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Project Summary

Abstract

We present motives, a new Python package integrated into the SymPy environment designed to
simplify and manipulate equations in λ-rings. The package’s aim is to facilitate the study of motivic
expressions, and to this end it includes many pre-programmed motives, as well as implementing and
optimizing an algorithm that turns any expression into a polynomial of its λ or its Adams operations.
The package was used to study Mozgovoy’s conjectural formula for the motive of the moduli space of
L-twisted Higgs bundles by comparing it to a proven expression that represents the same motive.

Keywords: Mozgovoy conjecture, λ-rings, motives, symbolic computation, Grothendieck ring, gen-
erating functions.

In [Moz12], Mozgovoy proposed a conjectural formula that represents the motive of the moduli
space of L-twisted Higgs bundles. On the other hand, in [AO24], a separate equation was proven
that represents the exact same motive. However, despite modeling the same object, the two formulas
differ fundamentally. Mozgovoy’s conjecture is a generating function, from which one has to extract a
specific coefficient and find its limit, while the proven equation is a finite algebraic sum of products.

In this bachelor thesis, we present a Python package called motives which implements, among other
things, a simplification algorithm introduced in [Alf22]. This algorithm is generalized and optimized,
so it is valid for any λ-ring. The package integrates with SymPy to leverage some of its capabilities, such
as its implemented objects and properties. Additionally, motives comes with some built-in structures,
such as the Grothendieck ring of Chow motives. This makes it a powerful tool for research in algebraic
geometry and representation theory.

In order to optimize the simplification algorithm, we derive explicit formulas that relate λ, σ and
ψ, and which speed up the algorithm by more than ten-fold.

There are two main goals for this project:

To provide a generalized, open-source implementation of the λ-ring simplification
algorithm. The implementation uses Python and SymPy, making it accessible, extendable,
and integrable with existing mathematical software. It can be installed directly from PyPI by
running pip install motives in a terminal. It was built with its simplicity in mind, so that
it would be easy to use.
To verify the Mozgovoy conjecture for higher parameters. Specifically, the motives

library was used to simplify and prove the equality of Mozgovoy’s generating function and the
proven algebraic formula from [AO24]. Furthermore, specific optimizations were made for this
particular case, so that the computation of both motives becomes feasible.

The library is structured around a class system that abstracts λ-rings, morphisms, and motives.
It allows defining custom λ-ring structures, building free and polynomial extensions, and performing
symbolic computations over the Grothendieck ring of Chow motives. Built-in motives include those
of algebraic curves, vector bundles and moduli stacks. Specifically, the current release of the library
includes:

λ-rings of integers.
Free λ-rings and free λ-ring extensions of a λ-ring.
Polynomial λ-ring extensions of a λ-ring.
Grothendieck ring of Chow motives, including the following pre-programmed motives:

• Complex algebraic curves.
• Jacobian varieties of curves.
• Symmetric and alternated products of any variety given its motive.
• Moduli spaces of vector bundles on curves.
• Moduli spaces of L-twisted Higgs bundles on curves.
• Moduli spaces of chain bundles and variations of Hodge structure on curves in low rank.

https://pypi.org/
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• Algebraic groups.
• Moduli stacks of vector bundles and principal G-bundles on curves.
• Classifying stacks BG for several groups G.

and we plan to expand the library with more λ-rings and geometric elements in future releases.

The project combines theoretical and computational approaches:

Theoretical background: The design of the simplification algorithm is grounded in the theory
of λ-rings, which generalize operations like symmetric powers. Additionally, many implemented
equations, such as the equations used to turn a λ, σ or ψ operation into any other, come from
exploiting certain properties from λ-rings and leveraging generating functions.
Software development: The implementation was done in Python, and it extends SymPy by
inheriting from its base classes. The design follows object-oriented principles, with abstract
base classes for all nodes in the expression tree.
Performance optimization: Several improvements were made to the original MATLAB algo-
rithm. These include explicit formulas to compute the polynomial relations amongst opposite
λ structures and Adams operations, better specific canceling techniques, and capitalizing on
SymPy’s sparse polynomials to save memory and computation time.
Validation: The library was validated against known motivic formulas and identities. It was
also applied to Mozgovoy’s conjecture and several groups and curves identities.

The research developed in this bachelor thesis has lead to a paper in Electronic Research Archive
(namely, [SAP25]), a scientific poster presented at Reunión Temática de Geometŕıa y F́ısica annual
meeting (namely, [San24]) and a Python package, motives, uploaded to PyPI.

One of the biggest optimizations to the library came from implementing the following equations,
derived in this bachelor thesis, into the simplification algorithm:

Proposition 0.1 (Proposition 2.1). Let σ be a special λ-ring structure on a ring R with no additive
torsion and let ψn be the Adams operations associated to σ. Then

σn(x) =

n∑
i=0

∑
a=(a1,...,ai)∈Pi(n)

 (−1)n+i

n1(a)!n2(a)! . . . nn(a)!

∏
j

ψaj (x)

aj

 . (0.1)

Proposition 0.2 (Proposition 2.2). Let λ and σ be two opposite λ-ring structures on a ring R with no
additive torsion and such that σ is special and let ψn be the Adams operations associated to σ. Then

λn(x) =

n∑
i=0

∑
a=(a1,...,ai)∈Pi(n)

 1

n1(a)!n2(a)! . . . nn(a)!

∏
j

ψaj (x)

aj

 . (0.2)

Proposition 0.3 (Proposition 2.3). Let σ be a special λ-ring structure on a ring R with no additive
torsion and let ψn be the Adams operations associated to σ. Then

ψn(x) =

n∑
i=1

(−1)i+n+1
n−1∑
l=0

∑
a=(a1,...,ai)∈pi(l)

(n− l)
i!

n1(a)!n2(a)! . . . nl(a)!
σn−l(x)

∏
j

σaj (x). (0.3)

Proposition 0.4 (Proposition 2.4). Let λ and σ be two opposite λ-ring structures on a ring R with no
additive torsion and such that σ is special and let ψn be the Adams operations associated to σ. Then

ψn(x) =

n∑
i=1

(−1)i
n−1∑
l=0

∑
a=(a1,...,ai)∈pi(l)

(n− l)
i!

n1(a)!n2(a)! . . . nl(a)!
λn−l(x)

∏
j

λaj (x). (0.4)
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The improvement in efficiency can be seen in Figure 1.
Using motives, we prove the following theorem:

Theorem 0.5 (Theorem 5.3). Mozgovoy’s conjectural formula for the motive of the moduli spaces of
L-twisted Higgs bundles holds in the Grothendieck ring of Chow motives in rank at most 3 for any
smooth complex projective curve of genus g such that 2 ≤ g ≤ 18 and any line bundle L on the curve
such that 2g − 1 ≤ deg(L) ≤ 2g + 18.

To understand the improvement in efficiency, in Figure 4, one can see the comparison between the
ad-hoc MATLAB algorithm and the motives implementation applied to Mozgovoy’s conjecture.

The library motives is very easy to use. In fact, to perform the comparison specified above, we just
run the following code:

cur = Curve("x", g=g)

# Compute the motive of rank r using ADHM derivation

adhm = TwistedHiggsModuli(x=cur, p=p, r=r, method="ADHM")

eq_adhm = adhm.compute(verbose=verbose)

# Compute the motive of rank r using BB derivation

bb = TwistedHiggsModuli(x=cur, p=p, r=r, method="BB")

eq_bb = bb.compute(verbose=verbose)

# Compare the two polynomials

if eq_adhm - eq_bb == 0:

print("Polynomials are equal")

This project presents a concrete contribution to the symbolic study of Grothendieck motives and
λ-rings. Through the design and implementation of the motives library, the simplification of motivic
expressions, which is central to the study of moduli spaces, has been significantly advanced. It fills a
gaping hole in the symbolic computation ecosystem, and facilitates the manipulation of any λ-ring.

The library enables researchers to define new λ-rings, simplify any expression with a λ-ring structure,
and manipulate motivic formulas symbolically. The verification of Mozogovoy’s conjectural formula
strengthens string theory, as it is derived as a solution of the ADHM equation, based on [CDP11].

Optimizing the simplification algorithm further, by performing partial simplifications by heuristics,
could be explored by using artificial intelligence. This is approach is left as future work.

Ultimately, motives stands as a versatile and general tool for researchers working on motives, in
order to check different steps of their proofs, to verify conjectures, and many other uses.
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Resumen del Proyecto

Resumen

Presentamos motives, un nuevo paquete de Python integrado en el entorno SymPy, diseñado para
simplificar y manipular ecuaciones en λ-anillos. El objetivo del paquete es facilitar el estudio de ex-
presiones mot́ıvicas, y para ello incluye muchos motivos preprogramados, aśı como la implementación
y optimización de un algoritmo que convierte cualquier expresión en un polinomio en sus operaciones
λ o Adams. El paquete ha sido utilizado para estudiar la fórmula conjetural de Mozgovoy para el
motivo del espacio de moduli de L-twisted Higgs bundles, comparándola con una expresión probada
que representa el mismo motivo.

Palabras clave: Conjetura de Mozgovoy, λ-anillos, motivos, cálculo simbólico, anillo de Grothen-
dieck, funciones generatrices.

En [Moz12], Mozgovoy propuso una fórmula conjetural que representa el motivo del espacio de
moduli de L-twisted Higgs bundles. Por otro lado, en [AO24], se demostró una ecuación distinta que
representa exactamente el mismo motivo. Sin embargo, a pesar de representar el mismo objeto, ambas
fórmulas difieren fundamentalmente. La conjetura de Mozgovoy es una función generatriz, de la cual
se debe extraer un coeficiente espećıfico y luego calcular su ĺımite, mientras que la fórmula demostrada
es una suma algebraica finita de productos.

En esta tesis fin de grado, presentamos un paquete de Python llamado motives, que implementa,
entre otras cosas, un algoritmo de simplificación introducido en [Alf22]. Este algoritmo ha sido genera-
lizado y optimizado, por lo que es válido para cualquier λ-anillo. El paquete se integra con SymPy para
aprovechar sus capacidades, como métodos y propiedades ya implementadas. Además, motives incluye
estructuras predefinidas, como el anillo de Grothendieck de motivos de Chow, lo que lo convierte en
una herramienta poderosa para la investigación en geometŕıa algebraica y teoŕıa de representaciones.

Con el fin de optimizar el algoritmo de simplificación, derivamos fórmulas expĺıcitas que relacionan
las operaciones λ, σ y ψ, usando las cuales se consigue un aumento de eficiencia gracias al cual el nuevo
algoritmo es más de 10 veces más rápido.

Este proyecto tiene dos objetivos principales:

Proporcionar una implementación generalizada y open-source del algoritmo de sim-
plificación para λ-anillos. La implementación está hecha en Python y usa SymPy, lo que la
hace accesible para cualquier matemático. Puede instalarse directamente desde PyPI ejecutan-
do pip install motives en una terminal. Se ha construido intentando que sea lo más simple
posible, para facilitar su uso.
Verificar la conjetura de Mozgovoy para parámetros más altos. En particular, se ha
utilizado la libreŕıa motives para simplificar y demostrar la igualdad entre la función generatriz
conjetural de Mozgovoy y la fórmula algebraica demostrada de [AO24]. Además, se han realizado
optimizaciones espećıficas para este caso particular, lo que hace viable el cálculo de ambos
motivos.

La biblioteca está estructurada en torno a un sistema de clases que abstrae λ-anillos, morfismos y
motivos. Permite definir estructuras personalizadas de λ-anillos, construir variables generales y polino-
miales, y realizar cálculos simbólicos sobre el anillo de Grothendieck de motivos de Chow. Los motivos
integrados incluyen los de curvas algebraicas, grupos y stacks, entre otros. La versión actual de la
biblioteca incluye:

λ-anillos de enteros.
λ-anillos generales y extensiones generales de λ-anillos.
Extensiones polinomiales de λ-anillos.
Anillo de Grothendieck de motivos de Chow, incluyendo los siguientes motivos preprogramados:

• Curvas algebraicas complejas.
• Variedades jacobianas de curvas.

https://pypi.org/
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• Productos simétricos y alternados de cualquier variedad dado su motivo.
• Espacios de moduli de vector bundles sobre curvas.
• Espacios de moduli de L-twisted Higgs bundles sobre curvas.
• Espacios de moduli de chain bundles y variaciones de estructuras de Hodge sobre curvas de
bajo rango.

• Grupos algebraicos.
• Moduli stacks de vector bundles y G-bundles principales sobre curvas.
• Stacks clasificadores BG para varios grupos G.

y se planea expandir la biblioteca con más λ-anillos y elementos geométricos en versiones futuras.

El proyecto combina enfoques teóricos y computacionales:

Fundamentos teóricos: El diseño del algoritmo de simplificación se basa en la teoŕıa de λ-
anillos, que generalizan operaciones como las potencias simétricas. Además, muchas ecuaciones
implementadas, como aquellas que convierten una operación λ, σ o ψ en otra, se derivan explo-
tando ciertas propiedades de los λ-anillos y el uso de funciones generatrices.
Desarrollo de software: La implementación se ha realizado en Python, y extiende SymPy

heredando de sus clases base. El diseño sigue principios de programación orientada a objetos,
con clases abstractas para todos los nodos del árbol de expresión.
Optimización del rendimiento: Se han hecho varias mejoras respecto al algoritmo original
en MATLAB. Estas incluyen fórmulas expĺıcitas para calcular los polinomios de equivalencia
entre estructuras λ y Adams, mejores técnicas de cancelación espećıfica, y se aprovechan los
polinomios sparse de SymPy para ahorrar memoria y tiempo de computación.
Validación: La biblioteca se ha comprobado comparándola con identidades y fórmulas mot́ıvi-
cas conocidas, como la conjetura de Mozgovoy.

La investigación desarrollada en esta tesis ha dado lugar a un art́ıculo en Electronic Research Archive
([SAP25]), un póster cient́ıfico presentado en la Reunión Temática de Geometŕıa y F́ısica ([San24]) y
un paquete de Python, motives, subido a PyPI.

Una de las mayores optimizaciones de la biblioteca proviene de implementar las siguientes ecuacio-
nes, derivadas en esta tesis, dentro del algoritmo de simplificación:

Proposition 0.6 (Proposition 2.1). Let σ be a special λ-ring structure on a ring R with no additive
torsion and let ψn be the Adams operations associated to σ. Then

σn(x) =

n∑
i=0

∑
a=(a1,...,ai)∈Pi(n)

 (−1)n+i

n1(a)!n2(a)! . . . nn(a)!

∏
j

ψaj (x)

aj

 . (0.5)

Proposition 0.7 (Proposition 2.2). Let λ and σ be two opposite λ-ring structures on a ring R with no
additive torsion and such that σ is special and let ψn be the Adams operations associated to σ. Then

λn(x) =

n∑
i=0

∑
a=(a1,...,ai)∈Pi(n)

 1

n1(a)!n2(a)! . . . nn(a)!

∏
j

ψaj (x)

aj

 . (0.6)

Proposition 0.8 (Proposition 2.3). Let σ be a special λ-ring structure on a ring R with no additive
torsion and let ψn be the Adams operations associated to σ. Then

ψn(x) =

n∑
i=1

(−1)i+n+1
n−1∑
l=0

∑
a=(a1,...,ai)∈pi(l)

(n− l)
i!

n1(a)!n2(a)! . . . nl(a)!
σn−l(x)

∏
j

σaj (x). (0.7)
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Proposition 0.9 (Proposition 2.4). Let λ and σ be two opposite λ-ring structures on a ring R with no
additive torsion and such that σ is special and let ψn be the Adams operations associated to σ. Then

ψn(x) =

n∑
i=1

(−1)i
n−1∑
l=0

∑
a=(a1,...,ai)∈pi(l)

(n− l)
i!

n1(a)!n2(a)! . . . nl(a)!
λn−l(x)

∏
j

λaj (x). (0.8)

La mejora en eficiencia puede verse en la Figura 1.
Usando motives, hemos demostrado el siguiente teorema:

Theorem 0.10 (Teorema 5.3). La fórmula conjetural de Mozgovoy para el motivo del espacio de
moduli de L-twisted Higgs bundles se cumple en el anillo de Grothendieck de motivos de Chow en
rango máximo 3 para cualquier curva proyectiva smooth compleja de género g tal que 2 ≤ g ≤ 18 y
cualquier line bundle L sobre la curva tal que 2g − 1 ≤ deg(L) ≤ 2g + 18.

Para entender la mejora en eficiencia, en la Figura 4 se muestra la comparación entre el algoritmo
ad-hoc en MATLAB y la implementación en motives aplicada a la conjetura de Mozgovoy.

La biblioteca motives es muy fácil de usar. De hecho, para realizar la comparación especificada
anteriormente, solo se necesita ejecutar el siguiente código:

cur = Curve("x", g=g)

# Compute the motive of rank r using ADHM derivation

adhm = TwistedHiggsModuli(x=cur, p=p, r=r, method="ADHM")

eq_adhm = adhm.compute(verbose=verbose)

# Compute the motive of rank r using BB derivation

bb = TwistedHiggsModuli(x=cur, p=p, r=r, method="BB")

eq_bb = bb.compute(verbose=verbose)

# Compare the two polynomials

if eq_adhm - eq_bb == 0:

print("Polynomials are equal")

Este proyecto representa una contribución concreta al estudio simbólico de motivos de Grothendieck
y λ-anillos. Mediante el diseño e implementación de la biblioteca motives, se ha avanzado significa-
tivamente en la simplificación de expresiones mot́ıvicas, las cuales son fundamentales para el estudio
de espacios de moduli. Llena un vaćıo importante en el ecosistema del cálculo simbólico y permite la
manipulación de cualquier λ-anillo.

La biblioteca permite a los investigadores definir nuevos λ-anillos, simplificar cualquier expresión con
estructura de λ-anillo, y manipular fórmulas mot́ıvicas simbólicamente. La verificación de la fórmula
conjetural de Mozgovoy fortalece la teoŕıa de cuerdas, ya que se deriva como solución de la ecuación
ADHM, basada en [CDP11].

Una posible mejora futura seŕıa optimizar aún más el algoritmo de simplificación, realizando sim-
plificaciones parciales guiadas por heuŕısticas mediante el uso de inteligencia artificial.

En definitiva, motives se presenta como una herramienta versátil y general para investigadores
que trabajen con motivos, permitiéndoles verificar pasos de demostraciones, comprobar conjeturas y
muchas otras aplicaciones.
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1. Introduction

In [Moz12], Mozgovoy comes up with a conjectural formula for the moduli space of L-twisted Higgs
bundles. On the other hand, in [AO24], certain equations which model the exact same moduli space
were proven. However, these two equations—one a conjecture, the other a theorem—are very dissimilar
in nature. Mozgovoy’s conjectural equation appears as a generating function from which one has to
extract a coefficient, in order to find its limit as t approaches 1. The equation proposed in [AO24] is,
in contrast, a sum of products. Thus, it is not straightforward to prove that they are the same. In
order to do that, an ad-hoc algorithm was devised in [Alf22] to simplify λ-rings. The algorithm was
implemented in MATLAB, and it was applied to these equations, due to the fact that the formulas
represent Grothendieck motives with a λ-ring structure.

In this work, we introduce the Python library motives, which implements said algorithm, generalizes
it to any λ-ring, and optimizes it. Additionally, motives is built into the SymPy environment, which
means that almost any operation, function or object available in SymPy is also available in motives.
Although motives works for any user-defined λ-ring, and provides tools to define them, it comes with
a set of λ-rings already built into it and ready to use. In the current release of the library, those are:

λ-rings of integers.
Free λ-rings and free λ-ring extensions of a λ-ring.
Polynomial λ-ring extensions of a λ-ring.
Grothendieck ring of Chow motives, including the following pre-programmed motives:

• Complex algebraic curves.
• Jacobian varieties of curves.
• Symmetric and alternated products of any variety given its motive.
• Moduli spaces of vector bundles on curves.
• Moduli spaces of L-twisted Higgs bundles on curves.
• Moduli spaces of chain bundles and variations of Hodge structure on curves in low rank.
• Algebraic groups.
• Moduli stacks of vector bundles and principal G-bundles on curves.
• Classifying stacks BG for several groups G.

and we plan to expand the library with more λ-rings and geometric elements in future releases. The
code of the library is publicly hosted at https://github.com/CIAMOD/motives. Additionally, the
motives package can be installed directly from PyPI by running pip install motives in a terminal.

Although the package was built with the verification of Mozgovoy’s conjecture in mind, it fills a hole
in the symbolic manipulation environment and proves to be an invaluable tool for the mathematician
working with moduli spaces and motives. By studying Grothendieck motives, one can extract highly
useful information about their associated moduli spaces, and the geometry of schemes. Thus, the study
of these motives is a very impactful branch of mathematics, and in the past decades, the motives of
numerous shapes have been a subject of great interest. In fact, many moduli spaces have been studied
with the aim of finding formulas for their motives [dB02, BD07, Sán14, GPHS14, Moz12, Lee18, GP18,
GL20, FNZ21, AO24, SAP25]. However, these motives tend to be extremely complex, and handling
them leads to many errors. Just checking for equality between two motivic expressions is far from
trivial, albeit very useful. Studying λ-rings is a good way to understand motivic expressions, as many
have a λ-ring structure. Hence, motives has many applications outside the verification of this specific
conjecture, and it would be an instrumental tool in the verification of other conjectures in the field.
In fact, any mathematician would find it useful for checking their steps when manipulating motives,
and to simplify their equations.

In [Alf22], it was proven that Mozgovoy’s conjecture holds for curves of genus up to 11, but using
motives that result has been significantly extended. Specifically, by simplifying computationally both
expressions and showing that they are equal for low genus and degree, we proved the following result
(see Section 5 and 5.3 for more details), expanding significantly the results obtained in [Alf22]:

Theorem 1.1 (Theorem 5.3). Mozgovoy’s conjectural formula for the motive of the moduli spaces of
L-twisted Higgs bundles holds in the Grothendieck ring of Chow motives in rank at most 3 for any
smooth complex projective curve of genus g such that 2 ≤ g ≤ 18 and any line bundle L on the curve
such that 2g − 1 ≤ deg(L) ≤ 2g + 18.

https://github.com/CIAMOD/motives
https://pypi.org/
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To understand the growing complexity of these polynomials and the increase in efficiency of motives
compared to the ad hoc implementation, the polynomial for genus 18 is five times larger than the
maximum polynomial reached by the MATLAB algorithm before collapsing the memory of the cluster
in which it was run (which had a RAM of 128GB). Additionally, it now takes an order of magnitude
less time to compute said polynomial with this enhanced, generalized library.

This bachelor thesis is structured the following way: we first define λ-rings in Section 2, their
associated operations, and we derive important results related to them. In Section 2.3, we define and
prove specific equations that relate ψ, λ and σ. Section 2.4 introduce moduli spaces and Grothendieck
motives. In Section 3, we explain the structure of the library, its classes and how the implementation
with SymPy works. The simplification algorithm is described in Section 4, and in Section 5, the
verification of Mozgovoy’s conjecture is examined in depth.

The research developed in this bachelor thesis has lead to:

A paper in the special issue Applications of symbolic computation of Electronic Research Archive
(namely, [SAP25]).
A scientific poster presented at Reunión Temática de Geometŕıa y F́ısica annual meeting, at
ICMAT (namely, [San24]).
A Python package, motives, uploaded to PyPI.

2. λ-rings

A λ-ring is an abelian ring for which we define a set of λ operations λn : R → R, where n is a
natural number representing its degree and R the abelian ring. This operation has certain properties,
but its defined by the following:

1. λ0(x) = 1
2. λ1(x) = x
3. λn(x+ y) =

∑n
i=0 λ

i(x)λn−i(y).

More technically, a λ-ring is a pair (R, λ), in which R is a unital abelian ring and λ is a set of
operations {λn : R → R} that satisfy the properties mentioned (see [Gri19] for more details about
λ-rings). Now, consider the generating function λt(x) of the λ-ring operation, which we define as

λt(x) =

∞∑
n=0

λn(x)tn.

This representation is helpful for various reasons, but one of them is the property that the multiplication
of polynomials is equal to the convolution of its terms, because from property 3,

λt(x)λt(y) =

∞∑
n=0

λn(x)tn
∞∑
n=0

λn(y)tn =

∞∑
n=0

n∑
i=0

λi(x)λn−i(x)tn =

∞∑
n=0

λn(x+ y)tn = λt(x+ y),

so
λt(x+ y) = λt(x)λt(y). (2.1)

In fact, the opposite direction is also true, i.e. λt(x+y) = λt(x)λt(y) =⇒ λn(x+y) =
∑n
i=0 λ

i(x)λn−iy,
so it is sufficient to prove (2.1) instead of 3.

A natural follow up would be to evaluate y = −x on (2.1), which yields

λt(x+ (−x)) = λt(x)λt(−x)
1 = λt(x)λt(−x)

(λt(x))
−1 = λt(−x). (2.2)

We will now look into an example of a λ-ring. Let R be the ring of integers with the normal
operations. We need an operation with a degree that takes and returns an integer x, and satisfies the
three conditions for a λ-structure. Let

λn(x) =

(
x

n

)
, (2.3)

considering that
(
x
n

)
= 0 if and only if n > x. Properties 1 and 2 are apparent. Now, to prove property

3, first notice that

(1 + t)x =

x∑
n=0

(
x

n

)
tn =

∞∑
n=0

(
x

n

)
tn = λt(x),
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which means that (1 + t)x is the generating function of the defined λ-operation. Now, instead of
proving property 3, we can prove equation (2.1), which is simple enough, as we have that

λt(x+ y) = (1 + t)x+y = (1 + t)x(1 + t)y = λt(x)λt(y).

We can extend the binomial coefficient to any real number, by defining it as(
x

n

)
=
xn

n!
=
x(x− 1)(x− 2) . . . (x− n+ 1)

n!
.

Then, for a rational number p
q ,

λn
(
p

q

)
=

(p
q

n

)
=

p
q
p−q
q

p−2q
q . . . p−nq+qq

n!
=

∏n−1
i=0 (p− iq)

n!qn
.

2.1. The σ structure. Considering its generating function, λ admits a natural opposite operation,
that we will denote as σ, and that is defined as follows:

σt(x) = (λ−t(x))
−1. (2.4)

Applying equation (2.2) to this definition, we can derive that

σt(x) = (λ−t(x))
−1

σt(x) = λ−t(−x)
∞∑
n=0

σn(x)tn =

∞∑
n=0

λn(−x)(−t)n

∞∑
n=0

σn(x)tn =

∞∑
n=0

(−1)nλn(−x)tn

σn(x) = (−1)nλn(−x) (2.5)

We are going to prove that σ is a λ-ring structure. For properties 1 and 2, we can see that

σ0(x) = (−1)0λ0(−x) = 1

and

σ1(x) = (−1)λ1(−x) = (−1)(−x) = x.

Again, instead of proving property 3, we will prove equation (2.1). By its definition,

σt(x)σt(y) = (λ−t(x))
−1(λ−t(y))

−1 = (λ−t(x)λ−t(y))
−1 = (λ−t(x+ y))−1 = σt(x+ y),

so σ is indeed a λ ring structure.
The σ operation of the rationals is quite straightforward to compute. We will use equation (2.5).

See that

σn(x) = (−1)nλn(−x)

= (−1)n
(
−x
n

)
= (−1)n

−x(−x− 1)(−x− 2) . . . (−x− n+ 1)

n

=
x(x+ 1)(x+ 2) . . . (x+ n− 1)

n

=

(
x+ n− 1

n

)
=

((
n

x

))
,

so

σn(x) =

((
n

x

))
. (2.6)
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An interesting result is that if we start from (2.4) and apply this formula, we arrive at a very elegant
proof of the following:

(λ−t(x))
−1 = σt(x)

(1− t)−x = σt(x)(
1

1− t

)x
=

∞∑
n=0

σn(x)tn( ∞∑
n=0

tn

)x
=

∞∑
n=0

((
n

x

))
tn.

2.2. The Adams operations. We will now introduce the concept of a special λ-ring. A λ-ring is
special if its associated λ-structure satisfies the following properties:

1. λn(xy) = Pn(λ
1(x), . . . , λn(x), λ1(y), . . . , λn(y))

2. λn(λm(x)) = Pn,m(λ1(x), . . . , λnm(x),

where Pn and Pn,m are the Grothendieck polynomials. They are defined as follows (for more informa-
tion, see [Knu73], [Gri19]). If

sd(X̄) = sd(X1, . . . , Xn) =
∑

1≤i1<...<id≤n

d∏
k=1

Xik

is the d-th elementary symmetric polynomial in the variables given by X̄ = (X1, . . . , Xn), then Pn and
Pn,m are the unique integral polynomials such that

Pn(s1(X̄), . . . , sn(X̄), s1(Ȳ ), . . . , sn(Ȳ )) = coeff
tn

n∏
i,j=1

(1 + tXiYj),

Pn,m(s1(Z̄), . . . , snm(Z̄)) = coeff
tn

∑
I ⊂ {1, . . . ,mn}

|I| = m

(1 + t
∏
i∈I

Zi),

where X̄ = (X1, . . . , Xn), Ȳ = (Y1, . . . , Yn) and Z̄ = (Z1, . . . , Znm). For example, if we denote
λn(xy) = Pn = Pn(λ

1(x), . . . , λn(x), λ1(y), . . . , λn(y)) and λn(λm(x)) = Pn,m = Pn,m(λ1(x), . . . , λnm(x)),
then

P0 = 1,

P1 = λ1(x)λ1(y),

P2 = (λ1(x))2λ2(y) + (λ1(y))2λ2(x)− 2λ2(x)λ2(y),

P3 = (λ1(x))3λ3(y) + λ1(x)λ1(y)λ2(x)λ2(y)− 3λ1(x)λ2(x)λ3(y) + (λ1(y))3λ3(x)− 3λ1(y)λ2(y)λ3(x) + 3λ3(x)λ3(y),

P0,5 = 1,

P5,0 = 0,

P1,1 = λ1(x),

P1,2 = λ2(x),

P2,1 = λ2(x),

P2,2 = λ1(x)λ3(x)− λ4(x),

P2,3 = −λ1(x)λ5(x) + λ2(x)λ4(x) + λ6(x),

P2,4 = λ1(x)λ7(x)− λ2(x)λ6(x) + λ3(x)λ5(x)− λ8(x).

For more examples, see, for instance, [Gri19]. Further examples can also be computed using the Python
package motives proposed in this work.
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More important, though, is that when we have a special λ-structure, we can define an Adams
operation ψ associated to it, which has very useful properties. From now on we will assume that at
least one of λ or σ is special, and without loss of generality we will let σ be special. Then, we can
associate to it a set of Adams operations {ψn : R −→ R} for each n ≥ 1 taking

ψn(x) = Nn(σ
1(x), . . . , σn(x)), (2.7)

for each x ∈ R, where Nn(X1, . . . , Xn) is the Hirzebruch-Newton polynomial, which is the unique
polynomial such that

n∑
i=1

Xn
i = Nn(s1(X̄), . . . , sn(X̄))

for X̄ = (X1, . . . , Xn). For example, if we denote ψn(x) = Nn = Nn(σ
1(x), . . . , σn(x)), then,

N1 = σ1(x),

N2 = σ1(x)2 − 2σ2(x),

N3 = σ1(x)3 − 3σ1(x)σ2(x) + 3σ3(x),

N4 = σ1(x)4 − 4σ1(x)2σ2(x) + 4σ1(x)σ3(x) + 2σ2(x)2 − 4σ4(x).

Further examples can also be computed using the proposed Python package motives.
If ψt(x) =

∑∞
n=0 ψ

n(x)tn, it can be shown (see [Gri19]) that

ψt(x) = −t d
dt

log(σ−t(x)) (2.8)

and so, applying equation (2.4) to the formula,

ψt(x) = t
d

dt
log(λt(x)). (2.9)

Additionally, ψn is a λ-ring homomorphism, so

1. ψn(x+ y) = ψn(x) + ψn(y)
2. ψn(xy) = ψn(x)ψn(y).

Not only that, but it also is multiplicative under composition, i.e.

ψn(ψm(x)) = ψn·m(x).

For exhaustive proofs of all these facts, see [Gri19].
As a final note, we will calculate the Adams operation for the rationals, letting σn(x) =

(
x
n

)
, and

so λn(x) =
((
x
n

))
. We will leave proving that σ is special as an exercise for the reader. Starting from

equation (2.9), we have that

ψt(x) = t
d

dt
log(λt(x))

= t
d
dt (λt(x))

λt(x)

= t
d
dt (1− t)

−x

(1− t)−x

= t
x (1− t)

−x−1

(1− t)−x

=
tx

1− t

= tx
∞∑
n=0

tn

=

∞∑
n=1

xtn.



14

Which means that

ψn(x) = x (2.10)

for the λ-ring specified, so ψn is the identity. Trivially, it satisfies all properties specified.

2.3. Relations between λ, σ and ψ. It is apparent that the Adams operation is substantially
easier to work with than any λ-structure. Thus, the formulas that convert between λ and σ, and ψ,
are fundamental to the algorithm described in [Alf22]. However, the Hirzebruch-Newton polynomialNn
is very expensive to calculate. In [Alf22], a recurrent equation to compute Nn was derived, as well as a
recurrent equation to compute Ln such that σn(x) = Ln(ψ

1(x), . . . , ψn(x)), which were substantially
faster. Additionally, a recurrent equation for the polynomials Lopn (ψ1(x), . . . , ψn(x)) = λn(x) and
Nop
n (λ1(x), . . . , λn(x)) = ψn(x) was also found. However, the computation of these polynomials turned

out to still be a cause of significant slow-down for the algorithm, because they involved the substitution
of polynomials inside other polynomials, which made their expansion very computationally expensive.
Thus, we present explicit formulas for these equations, plus other helpful propositions.

Let Pk(n) denote the set of ordered partitions of a natural number n ∈ N into a sum of k positive
natural numbers ordered decreasingly, i.e. the set of decompositions of a number n into a sum of the
form  n = a1 + a2 + · · ·+ ak,

a1 ≥ a2 ≥ . . . ≥ ak > 0,
ai ∈ N ∀i = 1, . . . , k.

We will use the notation a = (a1, . . . , ak) ∈ Pk(n) to denote the partition n = a1 + a2 + . . . + ak.
Let P(n) =

∐n
k=1 Pk(n) denote the set of all partitions of the number n into sums of positive natural

numbers, with an arbitrary number of summands. Given a partition a = (a1, a2, . . . , ak) ∈ Pk(n), let
ni(a) denote the number of times that i appears in the partition a. For example, a = (3, 3, 2, 1, 1) ∈
p5(10) satisfies n1(a) = 2, n2(a) = 1, n3(a) = 2 and ni(a) = 0 for any other i > 3.

On the other hand, recall that we say that a ring R has additive torsion whenever there exists an
element x ∈ R and and integer n > 0 such that nx := x+ . . .+ x︸ ︷︷ ︸

n

= 0.

Proposition 2.1. Let σ be a special λ-ring structure on a ring R with no additive torsion and let ψn

be the Adams operations associated to σ. Then

σn(x) =

n∑
i=0

∑
a=(a1,...,ai)∈Pi(n)

 (−1)n+i

n1(a)!n2(a)! . . . nn(a)!

∏
j

ψaj (x)

aj

 . (2.11)

Proof. We solve for σ−t(x) in equation (2.8).

σ−t(x) = e−
∫ ψt(x)

t dt. (2.12)

Now, we expand −
∫ ψt(x)

t dt:

−
∫
ψt(x)

t
dt = −

∫ ∞∑
n=0

ψn(x) · tn

t
dt = −

∞∑
n=0

∫
ψn(x)tn−1dt = −

∞∑
n=0

1

n
ψn(x)tn.

By using this equality and applying the Taylor series expansion of ex to the right hand side of equation
(2.12), we get

σ−t(x) = e−
∑∞
n=0

1
nψ

n(x)tn =

∞∑
i=0

1

i!

(
−

∞∑
n=0

1

n
ψn(x)tn

)i
.

Changing t for −t yields

σt(x) =

∞∑
i=0

1

i!
(−1)i

( ∞∑
n=0

(−1)n
1

n
ψn(x)tn

)i
.
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We can now expand (
∑∞
n=0(−1)n 1

nψ
n(x)tn)i by using the Multinomial Theorem.

σt(x) =

∞∑
i=0

1

i!
(−1)i

∞∑
n=0

 ∑
a=(a1,a2,...,ai)∈Pi(n)

(
i

n1(a), n2(a), . . . , nn(a)

)
(−1)a1

a1
ψa1(x)

(−1)a2

a2
ψa2(x) . . .

(−1)ai

ai
ψai(x)

 tn

=

∞∑
n=0

n∑
i=0

∑
a=(a1,...,ai)∈Pi(n)

(−1)i+
∑
j aj

i!
∏
j aj

(
i

n1(a), n2(a), . . . , nn(a)

)∏
j

ψaj (x)tn

=

∞∑
n=0

n∑
i=0

∑
a=(a1,...,ai)∈Pi(n)

(−1)n+i · i!
∏
j ψ

aj (x)

i! · n1(a)!n2(a)! . . . nn(a)!
∏
j aj

tn.

By equating the coefficients and canceling the factorials, we achieve the desired equality.

σn(x) =

n∑
i=0

∑
a=(a1,...,ai)∈Pi(n)

 (−1)n+i

n1(a)!n2(a)! . . . nn(a)!

∏
j

ψaj (x)

aj

 .

□

Proposition 2.2. Let λ and σ be two opposite λ-ring structures on a ring R with no additive torsion
and such that σ is special and let ψn be the Adams operations associated to σ. Then

λn(x) =

n∑
i=0

∑
a=(a1,...,ai)∈Pi(n)

 1

n1(a)!n2(a)! . . . nn(a)!

∏
j

ψaj (x)

aj

 . (2.13)

Proof. The proof is analogous to the previous lemma, using equation (2.9) instead of equation (2.8)
and adjusting the signs accordingly. □

Proposition 2.3. Let σ be a special λ-ring structure on a ring R with no additive torsion and let ψn

be the Adams operations associated to σ. Then

ψn(x) =

n∑
i=1

(−1)i+n+1
n−1∑
l=0

∑
a=(a1,...,ai)∈pi(l)

(n− l)
i!

n1(a)!n2(a)! . . . nl(a)!
σn−l(x)

∏
j

σaj (x). (2.14)

Proof. We apply the Taylor series expansion of the natural logarithm to the right hand side of equation
(2.8):

ψt(x) = −t · d
dt

log(σ−t(x)) = −t · d
dt

∞∑
i=1

1

i
(σ−t(x)− 1)i(−1)i−1.

Next, we expand the derivative and adjust indexes.

ψt(x) = −t
∞∑
i=1

1

i
i (σ−t(x)− 1)

i−1

(
d

dt
σ−t(x)

)
(−1)i−1

= −
∞∑
i=1

(−1)i−1

( ∞∑
n=1

σn(x)(−t)n
)i−1(

t
d

dt
σ−t(x)

)

= −
∞∑
i=0

(−1)i

( ∞∑
n=1

σn(x)(−t)n
)i ∞∑

n=1

nσn(x)(−t)n.

Now we use the Multinomial Theorem to expand the sum (
∑∞
n=1 σ

n(x)(−t)n)i.

ψt(x) = −
n∑
i=0

(−1)i

 ∞∑
n=1

 ∑
a=(a1,...,ai)∈pi(n)

(
i

n1(a), n2(a), . . . , nn(a)

)∏
j

(−1)ajσaj (x)

 tn

 ∞∑
n=1

(−1)nnσn(x)tn.
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By applying the convolution, we obtain

ψt(x) = −
n∑
i=0

(−1)i
∞∑
n=1

n∑
l=0

(−1)n−l(n− l)σn−l(x)

 ∑
a=(a1,...,ai)∈pi(l)

(
i

n1(a), n2(a), . . . , nl(a)

)
(−1)l

∏
j

σaj (x)

 tn

= −
∞∑
n=1

n∑
i=0

(−1)i
n−1∑
l=0

(−1)n(n− l)σn−l(x)

 ∑
a=(a1,...,ai)∈pi(l)

(
i

n1(a), n2(a), . . . , nl(a)

)∏
j

σaj (x)

 tn,

and, equating the coefficients, we arrive to the desired formula

ψn(x) =

n∑
i=1

(−1)i+n+1
n−1∑
l=0

∑
a=(a1,...,ai)∈pi(l)

(n− l)
i!

n1(a)!n2(a)! . . . nl(a)!
σn−l(x)

∏
j

σaj (x).

□

Proposition 2.4. Let λ and σ be two opposite λ-ring structures on a ring R with no additive torsion
and such that σ is special and let ψn be the Adams operations associated to σ. Then

ψn(x) =

n∑
i=1

(−1)i
n−1∑
l=0

∑
a=(a1,...,ai)∈pi(l)

(n− l)
i!

n1(a)!n2(a)! . . . nl(a)!
λn−l(x)

∏
j

λaj (x). (2.15)

Proof. The proof is analogous to the previous lemma, using equation (2.9) instead of equation (2.8)
and adjusting the signs accordingly. □

Proposition 2.5. Let λ and σ be two opposite λ-ring structures on a ring R such that σ is special
and let ψn be the Adams operations associated to σ. Then

ψn(x) =

n∑
i=1

(−1)n−iiσn−i(x)λi(x).

Proof. As λ is a λ-ring structure, by (2.2) we have

λt(−x) = (λt(x))
−1.

Next, we use the derivative of the logarithm on the right hand side of equation (2.9).

ψt(x) = t · d
dt

log(λt(x)) = t ·
d
dtλt(x)

λt(x)
= t ·

∑∞
n=1 nλ

n(x)tn−1

λt(x)
= λt(x)

−1
∞∑
n=1

nλn(x)tn.

Now, we apply equation (2.2) to this result, yielding

ψt(x) = λt(−x)
∞∑
k=1

kλk(x)tk =

 ∞∑
j=0

λj(−x)tj
( ∞∑

k=1

kλk(x)tk

)
.

We apply the convolution.

ψt(x) =

∞∑
n=1

n∑
i=1

iλi(x)λn−i(−x)tn,

and, by equaling the coefficients, we get

ψn(x) =

n∑
i=1

iλi(x)λn−i(−x).

Now we use equation (2.5) to obtain

ψn(x) =

n∑
i=1

(−1)n−iiσn−i(x)λi(x).

□
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Figure 1. Time comparison between different strategies to compute Nn, represented
as ψ → σ; Ln, represented as σ → ψ; Nop

n , represented as ψ → λ, and Lopn , repre-
sented as λ→ ψ. The partitions strategy employs the explicit equations derived in
[SAP25], recurrent uses equations (2.17), (2.18), and the equations for Nn and Ln
from [Alf22], and power_expansion refers to the equations for Nop

n and Lopn from
[Alf22].

Remark 2.6. We can further use the equations from [Alf22, Proposition 2] to express σn(x) in terms
of λn(x) (or vice versa) in order to expand the right-hand side of the equation from Proposition 2.5 into
a polynomial formula in σ or λ that represents a specific degree of ψ. We can obtain it by substituting
the corresponding operator by the polynomial P opn ∈ Z[X1, . . . , Xn], which expresses λ in terms of σ
and vice versa (see [Alf22, Proposition 2] for details)

σn = P opn (λ1(x), . . . , λn(x)), λn = P opn (σ1(x), . . . , σn(x)), ∀x ∈ R (2.16)

and which can be defined recursively as follows.

P op0 = 1

P opn =

n−1∑
i=0

P opi Xn−i ∀n ≥ 1.

This yields a polynomial expression

ψn(x) =

n∑
i=1

(−1)n−iiσn−i(x)P opi (σ1(x), . . . , σi(x)) (2.17)

for ψn(x) in terms of σ operations of x or, equivalently, a polynomial

ψn(x) =

n∑
i=1

(−1)n−iiP opn−i(λ1(x), . . . , λn−i(x))λ
i(x) (2.18)

in terms of λ operations of x.

Intuitively, the explicit, partition based equations should be the fastest, followed by the recurrent
equations, and equations where one has to expand powers of polynomials should be the slowest. The
algorithm described in [Alf22] uses recurrent equations for computing Nn and Ln, but in order to
compute Nop

n and Lopn it uses the formulas

λn(x) = Lopn (ψ1(x), . . . , ψn(x)) = P opn (L1(ψ
1(x)), . . . , Ln(ψ

1(x), . . . , ψn(x)))

and
ψn(x) = Nop

n (λ1(x), . . . , λn(x)) = Nn(P
op
1 (λ1(x)), . . . , P opn (λ1(x), . . . , λn(x))).
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These formulas rely on repeated substitution of polynomials into other polynomials, which makes the
later expansion very expensive to calculate. In Figure 1, we can see the comparison in time taken to
compute these polynomials. It is apparent from the graphs that the explicit equations are substantially
faster, while the power_expansion computations are orders of magnitude slower (taking up to 2616
seconds for degree 30 compared to less than 3 seconds using the explicit equations for the same degree),
which is what we expected.

Finally, let us recall the notion of dimension of an element x ∈ R in a λ-ring. We say that x is
d-dimensional for the structure λ (respectively, for the structure σ) if λt(x) (respectively σt(x)) is a
degree d-polynomial. This implies that λn(x) = 0 or σn(x) = 0 for each n > d respectively.

Remark 2.7. If x ∈ R is a d-dimensional object for λ, then σn(x) and ψn(x) can be expressed as
polynomials in d variables depending on λ1(x), . . . , λd(x) through (2.15) and (2.16).

2.4. Moduli and motives. A moduli space is a geometric space that represents the solution to
a classification problem (see [New78] for more information on the theory of moduli spaces). For
example, the collection of all lines in R2 that pass through the origin form a motive known as P1(R).
These moduli spaces naturally arise as solutions to classification problems, and model the geometry of
important spaces in other fields, such as in physics (specially in string theory, see [Moz12]).

The Grothendieck motive is a highly useful tool that facilitates the study of the geometry of different
moduli spaces. It is an algebraic invariant of a scheme that encodes most of its geometric information.
A complete formal definition is out of the scope of this work, but one can find it in [Man68]. Among
other things, if two moduli spaces share the same class in the Grothendieck ring of Chow motives,
then their Poincaré polynomials are the same. Incidentally, many Grothendieck motives have a λ-ring
structure, which means that having a general tool to manipulate λ-rings would greatly aid in the study
of Grothendieck motives, and thus of moduli spaces.

3. Structure of the motives package

The motives package implements all the needed functionalities to be able to operate with symbolic
expressions in λ-rings. It extends the library SymPy by inheriting from its core classes and adding to
them. Then, all expressions are implicitly represented as a tree. An expression tree is a data class that
is based on a tree graph, in which each node represents a part of an expression. Every leaf node is an
operand, while every non-leaf node represents an operator. For example, 5+x

y +1 would be represented
as

+

1 /

+

5 x

y

Operators can be n-ary (variable amount of children), binary (two children), unary (one children),
or any other. For example, division (/) is binary, while addition is n-ary and negation is unary. This
data structure is useful because it lets us navigate the tree and do transformations more hierarchically
than if we stored the expression as it is read.

motives is divided into two clear sub-packages.

3.1. Core. In core, the main logic behind the general functionality of the package is implemented. It
models how λ-rings behave and integrates this with SymPy. The classes in this section are not meant to
be used directly, but instead act as the base of most of the other classes in motives. The implemented
core modules are

LambdaRingExpr. The LambdaRingExpr class is the homologous abstract class to Sympy’s Expr,
and it inherits from it. It’s the parent class of all other classes that represent nodes in the tree. It
defines what methods all other classes should implement, which are get_max_adams_degree (re-
turns the degree of the Adams operation with the highest degree of its subtree), get_max_groth_degree
(returns the maximum Adams degree that the equivalent Adams polynomial would have),
_to_adams (turns the subtree into its equivalent Adams polynomial) and _to_adams_lambda

(turns the subtree into its equivalent Adams polynomial using some heuristic optimizations).



19

Operand. The Operand class is also an abstract class, from which all root nodes in the tree
inherit. It defines what methods operands should implement, which are get_adams_var (returns
the operand with an Adams operation applied to it), get_lambda_var (returns the operand with
a λ operation applied to it), _apply_adams and _subs_adams (turns every Adams operation
of the operand in a given polynomial into its equivalent polynomial of λ operations using
LambdaRingContext). These methods, plus the ones defined in LambdaRingExpr, will be better
explained in Section 4.
Conventional operators. Conventional operators, i.e. multiplication, addition, and expo-
nentiation, are also extended from their respective versions in the SymPy package. However, a
new child class is not created for any of them. Conventional methods implemented in SymPy,
such as expand or cancel, directly instantiate these parent classes, and they wouldn’t have
the necessary methods specified by LambdaRingExpr. So instead, these methods are defined
externally and are attached to the appropriate class, which conveniently causes that any new
instance implements them.
Ring operators. These operators are Sigma (σ), Lambda_ (λ) and Adams (ψ). They all share
a parent class, RingOperator. They also inherit from the SymPy class Function. As a note,
Lambda_ is spelled that way because “lambda” is a reserved keyword in the Python language.
Rational operand. This is the equivalent to the Sympy class Rational. It is implemented
in the same manner as the conventional operators for the same reasons. Equations (2.6) and
(2.10) respectively are used to compute the λ and the Adams operation of this operand. Note
that this implicitly encodes the λ-ring of integers.
Object1Dim. This is an abstract class representing a 1-dimensional object in a λ-ring for the
special structure σ. That means that if x is a 1-dimensional object, it satisfies that σn(x) =
0 ∀ n > 1. Thus,

σt(x) = 1 + xt,

and therefore,

λn(x) = ψn(x) = xn.

The proof of this result is very similar to the proof of equation (2.10).
LambdaRingContext. LambdaRingContext is a helper class that contains methods for comput-
ing the universal polynomials relating the λ, σ and Adams operations. One can change how
it computes these polynomials by modifying the parameter mode (partitions to use equations
(2.11), (2.13), (2.14) and (2.15); recurrent to use equations (2.17), (2.18) and equations from
[Alf22, §2], and old to exclusively use the implemented equations in the MATLAB ad-hoc ver-
sion of the simplification algorithm from [Alf22], described more in detail in Section 4). It is a
singleton, and it keeps a cache of the already computed polynomials.

3.2. Grothendieck motives. While core lays the groundwork for the package, this section im-
plements most of the concrete operands that are used to build expression trees. They inherit from
the abstract class Motive, which represents a motive in the Grothendieck λ-ring of varieties, the
Grothendieck ring of Chow motives or in any extension or completion of such rings. The more general
classes defined in this sub-package are

Point. Represents the motive of a closed point. It inherits from the SymPy class AtomicExpr
and is a singleton. It satisfies that λn(pt) = ψn(pt) = 1 ∀ n.
Lefschetz. Represents the Lefschetz motive (L), which models the complex line A1. It is a
1-dimensional object, so it inherits from Polynomial1Var. It is also a singleton.
Proj. Represents the motive of a complex projective space Pn. It equals the sum 1+L+ ...Ln,
and inherits from AtomicExpr.

The rest of the classes of the sub-package are divided into 3 groups: curves, groups and moduli.

3.2.1. Curves. This submodule includes classes for handling and operating with abstract smooth
complex algebraic curves, which we denote X, of genus g. Every smooth complex projective curve X
admits a canonical decomposition for its Chow motive

[X] = h0(X) + h1(X) + h2(X) = 1 + h1(X) + L
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and h1(X) is 2g-dimensional for λ by [Kap00]. Concretely, in the following formulas we will use the
notation

ZX(t) = λt([X]) =

∞∑
n=0

λn([X])tn

and

PX(t) = Zh1(X)(t) = λt(h
1(X)) =

2g∑
n=0

λn(h1(X))tn.

Also notice that

ZX(t) = λt([X]) = λt(1 + h1(X) + L) = λt(1)λt(h
1(X))λt(L) =

PX(t)

(1− t)(1− Lt)
.

The following classes are ascribed to curves.

Curve. Represents the motive of an abstract smooth complex algebraic curve X of genus g. It
equals the sum of the motive of a point, the Lefschetz motive, and the CurveChow component
of the curve, as defined before. It inherits from AtomicExpr. To compute the λ operation of
the curve, we apply the convolution to its components, so

λn(X) =
∑

i+j+k=n

Ljλk(h1(X)),

and its Adams operation is just the sum of the Adams operation of its components.
CurveChow. Represents the h1(X) component of the curve. It inherits from AtomicExpr. Now,
notice that from (2.9) we get

ψt(h
1(X)) = t

d

dt
log(λt(h

1(X))) = t
d
dtλt(h

1(X))

λt(h1(X))
=

( ∞∑
n=0

λn(h1(X)) · n · tn
)
λt(h

1(X))−1.

Let qn be the coefficient of tn of λt(h
1(X))−1. Then,

ψt(h
1(X)) =

( ∞∑
n=0

λn(h1(X)) · n · tn
) ∞∑
n=0

qnt
n,

and thus

ψn(h1(X)) =

n∑
i=1

λi(h1(X)) · i · qn−i.

By definition,

λt(h
1(X))λt(h

1(X))−1 = 1,

so we have that
n∑
i=0

qiλn−i(h1(X)) = 0 ∀ n ≥ 1.

Thus, we can compute qn using the recursion

qn = −
n−1∑
i=0

qiλn−i(h1(X)).

We use this to generate the λ operation of the CurveChow structure.
Jacobian. Represents the Jacobian of a curve. Computed in terms of the motivic zeta function
of h1(X) (see [Kap00] and [Hei07])

[Jac(X)] =

2g∑
k=0

λk(h1(X)) = PX(1).

It inherits from AtomicExpr.
Piccard: Represents the Piccard variety of a curve X. The motive coincides with that of its
Jacobian.
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3.2.2. Groups. This submodule includes several complex algebraic groups, based on the formulas
from [BD07]. For a connected semisimple complex group G, the motive is computed as a polynomial
in L through the following equation from [BD07, Proposition 2.1]

[G] = LdimG
r∏
i=1

(1− L−di), (3.1)

where di are the degrees of the basic invariant generators of G and r is its rank. For classical groups,
these were obtained from [Hum90, Table 1, pp. 59]. Several special cases of the previous formula have
been implemented, but all inherit from the class SemisimpleG, which in turn inherits from AtomicExpr.
SemisimpleG represents a general connected semisimple complex group G, and it is computed through
equation (3.1). The special cases of SemisimpleG that have been implemented are

A: Motivic class of any connected semisimple complex algebraic group of type An.
B: Connected semisimple complex algebraic group of type Bn.
C: Connected semisimple complex algebraic group of type Cn.
D: Connected semisimple complex algebraic group of type Dn.
E: Connected semisimple complex algebraic group of type En, for n = 6, 7, 8.
F4: Connected semisimple complex algebraic group of type F4.
G2: Connected semisimple complex algebraic group of type G2.
GL: GLn(C).
SL: SLn(C).
PSL: PSLn(C).
SO: SOn(C).
Sp: Sp2n(C).
Spin: Spinn(C).

3.2.3. Moduli schemes and stacks. This sub-package contains classes that capture the moduli spaces
of decorated bundles on curves. It is divided into a submodule for moduli schemes and a submodule
for moduli stacks. The included schemes are

BundleModuli. Abstract class describing a moduli space of decorated bundles on a smooth
complex projective curve. All other schemes inherit from this class.
VectorBundleModuli. Represents the motive of the moduli space of vector bundles over a curve
of genus ≥ 2. It is computed using the following equations from [GPHS14], [Sán14] and [dB01,
Theorem 4.11], assuming that r and d are coprime.

[M(X, 2, d)] =
[Jac(X)]PX(L)− Lg[Jac(X)]2

(L− 1)(L2 − 1)

[M(X, 3, d)] =
[Jac(X)]

(L− 1)(L2 − 1)2(L3 − 1)

(
L3g−1(1 + L+ L2)[Jac(X)]2

− L2g−1(1 + L)2[Jac(X)]PX(L) + PX(L)PX(L2)
)

[M(X, r, d)] =

r∑
s=1

∑
r1 + . . .+ rs = r

ri > 0

(−1)s−1 PX(1)s

(1− L)s−1

 s∏
j=1

rj−1∏
i=1

ZX(Li)


s−1∏
j=1

1

1− Lrj+rj+1

L(
∑
i<j rirj(g−1))+(

∑s−1
i=1 (ri+ri+1){−(r1+...+ri)

d
r})

where {x} denotes the decimal part of x ∈ R, i.e., {x} = x− ⌊x⌋.
VHS. Describes the Grothendieck motive of the moduli space of L-twisted Variations of Hodge
Structure over a curve. It is currently only implemented for the following ranks of the com-
ponents of the VHS: (1, 1), (1, 2), (2, 1) and (1, 1, 1). They follow the equations found in
[GPHS14], [Sán14] and the computations from [AO24]. See [AO24, §8] for details.
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TwistedHiggsModuli. Represents the motive of the moduli space of L-twisted Higgs bundles
over a curve of genus ≥ 2 in the completion of the Grothendieck ring of Chow motives over C.
To compute this class, two different methods were implemented:

• TwistedHiggsModuliADHM. This uses the conjectural equation from [Moz12, Conjecture 3]
as a solution to the ADHM equation, based on [CDP11]. It is able to compute the motive of
arbitrary rank and degree, so this is the method used for rank greater than 3. However, the
method to compute this motive requires some very expensive calculations, which is covered
more in depth in Section 5.

• TwistedHiggsModuliBB. This uses the formula derived from the Bialynicki-Birula decom-
position of the moduli space, using [AO24, Corollary 8.1] and [GPHS14, Theorem 3]. The
formula only exists for rank 2 and 3, but its computations are more efficient than the pre-
vious method, so it is used for rank ≤ 3. The computation of the motive of this formula is
also covered in more depth in Section 5.

The current stacks are

BunG. Represents the Grothendieck motivic class of the moduli stack of principal G-bundles
on a smooth complex projective curve X, computed through the following conjectural formula
from [BD07, Conjecture 3.4]

[Bun(X,G)] = |π1(G)|L(g−1) dimG
r∏
i=1

ZC(L−di),

where di are the exponents of the group and r its rank. The conjecture was proven for G =
SLn(C) in [BD07, §6].
BunDet. It represents the moduli stack of SLn(C)-bundles with fixed determinant on a smooth
complex projective curve. In essence, it is an instance of BunG with a SLn(C) as its group.
BG. Classifying space for the group G, BG = [pt/G] for a connected semisimple complex
algebraic group G. It is computed as

[BG] = 1/[G].

This formula is conjectural in general, but it has been proven for special groups (like GLn(C),
SLn(C) and Sp2n(C)) [BD07, Example 2.6], for PSLn(C) if n = 2, 3 [Ber16, Theorem A], for
SOn(C) [DY16, Theorem 3.7 and Corollary 3.8]) and for On [TV17, Theorem 3.1 and Corollary
3.2]. BG has been implemented as a method of SemisimpleG.

3.3. Other base classes. There are two basic λ-rings that are outside of both sub-packages. Those
are

Free. Represents an abstract variable node in an expression, treated as a generator of a free
λ-ring or a free extension of a λ-ring. It is analogous to SymPy’s Symbol, and it inherits from it.
No assumptions are made about it, so all its Adams and λ-powers will be treated as independent
algebraic elements in the ring.
Polynomial1Var. It is an abstract polynomial symbolic variable yielding a polynomial extension
of a λ-ring. Given a λ-ring (R, λ), the ring of polynomials R[T ] acquires a natural λ-ring
structure in which λn(T ) = Tn (in particular, it becomes a 1-dimensional object for the opposite
λ-ring structure to λ). It allows defining expressions in polynomial extensions of rings of motives,
like the Grothendieck ring of motives.

Figure 2 shows a general view of all the classes in the package, and of their hierarchy.

3.4. Integration with SymPy. The library is integrated within the SymPy environment. That
means that most SymPy functions can be run the same way on a λ-ring expression constructed using
motives. Functions such as simplify, expand, limit or apart work the exact same way they would
on an ordinary SymPy expression. In fact, not only do these more complex functions work, but also
some natural and convenient behaviours arise naturally from the fact that all motives operands inherit
from either SymPy’s Symbol or AtomicExpr, such as the commutative or the associative properties.
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Figure 2. High-level class diagram of the motives library and its integration with
Sympy. Only the most important public methods are shown; all other methods and
internal details have been omitted for clarity. Classes are organized into two colored
regions: Core (foundation of the lambda-ring framework, including LambdaRingExpr,
Operand, and ring operators), and Grothendieck Motives (domain-specific classes
for algebraic curves, groups, and moduli schemes/stacks). Solid arrows indicate in-
heritance, dashed arrows denote usage/composition, dashed borders identify singleton
classes, dotted borders indicate private classes and solid borders indicate public classes.
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4. The simplification algorithm

The idea of the simplification algorithm implemented in motives comes from [Alf22, Algorithm 1
and Theorem 4], but it has been optimized and generalized. We are able to transform any algebraic
expression combining λ, σ and ψ into a polynomial of λ or of Adams operations of the base operands.

4.1. to_adams algorithm. If an algebraic expression in a λ-ring contains the generators

{a1, a2, ..., ak},
the to_adams method is capable of transforming it into a polynomial with generators

{ψ1(a1), . . . , ψ
n1(a1), ψ

1(a2), . . . , ψ
n2(a2), . . . , ψ

1(ak), . . . , ψ
nk(ak)},

i.e. a polynomial of Adams operations of its generators. This can be done by leveraging the fact that
ψk is a ring homomorphism for any k, so we have that

ψk(P (ψs1(a1), . . . , ψ
sn(an))) = P (ψk·s1(a1), . . . , ψ

k·sn(an)))

and this equality holds even if P is a rational polynomial. To be able to compute this, all operands x
in motives have to implement a method called _apply_adams. This method receives a polynomial P
of Adams operations of the form

P (ψ1(x), . . . , ψi(x), ψs1(a1), . . . , ψ
sk(ak))

and a degree n and returns the polynomial P with a partial operation ψn applied to the variable, i.e.
it returns

P (ψn(x), . . . , ψn·i(x), ψs1(a1), . . . , ψ
sk(ak)).

The algorithm is agnostic, so each operand is allowed to implement this method in the way it sees
convenient, so it can substitute ψi(x) for a new algebraically independent symbolic variable, or for an
equivalent expression, etc.

Furthermore, notice that we can use equations (2.13) and (2.11) to convert any λn or σn operation
respectively into a polynomial of ψ operations (up to degree n).

Now, we will prove by induction that the algorithm works. The base case is trivial, since an
expression of only one element has to be a single operand, which is a polynomial of Adams operations
(ψ1(operand), to be specific) by itself. Now, given a polynomial of Adams operations, we will prove
that any operation applied to this polynomial can be transformed into another polynomial of Adams
operations. We will cover three distinct cases:

1. Conventional algebraic operations. It is trivial to prove that the sum of polynomials
of Adams operations is itself a polynomial of Adams operations, and the multiplication of
polynomials of Adams operations, by the distributive property, is also a polynomial of Adams
operations. Exponentiating a polynomial also yields a polynomial, for the same reason.

2. ψ operation. Let {a1, . . . , ak} be the operands of P . We have

P (ψ1(a1), . . . , ψ
i1(a1), ψ

1(a2), . . . , ψ
i2(a2), . . . , ψ

1(ak), . . . , ψ
ik(ak)),

and we want to compute

ψn(P (ψ1(a1), . . . , ψ
i1(a1), ψ

1(a2), . . . , ψ
i2(a2), . . . , ψ

1(ak), . . . , ψ
ik(ak))) =

= P (ψn(a1), . . . , ψ
n·i1(a1), ψ

n(a2), . . . , ψ
n·i2(a2), . . . , ψ

n(ak), . . . , ψ
n·ik(ak)).

Recall that a1._apply_adams(n,P) returns

P (ψn(a1), . . . , ψ
n·i1(a1), ψ

1(a2), . . . , ψ
i2(a2), . . . , ψ

1(ak), . . . , ψ
ik(ak)).

Then, running _apply_adams iteratively for every operand yields the result we want.
3. σ and λ operations. First, we convert the operation into a polynomial of Adams operations

using its respective equation. So, assuming we have a λ operation (for a σ operation the process
is the same, but using Ln instead of Lopn ) we have that

λn(P ) = Lopn (ψ1(P ), ψ2(P ), . . . , ψn(P )).

Now, we can apply the same process we described before to turn ψi(P ) into an Adams polyno-
mial, which we will denote by Pi. Thus,

λn(P ) = Lopn (P1, P2, . . . , Pn).
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Figure 3. Step-by-step illustration of the to adams() algorithm. Starting with the
expression λ2

(
ψ2(x) − y

2

)
, the algorithm iteratively expands the λ2 and ψ2 operations

following universal λ-ring relations. In this case, λ2(x) is substituted by (ψ1(x))2

2 +
ψ2(x)

2 . Each intermediate tree replaces higher-level operators with expanded terms
in the corresponding ψ-powers, until the final expression is a polynomial purely in
Adams operators and basic ring operations.

Finally, we know that a polynomial of polynomials is itself a polynomial, since all operations in
a polynomial are part of the first case, so we are finished.

The algorithm, then, works recursively. Each node calls the algorithm on its child, and then the
appropriate transformation, according to which case we are on, is applied. A sketch of the algorithm
goes as follows:

def to_adams(self):

child_to_adams = self.child.to_adams()

return transformation(child_to_adams)

Figure 3 shows an overview of the steps taken to convert the expression λ2(ψ2(x)− y
2 ) to a polynomial

of Adams operators of x and y following the algorithm described.

4.2. to_lambda algorithm. This algorithm turns any algebraic expression in a λ-ring into a poly-
nomial in λ operations of its generators. First, it converts the expression into a polynomial in Adams
using to_adams, yielding P (ψk1(x1), . . . , ψ

ks(xs)), and then it uses the method _subs_adams to turn
it into a polynomial in terms of λ1(xi), . . . , λ

ki(xi) for each operand xi. Similarly to apply_adams,
subs_adams must be implemented by every operand in the expression tree. It accepts a polynomial
P and substitutes any instances of Adams of the operand in the polynomial for the equivalent poly-
nomial in λ. A general, free variable uses (2.15), but other motives may have a more efficient way of
performing the substitutions. More specifically, running xi._subs_adams(P) yields

P (Nop
n (λ1(x1), . . . , λ

k1(x1)), . . . , ψ
ks(xs)),

so, analogously to apply_adams, subs_adams is applied repeatedly for every operand in the tree,
yielding a polynomial on only λ-powers.

It must be observed that these two methods grows very rapidly in complexity as the degrees of the
ring operations grow. Especially to_lambda, due to the fact that if we have a σ or a λ operation of
degree n of a Free operand in the original tree, we have to first convert it to a polynomial in Adams,
which has n variables, and then each of those variables has to be converted to a polynomial in λ. A
quite trivial optimization can be made. If when computing to_lambda we have a part of the expression
that already is a polynomial in λ, and it has no other λ-ring structures higher in the tree, we will leave
it as it is. This is implemented through a _to_adams_lambda method.

As explained in Section 3.1, the polynomials used for converting between λ-ring structures are
computed using the class LambdaRingContext.



26

Finally, both to_adams and to_lambda have a parameter as_symbol, which specifies how to return
the polynomial. If as_symbol is False, λn(x) and ψn(x) will be instances of Lambda_ or Adams respec-
tively. Otherwise, they will be SymPy symbols. The first is useful when we just want to manipulate an
expression, but if we want to turn the expression into an actual instance of a SymPy polynomial, the
second is needed.

4.3. Usage example. We have the following expression:

λ2
(
ψ2(x)− y

2

)
.

To simplify it using motives, we can run the following code

x, y = Free("x"), Free("y")

expr = (x.adams(2) - y / 2).lambda_(2)

print(expr.to_adams())

which yields the following polynomial exclusively in Adams variables (and in x and y):

−ψ
2(y)

4
+
ψ4(x)

2
+

(ψ2(x)− y
2 )

2

2
.

As we can see in the code, x and y are set as Free variables. Then, the expression is constructed, and
to_adams() is called on it. This is the same procedure that is followed for any motivic expression. A
graphical depiction of this process can be seen in Figure 3. If instead of to_adams(), to_lambda()
were to be called, it would yield the following polynomial:

−x4

2
+ 2x2λ2(x)− 2xλ3(x) +

y2

4
− (λ2(x))2 − λ2(y)

2
+ 2λ4(x) +

(−x2 − y
2 + 2λ2(x))2

2
.

Notice how in this case, the polynomial exclusively depends on λ-powers of x and y, as expected. This
expression can be further simplified using the simplify() method provided by Sympy:

print(expr.to_lambda().simplify())

which yields the following polynomial still depending on the λ powers of x and y.

x2y

2
− 2xλ3(x) +

3y2

8
− yλ2(x) + λ2(x)2 − λ2(y)

2
+ 2λ4(x).

5. Verification of Mozgovoy’s conjecture

The library has several uses for the working mathematician. One of them is simplifying motivic
expressions, and through it enabling the verification of conjectures. To test the library, we computed
the motive of twisted Higgs bundles for specific parameters.

In [Moz12], the following conjectural formula for the motive of the moduli space of L-twisted Higgs
bundles was derived as a solution to the ADHM equation, based on [CDP11]. We denote the motive
as ML(X, r, d), with X being a smooth complex algebraic curve of genus g, r being the rank of the
Higgs bundle and d its degree. Note that for the following section, r and d are assumed to be coprime.

Conjecture 5.1. [Moz12, Conjecture 3] Let P(n) denote the set of ordered partitions of n, where
a partition a = (a1, . . . , ak) ∈ P(n) is considered as a non-increasing sequence of positive integers
a1 ≥ a2 ≥ · · · ≥ ak > 0 summing n and, for each a ∈ P(n), we consider the Young diagram of a, given
as

d(a) = {(i, j) ∈ Z2 | 1 ≤ i ≤ k, 1 ≤ j ≤ ai},
and for each element (i, j) ∈ d(a), its arm, leg and hook functions, defined as

a(i, j) = ai − j, l(i, j) = max{l | al ≥ j} − i, h(i, j) = a(i, j) + l(i, j) + 1.

Then, for each integer n ≥ 1, let

Hn(t) =
∑

a∈P(n)

∏
s∈d(a)

(−ta(s)−l(s)La(s))pt(1−g)(2l(s)+1)ZX(th(s)La(s)).



27

From Hn(t), define Hr(t) for each r ≥ 1 as the coefficient of T r of

(1− t)(1− Lt)
∑
j≥1

∑
k≥1

(−1)k+1µ(j)

jk

(∑
n≥1

ψj [Hn(t)]T
jn

)k
.

So ∑
r≥1

Hr(t)T
r = (1− t)(1− Lt)

∑
j≥1

∑
k≥1

(−1)k+1µ(j)

jk

(∑
n≥1

ψj [Hn(t)]T
jn

)k
.

Then Hr(t) is a polynomial in t and

[ML(X, r, d)] =MADHM
g,r,p := (−1)prLr

2(g−1)+p
r(r+1)

2 Hr(1). (5.1)

Additionally, in [AO24], we have the following proven formula for computing the motive for rank
up to 3.

Theorem 5.2 ( [GPHS14, Theorem 3], [AO24, Corollary 8.1]). The following equalities hold in

K̂0(VarC).
1. For r = 1

[ML(X, 1, d)] =MBB
g,1,p := Lg−1+pPX(1) (5.2)

2. For r = 2, if (2, d) = 1,

[ML(X, 2, d)] =MBB
g,2,p :=

L4g−4+4p
(
PX(1)PX(L)− LgPX(1)2

)
(1− L)(1− L2)

+ L4g−4+3pPX(1)

⌊ 2g−1+p
2 ⌋∑
i=1

λ2g−1+p−2i([X]).

(5.3)

3. For r = 3, if (3, d) = 1,

[ML(X, 3, d)] =MBB
g,3,p :=

L9g−9+9pPX(1)

(L− 1)(L2 − 1)2(L3 − 1)

(
L3g−1(1 + L+ L2)PX(1)2

− L2g−1(1 + L)2PX(1)PX(L) + PX(L)PX(L2)
)

+
L9g−9+7pPX(1)2

L− 1

⌊ 1
3+

2g−2+p
2 ⌋∑

i=1

(
Li+gλ−2i+2g−2+p([X] + L2)− λ−2i+2g−2+p([X]L+ 1)

)

+
L9g−9+7pPX(1)2

L− 1

⌊ 2
3+

2g−2+p
2 ⌋∑

i=1

(
Li+g−1λ−2i+2g−1+p([X] + L2)− λ−2i+2g−1+p([X]L+ 1)

)

+ L9g−9+6pPX(1)

2g−2+p∑
i=1

⌊(2g−1+p−i)/2⌋∑
j=max{2−2g−p+i,1−i}

λ−i+j+2g−2+p([X])λ−i−2j+2g−1+p([X]). (5.4)

Proving that the equations from Theorem 5.2 and from Conjecture 5.1 represent the same motive
is far from trivial. The equations grow exponentially in time of compute and in number of terms,
and prior to this work, it had only been verified up to genus 11 and p ≤ 20, for both rank 2 and 3.
Specifically, in [Alf22], an ad hoc MATLAB algorithm following the algorithm described in Sections
4.1 and 4.2 managed to verify the conjecture with the following conditions:

X is any curve of genus g with 2 ≤ g ≤ 11,
L is any line bundle on X of degree 2g − 1 ≤ deg(L) ≤ 2g + 18, and
1 ≤ r ≤ 3.

The computations were carried in an Intel(R) Xeon(R) E5-2680v4@2.40GHz with 128GB of RAM.
It was observed that the main limitation was the RAM, due to the fact that during the cancellation
process of equation (5.1), the expression displays an over-exponential growth. In fact, the test for
r = 3, g = 11 and deg(L) = 2g + 18 used up all the RAM of the cluster, and took over 3 days to
complete.
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Figure 4. Time comparison between algorithm [Alf22] and motives package for the
computational verification of Mozgovoy’s conjectural formula. [Alf22] data is limited
to g ≤ 11 because the program reached the memory limit for the machine for that g.
The y-axis represents the logarithm with base 10 of the time in seconds spent running
the computations.

Equations (5.3) and (5.4) are comparably faster to simplify, after a few transformations to the
equation for rank 3. Namely, we apply the convolution to the lambda operations, and thanks to the
optimization mentioned in Section 4.2, applying to_lambda() becomes trivial. Specifically, we use the
fact that

λn([X] + L2) =

n∑
i=0

λi([X])λn−i(L2) =

n∑
i=0

λi([X])L2(n−i)

and

λn([X]L+ 1) =
n∑
i=0

λi([X]L)λn−i(1) =
n∑
i=0

λi([X]L) =
n∑
i=0

λi([X])Li.

This last step works because, by (2.9),

t
d

dt
log(λt([X]L)) = ψt([X]L)

=

∞∑
n=0

ψn([X]L)tn

=

∞∑
n=0

ψn([X])ψn(L)tn

=

∞∑
n=0

ψn([X])Lntn

= ψLt([X])

= t
d

dt
log(λLt([X])).
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So

t
d

dt
log(λt([X]L)) = t

d

dt
log(λLt([X]))

λt([X]L) = λLt([X])
∞∑
n=0

λn([X]L)tn =

∞∑
n=0

λn([X])(Lt)n

∞∑
n=0

λn([X]L)tn =

∞∑
n=0

λn([X])Lntn

λn([X]L) = λn([X])Ln. (5.5)

This works with any motive, not just [X].

Table 1. Comparison between the computation times in seconds for the verification of
Mozgovoy’s conjectural formula using the simplification algorithm from the Motives

Python package and the MATLAB implementation of the algorithm from [Alf22].
From g = 11 the MATLAB program reached the memory limit of the machine.

g Motives Python package implementation (s) MATLAB implementation of [Alf22] (s)

2 4.48e+01 7.58e+01
3 9.96e+01 1.09e+02
4 2.41e+02 2.01e+02
5 4.06e+02 4.18e+02
6 7.78e+02 8.51e+02
7 1.47e+03 1.79e+03
8 2.74e+03 3.44e+03
9 4.96e+03 1.01e+04
10 8.80e+03 4.60e+04
11 1.58e+04 >2.85e+05
12 2.87e+04 -
13 5.14e+04 -
14 1.02e+05 -
15 2.18e+05 -
16 3.83e+05 -
17 6.09e+05 -
18 1.79e+06 -

Equation (5.1) is the bottleneck of the process. It is not straightforward to evaluate Hr(t) at
t = 1. When evaluating Hn(t), ZX(t) terms appear in the expression, and they introduce non trivial
singularities on t = 1. Hence, canceling is necessary before substituting, but SymPy’s cancel() was too
slow to be viable, and limit() didn’t work either. Some clever techniques were employed to simplify
this process.

First, in order to collect the coefficient of T r, expanding the expression is necessary. However, there
are many terms that are unnecessary to expand and in fact, overcomplicate the expression. So we
only expand the terms that contain T . Next, we only want to cancel the terms that contain the factor
1− t, so instead of directly canceling the expression, we first express it as

∑n
i=0

ci
(1−t)i . Starting with

the coefficient of 1
(1−t)n , we iteratively divide ci by 1− t exactly k times, i.e. until it has no remaining

1 − t roots. Then, we add the remainder to ci−k. If the expression can be evaluated at t = 1, each
term can be divided at least once, which guarantees the algorithm to end. Once both expressions have
been simplified to a polynomial in λ-powers of the h1(X) component of the curve and in L, they are
compared by subtracting the polynomials and ensuring the result is 0.



30

Figure 5. Size comparison between the polynomials generated forMBB
g,3,20 =MADHM

g,3,20

after simplification for different g, all taken with r = 3 and p = 20.

Thanks to these optimizations and some other clever tricks, we could verify Conjecture 5.1 up to
genus 18 on the same machine the MATLAB algorithm was run on. We showed that both equations
are equal when

X is any curve of genus g with 2 ≤ g ≤ 18,
L is any line bundle on X of degree 2g − 1 ≤ deg(L) ≤ 2g + 18, and
1 ≤ r ≤ 3.

As a consequence, Theorem 5.2 implies that Mozgovoy’s conjecture holds under those conditions,
yielding the following theorem.

Theorem 5.3. Let X be any smooth complex projective curve of genus 2 ≤ g ≤ 18. Let L be any line
bundle on X of degree deg(L) = 2g − 2 + p with 0 < p ≤ 20. If r ≤ 3 and d is coprime with r, then,

in K̂0(CMC),

[ML(X, r, d)] =MADHM
g,r,p .

To show the improvement between the MATLAB ad-hoc algorithm and the implementation in
the motives package, Figure 4 shows a comparison between the time taken for both algorithms to
complete the verification for different values of the genus. One can see that, with a logarithmic scale,
the motives version appears to follow a linear growth, while the MATLAB algorithm has a greater
complexity. The exact time it took for each computation to complete is displayed in Table 1. It is
interesting to note that the time taken for genus 11 on the MATLAB algorithm, with a polynomial
of 45318 terms, is greater than the time taken for genus 15 on the Python implementation, with a
polynomial of 122808 terms, almost three times as many.

To put into perspective the increase in size of the polynomials, note that their degree is r2deg(L)+1
and they have g+1 variables. So although the final polynomials are significantly smaller, polynomials
of degree 361 in 12 variables (which is the size of the biggest polynomial computed using the MATLAB
implementation) have up to ∼ 3.4 · 1024 monomials, while polynomials of degree 487 in 19 variables
(which is the size of the biggest polynomial computed using the motives implementation) can have
up to ∼ 3.1 · 1036. The number of monomials of the motive for different g is represented in Figure 5.

motives simplicity and ease of use should also be remarked. All usage examples of the package have
been short and intuitive. In fact, to perform the simplification and comparison of MBB

g,r,p and MADHM
g,r,p

one just needs to run the following Python code:
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cur = Curve("x", g=g)

# Compute the motive of rank r using ADHM derivation

adhm = TwistedHiggsModuli(x=cur, p=p, r=r, method="ADHM")

eq_adhm = adhm.compute(verbose=verbose)

# Compute the motive of rank r using BB derivation

bb = TwistedHiggsModuli(x=cur, p=p, r=r, method="BB")

eq_bb = bb.compute(verbose=verbose)

# Compare the two polynomials

if eq_adhm - eq_bb == 0:

print("Polynomials are equal")

6. Future work

We expect to extend the functionality of the library motives in future releases, such as by

Implementing new λ-rings. Examples would be a sub-package for handling expressions in the
K-theory of a variety, sub-packages oriented for the manipulation of symmetric polynomials, or
λ-rings oriented to the study of purely combinatorial problems.
Implementing equations for other useful geometric constructions, such as character or repre-
sentation varieties, general formulas for moduli spaces of chain bundles and other additional
moduli spaces and moduli stacks of bundles and decorated bundles on curves.
Adding tools for the computation of E-polynomials, Poincaré polynomials and other invariants.
Improved simplification and manipulation strategies for λ-rings, that would not necessarily
reduce the motive to its basic expression as a polynomial of λ or Adams operations, but would
cleverly leverage λ-ring properties.

Additionally, it is a natural next step to use motives to verify other open conjectures in the field in
the same way it was applied to Mozgovoy’s conjecture, like the conjectures on the geometry of Hilbert
schemes described in [GMMR24].

Another interesting idea would be to use an artificial intelligence algorithm to optimize the compar-
ison process (proving whether two equations are equal) used in the library. For example, some kind of
reinforcement learning model could be applied to this problem, which would have some specific λ-ring
transformations as its actions and a degree of similarity between the two expressions for its reward
function.

Finally, we are working on the full proof of Mozgovoy’s conjecture for rank 2 and 3, leveraging the
insights gained from the library motives and using it to ensure correctness of every step of the proof.
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