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Abstract
We examine relativistic diffusion through the frame and observer bundles asso-
ciated with a Lorentzian manifold (M, g). Our focus is on spacetimes with a
non-trivial isometry group, and we detail the conditions required to find sym-
metric solutions of the relativistic diffusion equation. Additionally, we analyze
the conservation laws associated with the presence of Killing vector fields on
(M, g) and their implications for the expressions of the geodesic spray and the
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vertical Laplacian on both the frame and the observer bundles. Finally, we
present several relevant examples of symmetric spacetimes.

Keywords: diffusion Lorentzian manifolds,
covariant Fokker-Planck equation, spacetime symmetries

1. Introduction

Relativistic kinetic theory has been studied almost since the inception of general relativity, and
its formulation has been developed by many scientists over the years (see [1, 33, 34] for a his-
torical overview). The kinetic theory of relativistic gases, initially proposed by Synge in 1934
[38], gained significance after the 1960s due to technological advancements and discoveries
such as quasars and the cosmic microwave background radiation. Although most of the under-
lying geometric ideas had been developed in the 1960s by Berger [8, 10] in the Riemannian
context, the work of Ehlers in the 1970s [18, 24] was particularly important, providing a coher-
ent and robust mathematical framework where relativistic kinetic theory takes place on appro-
priate submanifolds of the tangent bundle of a spacetime (see [33] for a recent review).

The Fokker–Planck (FP) equation describes diffusion processes, with applications in vari-
ous domains of physics and engineering. In astrophysics, for instance, it is employed to model
the theory of cosmic rays [28]. Similarly, FP equations are utilized in plasma physics to analyze
the effects of near-miss encounters between ions (heavy particles) and electrons [31].

However, unlike relativistic kinetic theory, the field of relativistic diffusion is still in its early
stages. The covariant description poses significant challenges. In particular, there are numer-
ous approaches to deriving a FP equation from a system of stochastic differential equations.
Due to these ambiguities, multiple models exist in the literature under the label ‘relativistic
FP equation’; for further details, we refer the readers to [14, 15, 17]. Besides the theoretical
problems, experiments to test the proposed theories are difficult to perform.

In the context of differential stochastic equations on a Riemannian manifold, the orthonor-
mal frame bundle proves to be particularly useful. This framework, developed by [19, 23],
is central to the construction of Brownian motion in Riemannian manifolds. In the context
of Minkowski spacetime, the relativistic description of a Brownian process was pioneered by
Dudley in 1966 [16]. Nevertheless, the generalization of Dudley’s work to the framework of
general relativity (i.e. to a generic Lorentzian manifold (M, g)) had to await the research of
Franchi et al in 2005 [20]. Their diffusion process, initially defined at the level of pseudo-
orthonormal frames SO+(M), incorporates Brownian noise only in the vertical directions
and projects onto a diffusion process on the pseudo-unit tangent bundle (unit observer bundle
UM). The infinitesimal generator of their SO+(M)-valued Stratonovitch stochastic differen-
tial equation decomposes into the sum of the vertical Laplacian and the horizontal vector field
generating the geodesic flow. This infinitesimal generator allows us to write a relativistic FP
equation. This FP equation was used by Calogero et al to describe diffusion in different cos-
mological settings [2–5, 12, 13, 37].

Building upon these ideas, Franchi et al [20] utilized the bundle SO+(M) of direct pseudo-
orthonormal frames, with fibers modelled on the special Lorentz group (and having their first
element in the positive half of the unit pseudo-sphere in the tangent space) to extend the concept
of relativistic diffusion to general Lorentzian manifolds. This approach defines a Stratonovich
stochastic differential equation that takes values in the SO+(M) group, similar to a Langevin
equation. When projected, this equation naturally generates a diffusion process on the mass
shell. Moreover, by following what is done in the Riemannian case, we can induce a pure
diffusion on M through a pullback operation, which results in a FP-type equation.

2



J. Phys. A: Math. Theor. 57 (2024) 285204 M Basquens et al

Recent works related to these methodologies include Serva’s study [36], which diverges
from the approaches of Franchi and Le Jan by focusing on massless particles and constructing
Lorentz invariant processes. Additionally, the work by Andra et al [6] investigates relativ-
istic diffusion incorporating both diffusion and friction within the framework of f (R)-gravity.
Complementing these, the paper by Haba [22], also within f (R)-gravity theory, examines
the cosmological implications of relativistic diffusion, providing a comprehensive frame-
work for understanding its impact on the Universe’s large-scale structure and thermodynamic
properties.

In this paper, we show that the perspective provided by the frame bundle SO+(M) helps
to incorporate spacetime symmetries and define symmetric solutions to the FP equations both
in the frame and observer bundle description. The careful way of incorporating symmetries
into the equations has been exemplified in the case of the Vlasov9 (Liouville) equation—as
demonstrated in works such as [34] by Sarbach and Zannias—particularly on the mass shell.
Here, we present a generalization that encompasses the previous result as a special case while
also enabling the incorporation of diffusion.

The structure of the paper is as follows: After this introduction, in section 2, we present
the geometric structures necessary to describe diffusion processes in the frame bundle of a
spacetime. We discuss the infinitesimal generator L of the Franchi–Le Jan-process, and we
prove that, when the isometry group of the spacetime is non-trivial, its symmetry-reduced
version is consistent.We also elucidate the connection ofLwith the corresponding FP equation
(symmetric or not) on the UM bundle. In section 3, following a reasoning similar to that of
Elhers in [18, 24], we present a justification of the FP equations based on the conservation
of the average number of particle world lines crossing any Cauchy hypersurface. We also
define the particle current density, entropy current, and the energy-momentum tensor, along
with some of their most important properties. In section 4, we provide the explicit equations
in several relevant spacetimes: flat Friedmann-Lemaître-Robertson-Walker cosmologies, the
exterior Schwarzschild spacetime, and the Nariai spacetime. Finally, in section 5, we present
our conclusions and outline some future lines of research.

2. Diffusion in the orthonormal frame bundle

2.1. Geometric framework

The orthonormal frame bundle provides the natural arena for understanding stochastic phe-
nomena like Brownian motion on a Riemannian manifold [23]. As discussed by [20, 21], this
also holds for Lorentzian manifolds of dimension 1+ n.

Let (M, g) be an (1+ n)-dimensional oriented, and time-oriented Lorentzian manifold
of signature (−,+, . . . ,+). A frame u ∈ Fx(M) at a point x ∈M is a linear isomorphism
u : R1+n → TxM. The set

F (M) =
∪
x∈M

Fx (M) ,

9 In this context the Vlasov (Liouville) equation describes the evolution of the one-particle distribution function within
relativistic kinetic theory, asserting that particles are conserved in phase space. Fokker-Planck reduces to Vlasov
equation when the strength of the diffusion process σ vanishes.
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of all frames on M constitutes a principal GL(1+ n,R)-bundle over M. This principal bundle
is referred to as the frame bundle of M. In terms of local coordinates xµ on M, a frame u can
be written in the form

u(eI) = eµI
∂

∂xµ
, deteµI 6= 0,

where eI , 0⩽ I⩽ n, denotes the canonical basis of R1+n. Hence (xµ,eµI ) are local bundle
coordinates for F(M). If we focus on the set of g-orthonormal frames instead of all linear
frames we can construct the O(1+ n)-principal bundle of orthonormal frames denoted by
O(M). Furthermore, an additional reduction ofF(M) can be considered by changing the gauge
group from GL(1+ n,R) to the restricted (proper, orthochronous) Lorentz group SO+(1,n):

SO+ (M) =
∪
x∈M

SO+
x (M) ,

where

SO+
x (M) =

{
u ∈ Hom+

(
R1,n,TxM

)
: gx (u(eI) ,u(eJ)) = 〈eI,eJ〉1,n ,0⩽ I,J⩽ n ,

u(e0) future pointing } .

Here and in the following we will assume that eI ∈ R1+n = R1,n satisfy

〈eI,eJ〉1,n = ηIJ =

 −1 if I= J= 0
1 if I= J= i 6= 0
0 otherwise

,

where ηIJ represents the components of the Minkowski metric on R1,n.
It is straightforward to show that SO+(M) is a manifold of dimension 1+ n+

(1+n
2

)
.

A frame u ∈ SO+
x (M) is an isometry from the (1+ n)-dimensional Minkowski space

(R1,n,〈·, ·〉1,n) to (TxM,gx) that preserves orientation and time-orientation. We will denote by
π be canonical projection π : SO+(M)→M such that, given u ∈ SO+

x (M), π(u) = x. Notice
also that, by construction, u(eI) may be interpreted as the I-th vector of a basis for the tangent
space TxM, effectively serving as the Ith vector of the frame.

We will denote by Φ the canonical right action of SO+(1,n) on SO+(M),

Φ : SO+ (M)× SO+ (1,n)→SO+ (M) ,

(u,A) 7→ Φ(u,A) = Φu (A) = ΦA (u) = uA,

where uA denotes the map (uA)(eI) := u(AeI) = u(eJAJI) = u(eJ)AJI. This action enables the
introduction of the so called fundamental vector fields on SO+(M). These vector fields are
given by the image of the mapping λ : so(1,n)→ X(SO+(M)), defined by

(λX)(u) := TeΦu (X) , X ∈ so(1,n) ,

highlighting that each fundamental vector field is inherently a vertical field, satisfying

Tπ (λX) = 0,

and obeys the relation TΦA(λX) = λ(AdA−1X).
In aligning our methodology with the results of [20], we endow the Lie algebra so(1,n)

with the trace form B defined by

B(X,Y) =−1
2
tr(XY) .
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The so(1,n)-basis XIJ , for 0⩽ I< J⩽ n, defined by

(XIJ)
K
L = δK IηJL− δK JηIL,

is B-orthonormal

B(XI1J1 ,XI2J2) = ηI1I2ηJ1J2 .

Notice that X0i and Xij correspond to generators of boosts and rotations, respectively. The ad-
invariant inner product B allows us to equip SO+(1,n) with a bi-invariant semi-Riemannian
metric, denoted as ((·, ·)), which is defined via the pullback of B by left-translations, ((·, ·))A =
L∗AB. The Levi–Civita connection associated with this metric, satisfies the relation,

DXY=
1
2
[X,Y] , ∀X,Y ∈ so(1,n) .

Hence, in terms of the map λ, the quadratic Casimir element C := c(B) associated with B acts
as a second-order differential operator on C∞(SO+(M)) through

Cf := c(B) f = div(Df) =
∑

0⩽I<J⩽n

ηIIηJJ ((XIJ,DXIJDf)) =
∑

0⩽I<J⩽n

ηIIηJJXIJ (XIJf) .

Following again the notation of [20], we set

Vi := λ(X0i) , 1< i < n , Vij := λ(Xij) for 1⩽ i < j ⩽ n,

and we will write

C =
∑

0⩽I<J⩽n

ηIIηJJλ(XIJ)
2
=

∑
1⩽i<j⩽d

V2
ij−

d∑
i=1

V2
i .

Notice that SO+(1,n) is not compact. The non-compactness is responsible for the fact that the
bi-invariant metric ((·, ·)) is not Riemannian, and the operator C is neither positive nor negative
definite.Wewill see that this fact does not prevent us from defining a diffusion operator through
C.

Finally, using the Levi-Civita connection∇ on (M, g), the tangent space TSO+(M) can be
decomposed in the form

TSO+ (M) = V ⊕H,

where the fibers Vu of the vertical bundle V satisfy Vu = kerTuπ and, on the other hand, the
horizontal bundle

Hu =
{
Hv (u) : v ∈ R1+n

}
,

is defined in terms of the horizontal vector fields Hv that are characterized by the following
construction: given v ∈ R1+n and u ∈ SO+(M), there is a unique horizontal vector field Hv

satisfying

θ (Hv (u)) = v,

where θ = eIθI is the Rn+1-valued soldering one-form (canonically) defined by

Tuπ (v) = u(θ (v)) = θI (v)u(eI) , v ∈ TuSO+ (M) .

It is also easy to show that Hα1v1+α2v2 = α1Hv1 +α2Hv2 and TΦ
A(Hv) = HA−1v. This implies

that, not being right invariant, the vector fields Hv are not horizontal lifts of vector fields onM.
In the case v= eI, we will use the notation HI := HeI to make contact with [20].

The fields Hv are often called basic vector fields and satisfy the following [11]:
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Theorem 1 (Geodesics). Let γ̃ be the horizontal lift through u ∈ π−1(γ(0)) of a smooth curve
γ in M to SO+(M). Then, γ = π ◦ γ̃ is a geodesic if and only if there exists a vector v= vIeI ∈
R1+n such that γ̃ is an integral curve of the horizontal vector field Hv. This condition is satisfied
if and only if

γ̃ ′ (s) = vIHI (γ̃ (s)) , (1)

where γ̃ ′(s) denotes the derivative of γ̃ with respect to the parameter s.

Theorem 2 (Parallelization of SO+(M)). The vector fields HI, Vi, and Vij provide a paral-
lelization of SO+(M); that is, for every u ∈ SO+(M), the tangent vectors HI(u), Vi(u), and
Vij(u) form a basis of TuSO+(M).

In terms of adapted coordinates (xµ,eµI ) of the frame bundleF(M), the vector fieldsHI and
λ(XIJ) can be written as

HI = eαI
∂

∂xα
− eµI e

ν
JΓ

α
µν

∂

∂eαJ
, λ(XIJ) = (ηJKe

µ
I − ηIKe

µ
J )

∂

∂eµK
,

where Γα
µν denotes the Christoffel symbols (i.e. the connection coefficients of the Levi–Civita

connection associated with g, expressed in the coordinate basis xµ: ∇∂xµ∂xν = Γα
µν∂xα). The

coordinate expression for λ(XIJ) can be equivalently written as

Vi = eµ0
∂

∂eµi
+ eµi

∂

∂eµ0
, Vij = eµi

∂

∂eµj
− eµj

∂

∂eµi
.

2.2. Fokker–Planck equation

The geometric objects introduced in the previous section allowed Franchi et al in [20] to define
an SO+(M)-valued Stratonovitch stochastic differential equation,

dΨs =

(
H0 (Ψs) ds+σ

n∑
i=1

Vi (Ψs) ◦ dWi
s

)
,

for Ψ = (Ψs) ∈ SO+(M). Here W= (Wi
s) is a Rn-valued Brownian motion, and σ> 0 is a

constant that measures the strength of the diffusion process. This equation describes a natural
geometric diffusion process in SO+(M). The generator of this process is

L := H0 +
σ2

2

n∑
i=1

V2
i ,

whose adjoint L∗ allows us to write the FP equation

(
H0 −

σ2

2

n∑
i=1

V2
i

)
F= 0. (2)

In section 3, we will justify equation (2) generalizing the line of reasoning followed by
Elhers in [18] to derive the Vlasov (Liouville) equation.
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2.3. Symmetries

In numerous physically relevant contexts, the spacetime isometry group Iso(M,g) is not trivial
and its Lie algebra is characterized through the (complete) Killing vector fields. In other words,
the flow of a Killing vector field ξ ∈ X(M) is an isometry of (M, g) and, hence

£ξ g= 0. (3)

It is well known that the presence of Killing fields leads to conservation laws (see, for example,
[30]): if ξ is a Killing vector field, the smooth functions

Cξ
I : F (M)→ R , u 7→ Cξ

I (u) = g(u(eI) , ξ) , 0⩽ I⩽ n,

satisfy

£HIC
ξ
I = 0 . (4)

In particular £H0C
ξ
0 = 0.

In addition to these conservation laws, as discussed in [27, 29], given any vector field ξ ∈
X(M), there exists a complete lift (natural lift) of ξ to F(M) which we will denote as ξc ∈
X(F(M)). The complete lift is characterized by the following three properties:

(1) ξc remains invariant under right translations, i.e. ΦA∗ξc = ξc;
(2) The Lie derivative of the soldering form with respect to ξc vanishes, £ξcθ = 0;
(3) ξc is π-related to ξ, such that Tuπ (ξc) = ξ(π(u)) for all u ∈ F(M).

In bundle coordinates, the complete lift is represented as

ξ = ξµ
∂

∂xµ
7→ ξc = ξµ

∂

∂xµ
+ eνI

∂ξµ

∂xν
∂

∂eµI
. (5)

Moreover, if ξ is a Killing vector field, then ξc tangentially aligns with the bundle SO+(M).
This follows from the fact that

£ξcFIJ = 0,

where FIJ : F(M)→ R(2+n)(1+n)/2, u 7→ FIJ(u) = g(u(eI),u(eJ)).
The previous results allow us to prove the following proposition that relates the complete

lift of Killing fields with the fundamental and basic vector fields:

Proposition 3. The complete lift ξc of a Killing vector field ξ to SO+(M) commutes with both
fundamental and basic vector fields, specifically with Vi, Vij, and HI.

Proof. Given ξ ∈ X(M) with £ξ g= 0, it suffices to verify that the commutator of ξc with
each basis vector field (Vi,Vij,HI) vanishes. Employing local coordinates,

[Vi , ξ
c] =

[
eµ0

∂

∂eµi
+ eµi

∂

∂eµ0
, ξα

∂

∂xα
+ eαK

∂ξβ

∂xα
∂

∂eβK

]

=
∂ξβ

∂xα

([
eµ0

∂

∂eµi
,eαK

∂

∂eβK

]
+

[
eµi

∂

∂eµ0
,eαK

∂

∂eβK

])
= 0
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[Vij, ξ
c] =

[
eµj

∂

∂eµi
− eµi

∂

∂eµj
, ξα

∂

∂xα
+ eαK

∂ξβ

∂xα
∂

∂eβK

]

=
∂ξβ

∂xα

([
eµj

∂

∂eµi
,eαK

∂

∂eβK

]
−

[
eµi

∂

∂eµj
,eαK

∂

∂eβK

])
= 0

[HI, ξ
c] =

[
eµI

∂

∂xµ
− eγI e

ν
JΓ

µ
γν

∂

∂eµJ
, ξα

∂

∂xα
+ eαK

∂ξβ

∂xα
∂

∂eβK

]

= eµI e
ν
J

(
∂2ξ

∂xµ∂xν
+ ξβ

∂Γα
µν

∂xβ
+
∂ξβ

∂xµ
Γα
βν +

∂ξβ

∂xν
Γα
µβ −

∂ξα

∂xβ
Γβ
µν

)
∂

∂eαJ

= eµI e
ν
J (£ξΓ)

α
µν

∂

∂eαJ
= 0,

In the last line we have used that £ξ g= 0 and, thus, £ξΓ = 0.

Note that in the case of the vertical vectors Vi,Vij, we have not used the fact that the vector
field ξc is the lift of a Killing vector field. Hence, for vertical linear operators, the vanishing of
the commutator holds for lifts of arbitrary vector fields on M but in this case ξc is not tangent
to SO+(M).

Corollary 4. The complete lift ξc of ξ commutes with the second-order differential operators
λ(XIJ)2; in particular, it commutes with V2

i , V
2
ij, and with the Casimir C.

Proof. Using the fact that

£ξc£λ(XIJ) − £λ(XIJ)£ξc = £[ξc,λ(XIJ)] = 0,

and taking into account that the second-order operator λ(XIJ)
2 can be written in the form

λ(XIJ)2f = £XIJ(£XIJ f), we have

£ξc£XIJ (£XIJ f) = £XIJ (£XIJ (£ξc f)) .

With this in mind, we can finally delineate the conditions that symmetric solutions must
fulfill to satisfy a FP type equation.

Proposition 5. The symmetric solutions for the FP diffusion equation in SO+(M) are those
functions simultaneously satisfying(

H0 −
σ2

2

n∑
i=1

V2
i

)
F= 0 , £ξcF= 0, (6)

for every Killing field ξ of (M, g).

Remark 6. The vanishing of the commutator of ξc with the basic and fundamental vector fields
is crucial for the consistency of the symmetric equations because(

H0 −
σ2

2

n∑
i=1

V2
i

)
F= 0⇒ £ξc

(
H0 −

σ2

2

n∑
i=1

V2
i

)
F= 0,

but this last equation is trivially satisfied when £ξcF= 0 due to commutativity mentioned
above.

8
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Remark 7. The conclusions of the previous corollary are also satisfied for the equation(
H0 +

σ2

2
C
)
F= 0 .

As we will see in lemma 8 of section 2.4, this equation (which is not a diffusion equation)
induces the same FP equation in the unit-tangent bundle.

2.4. Double and timelike unit tangent bundles in Lorentzian manifolds

The bundle SO+(M) is very useful from the point of view of both writing stochastic differen-
tial equations and working with symmetries as we have seen so far. However, from a physical
point of view, the frames have too many degrees of freedom, and one would like to work in
the configuration space. This is the approach directly taken by [18], developing the equations
with the structures of the physically relevant configurations, corresponding to the (unit mass)
observer subbundle UM of the tangent bundle TM. The introduction of UM by J.A. Thorpe, as
referenced in [39] and further discussed in [7], underpins the study of space-time singularities
by providing a mathematically rigorous platform. The purpose of this subsection is to present
these natural structures and to establish a connection with the structures introduced previously.

In the following we will need to consider the double tangent bundle, denoted as TTM, of a
semi-Riemannianmanifold (M, g). This bundle can be decomposed into vertical and horizontal
sub-bundles, represented as:

TTM= VTM⊕HTM. (7)

For any tangent vector v ∈ TM, the vertical subspace VvTM and the horizontal subspaceHvTM
at v are naturally isomorphic to the tangent space at the base point p(v) of v, with p : TM→M
being the canonical projection.

Given a vector X ∈ Tp(v)M, one can select a curve γ(t) inM where γ ′(0) = X. Utilizing the
Levi–Civita connection, we construct a curve c in TM satisfying γ = p ◦ c and c(0) = v, with
the condition∇γ ′c= 0. Through this construction, v is mapped to c ′(0), a process referred to
as the horizontal lift of X. In local coordinates, this horizontal lift is expressed as:

Tp(v)M 3 X= Xµ ∂

∂xµ
7→ XH = Xµ ∂

∂xµ
−Γµ

αβv
αXβ ∂

∂vµ
∈HvM .

where Γµ
αβ are the Christoffel symbols of the Levi–Civita connection. Therefore, the identific-

ation of vectors in the horizontal subspace HvTM with vectors in Tp(v)M is facilitated by the
tangent map of the projection p : TM→M, restricted to HTM.

On the other hand, concerning the vertical component of a vector in the double tangent
bundle TTM, for any vector v in the tangent bundle TM, the space Tp(v)M is a vector space. This
fact establishes a natural isomorphism ıv : TvTp(v)M= VvTM→ Tp(v)M. In local coordinates,
this isomorphism takes the form

ıv

(
Vµ ∂

∂vµ

)
= Vµ ∂

∂xµ
.

The reverse process is facilitated by the so-called vertical lift, which for any X ∈ Tp(v)M, is
given by

Tp(v)M 3 X= Xµ ∂

∂xµ
7→ XV = Xµ ∂

∂vµ
∈ TvTp(v)M .

To decompose any vectorW ∈ TTM into its vertical and horizontal components,

W=Wver +Whor,

9



J. Phys. A: Math. Theor. 57 (2024) 285204 M Basquens et al

an additional construct, the connection map K associated with the Levi–Civita connection, is
introduced, where K : TTM→VTM. The decomposition in coordinates is described as

Wver = Kv (W) , Whor =W−Kv (W) ,

and specifically,

Kv

(
Xµ ∂

∂xµ
+Vµ ∂

∂vµ

)
=
(
Vµ +Γµ

αβv
αXβ

) ∂

∂vµ
, W ∈ TvTM .

These structures enable the definition of a natural horizontal vector field L ∈ X(TM), map-
ping v 7→ L(v) ∈ TvTM and determined by the requirements

Tp(L(v)) = v , Kv (L(v)) = 0 , ∀v ∈ TM,

or, equivalently, L(v)hor = vH, L(v)ver = 0. This vector field, L, known as the geodesic spray,
is characterized in local coordinates by

L(v) = vµ
∂

∂xµ
(v)−Γµ

αβv
αvβ

∂

∂vµ
(v) .

In the following, we will also use the canonically vertical vector field A in TM (the Liouville
vector field) that is, the generator of the dilations

at : TM→ TM , v 7→ at (v) = tv , t ∈ R \ {0} .

In bundle coordinates

A(v) = vµ
∂

∂vµ
(v) .

These canonical isomorphisms can be also used to define the Sasaki metric g on TM asso-
ciated with the metric g on M. The Sasaki metric is formulated by designating the vertical
bundle VvTM and the horizontal bundle HvTM as orthogonal components. Mathematically,
this is expressed as

g(V,W) = g(Tvp(V) ,Tvp(W))+ g(ıvKv (V) , ıvKv (W)) , V,W ∈ TvTM . (8)

In local coordinates, the Sasaki metric can be written in detail as

g= gµνdx
µ ⊗ dxν + gµν

(
dvµ +Γµ

αβv
αdxβ

)
⊗
(
dvµ +Γµ

γδv
γdxδ

)
. (9)

It is important to note that if the signature of g is (1,n), then, correspondingly, the signature
of g is (2,2n), reflecting the doubled dimensionality and the preservation of the manifold’s
metric properties within its tangent bundle.

As we will see, the pullback of g to the unit future observer bundle,

UM= U1M= {v ∈ TM | g(v,v) =−1,v is future directed} ⊂ TM,

is important for the analysis of the FP equation. UM is a codimension one submanifold of TM
and the canonical projection τ : UM→M equips it as a subbundle of TM.

One notable property of UM is that any tangent vector within HTM also belongs to the
tangent space of UM (HvTM⊂ TvUM). This inclusion is substantiated by the behavior of the
function E : TM→ R, defined by v 7→ E(v) = g(v,v)/2, which maintains a constant value for
all vectors inHTM, as indicated by £WE= dE(W) = 0. This feature ensures that the geodesic
flow, generated by the vector field L, preserves the structure of UM, hence maintaining its
integrity under dynamical evolution.

The Sasaki metric g on TM induces a Lorentzian metric g of signature (1,2n) on UM.
This metric equips the n-dimensional submanifoldsHv = τ−1(τ(v))⊂ UMwith a Riemannian

10
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(hyperbolic) metric, where each Hv represents a fiber of the projection τ : UM→M through
v. The Riemannian metric, characterized by its positive signature and hyperbolic nature, lays
the groundwork for defining the vertical Laplacian ∆ver, a second-order differential operator
acting on C∞(UM). The vertical Laplacian is expressed as

(∆verf)(v) =
(
∆Hv f ↾Hv

)
(v) ,

where f ↾Hv denotes the restriction of f to Hv, and ∆Hv is the Laplace–Beltrami operator
associated with the metric induced on Hv by (UM,g). The local coordinate representation of
∆ver highlights its dependency on the geometric structure of UM and the dynamics of space-
time, as given by

∆verf =

(
nvi

∂

∂vi
+
(
vi v j+ gij

) ∂2

∂vi ∂v j

)
f .

We already have all the ingredients to establish the form of the FP equation on UM and its
relationship with the one introduced in SO+(M). This is achieved through the following:

Lemma 8. Let π0 : SO+(M)→ UM ,u 7→ u(e0) and f ∈ C∞ (UM), then

(1) Tπ0(Vij) = 0 and Vij (π∗
0 f) = 0,

(2) Tπ0(H0) = L and H0 (π
∗
0 f) = π∗

0 (Lf),

(3) C (π∗
0 f) =−

n∑
i=1

V2
i (π

∗
0 f) =−π∗

0 (∆
verf)

where ∆ver is the vertical Laplacian and L is the geodesic spray of UM.

Proof. Properties (1) and (2) follow almost directly:

Vij (π
∗
0 f) = d(π∗

0 f)(Vij) = π∗
0 (df)(Vij) = (df)(Tπ0Vij) ◦π0 = 0 ,

H0 (π
∗
0 f) = d(π∗

0 f)(H0) = π∗
0 (df)(H0) = (df)(Tπ0H0) ◦π0 = (dF)(L) ◦π0 = π∗

0 (Lf) ,

where we have used that Tπ0Vij = 0 and Tπ0H0 = L.
Property (3) can be derived in local coordinates for any function F ∈ C∞(SO+(M)),

n∑
i=1

V2
i F=

n∑
i=1

(
e ji e

k
i
∂

∂e j0

∂

∂ek0
+ e ji

∂

∂e ji
+ ne j0

∂

∂e j0
+ 2e j0e

k
i
∂

∂ek0

∂

∂e ji
+ e j0e

k
0
∂

∂e ji

∂

∂eki

)
F.

Hence, when F= π∗
0 f, the derivatives with respect to e

j
i vanish, and, identifying e

i
0 = vi,

C (π∗
0 f) =−

n∑
i=1

V2
i (π

∗
0 f) =−

(
n vi

∂

∂vi
+
(
vi v j+ gij

) ∂

∂vi
∂

∂v j

)
f .

Therefore

C (π∗
0 f) =−π∗

0 (∆
verf) .

Similar to the framework inSO+(M), TM supports the complete lift of vector fields fromM.
A differential 1-form ω ∈ Ω1(M), may be viewed as a scalar function Fω : TM→ R with v 7→

11
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Fω(v) = ω(v). The complete lift ξct ∈ X(TM) of a vector field ξ ∈ X(M) is uniquely defined
by the property

£ξctF
ω = F£ξω, ∀ω ∈ Ω1 (M) .

In local bundle coordinates (xµ,vµ) of TM, this lift is expressed as

ξ = ξµ
∂

∂xµ
7→ ξct = ξµ

∂

∂xµ
+ vν

∂ξµ

∂xν
∂

∂vµ
.

When ξ is a Killing field, ξct is tangent to UM and corresponds to the complete lift ξc to
SO+(M) via

Tπ0 (ξ
c) = ξct .

This relationship establishes an equivalence with the symmetric equations in SO+(M), artic-
ulated through the following corollary:

Corollary 9. The diffusion equation in UM, represented as the FP equation(
L− σ2

2
∆ver

)
f = 0,

is the equation obtained from the diffusion equation (2) on SO+(M) just by imposing that
F= π∗

0 f. Similarly, in the presence of spacetime symmetries, the equations(
L− σ2

2
∆ver

)
f = 0, £ξct f = 0,

are derived from equation (6) on proposition 5.

Finally, notice that if ξ is a Killing vector field, the function

Cξ : TM→ R , v 7→ Cξ (v) = g(v, ξ) ,

satisfies

£LC
ξ = 0 . (10)

These conserved quantities are analogous to (4) for I= 0.

3. Relativistic diffusion on the tangent bundle

The development of relativistic kinetic theory, pivotal for understanding relativistic thermo-
dynamics, is grounded in the foundational work by Ehlers [18] in the early 1970s and further
explored by others such as Sarbach and Franchi [21, 33, 34]. This theory extends the classical
kinetic theory of gases to a relativistic framework, thereby providing a more comprehens-
ive model of matter that incorporates its particle nature. Central to this theory is the concept
of the one-particle distribution function, which, analogous to its non-relativistic counterpart,
quantifies the expected particle density within a defined volume in the phase space of a single
particle.

The objective of this section is to generalize Ehlers’ results to allow for the presence of
diffusion as well as to try to justify, in an approach closer to physical applications, the FP
equation presented in corollary 9. In the previous sections we focused on the m= 1 case but
in this section we will allow for any value m> 0 for the mass of the particles.

12
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3.1. The observer bundle

To define the one-particle phase space for massive particles with arbitrary masses in a (1+ n)-
dimensional, oriented and time-oriented space-time (M, g), we define it as the smooth 2(n+ 1)-
dimensional submanifold (open subset) of the tangent bundle TM:

P := {v ∈ TM : g(v,v)< 0, v is future directed} ,

where P admits a foliation into mass-shell bundles,

P =
∪
m>0

UmM,

with

UmM :=
{
v ∈ TM : g(v,v) =−m2, v is future directed

}
,

being a (2n+ 1)-dimensional smooth fiber bundle overM for anym> 0. In particular, the case
m= 1 is just the unit observer bundle presented in the previous section. Each fiber,

Um
xM=

{
v ∈ TxM : gx (v,v) =−m2, v is future directed

}
,

is isometric to the n-dimensional hyperbolic Riemannian space Hn(m) of constant negative
curvature −1/m2, corresponding to the n-dimensional (future-pointing) m-mass hyperboloid
in Minkowski space-time. When convenient, we will write Hx = Um

xM.
It is straightforward to prove that the Liouville vector field A and the geodesic spray L are

orthogonal and tangent to UmM, respectively. Moreover, the geodesic spray L of TM induces
fields on both the open submanifold P ⊂ TM and in UmM. The notation Lm is used when
referring to the geodesic spray as a vector field on UmM.

The one-particle phase space, along with the mass-shell bundles and their fibers, inherit
significant geometric properties from the tangent bundle (TM,g), where g denotes the Sasaki
metric defined in equation (8). As regular, orientable submanifolds of TM, the pull-back of
the Sasaki metric g via the canonical inclusion furnishes P , UmM, and Um

xM with semi-
Riemannian metrics of signatures (2,2n), (1,2n), and (0,n) respectively. The volume forms
corresponding to these metrics are denoted as

volg, volm, and σmx .

The volume σmx appears in the definition of many physical quantities, so it is convenient to
keep the following result in mind:

Lemma 10. The volume form σmx , evaluated at v ∈ Um
xM, satisfies

σmx (v) =−m
w⌟volgx (v)
gx (w,v)

,

where volgx is the volume form induced by gx in TxM (and volgx(v) the volume of TvTxM),
w ∈ TvTxM is any vector such that gx(w,v) 6= 0. In particular, using local coordinates and
choosing w= ∂/∂v0, we have

σmx (v) =−m
√
−detgx

g0µ (x)vµ
dv1 ∧ ·· · ∧ dvn,

where detgx = det(gµν(x)) and v0 is given in terms of (v1, . . . ,vn) by gµν(x)vµvν =−m2.

Proof. Notice that TxM is a vector space so TvTxM can be identified with TxM. Given v ∈
Um
xM, any basis (b1, . . . ,bn) of TvUm

xM= v⊥gx ⊂ TvTxM,

volgx (w,b1, . . . ,bn) ,

13
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vanishes when w ∈ span(b1, . . . ,bn). Hence, there exists a volume-form σmx on Um
xM such that

volgx (w,b1, . . . ,bn) =−m−1gx (w,v)σ
m
x (b1, . . . ,bn) , v ∈ TvUm

xM .

The form

σmx (b1, . . . ,bn) =−m
volgx (w,b1, . . . ,bn)

gx (w,v)
,

is independent of the choice of w (as long as gx(w,v) 6= 0). By setting w= m−1v it is clear that
σmx = volmx (recall that the normalized Liouville vector m−1A is the unitary normal to Um

xM).
On the other hand, by choosing w= ∂/∂v0

volmx = σmx =−m
∂v0⌟volgx
g0µ (x)vµ

=−m
√
−detgx

g0µ (x)vµ
dv1 ∧ ·· · ∧ dvn = m

√
−detgx
|v0|

dv1 ∧ ·· · ∧ dvn,

where v0 := g0µ(x)vµ.

Although it is not strictly necessary, in many cases it is convenient to use the spacetime
metric to bring the natural structures of the contangent bundle T∗M to the tangent bundle TM.
This is so since the geodesic spray and the volume structures derived from the Sasaki metric
can be described in terms of the energy, tautological form and the symplectic structure of T∗M
(and also because the charged particle treatment is more natural in T∗M). We will follow the
approach developed by Berger in [8]. Taking advantage of the natural isomorphism between
TM and T∗M induced by the metric g, analogous structures are derived from the cotangent
bundle T∗M. The tautological one-form of T∗M corresponds to a one-form α ∈ Ω1(TM), with

α(V) = g(v,Tp(V)) , V ∈ TvTM, p : TM→M .

Hence, dα introduces a symplectic form on TM (non-degenerate and closed), essential for
the formulation of Hamiltonian dynamics. The Liouville vector field L and the tautological
one-form α satisfy

L⌟dα=−dE,

where the energy function E : TM→ R is defined by:

E(v) =
1
2
g(v,v) or equivalently α(L) = 2E.

Proposition 11. Let volg denote the volume form on the tangent bundle TM induced by the
Sasaki metric g, and let α represent the tautological one-form on TM associated with the
metric g on the base manifold M. Then, the volume form volg and the volume form volm on the
mass-shell submanifold UmM are given by:

volg = c(dα)1+n , volm = cmαm ∧ (dαm)
n
,

where αm is the pullback of α to UmM and the constants c and cm are given by

c=
(−1)(

1+n
2 )

(1+ n)!
, cm =

(−1)(
1+n
2 )

n!m
.

14
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Furthermore, the volume form volm can be disintegrated along the fibers Um
xM for each x ∈M.

Denoting by σmx the canonical volume measure on the hyperbolic space Um
xM within the

Minkowski space (TxM,gx), we obtain the integral formula:

ˆ
UmM

f volm =

ˆ
M

(ˆ
Um
x M

( f ↾ Um
xM) σmx

)
volg,

where volg is the Riemannian volume form on M induced by g.

Proof. The same steps followed in the Riemannian case discussed in [10] allow us to show
that volg = c(dα)1+n. To compute volm notice that m−1A is the unit normal to UmM and

m−1A⌟volg = m−1cA⌟(dα)1+n = c(1+ n)
m

α∧ (dα)n , (11)

where we have used that

A⌟dα= α.

Therefore, the result follows by pulling-back (11) to UmM

volm =
c(1+ n)

m
αm ∧ (dαm)

n
.

Notice that, in addition to volm, the manifold UmM is also equipped with a canonically
defined 2n-form

ωm := Lm⌟volm.

The previous discussion leads to the following result.

Corollary 12. For a (1+ n)-dimensional space-time (M, g), the (2n+ 1)-dimensional future
observer bundle UmM is equipped with a volume form and a 2n-form,

volm = cmαm ∧ (dαm)
n and ωm = Lm⌟volm =−m2cm (dαm)

n
,

that satisfy

£Lmvolm = 0, £Lmωm = 0, Lm⌟ωm = 0, dωm = 0.

Proof. The assertion Lm⌟ωm = Lm⌟(Lm⌟volm) = 0 directly follows from the definition. The
remaining properties can be derived from:

dωm = d(Lm⌟volm) = £Lmvolm = cm£Lm
(
αm ∧ (dαm)

1+n
)
= 0,

where the last equality is obtained by making use of £Lmαm = 0, justified by:

L⌟α= 2E and L⌟dα=−dE⇒ £Lα= dE.

Given that L is tangent to UmM, allowing us to pull back £Lα= dE to UmM, the equation
£Lmαm = 0 holds because E is constant on UmM.

15
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3.2. Diffusion equation on the observer bundle

In this section, we examine the diffusion equation within the observer bundle UmM, focusing
on the integration of the (2n)-form ωm over hypersurfaces and its implications for volume
conservation under the dynamics defined by Lm, the Liouville vector field . When Lm is tangent
to S, the condition Lm⌟ωm = 0 ensuresˆ

S
ωm = 0.

Conversely, if Lm intersects S transversely, ωm acts as a volume form on S . The closure of ωm,
denoted by dωm = 0, guarantees a consistent volume assignment across any two diffeomorph-
ically related hypersurfaces, S1 and S2, via the flow induced by Lm. To establish this, consider
a tube T formed by Lie dragging a compact hypersurface S1 along Lm to a second boundary
S2. The invariance of volume under such transformations follows from:

0=
ˆ
T
dωm =

ˆ
S2

ωm−
ˆ
S1

ωm, (12)

indicating that the volume enclosed by any hypersurfaceS shaped through this process remains
invariant.

The hypersurfaces S (transverses to Lm) may be endowed with a volume form

m−1fωm,

for any smooth function f > 0: the so called one-particle distribution function on UmM. The
normalization factor m−1 comes from the fact that

g(L,L) ↾ UmM=−m2.

Physically, the quantity

N(S) := m−1
ˆ
S
fωm,

provides the average of particle trajectories that pass through S (that is, trajectories with tan-
gent vectors belonging to S).

We observe that

d( fωm) = £Lm ( f volm) = (£Lm f)volm, (13)

indicating that, irrespective of f, the following integral relation holds:

ˆ
T
£Lm f volm =

ˆ
S2

fωm−
ˆ
S1

fωm = m(N(S2)−N(S1)) . (14)

Enforcing £Lm f = 0 guaranteed that the volume form fωm consistently assigns identical
volumes to all hypersurfaces S within the tube T :ˆ

S2

fωm =

ˆ
S1

fωm. (15)

Therefore, there is no net change in the average number of particle trajectories passing through
the surfaces S1 and S2. This condition, encapsulated by the equation

£Lm f = 0,

16
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is recognized as the Vlasov (or Liouville) equation. However, adherence to the conservation
law (15) does not strictly necessitate the Vlasov equation; it suffices for f to satisfy:ˆ

T
£Lm f volm = 0, (16)

leveraging theorem 11 to express this as:
ˆ
T
(£Lm f) volm =

ˆ
x∈M

(ˆ
Um
x M

(£Lm f ↾ Um
xM) σmx

)
volg = 0,

where requiring that the integral over Um
xM vanishes for every x ∈M guarantees the conserva-

tion law (15), i.e.ˆ
Um
x M

(£Lm f ↾ Um
xM) σmx = 0⇒

ˆ
S2

fωm =

ˆ
S1

fωm .

This might be obtained for instance with,

£Lm f =
σ2

2
∆ver
m f, (17)

where the operator∆ver
m acts on f ↾ Um

xM similarly to the Laplace–Beltrami operator on Um
xM,

ensuring the integral’s nullity via integration by parts. This formulation aligns with the FP
equation, underscoring geometric diffusion processes as developed by Franchi et al [20], and
introduced by Calogero [12].

3.3. Current densities and conservation laws

In practice, the hypersurfaces S appearing in equation (15) that we will use in the following
have the form

SΣ = π−1
m (Σ) = {v ∈ UmM : πm (v) ∈ Σ} , (18)

and are constructed from spacelike hypersurfaces Σ⊂M. Notice that, if f decays rapidly
enough, equation (15) holds even when Σ is a (non-compact) Cauchy surface. We can split
the integrals in (13) over SΣ in a similar way as the one in theorem 11 to get

ˆ
SΣ

fωm =

ˆ
x∈Σ

(ˆ
v∈Um

x M
g(nx,v) f(v) σmx (v)

)
volΣ (x) , (19)

where n is the future-directed normal to Σ. Motivated by the previous expression, associated
with f, we define the particle current density J, i.e. the vector field J ∈ X(M) [M 3 x 7→ Jx ∈
TxM]

J(α) = m−1
ˆ
Um
x

Fαfσmx = m−1
ˆ
v∈Um

x

α(v) f(v) σmx (v) , ∀α ∈ T∗xM, (20)

where v 7→ Fα(v) = α(v) is a smooth function on Um
xM for any α ∈ T∗xM. In this way, we can

consider the map

Σ 3 x 7→ gx (J,n) = J
(
n♭
)
(x) =

ˆ
∈Um

x M
Fn♭x fσmx =

ˆ
v∈Um

x

g(nx,v) f(v) σmx (v) ,
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where n♭ is the one form n♭(·) = g(n, ·). Therefore, if Σ1, Σ2 are Cauchy hypersurfaces, then
denote (SΣ1 ,SΣ2)m the tube T generated by SΣ1 to SΣ2 by the flow of Lm. Then the following
holds

0=
ˆ
(SΣ1 ,SΣ2)m

£Lm f volm =

ˆ
Σ2

g(J,n2) volΣ2 −
ˆ
Σ1

g(J,n1) volΣ1 , (21)

where, n1, n2 are the future-directed normals of Σ1, Σ2. In the case Σ1, Σ2 are non-compact,
f should decay rapidly enough.

In terms of local coordinates

J(x) = m−1

(ˆ
v∈Um

x

vµ f(v) σmx (v)

)
∂

∂xµ
(x) .

Theorem 13. If f satisfies the FP equation (Lm− σ2

2 ∆
ver
m )f = 0 then divJ= 0.

Proof. A direct argument (see, for example [18]), in which it suffices to express Stokes’ the-
orem in terms of the semi-Riemannian metrics involved, informs us that if

J(x) =

(ˆ
v∈Um

x

vµ f(v) σmx (v)

)
∂

∂xµ
(x) ,

the following identity holds

divJ= m−1
ˆ
Um
x M

(£Lm f) σ
m
x .

Hence, if f satisfies the FP equation

(divJ)(x) = m−1
ˆ
Um
x M

(£Lm f) σ
m
x =

σ2

2m

ˆ
Hx

(
∆Hx f

)
σmx = 0,

where in the last equality we have used integration by parts.

The property divJ= 0 is an expression of the conservation of the average number of particle
world lines crossing a Cauchy hypersurface Σ:

N(Σ) := N(SΣ) = m−1
ˆ
SΣ

fωm = m−1
ˆ
Σ

g(J,nΣ) volΣ,

where nΣ is the (future pointing) unit normal to Σ.
We can also define an entropy current associated with a solution f of the FP equation as the

vector field [M 3 x 7→ Sx ∈ TxM]

S(α) =−kB
m

ˆ
Um
x M
Fαf log f σmx =−kB

m

ˆ
v∈Um

x M
α(v) f(v) log f(v) σmx (v) , α ∈ T∗xM .

where kB is the Boltzmann constant. In local coordinates

S= Sµ
∂

∂xµ
, Sµ (x) =−kB

m

ˆ
v∈Um

x M
vµf(v) log f(v) σmx (v) .

Theorem 14. If f> 0 satisfies the FP equation (Lm− σ2

2 ∆
ver
m )f = 0 then divS⩾ 0.
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Proof.

(divS)(x) =− kB
m

ˆ
Um
x M

£Lm (f log f) σ
m
x =−kB

m

ˆ
Um
x M

(£Lm f)(log f+ 1) σmx

=− kBσ2

2m

ˆ
Hx

(
∆Hx f

)
(log f+ 1) σmx =−kBσ2

2m

ˆ
Hx

(
∆Hx f

)
log fσmx

=
kBσ2

2m

ˆ
Hx

||grad f ||2

f
σmx ⩾ 0,

since the metric on Hx is Riemannian and f > 0.

The entropy current associates a total entropy SΣ to any (oriented) hypersuface Σ⊂M
through the expression

s(Σ) :=
ˆ
Σ

g(S,n) volΣ,

where, as before, nΣ denotes the normal to Σ.
Similarly, one can also introduce the energy-momentum tensor

T(α,β) = T(β,α) = m−1
ˆ
Um
x M
FαFβ fσmx = m−1

ˆ
v∈Um

x M
α(v) β (v) f(v) σmx (v) ,

for all α, β ∈ T∗xM . In local coordinates,

T= Tµν
∂

∂xµ
⊗ ∂

∂xν
, Tµν (x) = m−1

ˆ
v∈Um

x M
vµvν f(v) σmx (v) .

Theorem 15. If f satisfies the FP equation (Lm− σ2

2 ∆
ver
m )f = 0 then divT= σ2

2 nJ

Proof. Given any β ∈ T∗xM, we have that

(divT)(β) = m−1
ˆ
Um
x M

(£Lm f)F
β σmx =

σ2

2m

ˆ
Hx

(
∆Hx f

)
Fβ σmx

=
σ2

2m

ˆ
Hx

f
(
∆HxFβ

)
σmx =

nσ2

2m

ˆ
Hx

f Fβ σmx =
nσ2

2
J(β)

where we have used that Fβ : Um
xM→ R, v 7→ F(v) = β(v), satisfies ∆HxFβ = nFβ .

Corollary 16. If f satisfies the FP equation (Lm− σ2

2 ∆
ver
m )f = 0 then div(divT) = 0.

4. Some relevant spacetimes

In this section, we use the results presented in the previous sections to obtain the FP equations
for one-particle distribution functions preserving the underlying symmetries in two physically
relevant spacetimes.
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4.1. Flat Friedmann–Lemaître–Robertson–Walker cosmologies

The line-element of the flat Friedmann–Lemaître–Robertson–Walker (FLRW) space time
(R4,g) is

ds2 =−
(
dx0
)2

+ a2δijdx
i dxj,

where xµ are Cartesian coordinates of R4 and a= a(x0)> 0 is the scale factor. Using global
bundle coordinates, the geodesic spray Lm and the vertical Laplacian∆ver

m onUmM= R4 ×R3

are given by

Lm = v0
(
∂x0 − 2a ′a−1vi ∂vi

)
+ vi ∂xi ,

∆ver
m =

(
δij

a2
+
viv j

m2

)
∂vi∂v j +

3vi

m2
∂vi ,

where we have defined

v0 = v0
(
x0,vi

)
:=
√
m2 + a2v2 v := v

(
vi
)
=
√
δijvi v j .

The FP equation (17) can be written in the form

∂f
∂x0

+
vi

v0
∂f
∂xi

=
σ2

2v0

((
δij

a2
+
viv j

m2

)
∂2f

∂vi∂v j
+

3vi

m2

∂f
∂vi

)
+ 2

a ′

a
vi
∂f
∂vi

. (22)

The isometry group of (M, g) is just the Euclidean group E(3) (dimE(3) = 6). The Killing
fields of the metric g are the ones associated with homogeneity and isotropy (translations and
rotations):

ξi =
∂

∂xi
, ξij = xi

∂

∂xj
− xj

∂

∂xi
,

whose lifts to UmM are

ξcti =
∂

∂xi
, ξctij = xi

∂

∂xj
− xj

∂

∂xi
+ vi

∂

∂v j
− v j

∂

∂vi
.

Forcing f to simultaneously satisfy £ξcti f = 0 and £ξctij f = 0 we have

∂f
∂xi

= 0 , vi
∂f
∂v j

− v j
∂f
∂vi

= 0 .

Hence f = f(x0,xi,vi) must be independent of xi and the dependence on vi is only through v
because £ξctij v= 0. Therefore, if we are interested in symmetric solutions to the FP equation of

we can consider f(x0,vi) = F(x0,v) and rewrite the equation (22) in the simpler form

∂F
∂x0

− 2a ′a−1v
∂F
∂v

=
σ2

2v0

((
1
a2

+
v2

m2

)
∂2F
∂v2

+

(
2
a2v

+
3v
m2

)
∂F
∂v

)
.
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By using the notation introduced in equation (10), the previous equation can be further sim-
plified if the norm p of the linear momentum,

p= δijC
ξiCξj = a2v,

is used instead of v. This is so because

£ξctij p= 0 and £Lmp= 0 .

Using (x0,p) as reduced coordinates, the FP equation becomes

v0
∂F
∂x0

=
σ2

2

((
a2 +

p2

m2

)
∂2F
∂p2

+

(
2a2

p
+

3p
m2

)
∂F
∂p

)
,

where v0 = a−1
√
m2a2 + p2.

Taking into account that

σmx = m
a3
(
x0
)

v0 (x0,v)
dv1 ∧ dv2 ∧ dv3,

the currents associated with the solutions of the FP equation are

J0
(
x0,x

)
= a3

(
x0
)ˆ

R3

f
(
x0,x,v

)
d3v,

Ji
(
x0,x

)
= a3

(
x0
)ˆ

R3

vi f
(
x0,x,v

)
v0 (x0,v)

d3v,

S0 (x0,x)=−
kBa3

(
x0
)

m

ˆ
R3

f
(
x0,x,v

)
log f

(
x0,x,v

)
d3v,

Si (x0,x)=−
kBa3

(
x0
)

m

ˆ
R3

vi f
(
x0,x,v

)
log f

(
x0,x,v

)
v0 (x0,v)

d3v,

and the conserved average number of occupied trajectoriesN(Σt) of the Cauchy hypersurfaces
Σt = {x0 = t} is given by

N(Σt) = a3 (t)
ˆ
R3

J0 (t,x) d3x= a6 (t)
ˆ
R3×R3

f(t,x,v) d3xd3v.

For symmetric solutions f(t,x,v) = F(t,v) = F(t,p) (with the usual abuse of notation)

J0
(
x0
)
=

4π
a3 (x0)

ˆ ∞

0
F
(
x0,p

)
p2dp and Ji

(
x0
)
= 0 .

In this case

0= divJ=
1

a3 (x0)
∂

∂x0

(
a3
(
x0
)
J0
(
x0
))
.

Hence, as pointed out in [12],

a3 (t1)J
0 (t1) = a3 (t2)J

0 (t2) , ∀t1, t2 .
Notice that, for symmetric solutions, the integral in the definition of

N(Σt) =

ˆ
Σt

g(J,nΣt) volΣt =

ˆ
R3

a3 (t) J0 (t) d3x,
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diverges (becauseΣt is not compact) but one can renormalize the relevant objects. For example,
as we have pointed out,

n(Σt) = a3 (t)J0 (t) = 4πa6 (t)
ˆ ∞

0
v2F(t,v) dv= 4π

ˆ ∞

0
p2F(t,p) dp,

does not depend on t.

4.2. Exterior Schwarzschild spacetime

The exterior Schwarzschild spacetime (M, g) describes the gravitational field outside a spher-
ical body of mass rs/2 where rs is the Schwarzschild radius. Topologically

M= R× (rs,∞)× S2,

and, in spherical coordinates, the line-element is given by

ds2 =−
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)
.

The geodesic flow vector field on UmM is given by

Lm =

√
r

r− rs
(m2 + v2) ∂t+ vr∂r+ vθ∂θ + vφ ∂φ

− 1
2r2

(
rsm

2 +(3rs− 2r)r2
((
vθ
)2

+ sin2 θ (vφ)2
))

∂vr

− 1
r

(
2vrvθ − rsinθ cosθ (vφ)2

)
∂vθ −

1
r

(
2vrvφ + 2rvθvφ cotθ

)
∂vφ ,

where we have defined

v2 :=
r

r− rs
(vr)2 + r2

((
vθ
)2

+ sin2 θ (vφ)2
)
.

The isometry group of (M, g) is R×O(3)×Z2 (time translations, the orthogonal group in
three dimensions, and time reversal). The (globally defined, smooth) Killing vector fields of
this metric is given, in local coordinates, by

ξ0 =
∂

∂t
,

ξ1 = sinφ
∂

∂θ
+ cotθ cosφ

∂

∂φ
,

ξ2 = cosφ
∂

∂θ
− cotθ sinφ

∂

∂φ
,

ξ3 =
∂

∂φ
.

The vector field ξ0 is timelike and the fields ξi, i = 1,2,3, are tangent to the spheres {t= t0,r=
r0} and generate a so(3) algebra. Notice that

g(ξ1, ξ1) = r2
(
sin2φ+ cos2 θ cos2φ

)
, g(ξ2, ξ2) = r2

(
cos2φ+ cos2 θ sin2φ

)
,

g(ξ3, ξ3) = sin2 θ.
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Then ξ1, ξ2, and ξ3 vanishes at the intersection of the sphere with the axis of the rotation that
each of them generate. Their lifts to UmM are given by

ξct0 =
∂

∂t
,

ξct1 = sinφ
∂

∂θ
+ cotθ cosφ

∂

∂φ
+ vφ cosφ

∂

∂vθ
−
(
vθ
(
1+ cot2 θ

)
cosφ+ vφ cotθ sinφ

) ∂

∂vφ
,

ξct2 = cosφ
∂

∂θ
− cotθ sinφ

∂

∂φ
− vφ sinφ

∂

∂vθ
+
(
vθ
(
1+ cot2 θ

)
sinφ− vφ cotθ cosφ

) ∂

∂vφ
,

ξct3 =
∂

∂φ
.

Hence, imposing

£ξctk f = 0, k= 0,1,2,3,

a straightforward computation implies that the function f = f(t,r,θ,φ,vr,vθ,vφ)must have the
form

f = F(r,vr, ℓ) ,

where ℓ denotes the angular momentum that appears in the change of chart (r,vr,θ,vθ,vφ)↔
(r,vr,θ,ℓ,ψ) defined though

ℓ2 = r4
((
vθ
)2

+ sin2 θ (vφ)2
)
, ψ = arctan

(
vφ sinθ/vθ

)
.

Using the notation introduced in (10):

ℓ2 = δijC
ξiCξj ,

and hence ℓ satisfies

£ξctk ℓ= 0 , £Lmℓ= 0 .

Notice that, contrary to what happens when imposing £ξih= 0 on a function h : R3 → R, the
conditions £ξcti f = 0 eliminate the dependence of f on three of its arguments.

Using these coordinates, the FP equation reduces to(
vr∂r+

(2r− 3rs)ℓ2 −m2rsr2

2r4
∂vr

)
F

=
σ2

2

((
r2 +

ℓ2

m2

)
∂2
ℓ +

(
r2

ℓ
+

3ℓ
m2

)
∂ℓ +

(
1− rs

r
+

(vr)2

m2

)
∂2
vr +

2ℓvr

m2 ∂ℓ∂vr +
3vr

m2 ∂vr

)
F,

(23)

in full agreement (when m= 1) with corollary 4.2 of [20].

4.3. Nariai spacetime

As discussed in [35], if dimM= 4, the Birkhoff’s theorem states that the only locally spheric-
ally symmetric solutions to Ric= Λg are locally isometric either to one of the Schwarzschild–
de Sitter (anti-de Sitter) family of solutions

ds2SdS =−
(
1− rs

r
− Λr2

3

)
dt2 +

(
1− rs

r
− Λr2

3

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (24)
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or to the Nariai spacetime

M= R× S1 ×S2 , ds2 =−dt2 +
1
Λ
cosh2

(√
Λt
)
dx2 +

1
Λ

(
dθ2 + sin2 θdφ2

)
,

for which Λ is stricly positive. The Nariai spacetime is the semi-Riemannian product of the
1+1 de Sitter space dS2(Λ) and a round sphere of curvature Λ. Hence, its isometry group is
O(2,1)×O(3). The (globally defined, smooth) Killing vector fields of the Nariai metric are
given, in local coordinates, by:

ξ1 = sinφ
∂

∂θ
+ cotθ cosφ

∂

∂φ
,

ξ2 = cosφ
∂

∂θ
− cotθ sinφ

∂

∂φ
,

ξ3 =
∂

∂φ
,

κ1 = sin(x)
∂

∂t
+
√
Λcos(x) tanh

(√
Λt
) ∂

∂x
,

κ2 =−cos(x)
∂

∂t
+
√
Λsin(x) tanh

(√
Λt
) ∂

∂x
,

κ3 =
∂

∂x
.

The Lie algebra of the isometry group of the Nariai spacetime is isomorphic to sl(2,R)×
so(3). The vector fields ξ1, ξ2, and ξ3 are responsible for the so(3) sector and κ1, κ2, and κ3
correspond to sl(2,R):

[κ1,κ2] = Λκ3 , [κ2,κ3] =−κ1 , [κ3,κ1] =−κ2,

as can be easily seen, for example, using the basis

b1 = Λ−1/2κ2 −κ3 ,b2 = Λ−1/2κ1 ,b3 = Λ−1/2κ2 +κ3 .

In addition to the angular momentum of so(3), we have the following conserved quantities
derived from sl(2,R):

Cκ1 =−sin(x)vt+
cos(x)sinh

(√
Λt
)
cosh

(√
Λt
)

√
Λ

vx,

Cκ2 = cos(x)vt+
sin(x)sinh

(√
Λt
)
cosh

(√
Λt
)

√
Λ

vx,

Cκ3 =
cosh2

(√
Λt
)

Λ
vx.

Notice that(
Cκ1 −

√
Λcos(x) tanh

(√
Λt
)
Cκ3

)2
+
(
Cκ2 −

√
Λsin(x) tanh

(√
Λt
)
Cκ3

)2
= (vt)2 .
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The lifts to UmM of the Killing fields are given by

ξct1 = sinφ
∂

∂θ
+ cotθ cosφ

∂

∂φ
+ vφ cosφ

∂

∂vθ
−
(
vθ

(
1+ cot2 θ

)
cosφ+ vφ cotθ sinφ

) ∂

∂vφ
,

ξct2 = cosφ
∂

∂θ
− cotθ sinφ

∂

∂φ
− vφ sinφ

∂

∂vθ
+
(
vθ

(
1+ cot2 θ

)
sinφ− vφ cotθ cosφ

) ∂

∂vφ
,

ξct3 =
∂

∂φ
,

κct
1 = sin(x)

∂

∂t
+
√
Λcos(x) tanh

(√
Λt
) ∂

∂x
+ vx cos(x)

∂

∂vt

+
√
Λ

−vx sin(x) tanh
(√

Λt
)
+

√
Λcos(x)vt

cosh2
(√

Λt
)
 ∂

∂vx
,

κct
2 =−cos(x)

∂

∂t
+
√
Λsin(x) tanh

(√
Λt
) ∂

∂x
+ vx sin(x)

∂

∂vt

+
√
Λ

vx cos(x) tanh
(√

Λt
)
+

√
Λsin(x)vt

cosh2
(√

Λt
)
 ∂

∂vx
,

κct
3 =

∂

∂x
.

Using the previous results, it is easy to show that symmetric FP solutions have the form
f = F(t,p, ℓ), where

p= Cκ3 =
cosh2

(√
Λt
)

Λ
vx , ℓ2 = δijC

ξiCξj =

(
vθ
)2

+ sin2 θ (vφ)2

Λ2
.

The reduced FP equation for F is√√√√m2 +
Λp2

cosh2
(√

Λt
) +Λℓ2

∂F
∂t

=
σ2

2

(
1
Λ

+
ℓ2

m2

)
∂2
ℓ +

(
1
Λℓ

+
3ℓ
m2

)
∂ℓ +

cosh2
(√

Λt
)

Λ
+
p2

m2

∂2
p +

2ℓp
m2 ∂ℓ∂p+

3p
m2 ∂p

F .

Remark 17. It is interesting to notice that in local coordinates, when the spacetime metric has
the form

ds2 = gtt (t,r)dt
2 + grr (t,r)dr

2 +R2 (t,r)
(
dθ2 + sin2 θdφ2

)
,

the vertical Laplacian acting on rotational-invariant functions is just

∆ver
m =

(
R2 +

ℓ2

m2

)
∂2ℓ +

(
R2

ℓ
+

3ℓ
m2

)
∂ℓ +

(
1
grr

+
(vr)2

m2

)
∂2vr +

2ℓvr

m2
∂ℓ∂vr +

3vr

m2
∂vr .

For example, for the Schwarzschild spacetime (Λ = 0) we recover (23) and it is also
straightforward to write the corresponding operator in the case of Schwarzschild-de Sitter (or
anti-de Sitter) spacetimes described by (24).
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Furthermore, an interesting open submanifold of Nariai spacetime is the Bertotti–Kasner
spacetime (MBK,gBK), that is a particular example of the Kantowski–Sachs metrics. This
spacetime was used by Rindler in [32] to discuss Birkhoff’s theorem (see also [9, 26]):

MBK = R2 ×S2 , ds2BK =−dt2 + e2
√
Λtdr2 +

1
Λ

(
dθ2 + sin2 θdφ2

)
.

The sl(2) Killing fields are

X1 =
∂

∂r
, X2 =− 1√

Λ

∂

∂t
+ r

∂

∂r
, X3 =−2

√
Λr

∂

∂t
+
(
e−2

√
Λt+Λr2

) ∂

∂r
,

and the reduced FP equation is√
m2 + e−2

√
Λtp2 +Λℓ2

∂F
∂t

=
σ2

2

((
1
Λ
+
ℓ2

m2

)
∂2ℓ +

(
1
Λℓ

+
3ℓ
m2

)
∂ℓ +

(
e2

√
Λt+

p2

m2

)
∂2p +

2ℓp
m2

∂ℓ∂p+
3p
m2
∂p

)
F,

(25)

where, in this case, p= e2
√
Λtvr.

5. Conclusions and comments

In this paper, we have extensively discussed the relationship between the symmetry properties
of a spacetime (M, g) and relativistic diffusion processes on two relevant bundles over M: the
(restricted) orthonormal frame bundle SO+(M) and the observer bundle UmM of arbitrary
positive massm. We have demonstrated that the complete lift of a Killing vector field of (M, g)
commutes with both the fundamental and basic vector fields within SO+(M). This observa-
tion indicates that the symmetries inherent to the spacetime (M, g) also preserve the generator
of the diffusion processes on both SO+(M) and UmM. Furthermore, we have identified the
conditions that the symmetric solutions to the Fokker-Planck diffusion Equation satisfy on
SO+(M) and UmM, and we have detailed how to establish the connection between them,
thereby extending previous findings in the literature.

To connect our results with physical applications, we have demonstrated that, within the
framework provided by UmM, the dynamics of the particle system can be characterized by the
one-particle distribution function f, which obeys the FP equation ensuring the conservation
of the average of particle trajectories passing through a given Cauchy surface. This conser-
vation principle can also be derived through the vanishing divergence of the current density
vector field J associated with f. Additionally, we have proven that the divergence of the entropy
current S is non-negative, and that the divergence of the energy-momentum tensor field T is
proportional to the particle current density, consistent with the expected behavior of a diffusion
process.

Finally, we have illustrated the results by using several physically relevant spacetimes, span-
ning both cosmological and astrophysical applications.

While all the results presented in this work can be established without resorting to sym-
plectic techniques, we have chosen to follow this approach anticipating future uses. For
instance, it streamlines the incorporation of additional physical information, as is the case
of electromagnetic fields: by simply modifying the symplectic form dα to dα+ qF, where q
represents the particle charge and F denotes the Faraday tensor describing the electromag-
netic field in spacetime, we can seamlessly integrate electromagnetic effects into our analysis.
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It may also be interesting to analyze recent generalizations of the Sasaki metric proposed in
[25] within the context of modified gravity.
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