.3.4)

Computing determinants and degrees of both sides of equation (2.3.1) shows that T
sends vector bundles with determinant ξ to vector bundles of determinant T (ξ) and
degree d vector bundles to degree T (d) vector bundles. As a consequence, each T ∈ T
de�nes an isomorhpism between moduli spaces

T :M(r, α, ξ) −→M(r, T (α), T (ξ))

As we will be interested in describing automorphisms and isomorphisms between
di�erent moduli spaces of parabolic vector bundles, we will also be interested in the
following subgoups of the group of basic transformations T

� For each ξ ∈ Pic(X), let Tξ = {T ∈ T |T (ξ) ∼= ξ} be the subgroup of basic
transformations preserving a determinant ξ.
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� For each d ∈ Z, let Td = {T ∈ T |T (d) = d} be the subgroup of transformations
preserving the degree d.

� For a given α, let Tα = {T ∈ T0 | T (α) lies in the same stability chamber as α}
denote the subgroup of transformations that preserve the stability chamber of α
in Ãn,r.

Lemma 2.3.1. For each α and ξ there exists α′ such thatM(r, α, ξ) ∼=M(r, α′,OX).

Proof. Let d = deg(ξ). Suppose that d = rk + d′ with 0 ≤ d′ < r. Take a parabolic
point x ∈ D. Let L = Hd′

x (ξ). Then deg(L) = rk, so there exists L′ such that (L′)r = L.
As a consequence, if we take T = T(L′)−1 ◦Hx, then T (ξ) = OX . Taking α′ = T (α), we
see that T induces an isomorphism

T :M(r, α, ξ) −→M(r, T (α), T (ξ)) =M(r, α′,OX)

Remark 2.3.2. A straightforward computation shows that basic transformations T ∈
T send numerical stability walls of degree d to numerical stability walls of degree T (d).
Since basic transformations are invertible, they act as bijections on Ãn,r and any T ∈ T
induces bijections between the sets of walls and stability chambers in degree d and the
sets of walls and stability chambers in degree T (d).

Remark 2.3.3. As a consequence of the previous Lemma, in order to study isomor-
phism classes of moduli spaces of parabolic vector bundles with generic weights it is
enough to consider moduli spaces of parabolic vector bundles with trivial determinant.
From this point on in this work, we will restrict our study to these moduli spaces and
assume ξ = OX and therefore, d = 0 in all considered moduli spaces.
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Chapter 3

Algorithmic exploration of parabolic

chambers and isomorphisms between

moduli spaces

This section presents a computational framework for the analysis and classi�cation
of stability chambers, walls, isomorphism classes and automorphism groups of moduli
spaces of parabolic vector bundles. Given the high-dimensional nature of the weight
space, dim(An,r) = n · r, and the rapid growth in the number of possible wall con�gu-
rations, the manual exploration of stability regions becomes intractable. The method-
ology proposed in this work relies on algorithms and computation to generate and
visualise data, draw and verify conjectures, and expose underlying symmetries in the
moduli problem.

3.1 From Mathematics to Computer Science

At this point, we can bring all the mathematical abstractness of the previous sections
into the realm of computer science. Let us state what we have so far:

� A parameter space of parabolic weights Ãn,r = {α ∈ [0, 1)nr | 0 = α1(x) < . . . <
αr(x) < 1 for all x ∈ D}, where each α is an n× r matrix of real numbers. The
space Ãn,r is a product of n simplices of dimension r.

� A set of hyperplanes Wn̄,d′ that partition the space of parabolic weights into
stability chambers, where n̄ ∈ Ωn,r,r′ is a selection vector of subrank r′ and d′ ∈ Z
is the degree of a subbundle F ⊂ E.

� If α, β ∈ Ãn,r belong to the same stability chamber, then the moduli spaces
M(r, α, ξ) andM(r, β, ξ) are identical.

� There is a group of basic transformations T that acts on the space of parabolic
weights Ãn,r. A single basic transformation T ∈ T can be described as a tuple
T = (σ, s, L,H), where σ is a permutation of the marked points D, s determines
whether we take the dual or not, L does not a�ect the weights and H is a vector
of integers hx that determines the Hecke transformation at each marked point
x ∈ D.
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� Some transformations Tα ⊂ T , preserve the stability chamber of a given α ∈ Ãn,r.
These are the automorphisms of the moduli spaceM(r, α,OX). Other transfor-
mations connect di�erent stability chambers, grouping them into isomorphism
classes.

The goal of this section is to develop algorithms that can e�ciently explore the
space of parabolic weights Ãn,r, enumerating all stability walls, chambers, and isomor-
phism classes, and �nd the automorphism groups of the moduli spaces of parabolic
vector bundles. The algorithms will be based on the mathematical concepts intro-
duced in the previous sections, and will leverage computational techniques to handle
the combinatorial complexity of the problem.

3.2 Enumeration of Selection Vectors n̄

A central component in the algorithms developed throughout this thesis involves enu-
merating all possible con�gurations of admissible selection vectors n̄ ∈ Ωn,r,r′ , since
they de�ne the hyperplanes Wn̄,d′ that partition the space of parabolic weights Ãn,r

into stability chambers. Recall that a selection vector is a binary matrix of size n× r
with exactly r′ entries equal to 1 in each row.

The enumeration process proceeds by �rst generating all
(
r
r′

)
ways of choosing r′

positions of an r-sized vector. Then, we construct all possible cartesian products of
these combinations across n points. There are exactly

(
r
r′

)n
such matrices, each one

corresponding to selection vector n̄ ∈ Ωn,r,r′ .

Algorithm 1 Generate Admissible Matrices with Fixed r′

Require: Integers n, r, r′

1: C ← All combinations of r′ elements from {0, 1, . . . , r−1}
2: V ← Cartesian product of C repeated n times
3: for v ∈ V do
4: Initialize matrix n̄ ∈ Zn×r with all zeros
5: for j ← 1 to n do
6: for all k ∈ vj do
7: n̄[j, k]← 1
8: end for
9: end for

10: yield n̄
11: end for

This algorithm e�ciently generates all admissible selection vectors n̄ for a given
n, r, and r′. The output is a list of matrices, each representing a unique selection
vector con�guration. The complexity of this algorithm is O

(
nr′
(
r
r′

)n)
, which grows

exponentially with n and r. However, for small values of n and r, this approach is
feasible and provides a comprehensive enumeration of all admissible con�gurations.

The function generate_admissible_matrices_fixed_r_prime in our implementa-
tion encapsulates this enumeration strategy and acts as a backbone for subsequent
algorithms that rely on exploring the space of parabolic con�gurations.
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3.3 Monte Carlo sampling of stability chambers

An initial heuristic approach to the enumeration of stability chambers employs Monte
Carlo sampling to estimate the number of these regions without explicitely using the
hyperplanes Wn̄,d′ .

The method starts by generating random systems of weights α uniformly distributed
in the space Ãn,r and then calculating the invariant M̄(r, α, d) described in [AG21, �10]
for each one of them. The M̄(r, α, d) is a vector whose entries are calculated as follows:

M(r, α, d, n̄) =

⌊
r′d+ r′

∑
x∈D

∑r
i=1 αi(x)− r

∑
x∈D

∑r
i=1 ni(x)αi(x)

r

⌋
(3.3.1)

for all admissible selection vectors n̄ ∈ Ωn,r =
⋃r−1

r′=1 Ωn,r,r′ .
This is computed e�ciently with tensor operations and batching chunks of selection

vectors n̄ and randomly sampled α vectors. However, the number of selection vectors n̄
grows exponentially with n and r, and the number of random samples needed to obtain
a good estimate of the number of stability chambers is in practice orders of magnitude
larger than the number of chambers themselves.

This method is inherently limited in precision and scalability, and it only yields
lower bounds on the number of stability chambers, since we cannot guarantee that at
least one α falls in each chamber. However for very small n and r and a su�cient
number of samples it can serve as an empirical validation of more rigorous methods
and as a good visualization tool.

Next �gure shows the results of this Monte Carlo sampling for n = 1 and r = 3
and all possible degrees d (mod r). We con�rm the previous Remark 2.3.2 that set of
stability walls and chambers is independent of the degree d (mod r).

Figure 3.1: Monte Carlo sampling of stability chambers for n = 1 and r = 3 and all
degrees d (mod r). Dots represent 500 uniformly sampled α ∈ Ã1,3, projected onto the
plane α1(x1) = 0.

Further illustrative examples of Monte Carlo sampling for small values of n and r
can be found in Appendix A. These examples provide additional intuition into how the
space Ãn,r is partitioned into stability chambers by the hyperplanes Wn̄,d′ .
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3.4 Geometric walls

The concept of geometric walls is central to understanding the stability chamber de-
composition within the space of parabolic weights. These walls correspond to regions
where semistability changes, and thus determine the chamber structure of the moduli
spaceM(r, α, ξ).

A natural question that follows is under what conditions the hyperplane Wn̄,d′ in-
tersects the interior of Ãn,r, i.e., whether it contributes an actual wall in the chamber
decomposition. Since d′ could be any integer, there are in�netly many possible hyper-
planes, but only actually contribute to the chamber decomposition. Recall the equation
for the hyperplane (2.1.3), after letting d = 0 the independent term of the hyperplane
is given by rd′, where d′ is the degree of the subbundle F with type n̄. We will de-
note the the independent term rd′ as the intercept of the hyperplane. Let us denote

Ãn,r = {α ∈ [0, 1]nr | 0 ≤ α1(x) ≤ α2(x) ≤ . . . ≤ αr(x) < 1 for all x ∈ D} to the
closure of Ãn,r. We can �nd limits on the intercept of the hyperplane Wn̄,d′ so that it
intersects the interior of Ãn,r.

De�nition 3.4.1. Let n̄ ∈ Ωn,r,r′ be a selection vector of subrank r′ and rank r over
(X,D). We de�ne the lower and upper bounds for the intercept of the hyperplane Wn̄,d′

as follows:
ln = min

α∈Ãn,r

Wn̄(α)

and
un = max

α∈Ãn,r

Wn̄(α)

where Wn̄(α) is de�ned in equation (2.1.4).

In Section 3.4, we will show that it su�ces to evaluate the expressions on the
vertices of Ãn,r, and we will give explicit formulas to make this calculation tractable
and e�cient. The lemma states the following:

Lemma 3.4.2. Let n̄ ∈ Ωn,r,r′ and d′ ∈ Z. The hyperplane Wn,d′ intersects the product
of simplices An,r if and only if

rd′ ∈ (ln, un),

where

ln =
∑
x∈D

min
1≤j≤r

r∑
i=j

wn̄,i(x)

and

un =
∑
x∈D

max
1≤j≤r

r∑
i=j

wn̄,i(x),

are the lower and upper bounds respectively for the intercept of a hyperplane Wn,d′ that
intersects the product of simplices and wn̄,i(x) = r′−ni(x)r denotes the i-th component
of the normal vector of Wn,d′ at the point x ∈ D.

With this result, we can obtain the list of all hyperplanes by enumerating all ad-
missible selection vectors n̄ ∈ Ωn,r,r′ for each subrank 1 ≤ r′ < r, computing un and ln,
listing all multiples of r in (ln̄, un̄) and �nally discarding any proportional hyperplanes
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n\r 2 3 4 5 6
1 0 1 3 11 21
2 1 9 41 215 799
3 4 45 344 3075 21379
4 12 189 2540 39875 515229
5 32 729 17840 491875 11827979
6 80 2673 122384 5871875 264528629
7 192 9477 828416 68421875 �
8 448 32805 5555648 782421875 �

n\r 7 8 9 10 11
1 65 129 307 631 1539
2 3927 15049 65403 254621 �
3 186837 1354856 11062215 � �
4 8200787 112008812 � � �
5 345458281 � � � �

Table 3.1: Number of stability walls with d = 0

if any. The output is a list of tuples (w, b), where w is the vector of coe�cients of the
hyperplane for some selection vector n̄ and b = rd′ is the intercept of the hyperplane.

These results highlight the intractability of enumerating stability chambers without
computational aid for all but the smallest values of n and r. Not only the high dimen-
sionality makes it di�cult to visualize the stability chambers, but also the exponential
growth of the number of walls as n and r increase generate a combinatorial explosion
of possible chamber con�gurations.

In the process of generating this data, a deep exploration of the hyperplanes and
their intercept bounds was conducted, and several structural patterns and symmetries
were observed, eventually leading to the exact formula and tight bounds for the total
number of geometric walls 4.3.3:

� For each hyperplane Wn̄,d′ found with n̄′ ∈ Ωn,r,r′ there is a proportional hyper-
plane Wn̄′,−d for some n̄′ ∈ Ωn,r,r−r′ .

Example 3.4.3 (Proportional hyperplanes for n = 2, r = 3). Each hyperplane
computed with r′ = 1 is proportional to one with r′ = 2 and vice versa. wn̄ and
wn̄′ are �attened for clarity.

r′ = 1 r′ = 2
wn̄, rd

′ wn̄′, rd′

[−2, 1, 1, −2, 1, 1], 3 [2, −1, −1, 2, −1, −1], −3
[−2, 1, 1, 1, −2, 1], 0 [2, −1, −1, −1, 2, −1], 0
[−2, 1, 1, 1, 1, −2], 0 [2, −1, −1, −1, −1, 2], 0
[1, −2, 1, −2, 1, 1], 0 [−1, 2, −1, 2, −1, −1], 0
[1, −2, 1, 1, −2, 1], 0 [−1, 2, −1, −1, 2, −1], 0
[1, −2, 1, 1, 1, −2], 0 [−1, 2, −1, −1, −1, 2], 0
[1, 1, −2, −2, 1, 1], 0 [−1, −1, 2, 2, −1, −1], 0
[1, 1, −2, 1, −2, 1], 0 [−1, −1, 2, −1, 2, −1], 0
[1, 1, −2, 1, 1, −2], −3 [−1, −1, 2, −1, −1, 2], 3
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Conjecture 3.4.4. For each hyperplaneWn̄,d′ with n̄ ∈ Ωn,r,r′, there exists exactly
one proportional hyperplane Wn̄′,−d′ for some n̄′ ∈ Ωn,r,r−r′.

� There are two clear symmetries in the intercept bounds for each selection vector
n̄. (1) Within each r′, un̄ = −ln̄′ , when n̄′ = (nr−i(x))i,x. (2) Between r′ and
r − r′ we also have un̄ = −ln̄′ but now when n̄′ = (1− ni(x))i,x.

Example 3.4.5 (Intercept bounds symmetries for n = 1, r = 4). We compute
the lower and upper bounds for the intercepts associated with each admissible
selection vector n̄, for subranks r′ ∈ {1, 2, 3}. Each n̄ is a binary vector of length
r = 4, with exactly r′ entries equal to 1.

r′ = 1

n̄ ln̄ un̄

[1, 0, 0, 0] 0 3
[0, 1, 0, 0] −1 2
[0, 0, 1, 0] −2 1
[0, 0, 0, 1] −3 0

r′ = 2

n̄ ln̄ un̄

[1, 1, 0, 0] 0 4
[1, 0, 1, 0] 0 2
[1, 0, 0, 1] −2 2
[0, 1, 1, 0] −2 2
[0, 1, 0, 1] −2 0
[0, 0, 1, 1] −4 0

r′ = 3

n̄ ln̄ un̄

[0, 1, 1, 1] −3 0
[1, 0, 1, 1] −2 1
[1, 1, 0, 1] −1 2
[1, 1, 1, 0] 0 3

Conjecture 3.4.6. For all n,r,r′ and all selection vector n̄ ∈ Ωn,r,r′, we have
that un̄ = −ln̄′ when n̄′ = (nr−i(x))i,x ∈ Ωn,r,r′

Conjecture 3.4.7. For all n,r,r′ and all selection vector n̄ ∈ Ωn,r,r′, we have
that un̄ = −ln̄′ when n̄′ = (1− ni(x))i,x ∈ Ωn,r,r−r′

� A key step on the simpli�cation of the number of walls equation, done in � 4.2
requires knowing how the intercept bound distribute mod r. When exploring this
distributions computationally, two properties were observed: (1) all un̄ and ln̄ are
always multiples of the gcd(r, r′). (2) all un̄ and ln̄ are distributed uniformly in
all k ∝ gcd(r, r′). We de�ne each count as Lk = #{n̄ ∈ Ωn,r,r′ | ln̄ ≡ k (mod r)}
and Uk = #{n̄ ∈ Ωn,r,r′ |un̄ ≡ k (mod r)}. L̄ = (Lk)

r−1
k=0 and Ū = (Uk)

r−1
k=0 are the

vectors of counts of ln̄ and un̄ respectively, for each k (mod r).

Example 3.4.8 (un̄ and ln̄ counts mod r for n = 1, r = 6).

r′ L̄ Ū
1 (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1)
2 (5, 0, 5, 0, 5, 0) (5, 0, 5, 0, 5, 0)
3 (10, 0, 0, 10, 0, 0) (10, 0, 0, 10, 0, 0)
4 (5, 0, 5, 0, 5, 0) (5, 0, 5, 0, 5, 0)
5 (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1)

Conjecture 3.4.9. For �xed n, r and r′, let Uk = #{n̄ ∈ Ωn,r,r′ |un̄ ≡ k
(mod r)} and Lk = #{n̄ ∈ Ωn,r,r′ | ln̄ ≡ k (mod r)}, then for all k ̸∝ gcd(r, r′)
we have that Uk = Lk = 0 and for each k ∝ gcd(r, r′) we have

Uk = Lk =
gcd(r, r′)

(
r
r′

)
r

.

All of these observations are proven formally in Chapter 4, and are used to derive
tight bounds for the number of geometric walls in the stability space of the moduli
space of parabolic vector bundles of rank r and subrank r′ over (X,D).
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3.5 Decision tree algorithm for enumerating stability

chambers

The aim of this section is to describe an exact procedure that replaces the Monte
Carlo heuristics of the previous subsection by an exhaustive enumeration of stability
chambers. The core idea is to cut the ambient simplex Ãn,r recursively with the
�nitely�many geometric walls obtained in �3.4. The recursive structure of this approach
gives rise to a binary tree, where each internal node represents a polytope that is split by
a wall, and each leaf corresponds to a stability chamber. We can take advantage of the
tree structure, and not only count the number of chambers, but construct an e�cient
classi�er for new systems of weights α ∈ Ãn,r, which will be crucial for the isomorphism
graph algorithm described in �3.6, allowing us to identify when two chambers are
isomorphic chambers.

A key point of this method lies in the use of exact arithmetic to perform all op-
erations over rational numbers. This guarantees mathematically correct results, in
contrast to �oating-point arithmetic which can introduce rounding errors and lead to
incorrect chamber counts or invalid polytopes.

The decision tree algorithm is implemented in Python using exact rational arith-
metic through the cddlib library with GMP backend. The main logic is organized
around two classes:

� Polytope: represents a convex region in halfspace form Ax ≤ b, where A is an
integer matrix and b is an integer column vector. Key methods include:

� extreme(): computes the vertices of the polytope using cdd.gmp.

� add_halfspace(): creates two new Polytope instances by adding to each
one the corresponding halfspace de�ned by a hyperplane wx = b.

� TreeNode: stores a node in the decision tree, which corresponds to a polytope
(chamber candidate). It also stores the list of active hyperplanes (walls), the
hyperplane used to split that node, and both its children. Notable methods:

� centroid: computes the center of the current chamber using rational arith-
metic (used in �3.6 to �nd isomorphism classes).

� add_child(): adds a child node created by cutting the current polytope.

� classify(): recursively classi�es a point into its corresponding chamber
leaf.

Complementing these classes lie several auxiliary functions that facilitate the re-
cursive cutting of the ambient simplex and the traversal of the resulting chamber tree:

� get_simplex_inequalities(n, r): constructs the de�ning inequalities Ax ≤ b
of the ambient simplex Ãn,r, which is a product of n open simplices in dimension
r. The coe�cients in A and b correspond to the conditions 0 ≤ α1 < . . . < αr < 1
for each parabolic point. The output is a pair (A, b) suitable for initializing a
Polytope object.
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� cut_polytope_by_hyperplane(polytope, (w, b)): takes a Polytope and a
hyperplane de�ned by wx = b, and creates two new polytopes obtained by in-
tersecting with the halfspaces wx ≤ b and wx ≥ b. Both resulting polytopes are
updated by computing their vertices via the extreme() method.

� hyperplane_intersects_polytope: determines whether a given hyperplane
(w, b) intersects the interior of a polytope. It evaluates the linear form wx on all
vertices of the polytope and returns true if the hyperplane separates them, i.e.,
if some satisfy wx < b and others wx > b.

The decision tree is constructed iteratively: starting from the ambient simplex Ãn,r,
we maintain a queue of nodes (chambers). At each step, we �lter out hyperplanes
that do not intersect the chamber being consider, and from the remaining hyperplens,
we choose a random one to split a chamber into two subchambers. When no such
hyperplane exists, the node becomes a leaf, representing a stability chamber.

The runtime of the algorithm is di�cult to estimate precisely, as it depends on the
intricate structure of the chamber decomposition, the number of hyperplanes involved,
and the number of vertices in each polytope. In practice, the execution time of the
algorithm transitions from milliseconds for small parameters to several hours as n and
r increase only modestly.

Remark 3.5.1. Despite this, we measured the average depth of the decision tree gener-
ated across multiple values of n and r (see Appendix B), which was consistently on the
order of O(log |Cn,r|), where |Cn,r| denotes the number of stability chambers computed
for the given parameters. This observation will be particularly useful in �3.6, where we
rely on this e�cient classi�er to quickly identify the chamber associated with a given
system of weights.

Algorithm 2 Enumerate stability chambers using a decision tree

1: Let P0 ← Ãn,r (corner simplexs)
2: Let W be the list of all geometric walls (w, b)
3: Create root node T0 ← TreeNode(polytope=P0, candidate_hyperplanes=W)
4: Initialize queue Q← [T0] and chamber count C ← 0
5: while Q is not empty do
6: Pop T from Q
7: Discard walls stored in T.candidate_hyperplanes not intersecting T.polytope
8: Let WT be the remaining walls in T.candidate_hyperplanes
9: if WT is empty then

10: C ← C + 1 (chamber found)
11: continue
12: end if
13: Choose a random hyperplane (w, b) from WT

14: Remove (w, b) from WT

15: Split T.polytope into P1 = {w · x ≤ b} and P2 = {w · x > b}
16: Compute vertices of P1 and P2

17: Create children nodes T1, T2 from P1, P2 and candidate hyperplanes WT

18: Add T1, T2 to Q
19: end while
20: return T0 (root node), C (total chambers)
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We also provide two auxiliary functions to save and load the resulting decision tree
and its statistics in a json �le. For memory e�ciency we store all hyperplane coe�cient
vectors w and centroids �attened and without the redundant n dimensions (Recall that
if α ∈ Ãn,r, then α1(x) = 0 for all x ∈ D). The json �le has the following structure:

{
"n_leaves": N_LEAVES,
"n_nodes": N_NODES,
"max_depth": MAX_DEPTH,
"avg_depth": AVG_DEPTH,
"tree": [

{
"depth": 0,
"cut_hyperplane": "(w, b)",
"parent_idx": null,
"centroid": null

},
{

"depth": 1,
"cut_hyperplane": "(w', b')",
"parent_idx": 0,
"centroid": "(c_1, c_2, ..., c_n·(r-1))"

},
...

]
}

The following table summarizes the number of stability chambers computed for
small values of n and r using this algorithm. The results match the Monte Carlo
estimates from �3.4 and provide exact counts.

n\r 2 3 4 5 6 7 8 9
1 1 2 4 14 80 1296 76724 > 5315121
2 2 12 640 4748330* � � � �
3 5 720 > 1984886 � � � � �
4 24 4868610* � � � � � �
5 409 � � � � � � �
6 31916 � � � � � � �
7 10834621* � � � � � � �

Table 3.2: Number of stability chambers with d = 0

The asterisk (*) indicates that the number was computed before the implementation
of exact arithmetic, and thus may not be fully accurate. The greater than sign (>)
indicates that the number is a lower bound found through Monte Carlo sampling, and
the actual number of chambers is likely larger.
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3.6 Graph-based enumeration of isomorphism classes

and automorphism groups

The purpose of this subsection is to provide an exact algorithm for the enumeration of
isomorphism classes as well as the full automorphism group of each class. In [AG21,
Theorem 7.23 and Theorem 7.25] it is shown that two moduli spaces M(r, α, ξ) and
M(r, α′, ξ′) are isomorphic if and only if there exists a basic transformation T such that
T (α) belongs to the same chamber as α′ and T (ξ) ∼= ξ′. The basic transformations
are de�ned in �2.3 and consist of pullback, Hecke and dualisation. As mentioned in
Remark 2.3.3, we can restrict our search to the case of degree d = 0 without loss of
generality, discarding basic transformations that do not preserve the degree.

We can think of the set of all stability chambers as a disconnected directed graph,
where each vertex corresponds to a stability chamber and each edge corresponds to a
basic transformation that maps one chamber to another. Every connected component
of this graph corresponds to an isomorphism class of parabolic vector bundles, and
the automorphism group of each class is the set of all basic transformations that map
a chamber to itself. We will refer to this graph as the isomorphism graph of moduli
spaces of parabolic vector bundles.

The algorithm presented in this work employs the decision tree structure from �3.5
to navigate the isomorphism graph of moduli spaces of parabolic bundles. It also relies
on an e�cient implementation of each of the basic transformations acting on the weight
space Ãn,r, described in Equation (2.3.2). Pullbacks act by permuting the rows of each
weight matrix weight matrix α according to the permutation σ. Hecke transformations
shift the weights at each point x ∈ D a speci�ed number of hx times. Tensorization
leaves the weights unchanged, while dualisation re�ects them by sending each entry
αi(x) to αr(x)− αr−i+1(x) for all i and x.

Recall that in the introduction we mentioned the automorphisms (symmetries) of
a marked curve (X,D) as a key ingredient in the classi�cation of parabolic vector
bundles. Depending on the symmetries of the marked curve, the set of possible basic
transformations varies, in particular, the set of possible permutations σ.

We focus on two representative cases of marked curves (X,D): fully symmetric and
asymmetric marked curves. We say a marked curve fully symmetric if Aut(X,D) ∼= Sn
and asymmetric if Aut(X,D) = id. Sn is the symmetric group of degree n, which is the
group of all permutations of n elements. Any other marked curve with partial symmetry
could easily be implemented in our code without any changes to the algorithm, by
restricting the set of pullback transformations to those that respect the symmetry of
the marked curve.

We know how each transformation a�ects the degree d of a parabolic vector bundle:

� The pullback transformation does not change the degree, i.e., d 7→ d.

� The Hecke transformation HH maps d 7→ (d −
∑

x hx) (mod r), where hx is the
Hecke operator at point x.

� The dualisation transformation D maps d 7→ −d (mod r).

To preserve the degree, we need to transformations satisfying:

−(d−
∑

x hx) ≡ d (mod r)
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Since we are considering d = 0, we will work with the set of all triples T0 = (σ, s,H),
T0 = {T0|σ ∈ Sn, s ∈ {−1, 1}, H ∈ {1, . . . , r − 1}n}, where Sn is the symmetric group
of degree n and H = (hx)x∈D is a vector of Hecke operators at each parabolic point
meeting the condition

∑
x hx ≡ 0 (mod r).

Lemma 3.6.1. The size of the set of basic transformations preserving degree d = 0
modulo tensorization is:

|T0| = n! · 2 · rn−1

where n! is the number of permutations of n elements, 2 accounts for the dualisation and
identity transformations, and rn−1 accounts for the Hecke operators at each parabolic
point x ∈ D, restricted to the condition

∑
x hx ≡ 0 (mod r).

The enumeration of isomorphism classes and their automorphism groups proceeds
from the classi�cation tree constructed in �3.5, which partitions Ãn,r into disjoint
stability chambers. Each leaf of the decision tree corresponds to a distinct chamber C
and is uniquely represented by its centroid αc ∈ C.

The core idea is to treat each chamber as a representative of a potential isomor-
phism class and apply all basic transformations preserving degree d = 0, T0, to its
representative αc ∈ C. The transformed weight T0(αc) is then classi�ed by querying
the decision tree, which identi�es the unique chamber C ′ it belongs to. If C ′ = C, then
the transformation is an automorphism of the chamber; if not, the two chambers are
identi�ed as isomorphic, and their automorphism groups coincide.

This process is repeated iteratively: once a chamber is determined to be isomorphic
to another (via a transformation), it is marked as visited, and its exploration is skipped
in future iterations. The algorithm terminates once all chambers have been visited,
yielding a list of isomorphism classes, each represented by a tuple (αc,Aut), where αc

is the centroid of the one of the chambers in the isomorphism class and Aut is the
automorphism group of that class, containing all basic transformations acting on αc

that map it back to the same chamber.
Below is the pseudocode for the algorithm that enumerates isomorphism classes

and their automorphism groups from the stability chambers obtained in �3.5.
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Algorithm 3 Isomorphism classes and automorphism groups from stability chambers

Require: Decision tree D with chambers {Ci} and representatives {αi}
Require: Degree d = 0
Require: Set of basic transformations T0 preserving degree d = 0
1: Initialize visited set V ← ∅
2: Initialize list of isomorphism classes I ← []
3: for all chambers Ci do
4: if Ci ∈ V then
5: continue (skip already visited chamber)
6: end if
7: Mark Ci as visited: V ← V ∪ {Ci}
8: Let automorphism group Aut← {id}
9: for all T ∈ T0 do

10: Apply T to αi to obtain T (α)
11: Classify α′ using D to �nd chamber C ′
12: if C ′ = Ci then
13: Add T to Aut
14: else if C ′ /∈ V then
15: Mark C ′ as visited
16: end if
17: end for
18: Append (αi,Aut) to I
19: end for
20: return I: list of isomorphism classes with corresponding automorphism group

The complexity of this output-sensitive algorithm depends on several key parame-
ters: the number of isomorphism classes |I|, the size of the basic transformation group
|T0|, the cost a applying each transformation T ∈ T0, and the query time of the deci-
sion tree classi�er QD. As discussed in Section 3.5, experimental evidence shows that
the average query time of the decision tree is logarithmic in the number of stability
chambers; that is, QD = O(log |Cn,r|).

Moreover, it follows directly from the explicit formulas in Equation (2.3.2) that each
basic transformation can be implemented with a time complexity of O(n · r), where n
is the number of marked points and r the rank. Since each isomorphism class requires
checking the action of all transformations in T0 and classifying the resulting weights
via the decision tree, the total complexity of the algorithm is:

Θ(nr · |T0| · |I| · log |Cn,r|) ,

where |Cn,r| denotes the total number of stability chambers.

Experimental timings. To complement the theoretical complexity, we measured
the execution time of the algorithm under various input con�gurations. For instance,
when running the algorithm for n = 1, r = 8, the algorithm completes in approximately
40 seconds for both symmetric and asymmetric settings. In contrast, for n = 6, r = 2,
the symmetric case takes around 7 minutes, while the asymmetric case requires only
about 20 seconds. These results are consistent with the theoretical expectations, since
the number of transformations |T0| preserving degree d = 0 grows with n!.
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We summarize the number of isomorphism classes for both fully symmetric and
asymmetric cases in Tables 3.3 and 3.4 respectively.

n\r 2 3 4 5 6 7
1 1 1 2 7 40 648
2 1 2 44
3 2 17
4 3
5 8
6 28

Table 3.3: Number of isomorphism
classes for fully symmetric curves

n\r 2 3 4 5 6 7
1 1 1 2 7 40 648
2 1 2 80
3 2 42
4 6
5 39
6 1123

Table 3.4: Number of isomorphism
classes for asymmetric curves

Results and conjectures. When looking at the exhaustive lists of automorphism
groups and isomorphism classes, we observed the following:

1. If r > 2, dualisation is never part of an automorphism group.

2. The number of isomorphism classes is signi�cantly less than the number of cham-
bers, which implies that the size of the automorphism groups are generally small.

3. In particular, when considering an asymmetric marked curve, we observe that
almost all Hecke transformations induce a non-trivial isomorphism between dif-
ferent moduli spaces.

(a) In r = 2, we �nd that the number of isomorphism classes is almost equal
to the number of chambers divided by the number of Heckes, 2n−1. It is
known that in r=2 dualization can be alternatively expressed in terms of
tensorization and, therefore, does not a�ect stability (see [AG21, Lemma
7.23]), thus it does not induce isomorphisms between moduli spaces. This
means that (almost) all Hecke transformations are contributing to the iso-
morphism classes.

(b) In r > 2, we observe that the number of isomorphism classes is almost
equal to the number of chambers divided by twice the number of Heckes,
2rn−1, since now dualisation never contributes to the automorphism group,
as stated in the �rst point.

4. When considering a single parabolic point, the only possible automorphism is the
identity, thus the number of isomorphism classes is half the number of chambers
with a �xed degree d = 0.

In summary, we observed that many types of theoretically possible automorphisms
can never happen in a generic weight, and that for r > 2 the dualisation transformation
is never part of the automorphism group. In Chapter 5 we will formally prove the
dualisation conjecture.
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Chapter 4

Bounds on the number of geometric

walls and stability chambers

In this chapter, we prove the majority of the conjectures formulated in the previous
section and use these results to establish both upper and lower bounds on the number
of geometric walls and stability chambers in the moduli space of stable parabolic vector
bundles of rank r over (X,D) with �xed degree d = 0. Beyond these bounds, we also
derive several closed formulas that enable a detailed asymptotic analysis of the number
of geometric walls as functions of the rank r and the number of marked points n,
highlighting the exponential growth of the chamber decomposition in high-dimensional
settings.

4.1 Unique stability walls

In this section, we determine the conditions under which the hyperplanes Wn̄,d′ inter-
sect the interior of the space of full �ag parabolic weights An,r. We then prove Con-
jecture 3.4.4, which asserts that for every hyperplane Wn̄,d′ , there exists a proportional
hyperplane Wn̄′,d′ for some n̄′ ∈ Ωn,r,r′ such that Wn̄,d′ ∝ Wn̄′,−d′ . This result enables
us to count geometric walls without explicitly checking for proportional hyperplanes
algorithmically, thereby allowing the derivation of exact formulas and signi�cantly im-
proving the e�ciency of related computations.

Rearranging the expression of Wn̄,d′ from equation (2.1.4) into

Wn̄(α) =
∑
x∈D

r∑
i=1

(r′ − ni(x)r)αi(x) (4.1.1)

and thus de�ne
wn = (r′ − ni(x)r)i=1,...,r,x∈D

as the normal vector of the hyperplane Wn,d′ , with wn,i(x) = r′− ni(x)r being the i-th
component of the normal vector at the point x ∈ D. This formulation will be more
comfortable for several proofs in this section.

Let us start �nding the restrictions on the hyperplanes Wn̄,d′ so that they intersect
the interior of the space of full �ag parabolic weights An,r. To do that, let us prove the
following small lemma that will be convenient for the rest of the section.
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Lemma 4.1.1. Let n̄ ∈ Ωn,r,r′ be a selection vector of subrank r′ and rank r over
(X,D), then

r∑
i=1

wn̄,i(x) = 0

for all x ∈ D.

Proof. By de�nition of n̄ ∈ Ωn,r,r′ , we have that
∑r

i=1 ni(x) = r′ for all x ∈ D. Thus,
we can write

r∑
i=1

wn̄,i(x) =
r∑

i=1

(r′ − ni(x)r) = r′r − r

r∑
i=1

ni(x) = r′r − rr′ = 0.

Lemma 4.1.2. Let n̄ ∈ Ωn,r,r′ and d′ ∈ Z. The hyperplane Wn,d′ intersects the interior
of the product of simplices An,r if and only if

rd′ ∈ (ln, un),

where

ln =
∑
x∈D

min
1≤j≤r

r∑
i=j

wn̄,i(x)

and

un =
∑
x∈D

max
1≤j≤r

r∑
i=j

wn̄,i(x),

are the lower and upper bounds respectively for the intercept of a hyperplane Wn,d′ that
intersects the product of simplices and wn̄,i(x) = r′−ni(x)r denotes the i-th component
of the normal vector of Wn,d′ at the point x ∈ D.

Proof. Let VAn,r be the set of vertices of the product of simplices An,r. Since An,r is a
convex polytope, the hyperplane Wn,d′ intersects the interior of An,r if and only if

min
v∈VAn,r

Wn(v) < rd′ < max
v∈VAn,r

Wn(v).

Vertices of the product of simplices are binary matrices v = (vi(x)) with vi(x) ∈
{0, 1} and vi(x) < vi+1(x) for all i = 1, . . . , r− 1 and x ∈ D. Let k ∈ Z, 1 ≤ k ≤ r and
x ∈ D. Then, the vertex v is

vi(x) =

{
0 if i ≤ k
1 if i > k

Let us de�ne

Wn,x(α) =
r∑

i=1

(r′ − ni(x)r)αi(x).

Wn(α) can be expressed as a sum of n linear functions Wn,x(α), each one depending
only on the weights at a single point x ∈ D. Thus, we can write minv∈VAn,r

Wn(v) as a
sum of the minimum of each function over the set of vertices at a single point x ∈ D,

min
v∈VAn,r

Wn(v) = min
v∈VAn,r

∑
x

Wn,x(v) =
∑
x∈D

min
v∈VA1,r

Wn,x(v)
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where VA1,r = {(0, . . . , 0), (0, . . . , 0, 1), . . . , (1, . . . , 1)} is the set of vertices for a single
parabolic point x ∈ D.

Continuing with the proof, we have∑
x

min
v∈VA1,r

Wn,x(v) =
∑
x∈D

min (Wn,x((0, . . . , 0)), . . . ,Wn,x((1, . . . , 1)))

=
∑
x∈D

min

(
0, wn̄,r(x), wn̄,r(x) + wn̄,r−1(x), . . . ,

r∑
i=1

wn̄,i(x)

)

=
∑
x∈D

min
1≤j≤r

r∑
i=j

wn̄,i(x) = ln.

Note that
∑r

i=1wn̄,i(x) = 0 for all x ∈ D, as proved in Lemma 4.1.1, so we can ignore
the 0 at the beginning of the minimum.

Same reasoning applies to the maximum of Wn(v) over the vertices of the product
of simplices An,r,

max
v∈VAn,r

Wn(v) =
∑
x∈D

max
v∈VA1,r

Wn,x(v) =
∑
x∈D

max
1≤j≤r

r∑
i=j

wn̄,i(x) = un.

Let us now prove that exactly half of the hyperplanes are redundant when consid-
ering all n̄ ∈

⋃
r′ Ωn,r,r′ and d′ ∈ Z, i.e., that for each hyperplane Wn̄,d′ with n̄ ∈ Ωn,r,r′

there exists exactly one proportional hyperplane Wn̄′,−d′ such that n̄′ = (1−ni(x))i,x ∈
Ωn,r,r−r′ .

Lemma 4.1.3. Wn̄,d′ and Wn̄′,d′′ are the same hyperplane if and only if n̄ = n̄′ and
d′ = d′′ or ni(x)

′ = 1− ni(x) for all i = 1, . . . , n and x ∈ D and d′ = −d′′.

Proof. If n′
i(x) = 1− ni(x), then n̄′ is a selection vector of rank r − r′. Then

Wn̄(α) +Wn̄′(α) = r′
r∑

i=1

∑
x∈D

αi(x) + (r − r′)
r∑

i=1

∑
x∈D

αi(x)

− r
r∑

i=1

∑
x∈D

(ni(x) + n′
i(x))αi(x) = r

r∑
i=1

∑
x∈D

αi(x)− r
r∑

i=1

∑
x∈D

αi(x) = 0.

Thus, for all d′ ∈ Z, Wn̄(α)− rd′ = −(Wn̄′(α) + rd′).
On the other hand, if Wn̄,d′ and Wn̄′,d′′ are the same hyperplane, then, without loss

of generality, there exists λ ̸= 0 such that Wn̄′ = λWn̄. Let r′′ be the rank of n̄′. In
virtue of the previous identity, we can also assume without loss of generality, changing
n̄ or n̄′ by their respective complements if necessary that r′, r′′ ≤ r/2. Then

0 = λWn̄ −Wn̄′ =
r∑

i=1

∑
x∈D

(λr′ − r′′)αi(x)−
r∑

i=1

∑
x∈D

r(λni(x)− n′
i(x))αi(x).

Thus, for each i and each x ∈ D we must have

λr′ − r′′ = rλni(x)− rn′
i(x)
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Now, we have two cases. First, assume that λr′ − r′′ = 0. Then λ = r′′/r′ ̸= 0 and we
have

0 = λni(x)− n′
i(x)

for each i and x. But ni(x), n
′
i(x) ∈ {0, 1}, so we must have ni(x) = n′

i(x) and
1 = λ = r′′/r′, so n̄ = n̄′. Then, it is trivial that in order for the hyperplanes to
coincide, we must also have d′ = d′′.

On the other hand, assume that λr′ − r′′ ̸= 0. As we assumed that r′, r′′ ≤ r/2,
then r′ + r′′ ≤ r and, if n̄′ is not the complement of n̄, then there must exist at least
some i = 1, . . . , r and some x ∈ D such that ni(x) = n′

i(x) = 0. But then, for that i
and x, we would have

rλni(x)− rn′
i(x) = 0 ̸= λr′ − r′′.

Thus, we must have that n̄′ is the complementary of n̄, so r′′ = r−r′. As a consequence,
Wn̄′ = −Wn̄ and, therefore, in this case the hyperplanes coincide if and only if d′′ =
−d′.

This lemma justi�es that exactly one hyperplane can be proportional to another
hyperplane, and that the proportional hyperplanes are of the form Wn̄,d′ and Wn̄′,−d′

for some n̄′ ∈ Ωn,r,r−r′ such that n′
i(x) = 1− ni(x) for all i = 1, . . . , r and x ∈ D.

We now have to prove that this hyperplane Wn̄,d does exists for each n̄ ∈ Ωn,r,r′ and
each d ∈ In̄ = {d′ ∈ (ln̄, un̄) | d′ ≡ 0 (mod r)}, where In̄ is the set of possible intercepts
for the hyperplane Wn̄,d′ .

In the de�nition of the intercept bounds given above, we see both bounds depend
on partial sums of the normal vector wn̄ of the hyperplane Wn̄,d′ at each point x ∈ D.
From now on, it will be convenient to de�ne the following notation for the partial sums
of the normal vector wn̄ at each point x ∈ D:

Sj,x(wn̄) =
r∑

i=j

wn̄,i(x),

where Sj,x(wn̄) is the partial sum starting at index j of the normal vector wn̄ at the
point x ∈ D.

Lemma 4.1.4. Let F : Ωn,r,r′ −→ Ωn,r,r−r′ be the function F(n̄i(x)) = 1− n̄i(x), Then

un̄ = −lF(n̄),

ln̄ = −uF(n̄).

Proof. We have

Sj,x(wF(n̄)) =
r∑

i=j

wF(n̄),i(x) =
r∑

i=j

((r − r′)− (1− ni(x)) r))

=
r∑

i=j

(r − r′ − r + ni(x)r) = −
r∑

i=j

(r′ − ni(x)r) = −Sj,x(wn̄),

Thus, we have

un̄ =
∑
x∈D

max
1≤j≤r

Sj,x(wn̄) =
∑
x∈D

max
1≤j≤r

−Sj,x(wF(n̄))

= −
∑
x∈D

min
1≤j≤r

Sj,x(wF(n̄)) = −lF(n̄).
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And since F(F(n̄)) = n̄, we also have

ln̄ = −uF(n̄)

Combining the previous two lemmas, we have that all n̄ ∈ Ωn,r,r′ can be paired with
a unique n̄′ ∈ Ωn,r,r−r′ such that if the set of possible intercepts for n̄ is In̄ = {d′ ∈
(ln̄, un̄) | d′ ≡ 0 (mod r)}, then the set of possible intercepts for n̄′ is the same set but
negated, In̄′ = {d′ ∈ (−un̄, ln̄) | d′ ≡ 0 (mod r)}. Thus, each hyperplane formed by
a selection vector n̄ ∈ Ωn,r,r′ and an integer d′ ∈ In̄ is proportional to a hyperplane
formed by the selection vector n̄′ ∈ Ωn,r,r−r′ and the integer −d′ ∈ In̄′ . This means that
exactly half of the hyperplanes Wn̄,d′ are proportional to each other when considering
all r′ ∈ {1, . . . , r − 1}, or similarly, that we only need to consider r′ ∈ {1, . . . , ⌊r/2⌋}
and discard half the hyperplanes with r′ = r/2 if r is even.

4.2 Explicit formulas for the number of walls

In this section, we begin with a straightforward algorithmic formula for computing the
number of geometric walls. We then re�ne this expression to facilitate further analysis,
ultimately leading to tight bounds on the number of geometric walls.

Let us start with a useful lemma on the intercept bounds ln̄ and un̄ de�ned in
lemma 4.1.2.

Lemma 4.2.1. Let n̄ ∈ Ωn,r,r′ be a selection vector of subrank r′ and rank r over
(X,D), then

un̄ > ln̄

Proof. Let un̄ and ln̄ be as in lemma 4.1.2, and let Sj,x(wn̄) =
∑r

i=j wn̄,i(x).
We have the following inequality

max
1≤j≤r

Sj,x(wn̄) ≥ max(S1,x(wn̄), Sr,x(wn̄)) = max(0, r′ − nr(x)r)

Let's look at each case separately. If nr(x) = 0, then

max
1≤j≤r

Sj,x(wn̄) ≥ max(0, r′) = r′ > 0 ≥ min
1≤j≤r

Sj,x(wn̄)

If nr(x) = 1, then

max
1≤j≤r

Sj,x(wn̄) ≥ max(0, r′ − r) = 0 > r′ − r ≥ min
1≤j≤r

Sj,x(wn̄)

Finally, in both cases, we have

un̄ =
∑
x∈D

max
1≤j≤r

Sj,x(wn̄) >
∑
x∈D

min
1≤j≤r

Sj,x(wn̄) = ln̄
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Lemma 4.2.2. The number of di�erent walls in the space of stability conditions of
rank r, degree 0 with n parabolic points is

Wn,r =

{ ∑⌊r/2⌋
r′=1 Wn,r,r′ if r is odd∑r/2−1
r′=1 Wn,r,r′ +

1
2
Wn,r,r/2 if r is even

,

where

Wn,r,r′ =
∑

n̄∈Ωn,r,r′

(⌈un̄

r

⌉
−
⌊
ln̄
r

⌋
− 1

)
Proof. In order to count the number of di�erent walls in the space of stability conditions
of rank r, degree 0 with n parabolic points, we will go through all the selection vectors
n̄ ∈ Ωn,r,r′ , which each produce a single normal vector wn̄, and count the number of
di�erent intercepts that make the hyperplane Wn̄,d′ intersect the product of simplices
An,r, using the bounds given in Lemma 4.1.2.

However, we need to be careful with the fact that some selection vectors n̄ and n̄′

can produce the same hyperplane Wn̄,d′ , which would lead to double counting. Lemma
4.1.3 tells us that the hyperplanes Wn̄,d′ and Wn̄′,d′′ are the same if and only if n̄ = n̄′

and d′ = d′′ or n̄′
i(x) = 1− n̄i(x) for all i = 1, . . . , r and x ∈ D and d′ = −d′′.

In the previous lemma, we de�ned the function F : Ωn,r,r′ −→ Ωn,r,r−r′ as the
function F(n̄i(x)) = 1 − n̄i(x). Also, we proved that un̄ = −lF(n̄) and ln̄ = −uF(n̄).
Thus, we can conclude that the set of hyperplanes generated by the selection vectors
n̄ and F(n̄) are the same.

In the case of r even and r′ = r
2
, the bijection F is also a permutation, since

Ωn,r,r′ = Ωn,r,r−r′ = Ωn,r, r
2
. Thus, we can conclude that only half of the hyperplanes

generated by the selection vectors n̄ ∈ Ωn,r,r/2 are di�erent.
We de�ne Wn,r,r′ as the number of pairs (wn̄, rd

′) for n̄ ∈ Ωn,r,r′ and rd′ ∈ (ln̄, un̄),
each one corresponding to a hyperplane Wn̄,d′ that intersects the product of simplices
An,r.

It is a well known fact that the number of multiples of r in an open interval (a, b)
with b > a is given by

Nr((a, b)) =

⌈
b

r

⌉
−
⌊a
r

⌋
− 1.

By Lemma 4.2.1 we have un̄ > ln̄, so we can apply the previous formula to all
intervals (ln̄, un̄). Thus, the number of tuples (wn̄, rd

′) for n̄ ∈ Ωn,r,r′ and rd′ ∈ (ln̄, un̄)
is given by

Wn,r,r′ =
∑

n̄∈Ωn,r,r′

Nr((ln̄, un̄))

Finally, we can conclude that the number of di�erent walls in the space of stability
conditions of rank r, degree 0 with n parabolic points is given by

Wn,r =

{ ∑⌊r/2⌋
r′=1 Wn,r,r′ if r is odd∑r/2−1
r′=1 Wn,r,r′ +

1
2
Wn,r,r/2 if r is even.

The next step would be simplifying this expression, getting rid of the �oor and
ceiling functions, so that further analysis can be done. In order to do so, we will use
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the following lemma regarding the counts of intercept bounds modulo r, which we
mentioned in the previous section, for which the data genarated algorithmically was
crucial.

Lemma 4.2.3. Let Un,r,r′,k and Ln,r,r′,k be respectively,

Un,r,r′,k = #{n̄ ∈ Ωn,r,r′ |un̄ ≡ k (mod r)},

Ln,r,r′,k = #{n̄ ∈ Ωn,r,r′ | ln̄ ≡ k (mod r)}.

Then, {
Un,r,r′,k = Ln,r,r′,k =

gcd(r,r′)
r

(
r
r′

)n
if k ≡ 0 (mod gcd(r, r′))

Un,r,r′,k = Ln,r,r′,k = 0 otherwise.

Proof. Let us �rst look at the case k ̸≡ 0 (mod gcd(r, r′)).
It follows from Lemma 4.1.2 that un̄ and ln̄ are sums of terms of the form r′−ni(x)r

for some i = 1, . . . , r and x ∈ D. Thus, gcd(r′, r − r′) = gcd(r′, r) divide both un̄ and
ln̄. As a consequence,

u(n̄) ≡ l(n̄) ≡ 0 (mod gcd(r, r′)),

i.e., there are no selection vectors n̄ such that un̄ ≡ k (mod r) or ln̄ ≡ k (mod r) for
k ̸≡ 0 (mod gcd(r, r′)).

Let's now look at the case k ≡ 0 (mod gcd(r, r′)). Let Rx0 : Ωn,r,r′ −→ Ωn,r,r′ , with
x0 ∈ D be the permutation of Ωn,r,r′ such that

(Rx0(n̄))i (x) =


n̄i−1(x) if x = x0 and i > 1,

n̄r(x) if x = x0 and i = 1,

n̄i(x) otherwise.

Let
un̄,x = max

1≤j≤r
Sj,x(wn̄), ln̄,x = min

1≤j≤r
Sj,x(wn̄), (4.2.1)

with Sx,j(wn̄) =
∑r

i=j wn̄,i(x) so that un̄ =
∑

x un̄,x. Since Rx0 acts only on x0, only
un̄,x0 is a�ected. We have

uRx0 (n̄),x0 = max
1≤j≤r

Sj,x0(wRx0 (n̄)
) = max

1≤j≤r

r∑
i=j

wRx0 (n̄),i
(x0)

= max

(
wn̄,1(x0), wn̄,r(x0) + wn̄,r−1(x0), . . . ,

r∑
i=2

wn̄,i(x0)

)
=

max

(
wn̄,1(x0), max

2≤j≤r
Sj,x0(wn̄)

)
.

Now there are two cases. First, if un̄ > 0, then argmax1≤j≤r Sj,x0(wn̄) = j0 for some
j0 ≥ 2. Then, we have

max
2≤j≤r

Sj,x0(wn̄) = max
1≤j≤r

Sj,x0(wn̄)
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and thus

uRx0 (n̄),x0 = (r′ − n1(x0)r) + max
1≤j≤r

Sj,x0(wn̄) = (r′ − n1(x0)r) + un̄,x0 .

Thus, if un̄x,x ≡ k (mod r), then uR(n̄x) ≡ k + r′ (mod r). Now, looking at the
whole un̄ we obtain

uRx0 (n̄)
=
∑
x∈D

uRx0 (n̄x) =
∑
x̸=x0
x∈D

un̄x,x + uRx0 (n̄x0 )
=
∑
x̸=x0
x∈D

un̄x,x + un̄x0
+ (r′ − n1(x0)r)

=
∑
x∈D

un̄x,x + (r′ − n1(x0)r) = un̄ + (r′ − n1(x0)r).

Therefore, if un̄ ≡ k (mod r), then uRx0 (n̄)
≡ k + r′ (mod r).

We know that un̄ is always a multiple of gcd(r, r′). Let us de�ne the set

G = {a · gcd(r, r′) (mod r) | a ∈ Z}.

Then, G is a subgroup of Z/rZ of order r/gcd(r, r′), and r′ is a generator of the group.
Let Ωk = {n̄ ∈ Ωn,r,r′ |un̄ ≡ k (mod r)}, then for any k, k′ ∈ G there exists p ∈ Z such
that Rp

x0
(n̄) induces a bijection between Ωk and Ωk′ .

Thus, there is the same number of elements in Ωk and Ωk′ , and since Un,r,r′,k is
the number of elements in Ωk, we have that Un,r,r′,k = Ur,r′,k′ for all k, k

′ ∈ G. This
means that all n̄ ∈ Ωn,r,r′ are evenly distributed across all di�erent Ωk. Same reasoning
applies to Ln,r,r′,k. |Ωn,r,r′| is the number of selection vectors of rank r and subrank r′

over (X,D), which is given by
(
r
r′

)n
, for all r′ ̸= r/2. For r′ = r/2, we have that

(
r
r′

)n
is even, and thus, the number of selection vectors of rank r and subrank r′ over (X,D)
is given by 1

2

(
r
r′

)n
.

Since there are r/gcd(r, r′) di�erent values of k (mod r), we have that

{
Un,r,r′,k = Ln,r,r′,k =

|Ωn,r,r′ |
r/gcd(r,r′)

= gcd(r,r′)
r

(
r
r′

)n
if k ≡ 0 (mod gcd(r, r′))

Un,r,r′,k = Ln,r,r′,k = 0 otherwise

With this we can �nd a more re�ned expression for Wn,r,r′ .

Lemma 4.2.4. The number of di�erent walls in the space of stability conditions of
rank r, degree 0 with n parabolic points and subrank r′ is

Wn,r,r′ =
1

r

(
r

r′

)n−1

(nSr,r′ −
(
r

r′

)
gcd(r, r′)),

where Sr,r′ is de�ned as

Sr,r′ =
∑

n̄∈Ω1,r,r′

(un̄ − ln̄).

Proof. We will make use of the following modular arithmetic identities to simplify the
expression of Wn,r,r′ derived in Lemma 4.2.2.⌊a

b

⌋
=

a− (a mod b)

b
,
⌈a
b

⌉
=
⌊a
b

⌋
+ [a ̸≡ 0 mod b],
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where [a ̸≡ 0 mod b] is the Iverson bracket, which is 1 if a ̸≡ 0 mod b and 0 otherwise.
We can rewrite the expression for Wn,r,r′ as follows:

Wn,r,r′ =
∑

n̄∈Ωn,r,r′

(
un̄ − (un̄ mod r)

r
+ [un̄ ̸≡ 0 mod r]− ln̄ − (ln̄ mod r)

r
− 1

)

=
∑

n̄∈Ωn,r,r′

(
un̄ − (un̄ mod r)

r
− ln̄ − (ln̄ mod r)

r
− [un̄ ≡ 0 mod r]

)
=

1

r

∑
n̄∈Ωn,r,r′

(un̄ − ln̄)−
1

r

∑
n̄∈Ωn,r,r′

un̄ mod r +
1

r

∑
n̄∈Ωn,r,r′

ln̄ mod r

−
∑

n̄∈Ωn,r,r′

[un̄ ≡ 0 mod r].

Let us now look at the �rst term. Since Ωn,r,r′ is a product of n sets Ω1,r,r′ , we
can represent n̄ as n̄ = (n̄x1 , . . . , n̄xn), where n̄xi

= (n1(xi), . . . , nr(xi)) ∈ Ω1,r,r′ for all
i ∈ {1, . . . , n}. Also, from the de�nition of un̄ and ln̄, we have that un̄ =

∑
x∈D un̄x,x

and ln̄ =
∑

x∈D ln̄x,x, with un̄x,x and ln̄x,x as de�ned in equation (4.2.1). Thus, we can
rewrite the �rst term as follows.

1

r

∑
n̄∈Ωn,r,r′

(un̄ − ln̄) =
1

r

∑
n̄∈Ωn,r,r′

∑
x∈D

(un̄x,x − ln̄x,x).

Notice that un̄x,x and ln̄x only depend on the selection vector n̄x ∈ Ω1,r,r′ and not on
the choice of point x ∈ D. Thus, we can use the standard notation for un̄ and ln̄, with
n̄ ∈ Ω1,r,r′ , and rewrite the �rst term as follows.

1

r

∑
n̄∈Ωn,r,r′

∑
x∈D

(un̄x,x − ln̄x,x) =
1

r

∑
n̄x1∈Ω1,r,r′

. . .
∑

n̄xn∈Ω1,r,r′

∑
i∈{0,...,n}

(un̄xi
− ln̄xi

)

=
1

r

 ∑
n̄x1∈Ω1,r,r′

. . .
∑

n̄xn∈Ω1,r,r′

(un̄x1
− ln̄x1

) + . . .

+
∑

n̄x1∈Ω1,r,r′

. . .
∑

n̄xn∈Ω1,r,r′

(un̄xn
− ln̄xn

)

 .

Now, we can reorder each of the n summations, so that we sum over the selection
vectors n̄xi

∈ Ω1,r,r′ �rst. Notice the sum∑
n̄xi∈Ω1,r,r′

(un̄xi
− ln̄xi

)

is the same for all i = 1, . . . , n, since it only depends on the set Ω1,r,r′ . We will denote
this sum as Sr,r′ =

∑
n̄∈Ω1,r,r′

(un̄ − ln̄), and thus we are left with

1

r
nSr,r′

∑
n̄x1∈Ωn−1,r,r′

1 =
1

r
nSr,r′

(
r

r′

)n−1

,

where
(
r
r′

)
is the number of selection vectors n̄xi

∈ Ω1,r,r′ .

32



Now, let us look at the second term. We have

−1

r

∑
n̄∈Ωn,r,r′

un̄ mod r = −1

r

∑
0≤j<r

j · Un,r,r′,j,

where Un,r,r′,j is the number of selection vectors n̄ ∈ Ωn,r,r′ such that un̄ ≡ j (mod r).
Same reasoning applies to the third term, where we have

1

r

∑
n̄∈Ωn,r,r′

ln̄ mod r =
1

r

∑
0≤j<r

j · Ln,r,r′,j,

where Ln,r,r′,j is the number of selection vectors n̄ ∈ Ωn,r,r′ such that ln̄ ≡ j (mod r).
In Lemma 4.2.3, we showed that Un,r,r′,j = Ln,r,r′,j for all n, r, r

′, j, so both these terms
cancel out.

Finally, we have∑
n̄∈Ωn,r,r′

[un̄ ≡ 0 mod r] = Un,r,r′,0 =
gcd(r, r′)

r

(
r

r′

)n

,

where Un,r,r′,0 is the number of selection vectors n̄ ∈ Ωn,r,r′ such that un̄ ≡ 0 (mod r)
as proven in Lemma 4.2.3.

Thus, combining all terms we get the expression for Wn,r,r′ as follows.

Wn,r,r′ =
1

r

(
r

r′

)n−1(
nSr,r′ −

(
r

r′

)
gcd(r, r′)

)
.

This expression is almost simpli�ed. It only depends on the term Sr,r′ , which is
the sum of the range of possible intercepts for all hyperplanes Wn̄,d′ , where n̄ ∈ Ω1,r,r′ .
Attempts to simplify this term further led to a complex expression and recurrence
relations. Although Sr,r′ resists a closed formula, bounding it su�ces for an asymptotic
analysis of the number of walls in the space of stability conditions.

4.3 Bounds for the number of walls

In this section, we derive bounds on the number of walls in the space of stability
conditions for parabolic vector bundles of rank r, degree 0, and n marked points by
estimating the term Sr,r′ de�ned in Lemma 4.2.4. We also provide an asymptotic
analysis of the growth of the number of walls as a function of r and n.

In order to do so, we �rst need to rewrite the intercept bounds un̄ and ln̄ in a more
compact expression.

Lemma 4.3.1. Let n̄ ∈ Ω1,r,r′. Let un̄ and ln̄ be the upper and lower bounds of the
intercepts of the hyperplanes Wn̄,d′, and let P : Ωn,r,r′ −→ [1, r]r

′
be the natural fuction

associating bijectively the set of selection vectors n̄ to the ordered set of r′ indices
i1, . . . , ir′ such that n̄ik(x) = 1 for all k = 1, . . . , r′ and x ∈ D. Then, we have

un̄ = max
1≤k≤r′

kr − ikr
′

ln̄ = min
1≤k≤r′

(k − 1)r − (ik − 1)r′
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Proof. Since we are working with a single parabolic point x ∈ D, we can drop the index
x from the notation, so that wn̄(x) = wn̄ and ni(x) = ni for all i = 1, . . . , r. Recall the
de�nition of un̄ and ln̄ from lemma 4.1.2:

un̄ = max
1≤j≤r

r∑
i=j

wn̄,i

ln̄ = min
1≤j≤r

r∑
i=j

wn̄,i.

and recall wn̄,i = r′−nir. Since 0 < r′ < r we have the following for all i = 1, . . . , r.{
wn̄,i < 0 if ni = 1

wn̄,i > 0 if ni = 0.

Thus, the sequence
{∑r

i=j wn̄,i

}
j
= {rr′ − r (

∑r
i=1 ni) , . . . , r

′ − rnr} is 0 for j = 1 and

decreases until j = i1, since we are removing positive terms from the sums, then it
increases at j = i1+1 since we remove a negative term from the sum, then it decreases
again until j = i2, and so on. Thus, ik + 1 are local maxima, and ik are local minima,
and the maximum and minimum of the sequence are attained at j = ik and j = ik + 1
for some k, respectively.

un̄ = max
1≤k≤r′

r∑
i=ik+1

wn̄,i = max
1≤k≤r′

r∑
i=ik+1

(r′ − nir)

= max
1≤k≤r′

(r − ik)r
′ −

(
r∑

i=ik+1

ni

)
r = max

1≤k≤r′
(r − ik)r

′ − (r′ − k)r

= max
1≤k≤r′

rr′ − ikr
′ − r′r + kr = max

1≤k≤r′
kr − ikr

′.

Similarly, we have

ln̄ = min
1≤k≤r′

r∑
i=ik

wn̄,i = min
1≤k≤r′

r∑
i=ik

(r′ − nir)

= min
1≤k≤r′

(r − ik + 1)r′ −

(
r∑

i=ik

ni

)
r = min

1≤k≤r′
(r − ik + 1)r′ − (r′ − k + 1)r

= min
1≤k≤r′

rr′ − ikr
′ + r′ − r′r + kr − r = min

1≤k≤r′
(k − 1)r − (ik − 1)r′.

With this formulation, we can �nd bounds for the term Sr,r′ .

Lemma 4.3.2. Let Sr,r′ =
∑

n̄∈Ω1,r,r′
(un̄− ln̄), where un̄ and ln̄ are the upper and lower

bounds of the intercepts of the hyperplanes Wn̄,d′, respectively. Then, we have

(r − r′)

(
r

r′

)
≤ Sr,r′ ≤ r′(r − r′)

(
r

r′

)
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Proof. To bound this term, we will bound the di�erence un̄ − ln̄ for all n̄ ∈ Ω1,r,r′ .
Starting with the lower bound, we have

un̄ − ln̄ = max
1≤k≤r′

kr − ikr
′ − min

1≤k≤r′
(k − 1)r − (ik − 1)r′

= max
1≤k≤r′

kr− ikr
′+ max

1≤k≤r′
−(k− 1)r+(ik− 1)r′ ≥ max

1≤k≤r′
kr− ikr

′− (k− 1)r+(ik− 1)r′

= max
1≤k≤r′

r − r′ = r − r′.

Thus, we have

Sr,r′ =
∑

n̄∈Ω1,r,r′

(un̄ − ln̄) ≥
∑

n̄∈Ω1,r,r′

(r − r′) = (r − r′)

(
r

r′

)
.

Now, let us look at the upper bound. Let's state some inequalities from the previous
formulation: {

1 ≤ k ≤ r′

k ≤ ik−1 < ik ≤ r − (r′ − k)

which implies that k′ − k′′ ≤ ik′ − ik′′ ≤ (r − r′) + (k′ − k′′) for all k′ ≥ k′′ ∈ [1, r′].
Thus, we have

un̄ − ln̄ = max
1≤k≤r′

kr − ikr
′ − min

1≤k≤r′
(k − 1)r − (ik − 1)r′

= (r − r′) + max
1≤k≤r′

kr − ikr
′ − min

1≤k≤r′
kr − ikr

′

= (r − r′) + k′r − ik′r
′ − (k′′r − ik′′r

′) = (r − r′) + (k′ − k′′)r − (ik′ − ik′′)r
′

for some k′, k′′ ∈ [1, r′].
Let us look at the case k′ ≥ k′′. Then, we have

un̄ − ln̄ = (r − r′) + (k′ − k′′)r − (ik′ − ik′′)r
′ ≤ (r − r′) + (k′ − k′′)r − (k′ − k′′)r′

= (r − r′) + (r − r′)(k′ − k′′) ≤ (r − r′) + (r − r′)(r′ − 1) = r′(r − r′)

And if k′ ≤ k′′, we can apply the same reasoning, and we have

un̄ − ln̄ = (r − r′)− (k′′ − k′)r + (ik′′ − ik′)r
′

≤ (r − r′)− (k′′ − k′)r + ((r − r′) + (k′′ − k′))r′

= (r − r′)− (k′′ − k′)r + (r − r′)r′ + (k′′ − k′)r′

= (r − r′)− (k′′ − k′)(r − r′) + r′(r − r′)

≤ (r − r′)− (r − r′) + r′(r − r′) = r′(r − r′).

Thus, we conclude that

Sr,r′ =
∑

n̄∈Ω1,r,r′

(un̄ − ln̄) ≤
∑

n̄∈Ω1,r,r′

(r′(r − r′)) = r′(r − r′)

(
r

r′

)
.
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Finally, we can plug the bounds for Sr,r′ into the expression for Wn,r,r′ to obtain
bounds for the number of walls.

Theorem 4.3.3. The number of di�erent walls in the space of stability conditions of
rank r, degree 0 with n parabolic points is bounded by

Wn,r =

{ ∑⌊r/2⌋
r′=1 Wn,r,r′ if r is odd∑r/2−1
r′=1 Wn,r,r′ +

1
2
Wn,r,r/2 if r is even

where

1

r

(
r

r′

)n

(n(r − r′)− gcd(r, r′)) ≤ Wn,r,r′ ≤
1

r

(
r

r′

)n

(nr′(r − r′)− gcd(r, r′)).

Proof. The proof follows directly from the previous lemmas.

To wrap up the section, we will give a precise asymptotic behavior of the number
of walls in the space of stability conditions of rank r, degree 0 with n parabolic points.

Theorem 4.3.4. Let Wn,r denote the number of di�erent walls in the space of stability
conditions of rank r, degree 0, with n parabolic points. Then, as r →∞ with n varying,
we have

Wn,r = O

(
nr

(√
2

π

)n

· 2
nr

rn/2

)
and Wn,r = Ω

(
n

(√
2

π

)n

· 2
nr

rn/2

)
.

Proof. We analyze the asymptotic behavior of Wn,r using the upper bound in The-
orem 4.3.3, where the dominant contribution to the sum comes from the term with
r′ = ⌊r/2⌋.

Let us �rst consider the case when r is even, say r = 2k, and take r′ = k. Since
gcd(2k, k) = k, the lower and upper bounds for Wn,r,k are given by

Wn,r,k ≤
1

2k

(
2k

k

)n

(nk2 − k) =
1

2

(nr
2
− 1
)( r

r/2

)n

∼ 1

4
nr

(
r

r/2

)n

and

Wn,r,k ≥
1

2k

(
2k

k

)n

(nk − k) =
1

2
(n− 1)

(
r

r/2

)n

∼ 1

2
n

(
r

r/2

)n

.

p Let us now look at the case when r is odd, say r = 2k + 1, and take r′ = k. Since
gcd(2k + 1, k) = 1, we have

Wn,r,k ≤
1

2k + 1

(
2k + 1

k

)n

(nk(k + 1)− 1) ∼ 1

4
nr

(
r

⌊r/2⌋

)n

and

Wn,r,k ≥
1

2k + 1

(
2k + 1

k

)n

(n(k + 1)− 1) ∼ 1

2

(
r

⌊r/2⌋

)n

.

Indeed, for both cases, the asymptotic behavior of the bounds is the same. Now we
can use Stirling's approximation on the central binomial coe�cient, which works on
both even and odd cases. For large r, we have(

r

⌊r/2⌋

)
∼ 2r√

πr/2
=

√
2

π
· 2

r

√
r
,
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and hence (
r

⌊r/2⌋

)n

∼

(√
2

π

)n

· 2
nr

rn/2
.

Combining the dominant term with the binomial estimate gives

Wn,r = O

(
nr

(√
2

π

)n
2nr

rn/2

)
,

and

Wn,r = Ω

(
n

(√
2

π

)n
2nr

rn/2

)
as claimed.

4.4 Bounds for the number of stability chambers

In this section, we derive preliminary bounds on the number of distinct parabolic
chambers in the space of stability conditions for vector bundles of rank r and degree 0
with n marked points. These bounds are obtained using the results established in the
previous section.

Lemma 4.4.1. Let H be a �nite arrangement of hyperplanes in Rd, and let C be the
number of regions (chambers) into which H divides Rd. Let P ⊂ Rd be a convex
polytope. Then the number of connected components of P \

⋃
H∈H H is less than or

equal to C.

Proof. Since P is the intersection of �nitely many halfspaces, we can restrict to one
halfspace at a time. At each step, a halfspace can remove some chambers (lying entirely
outside), and/or intersect some chambers and keep only one of the two portions. In
both cases, no new regions are created�only existing ones are possibly truncated or
discarded. Therefore, the number of regions in P remains less than or equal to the
number in Rd.

Theorem 4.4.2. Let Cn,r denote the number of distinct parabolic chambers in the space
of stability conditions of rank r and degree 0 with n parabolic points. Let Wn,r be the
number of walls (hyperplanes) in this space. Then:

Wn,r + 1 ≤ Cn,r ≤
nr∑
i=0

(
Wn,r

i

)
Proof. The lower bound follows from the fact that minimum number of regions a set
of m hyperplanes can create inside a convex polytope is m + 1, when all hyperplanes
are parallel.

The upper bound follows from the classical result in combinatorial geometry given
by Schlä�i [Sch01], which states that the maximal number of regions formed by n
hyperplanes in general position in Rd is

R(n, d) =
d∑

i=0

(
n

i

)
.
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In our context, we consider an arrangement of Wn,r hyperplanes in Rnr, correspond-
ing to walls in the space of stability conditions.

These hyperplanes partition the entire space Rnr into at most
∑nr

i=0

(
Wn,r

i

)
regions.

However, we are only interested in the regions that lie within a certain convex polytope
An,r, which de�nes the domain of stability conditions.

By the lemma above, intersecting this global partition with the polytope An,r can
only reduce (or preserve) the number of chambers, not increase it. Therefore, the
number of parabolic chambers Cn,r is bounded by:

Cn,r ≤
nr∑
i=0

(
Wn,r

i

)
.

The number of stability chambers increases rapidly with both n and r. Although
upper and lower bounds provide insight into the overall growth behavior, the upper
bounds are often extremely loose, particularly for larger values of n and r. In such cases,
they function more as theoretical ceilings than as practical estimates. In contrast, the
lower bounds tend to be much closer to the actual number of chambers for small values
of n and r, but they still substantially underestimate the true growth rate as the
parameters increase.

Below we show the lower bounds, upper bounds, and known actual values for the
number of chambers when d = 0, for n ≤ 6 and r ≤ 6.

n\r 1 2 3 4 5 6

1

1 ≤
1

≤ 1

2 ≤
2

≤ 2

4 ≤
4

< 8

12 <

14

< 1× 103

22 <

80

< 9× 104

66 <

1296

< 8× 108

2

2 ≤
2

< 2

10 <

12

< 5× 102

42 <

640

< 2× 108
� � �

3

5 ≤
5

< 16

46 <

720

< 2× 109
� � � �

4

13 <

24

< 3797

� � � � �

5

33 <

409

< 2× 108
� � � � �

6

81 <

31916

< 8× 1013
� � � � �

Table 4.1: Comparison of lower bound, actual value, and upper bound for the number
of stability chambers (d = 0).
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Chapter 5

Duality

This chapter delves into the impact of duality on the moduli space of parabolic vector
bundles. Building on the conjectures derived from the data in �3.6, we examine the
interplay between dualization and the structural properties of these spaces.

5.1 Duality breaks automorphisms

While duality can sometimes behave like a symmetry in rank r = 2, our �ndings suggest
that this does not extend to higher ranks. In fact, we will show that for r > 2, the
dual of a parabolic bundle never induces an automorphism of the moduli space. This
re�ects a deeper asymmetry in the geometry of these spaces as the rank increases.

Lemma 5.1.1. If T = (σ, s, L,H) ∈ Tξ and deg(ξ) = 0, then r divides |H|.

Proof. If T ∈ Tξ, then
σ∗(Lr ⊗ ξ(−H))s ∼= ξ

Taking degrees on both sides, and taking into account that σ does not change the
degree yields

s(r deg(L) + deg(ξ)− |H|) = deg(ξ)

As deg(ξ) = 0, we have
sr deg(L)− s|H| = 0

so |H| = r deg(L) and, therefore, r divides |H|.

Lemma 5.1.2. Let r ≥ 2 and n be positive integers. Let X be a smooth complex
projective curve and let D = {x1, . . . , xn} be a set of n di�erent points on X. Let
α be a generic system of weights on (X,D) in the sense of De�nition 2.1.3. If T =
(σ, s, L,H) ∈ Tξ is a basic transformation inducing an automorphism ofM(X, r, α, ξ),
then there exists another generic weight α′ ∈ Cα in the same stability chamber as α
such that α′ = T (α′).

Proof. Let T be a basic transformation inducing an automorphism of M(X, r, α, ξ).
Then, the induced map on the space of parabolic chambers T : S̃An,r −→ S̃An,r

preserves the parabolic chamber Cα. From [Alf22, Lemma 3.4], we know that the
group Tξ is �nite. Let N be the order of T in Tξ. Let us consider the orbit of α in
S̃An,r by the action of the �nite subgroup ⟨T ⟩ < Tξ generated by T , i.e., the set of
points

{α, T (α), T 2(α), . . . , TN−1(α)} ⊂ S̃An,r.
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As T preserves the stability chamber of α and preserves the genericity of the weights,
T i(α) is a generic weight in Cα for each i = 1, . . . , |Tξ| − 1. Let

α′ =
1

N

N−1∑
i=0

T i(α).

From the equations of the action (2.3.2) we observe that T is an a�ne map. Thus,

T (α′) = T

(
1

N

N−1∑
i=0

T i(α)

)
=

1

N

N∑
i=1

T i(α) .

As T has order N , then TN(α) = α, so

T (α′) =
1

N

N∑
i=1

T i(α) =
1

N

N−1∑
i=0

T i(α) = α′.

Finally, observe that the parabolic chambers for the moduli space are de�ned as in-
tersections of open half-spaces. Therefore, they are convex. Since α′ is a convex
combination of a set of points in the convex chamber Cα, then α′ ∈ Cα.

Lemma 5.1.3. Let r > 2 and n be positive integers. Let X be a smooth complex
projective curve of genus g ≥ max(6, 1 + (r − 1)n) and let D = {x1, . . . , xn} be a set
of n di�erent points on X. Let α be a generic system of weights on (X,D) in the
sense of De�nition 2.1.3. If T = (σ, s, L,H) ∈ Tξ is a basic transformation inducing
an automorphism ofM(X, r, α, ξ), then s = 1.

Proof. We can reduce the proof to the case where deg(ξ) = 0. To see this, assume
�rst that d = deg(ξ). Let x ∈ D be any parabolic point. Let α′ = Hdx(α

′) and
ξ′ = Hdx(ξ) = ξ(−dx). Then Hdx induces an isomorphism Hdx : M(X, r, α, ξ)

∼−→
M(X, r, α′, ξ′). Let T ′ = Hdx◦T ◦H−1

dx . Then T ′ is an automorphism ofM(X, r, α′, ξ′).
By the relations from [AG21, Lemma 5.7], it is straightforward to verify that T ′ =
(σ, s, L′, H ′) for some L′ and H ′. As s does not change, if we prove thatM(X, r, α′, ξ′)
does not admit any automorphisms with s = 1, then nor doesM(X, r, α, ξ).

From this point on, we will assume that d = deg(ξ) = 0. Moreover, by Lemma
5.1.2, we can assume without loss of generality that T (α) = α. Suppose that s = −1
and let H =

∑
x∈D hxx. Then, by (2.3.2), T (α) = α implies the following system of

linear equations 

α1(σ(x)) = 0 = αhx(x)− αhx(x)
α2(σ(x)) = αhx(x)− αhx−1(x)
...
αhx(σ(x)) = αhx(x)− α1(x)
αhx+1(σ(x)) = αhx(x) + 1− αr(x)
...
αr(σ(x)) = αhx(x) + 1− αhx+1(x)

∀x ∈ D (5.1.1)

where, by coherence with the periodicity conditions [Sim90], we will take α0(x) =
αr(x)− 1 if hx = 0 for some x ∈ D.
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Summing both sides of all the equations from (5.1.1) across x ∈ D and observing
that the permutation does not a�ect the total sum of the left hand side yields

∑
x∈D

r∑
i=1

αi(x) =
∑
x∈D

(rαhx(x) + (r − hx))−
∑
x∈D

r∑
i=1

αi(x).

Rearranging yields

2
∑
x∈D

r∑
i=1

αi(x)− r
∑
x∈D

αhx(x) = |D|r − |H|.

Let D0 = D\ supp(H) = {x ∈ D |hx = 0}. Then, by the convention α0(x) = αr(x)− 1
we have

r
∑
x∈D0

αhx(x) = r
∑
x∈D0

(αr(x)− 1) = r
∑
x∈D0

αr(x)− r(|D0|).

If we take into account that α1(x) = 0 for all x ∈ D, we can then combine the previous
identities into the following.

2
∑
x∈D

r∑
i=1

αi(x)− r
∑
x∈D0

(α1(x)+αr(x))− r
∑

x∈D\D0

(α1(x)+αhx(x)) = |D|r−|H|+ r|D0|.

(5.1.2)
By Lemma 5.1.1, r divides |H|, so the independent term of (5.1.2) is always divisible
by r, and the previous expression has almost exactly the form of the equation of a wall
with r′ = 2 as given by (2.1.4), where the weights that have been selected for each x
are α1(x) and αhx(x) (or αr(x) if hx = 0). The only problem with this approach is that
if hx = 1 for some x ∈ D, then α1(x) should be selected twice for that point, and this
is not possible. However, if this happens, we can show that we can modify the previous
expression using the identities from (5.1.1) in order to obtain an alternative equation
which is congruent to (5.1.2) modulo r, but in which no weight is selected twice.

For each x ∈ D1 the equations (5.1.1) simplify into

α1(σ(x)) = α1(x) = 0
α2(σ(x)) = 1− αr(x)
α3(σ(x)) = 1− αr−1(x)
...
αr(σ(x)) = 1− α2(x)

(5.1.3)

Let us decompose D1 in a disjoint set of σ-chains and σ-cycles as follows.

D1 =
⋃
i∈IC

Ci ∪
⋃
i∈IR

Ri

with Ci = {xi,1, . . . , xi,ci} is a σ-cycle, i.e., it has the property σ(xi,j) = xi,j+1 for j < ci
and σ(xi,ci) = xi,1 and Ri = {yi,1, . . . , yi,ri} is a maximal σ-chain with the property
σ(yi,j) = yi,j+1 for j < ri and σ(xi,ri) ̸∈ D1. Let us further separate the set of cycles
IC = IoC ∪ IeC into the set of cycles of odd degree and the set of cycles of even degree.
Analogously, let IR = IoR ∪ IeR be the split into the set of chains such that ri is odd or
even respectively.
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Let Ci with i ∈ IoC be a σ-cycle of odd order contained in D1. Then, iterating
(5.1.3) through the cycle until we reach the starting point (this is done an odd number
of times) we obtain that for each x ∈ Ci we have

α1(x) = 0
α2(x) = 1− αr(x)
α3(x) = 1− αr−1(x)
...
αr(x) = 1− α2(x)

In particular, for each x ∈ D1 belonging to any such cycle of odd degree, we have
α2(x) + αr(x) = 1. Then, for each i ∈ IoC

r
∑
x∈Ci

(α1(x) + αhx(x)) = 0 = r
∑
x∈Ci

(α2(x) + αr(x)− 1) = r
∑
x∈Ci

(α2(x) + αr(x))− rci

≡ r
∑
x∈Ci

(α2(x) + αr(x)) (mod r) (5.1.4)

Let Ci with i ∈ IeC be a σ-cycle with even degree. By (5.1.1) we have for each i > 1
we have

αi(xi,2k) + αr+2−i(xi,2k−1) = αi(σ(xi,2k−1)) + αr+2−i(xi,2k−1)

= 1 = α1(xi,2k) + α1(xi,2k−1) + 1

for each k = 1, . . . , ci/2. Thus,

r
∑
x∈Ci

(α1(x) + α1(x))

= r

ci/2∑
k=1

(α1(xi,2k−1) + α2(xi,2k−1)) + r

ci/2∑
k=1

(α1(xi,2k) + αr(xi,2k))− r
ci
2

≡ r

ci/2∑
k=1

(α1(xi,2k−1) + α2(xi,2k−1)) + r

ci/2∑
k=1

(α1(xi,2k) + αr(xi,2k)) (mod r) (5.1.5)

Analogously, if Ri with i ∈ IeC is a σ-chain with an even number of elements, then

r
∑
x∈Ri

(α1(x)+α1(x)) = r

ri/2∑
k=1

(α1(yi,2k−1)+α2(yi,2k−1))+r

ri/2∑
k=1

(α1(yi,2k)+αr(yi,2k))−r
ri
2

≡ r

ri/2∑
k=1

(α1(yi,2k−1) + α2(yi,2k−1)) + r

ri/2∑
k=1

(α1(yi,2k) + αr(yi,2k)) (mod r) (5.1.6)

Finally, let Ri = {yi,1, . . . , yi,ri} with i ∈ IoR be a maximal σ-chain with odd degree and
let y = σ(yi,ri) ∈ D\D1. As r > 2, there exists τi ∈ {2, . . . , r} such that r+2− i ̸= hy.
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Then

r
∑
x∈Ri

(α1(x) + α1(x)) + r(α1(y) + αhy(y)) = r

(ri+1)/2∑
k=1

(α1(xi,2k−1) + ατi(xi,2k−1))

+ r

ri−/2∑
k=1

(α1(xi,2k) + αr+2−τi(xi,2k)) + r(αr+2−τi(y) + αhy(y))− r
ri + 1

2

≡ r

(ri+1)/2∑
k=1

(α1(xi,2k−1) + ατi(xi,2k−1))

+ r

ri−/2∑
k=1

(α1(xi,2k) + αr+2−τi(xi,2k)) + r(αr+2−τi(y) + αhy(y)). (5.1.7)

Taking these into account, we can build the following selection vector with r′ = 2. Let
DR = {σ(yi,ri) | i ∈ IoR}. Then, let n̄ = {n1(x), . . . , nr(x)} be the selection vector with
r′ = 2 selected elements for each x ∈ D with the following properties

n1(x) = 1 ∀x ∈ D\(DR ∪
⋃

i∈IoC
Ci)

nhx(x) = 1 ∀x ∈ D\D1

n2(x) = 1 ∀x ∈ Ci∀i ∈ IoC
nr(x) = 1 ∀x ∈ Ci∀i ∈ IoC
n2(xi,2k−1) = 1 ∀i ∈ IeC , ∀k = 1, . . . , ci/2
nr(xi,2k) = 1 ∀i ∈ IeC , ∀k = 1, . . . , ci/2
n2(yi,2k−1) = 1 ∀i ∈ IeR, ∀k = 1, . . . , ri/2
nr(yi,2k) = 1 ∀i ∈ IeR, ∀k = 1, . . . , ri/2
nτi(yi,2k−1) = 1 ∀i ∈ IoR, ∀k = 1, . . . , (ri + 1)/2
nr+2−τi(yi,2k) = 1 ∀i ∈ IoR, ∀k = 1, . . . , (ri − 1)/2
nr+2−τi(σ(yi,ri) = 1 ∀i ∈ IeR
nk(x) = 0 otherwise.

Combining equations (5.1.2), (5.1.4), (5.1.5), (5.1.6) and (5.1.7) yields

2
∑
x∈D

r∑
i=1

αi(x)− r
∑
x∈D

ni(x)αi(x) ≡ 0 (mod r) .

Thus, there exists d′ ∈ Z such that Wn(α) = rd′ and, therefore, α ∈ Wn,d′ , so α is
non-generic.
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Chapter 6

Conclusion and Future Work

This bachelor's thesis has explored the structure, classi�cation, and symmetries of
moduli spaces of stable parabolic vector bundles over complex projective curves with
marked points. By integrating algorithmic methods with rigorous mathematical theory,
it developed a comprehensive computational framework to analyze stability chambers,
identify geometric walls, and detect isomorphisms under a group of basic transfor-
mations. The framework yielded signi�cant structural insights, including asymptotic
formulas, bounds, and automorphism properties. This concluding chapter summarizes
the main contributions and outlines promising directions for future research.

6.1 Conclusion

The central goal of this work was to classify moduli spaces M(r, α, ξ) of parabolic
vector bundles up to isomorphism and to compute their automorphism groups. To
achieve this, we �rst formalized the wall-and-chamber decomposition of the weight
space Ãn,r, using admissible selection vectors to de�ne the hyperplanes Wn̄,d′ which
determine transitions in stability.

We introduced several algorithmic tools: a Monte Carlo-based estimator for small
ranks and points, and an exact recursive decomposition algorithm to enumerate cham-
bers using rational arithmetic and polytope partitioning. The latter enabled the con-
struction of a decision tree that classi�es whether two weights lie in the same chamber.
By applying basic transformations to each chamber representative, we traversed a
graph-like structure encoding all isomorphism classes and automorphism groups. This
process revealed striking structural phenomena, such as the absence of dualization in
automorphisms for r > 2.

Mathematical analysis complemented the computational work. We derived formu-
las and asymptotic estimates for the number of geometric walls and established tight
bounds based on hyperplane arrangement theory. In rank r ≥ 3, we proved that the
dualization transformation cannot �x a generic chamber, demonstrating its role as a
nontrivial outer symmetry. This result, among others, illustrates the power of combin-
ing computational heuristics with structural theorems to discover and verify complex
geometric properties.
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6.2 Future Work

Several promising directions emerge from this work. First, the decision tree algorithm
developed for stability chamber classi�cation can be abstracted and generalized into a
standalone software library for polytope decomposition with hyperplane arrangements.
Such a library would �nd broad application beyond the speci�c setting of moduli
spaces, including in combinatorics, optimization, and computational geometry. The
key advantage lies in its ability to recursively partition high-dimensional simplicial
domains via exact rational computation, a technique underexplored in general-purpose
libraries.

A related technical challenge involves optimizing the incremental computation of
convex hulls and intersections of polytopes. Existing tools like cddlib rely on the
double description method [FP01], but the lack of Python bindings for incremental
operations limits �exibility and performance. Developing e�cient bindings or alterna-
tive libraries would improve scalability, especially in high-dimensional con�gurations
typical in parabolic bundle moduli.

Another direction concerns the improvement of the bounds on the number of sta-
bility chambers. While asymptotic upper bounds via Schlä�i-type estimates are avail-
able, they tend to signi�cantly overcount. A more re�ned analysis using the inter-
section poset of the hyperplane arrangement and its associated characteristic polyno-
mial [Zas75] could lead to tighter results and a deeper understanding of the chamber
combinatorics. In particular, exact formulas for the number of regions in special ar-
rangements may become feasible through careful enumeration of poset elements and
Möbius function calculations.

Finally, a frontier worth exploring is the application of machine learning and arti�-
cial intelligence to uncover hidden patterns in the chamber structure and transforma-
tion symmetries. For instance, one could train models to predict whether a given weight
α ∈ Ãn,r lies in the same chamber as another, or whether two weights correspond to
isomorphic moduli spaces. Another goal could be detecting which basic transforma-
tions a given moduli space admits as automorphisms. These tasks are highly nontrivial
due to the high dimensionality and combinatorial nature of the input: weights are n×r
matrices, and both n and r vary. Constructing unbiased, representative datasets for
training such models would itself be a major challenge. Moreover, designing architec-
tures invariant under increases in both dimensions requires novel techniques�possibly
drawing on ideas from graph learning or permutation-equivariant networks. Despite the
complexity, the potential to automate the discovery of new symmetries or conjectures
makes this a compelling direction.

In conclusion, the framework developed here opens multiple avenues for theoretical
re�nement, computational optimization, and exploratory AI-based investigation. The
combination of geometric, algebraic, and algorithmic insights forms a solid foundation
for the continued study of moduli spaces and their rich internal structure.
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Appendix A

More examples of Monte Carlo

sampling of stability chambers

Figure A.1: Monte Carlo sampling of stability chambers for n = 3 and r = 2 and all
degrees d (mod r). Dots represent 1200 uniformly sampled α ∈ Ã1,3, projected onto
the plane α1(x1) = 0, α1(x2) = 0, α1(x3) = 0.
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Figure A.2: Monte Carlo sampling of stability chambers for n = 2 and r = 2 and all
degrees d (mod r). Dots represent 1000 uniformly sampled α ∈ Ã2,2, projected onto
the plane α1(x1) = 0, α1(x2) = 0.

Figure A.3: Monte Carlo sampling of stability chambers for n = 1 and r = 4 and all
degrees d (mod r). Dots represent 1200 uniformly sampled α ∈ Ã1,4, projected onto
the plane α1(x) = 0.
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Appendix B

Examples of Decision Tree JSON �les

The structure of the JSON �les for the decision trees is as follows:

� n_leaves: The number of leaves in the decision tree. Each leaf corresponds to
a unique stability chamber.

� n_nodes: The number of nodes in the decision tree, including both internal
nodes and leaves.

� max_depth: The maximum depth of the decision tree, which indicates the
longest path from the root to a leaf.

� avg_depth: The average depth of the decision tree, calculated as the sum of
depths of all leaves divided by the number of leaves.

� tree: A list of nodes in the decision tree, where each node is represented by a
dictionary containing:

� depth: The depth of the node in the tree.

� cut_hyperplane: The hyperplane that de�nes the cut at this node, rep-
resented as a tuple (w, b), where w is the normal vector and b is the o�set.

� parent_idx: The index of the parent node in the list. The root node has
a parent index of null.

� centroid: The centroid of the region de�ned by this node. Only computed
for leaves.

More examples of decision trees for di�erent values of n and r can be found in the
folder data/trees of our code repository (see Section 1.5).

B.1 Decision tree for n = 2, r = 2

1 {
2 "n_leaves": 2,
3 "n_nodes": 3,
4 "max_depth": 1,
5 "avg_depth": 0.67,
6 "tree": [
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7 {
8 "depth": 0,
9 "cut_hyperplane": "([1, -1], 0)",

10 "parent_idx": null,
11 "centroid": null
12 },
13 {
14 "depth": 1,
15 "cut_hyperplane": null,
16 "parent_idx": 0,
17 "centroid": "[Fraction (2, 3), Fraction (1, 3)]"
18 },
19 {
20 "depth": 1,
21 "cut_hyperplane": null,
22 "parent_idx": 0,
23 "centroid": "[Fraction (1, 3), Fraction (2, 3)]"
24 }
25 ]
26 }

Listing B.1: Decision tree structure for n = 2, r = 2

B.2 Truncated decision tree for n = 1, r = 8

1 {
2 "n_leaves": 76724,
3 "n_nodes": 153447,
4 "max_depth": 40,
5 "avg_depth": 23.34,
6 "tree": [
7 {
8 "depth": 0,
9 "cut_hyperplane": "([1, -7, 1, 1, 1, 1, 1], 0)",

10 "parent_idx": null,
11 "centroid": null
12 },
13 {
14 "depth": 1,
15 "cut_hyperplane": "([3, 3, -5, -5, 3, 3, -5], 0)",
16 "parent_idx": 0,
17 "centroid": null
18 },
19 {
20 "depth": 2,
21 "cut_hyperplane": "([-4, -4, -4, 4, 4, 4, 4], 8)",
22 "parent_idx": 1,
23 "centroid": null
24 },
25 {
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26 "depth": 3,
27 "cut_hyperplane": "([4, -4, -4, -4, 4, 4, 4], 8)",
28 "parent_idx": 2,
29 "centroid": null
30 },
31 ...
32 ]
33 }

Listing B.2: Truncated decision tree structure for n = 1, r = 8

B.3 Truncated decision tree for n = 5, r = 2

1 {
2 "n_leaves": 409,
3 "n_nodes": 817,
4 "max_depth": 18,
5 "avg_depth": 11.64,
6 "tree": [
7 {
8 "depth": 0,
9 "cut_hyperplane": "([1, -1, -1, -1, 1], -2)",

10 "parent_idx": null,
11 "centroid": null
12 },
13 {
14 "depth": 1,
15 "cut_hyperplane": "([1, 1, 1, -1, 1], 2)",
16 "parent_idx": 0,
17 "centroid": null
18 },
19 {
20 "depth": 2,
21 "cut_hyperplane": "([1, 1, -1, -1, 1], 2)",
22 "parent_idx": 1,
23 "centroid": null
24 },
25 {
26 "depth": 3,
27 "cut_hyperplane": null,
28 "parent_idx": 2,
29 "centroid": "[Fraction (5, 6), Fraction (5, 6), Fraction

(1, 6), Fraction (1, 6), Fraction (5, 6)]"
30 },
31 ...
32 ]
33 }

Listing B.3: Truncated decision tree structure for n = 5, r = 2
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Appendix C

Example of isomorphism classes and

automorphisms for n = 2, r = 3 for a
fully symmetric curve X

The structure of the json �le morph_info_n2_r3.json is as follows:

� n: The number of parabolic points, n = 3.

� r: The rank of the vector bundles, r = 3.

� n_isomorphism_classes: The number of isomorphism classes of parabolic
vector bundles.

� isomorphism_classes: A list of isomorphism classes, each represented by a
dictionary containing:

� alpha_representative: Parabolic weight α ∈ Ãn,r representative of the
isomorphism class. Given in matrix form, with values being rational num-
bers.

� n_chambers: The number of distinct moduli spaces M(r, α, ξ) in the
isomorphism class.

� n_automorphisms: The number of automorphisms of the moduli space
M(X, r, α, ξ).

� automorphisms: A list of automorphisms of the moduli spaceM(r, α, ξ),
each represented by a dictionary containing:

* sigma: Tuple of integers representing the permutation of the parabolic
points.

* s: The integer s representing whether to apply dualization (s = −1) or
not (s = 1).

* H: A tuple of integers representing the parabolic divisor H at each
point.

More examples of isomorphism classes and automorphisms for di�erent values of n
and r can be found in the folder data/morphs of our code repository (see Section 1.5).
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1 {
2 "n": 2,
3 "r": 3,
4 "n_isomorphism_classes": 2,
5 "isomorphism_classes": [
6 {
7 "alpha_representative": [
8 "[0 Fraction (1, 5) Fraction (9, 10)]",
9 "[0 Fraction (1, 5) Fraction (9, 10)]"

10 ],
11 "n_chambers": 5,
12 "n_automorphisms": 2,
13 "automorphisms": [
14 "((0, 1), 1, (0, 0))",
15 "((1, 0), 1, (0, 0))"
16 ]
17 },
18 {
19 "alpha_representative": [
20 "[0 Fraction (1, 2) Fraction (7, 10)]",
21 "[0 Fraction (1, 2) Fraction (7, 10)]"
22 ],
23 "n_chambers": 5,
24 "n_automorphisms": 2,
25 "automorphisms": [
26 "((0, 1), 1, (0, 0))",
27 "((1, 0), 1, (0, 0))"
28 ]
29 }
30 ]
31 }

Listing C.1: Isomorphism classes and automorphisms for n = 2, r = 3 and a fully
symmetric curve X
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