

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura		
Nombre completo	Control Digital	
Código	DEA-GITI-432	
Título	Grado en Ingeniería en Tecnologías Industriales por la Universidad Pontificia Comillas	
Impartido en	Grado en Ingeniería en Tecnologías Industriales [Cuarto Curso]	
Nivel	Reglada Grado Europeo	
Cuatrimestre	Semestral	
Créditos	6,0 ECTS	
Carácter	Optativa (Grado)	
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones	
Responsable	Juan Luis Zamora Macho	
Horario	Se indicará en la intranet	
Horario de tutorías	Solicitar cita por correo electrónico	

Datos del profesorado		
Profesor		
Nombre	Juan Luis Zamora Macho	
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones	
Despacho	Alberto Aguilera 25 [D-212]	
Correo electrónico	Juanluis. Zamora@iit.comillas.edu	
Profesores de laboratorio		
Profesor		
Nombre	Alberto Abanades Sánchez	
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones	
Correo electrónico	aabanades@icai.comillas.edu	

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

En el perfil profesional del graduado de Ingeniería en Tecnologías Industriales, esta asignatura pretende introducir al alumno en la implantación digital de controles PID y el diseño de controles digitales por realimentación del estado y mediante síntesis de polinomios. El empleo cada vez más extendido de microprocesadores y otros dispositivos de cálculo en el entorno industrial motiva la formación del alumno en el análisis y diseño de sistemas de control en tiempo discreto.

Al finalizar el curso, los alumnos deberán dominar el concepto de señal y sistema en tiempo discreto y el uso de la transformada Z para obtener la función de transferencia en tiempo discreto. Además deberán conocer las relaciones existentes con las técnicas de

modelado de sistemas en tiempo continuo.

En esta asignatura también se revisan las técnicas de modelado y análisis de sistemas dinámicos, tanto lineales como no lineales, mediante la representación de estado, y la linealización de sistemas no lineales alrededor de un punto de operación. En los ejemplos presentados se hace especial énfasis en su aplicación práctica para que el alumno tome conciencia de la importancia del modelado matemático en todos los ámbitos de la ingeniería industrial.

Otro objetivo del curso es que el alumno conozca el efecto de seleccionar períodos de muestreo pequeños, medianos o grandes y los métodos de discretización disponibles para convertir un control PID en un algoritmo programable en un microprocesador. Finalmente, el alumno deberá estar capacitado para diseñar controles en tiempo discreto mediante realimentación del estado, incluyendo acción integral en la referencia y observador de estado, y las técnicas de control digital basadas en síntesis de polinomios.

Debido a que esta asignatura tiene un carácter mixto teórico-experimental, se añaden a los conceptos teóricos los de carácter práctico mediante la resolución de problemas y la realización de trabajos en el laboratorio en los que se consolidarán los fundamentos teóricos estudiados. Además, se profundizará en el uso de herramientas informáticas (Matlab y Simulink) que facilitan el proceso de modelado, análisis y diseño de cualquier sistema de control en tiempo discreto.

Prerrequisitos

Principios del control por realimentación. Sistemas en tiempo continuo: transformada de Laplace, función de transferencia, polos y ceros, diagramas de bloques. Principales propiedades y especificaciones de un sistema de control: estabilidad, amortiguamiento, precisión y rapidez. Relaciones entre la respuesta temporal y la respuesta en frecuencia. Diseño de reguladores PID por respuesta en frecuencia. MATLAB y Simulink.

Competence	Competencias - Objetivos		
Competencia	as		
GENERALES			
CG03	Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.		
CG04	Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.		
ESPECÍFICAS			
CEN08	Conocimientos de regulación automática y técnicas de control y su aplicación a la automatización industrial		
CEN11	Capacidad para diseñar sistemas de control y automatización industrial		

Resultados de Aprendizaje		
RA1	Entender los efectos del muestreo aplicando los modelos adecuados al análisis y diseño	
RA2	Analizar y especificar sistemas en tiempo discreto y sistemas mixtos	
RA3	Diseñar reguladores digitales por varios procedimientos: respuesta en frecuencia, síntesis de polinomios y realimentación del estado.	

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos - Bloques Temáticos

Tema 1: INTRODUCCIÓN AL CONTROL DIGITAL

- 1.1 Motivación del control digital.
- 1.2 Componentes de un sistema de control digital.
- 1.3 Algoritmo de un control PID digital.
- 1.4 Influencia del período de muestreo.
- **1.5** Aproximación del efecto del muestreo y del retenedor.
- 1.6 Control en tiempo discreto vs. control en tiempo continuo: ventajas e inconvenientes.

Tema 2: SEÑALES Y SISTEMAS EN TIEMPO DISCRETO

- 2.1 Señal en tiempo discreto.
- 2.2 Muestreo de señales en tiempo continuo.
- 2.3 Teorema fundamental del muestreo: aliasing.
- 2.4 Sistema en tiempo discreto.

Tema 3: TRANSFORMADA Z Y FUNCIÓN DE TRANSFERENCIA

- **3.1** Definición de transformada Z.
- 3.2 Transformada Z de señales básicas causales.
- 3.3 Propiedades de la transformada Z.
- 3.4 Tabla de transformadas.
- 3.5 Función de transferencia.
- **3.6** Respuesta temporal de un sistema en tiempo discreto.
- 3.7 Relación entre las funciones de transferencia en tiempo continuo y en tiempo discreto.
- 3.8 Estabilidad BIBO de un sistema en tiempo discreto.
- 3.9 Relación entre dinámicas en tiempo continuo y en tiempo discreto.
- 3.10 Diagrama de bloques.
- 3.11 Régimen permanente de sistemas estables.

Tema 4: DISEÑO DE CONTROLES EN TIEMPO DISCRETO

4.1 Esquema de un sistema de control digital.

- 4.2 Modelos para el análisis de un sistema de control digital.
- 4.3 Clasificación del período de muestreo.
- 4.4 Implantación digital de un control P diseñado mediante el modelo analógico puro.
- 4.5 Diseño de un control P mediante el modelo anlógico modificado y período de muestreo mediano.
- **4.6** Prefiltro o filtro antialiasing.
- 4.7 Diseño y discretización de un cotrol PID.
- 4.8 Control digital directo.

Tema 5: MODELADO EN ESPACIO DE ESTADO

- **5.1** Introducción al control en espacio de estado.
- 5.2 Estado de un sistema.
- **5.3** Representación de estado.
- **5.4** Punto de operación y modelo linealizado.
- **5.5** Circuitos eléctricos y electrónicos.
- 5.6 Sistemas mecánicos de traslación.
- **5.7** Sistemas mecánicos de rotación.
- 5.8 Sistemas térmicos.
- 5.9 Sistemas de conducción de fluidos.

Tema 6: CONTROL EN ESPACIO DE ESTADO

- **6.1** Matriz de transferencia de un sistema LTI.
- **6.2** Representación de estado de una función de transferencia.
- **6.3** Discretización exacta de una representación de estado.
- **6.4** Diseño de un regulador por realimentación de estado.
- **6.5** Recomendaciones generales sobre la localización de polos en lazo cerrado.
- **6.6** Compensación del retardo de cálculo para muestreo síncrono.
- **6.7** Seguimiento de referencia mediante ajuste de ganancia.
- **6.8** Seguimiento de referencia mediante control integral.

LABORATORIO

Prácticas

Las prácticas están orientadas a desarrollar un proyecto, donde el trabajo en equipo, la organización, la creatividad y la iniciativa cobran especial importancia.

- 1. Práctica de diseño de un control en tiempo discreto. En esta práctica se revisan los efectos de la implantación digital de controles y su compensación en la fase de
- diseño. Se aborda el diseño de un control PID y de un control dead beat.
- 2. Práctica de modelado de un sistema no lineal mediante una representación de estado. Se analiza cómo calcular un punto de operación del modelo y la linealización
- de dicho modelo alrededor del punto de operación seleccionado.
- 3. Práctica de diseño de un control digital por realimentación de estado para controlar la planta modelada en la práctica anterior.
- 5.5.1.4

Tema 7: ESTIMADORES DE ESTADO

- 7.1 Fundamento y motivación de la estimación de estado.
- 7.2 Principio de separación.
- 7.3 Estimador de estado en lazo abierto.
- 7.4 Observador de orden completo.
- 7.5 Observador de orden reducido.

LABORATORIO

LABORATORIO

Las prácticas están orientadas a desarrollar un proyecto, donde el trabajo en equipo, la organización, la creatividad y la iniciativa cobran especial importancia.

- 1. Práctica de diseño de un control en tiempo discreto: En esta práctica se revisan los efectos de la implantación digital de controles y su compensación en la fase de diseño. Se aborda el diseño de un control PID y de un control dead beat.
- 2. Práctica de diseño de un control digital por realimentación de estado: En esta práctica se modela un sistema no lineal mediante una representación de estado, se calcula un punto de operación del modelo para su linealización y se controla la planta modelada mediante diferentes variantes del control por realimentación de estado.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Con el fin de conseguir el desarrollo de competencias propuesto, la materia se desarrollará teniendo en cuenta la actividad del alumno como factor prioritario. Ello implicará que tanto las sesiones presenciales como las no presenciales promoverán la implicación activa de los alumnos en las actividades de aprendizaje.

Metodología Presencial: Actividades

Clase magistral y presentaciones generales: Exposición de los principales conceptos y procedimientos mediante la explicación por parte del profesor. Incluirá presentaciones dinámicas, pequeños ejemplos prácticos y la participación reglada o espontánea de los estudiantes.

Resolución de problemas de carácter práctico o aplicado: Actividades de aprendizaje sobre la parte práctica de la asignatura que consiste en la resolución de problemas de forma individual o en grupo fuera del horario lectivo. Posteriormente, el profesor podrá resolver en clase algunos de los problemas propuestos con la colaboración de los alumnos.

Prácticas de laboratorio: Se formarán grupos de trabajo que tendrán que realizar prácticas de laboratorio regladas o diseños de laboratorio. Las prácticas de laboratorio podrán requerir la realización de un trabajo previo de preparación y finalizar con la redacción de un informe de laboratorio o la inclusión de las distintas experiencias en un cuaderno de laboratorio.

Metodología No presencial: Actividades

Estudio de conceptos teóricos fuera del horario de clase por parte del alumno: Actividades de aprendizaje sobre la parte teórica de la asignatura que se realizarán de forma individual fuera del horario lectivo y que consistirán en el estudio y análisis de los conceptos explicados en clase.

Resolución de problemas de carácter práctico o aplicado: Actividades de aprendizaje sobre la parte práctica de la asignatura que consiste en la resolución de problemas de forma individual o en grupo fuera del horario lectivo. Posteriormente, el profesor podrá resolver en clase algunos de los problemas propuestos con la colaboración de los alumnos.

Prácticas de laboratorio: Se formarán grupos de trabajo que tendrán que realizar prácticas de laboratorio regladas o diseños de laboratorio. Las prácticas de laboratorio podrán requerir la realización de un trabajo previo de preparación y finalizar con la redacción de un informe de laboratorio o la inclusión de las distintas experiencias en un cuaderno de laboratorio.

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES		
Clase magistral y presentaciones generales	Resolución de problemas de carácter práctico o aplicado	Prácticas de laboratorio
20.00	20.00	20.00
HORAS NO PRESENCIALES		
Estudio de conceptos teóricos fuera del horario de clase por parte del alumno	Resolución de problemas de carácter práctico o aplicado	Prácticas de laboratorio
40.00	40.00	40.00
	CRÉDITOS ECTS:	6,0 (180,00 horas)

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso
	 Comprensión de conceptos. 	

Examen final de la asignatura	 Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita. 	60
Pruebas de evaluación del trabajo experimental y participación en el laboratorio.	 Compresión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos en el laboratorio. Análisis e interpretación de los resultados obtenidos en los problemas resueltos. Capacidad de trabajo en grupo. 	35
Pruebas cortas de evaluación continua	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita. 	5

Calificaciones

Convocatoria ordinaria:

- La nota del examen de la convocatoria ordinaria, con un mínimo de 5, un 60%.
- La media ponderada de las pruebas de evaluación continua realizadas a lo largo del curso un 5%.
- La nota de laboratorio, con un mínimo de 5, un 35%.

Convocatoria extraordinaria:

- La nota del examen de la convocatoria extraordinaria, con un mínimo de 5, un 60%.
- La media ponderada de las pruebas de de evaluación continua realizadas a lo largo del curso un 5%.
- La nota de laboratorio, con un mínimo de 5, un 35%.
- El alumno no se examina en la convocatoria extraordinaria de la parte (teoría o laboratorio) que haya aprobado en la convocatoria ordinaria.

La asistencia a clase es obligatoria, según las Normas Académicas de la Escuela Técnica Superior de Ingeniería (ICAI). Los requisitos de asistencia se aplicarán de forma independiente para las sesiones de teoría y de laboratorio:

- En el caso de las sesiones de teoría, el incumplimiento de esta norma podrá impedir presentarse a examen en la convocatoria ordinaria.
- En el caso de las sesiones de laboratorio, el incumplimiento de esta norma podrá impedir presentarse a examen en la convocatoria ordinaria y en la extraordinaria. En cualquier caso las faltas no justificadas a sesiones de laboratorio serán penalizadas en la evaluación.

PLAN DE TRABAJO Y CRONOGRAMA

Actividades	Fecha de realización	Fecha de entrega

Lectura y estudio de los contendidos teóricos en el material disponible en la página web de la asignatura	Después de cada clase	
Resolución de los problemas propuestos	Semanalmente	
Preparación de las pruebas que se realizarán durante las horas de clase		Semanas 4 y 9
Preparación del examen final	Diciembre	
Preparación de las pruebas de evaluación al final de cada proyecto del laboratorio		Semanas 6 y 13

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- F. Luis Pagola. Control Digital. Universidad Pontificia Comillas, 2012
- N. S. Nise. Control Systems Engineering, 6th Edition. John Wiley and Sons. 2011.

Bibliografía Complementaria

- Franklin, Powell, Workman. Digital Control of Dynamic Systems. 3rd ed. Addison-Wesley, 1998.
- Phillips, Nagle. Digital Control System Analysis and Design. 3rd ed. Prentice Hall, 1995
- Åström, Wittenmark. Computer Controlled Systems. 3rd ed. Prentice Hall, 1997
- Dutton, Thompson, Barraclough. The Art of Control Engineering. Addison-Wesley, 1997

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792

		PLANIFICACIÓN DIARIA
	1	Capítulo 1. Introducción al Control Digital
1	2	Capitulo 1. Initioudicion al Control Digital Capítulo 2. Señales y sistemas en tiempo discreto
·	3	Capitulo 2. Seriales y sistemas en tiempo discieto
	4	
	5	Capítulo 3. Transformada Z y función de transferencia
2	6	
	7	
	8	
	9	Capítulo 4. Diseño de controles en tiempo discreto
3	10	Lab P1: Modelado del coche y control P
	11	
	12	
	13	
4		Lab P2: Control PID
	15	Prueba corta 1
	17	
5	18	Lab P3: Control dead beat
	19	
	20	Capítulo 5. Modelado en espacio de estado
	20	
	21	Lab P4: Examen proyecto 1
6	22	
	23	
	24	
7	25	
	26	Capítulo 6.Control en espacio de estado
	28	day not of control of control of control
8	29	Lab P5: Modelado y control PID de un vehículo equilibrista
	30	
	31	
	32	
	33	
	34	
10		Lab P6: Regulador por realimentación de estado
	36	
11	37	Lab P7: Control integral de avance y cabeceo
	39	Care - 1. Someon megicine avance y careceo
	40	Prueba corta 2
		Capítulo 7. Estimadores de estado
12		Lab P8: Control de seguimiento de pared
	43	
	44	
	45	
13	46	Lab P9: Examen proyecto 2
	47	
	48	
14		Lab P10: Competición proyecto 2
	50	
	51	EXAMEN FINAL