

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura		
Nombre completo	Robots móviles autónomos	
Código	DEAC-IMAT-324	
Título	Grado en Ingeniería Matemática e Inteligencia Artificial	
Impartido en	Grado en Ingeniería Matemática e Inteligencia Artificial [Tercer Curso]	
Nivel	Reglada Grado Europeo	
Cuatrimestre	Semestral	
Créditos	7,5 ECTS	
Carácter	Obligatoria (Grado)	
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones	
Responsable	Jaime Boal Martín-Larrauri	
Horario de tutorías	Concertar cita por correo electrónico.	

Datos del profesorado		
Profesor		
Nombre Jaime Boal Martín-Larrauri		
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones	
Despacho D-217 (Alberto Aguilera, 25)		
Correo electrónico	Jaime.Boal@iit.comillas.edu	
Profesor		
Nombre	Jesús Tordesillas Torres	
Departamento / Área Departamento de Electrónica, Automática y Comunicaciones		
Despacho D-216 (Alberto Aguilera, 25)		
Correo electrónico jtordesillas@icai.comillas.edu		
Profesores de laboratorio		
Profesor		
Nombre	Alejandra Martínez Fariña	
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones	
Correo electrónico	amfarina@icai.comillas.edu	
Profesor		
Nombre	Diego Cubillo Llanes	
Departamento / Área	Instituto de Investigación Tecnológica (IIT)	
Correo electrónico	dcubillo@comillas.edu	
Profesor		

Nombre	Eugenio Collado de la Guerra	
Correo electrónico	ecollado@icai.comillas.edu	
Profesor		
Nombre	bre Rodrigo Sánchez Molina	
Departamento / Área	rtamento / Área Departamento de Electrónica, Automática y Comunicaciones	
Correo electrónico	rsmolina@icai.comillas.edu	

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

La inteligencia artificial tiene aplicaciones más allá de los datos y el mundo virtual. También puede potenciar sistemas físicos con los que interactuamos a diario, ampliando sus capacidades y permitiendo que desempeñen de forma autónoma tareas tediosas, repetitivas o potencialmente peligrosas en lugar de un ser humano. En esta asignatura se integran conocimientos adquiridos durante el grado tanto en el bloque de matemáticas (álgebra, probabilidad y estadística, aprendizaje automático, geometría computacional...) como en la parte de tecnología (programación, sistemas operativos, sistemas electrónicos, sistemas dinámicos...) para conseguir que un robot móvil con ruedas sea capaz de desplazarse de forma autónoma por un entorno sin intervención humana (p.ej., para llevar un paquete de un sitio a otro).

Al finalizar el curso los alumnos tendrán criterio para elegir los sensores y la configuración cinemática más apropiados para cada situación, comprenderán los algoritmos más comunes de localización, mapeado, planificación y seguimiento de rutas, y habrán adquirido experiencia en el manejo de ROS 2, el *framework* que es el estándar *de facto* utilizado por investigadores y desarrolladores de todo el mundo para diseñar y construir robots móviles.

Prerrequisitos

Los estudiantes que desean cursar esta asignatura deben tener bases sólidas de programación en Python, álgebra lineal, probabilidad y estadística, control y aprendizaje automático (*machine learning*).

Competencias - Objetivos

Competencias

GENERALES				
CG02	Capacidad de razonamiento abstracto y sentido crítico, así como de cálculo, modelado, simulación, optimización y predicción, para dar respuesta a los problemas planteados por la ciencia, la tecnología y la sociedad en general.			
CG06	Capacidad para utilizar el aprendizaje de manera estratégica y flexible en función del objetivo perseguido, a partir del reconocimiento del propio sistema de aprendizaje y de la conciencia del aprendizaje mismo, dentro de un contexto tecnológico que evoluciona rápidamente			
CG07	Capacidad para integrarse en equipos de trabajo y colaborar de forma activa con otras personas, áreas y organizaciones en la consecución de los objetivos ligados a las actividades de extracción de valor de los datos e inteligencia artificial.			
	Capacidad para determinar eficazmente los objetivos, prioridades, métodos y controles para desempeñar tareas			

CG09	relacionadas con la planificación de proyectos de explotación de datos e inteligencia artificial, mediante la organización de las actividades con los plazos y los medios disponibles		
CG14	Capacidad para integrar conocimiento multidisciplinar en un determinado proyecto o sistema.		
ESPECÍFICAS			
Capacidad para analizar, diseñar y resolver problemas reales a través de técnicas algorítmicas mediante un ler programación			
CE30	Capacidad para diseñar y aplicar métodos y algoritmos heurísticos de búsqueda para la toma de decisiones.		
Capacidad para analizar el comportamiento de los sistemas físicos en el dominio del tiempo. Conocipios de los sistemas de control en lazo cerrado: estabilidad, precisión, rapidez y amortiguamiento.			
CE35	Conocimiento de las arquitecturas básicas de los robots móviles con ruedas y de los principales algoritmos de navegación, localización y creación de mapas.		

Resultados o	e Aprendizaje		
RA1 Estar familiarizado con el ciclo que permite que un robot opere de forma autónoma y conocer los sensore de uso común			
RA2	Saber derivar las ecuaciones cinemáticas de un robot móvil con ruedas		
RA3	Ser capaz de aplicar algoritmos de control PID para conseguir que un robot navegue por el entorno de forma autónoma Entender y ser capaz de implementar los algoritmos de localización más comunes, tanto discretos como continuos		
RA4			
RA5	Comprender por qué cuando un robot móvil se encuentra en un entorno desconocido o cambiante es necesario es su posición y construir un mapa simultáneamente		
RA6	Conocer la estructura de ROS, el sistema operativo de control de robots más empleado, y saber utilizarlo para contro		
RA7			

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

Teoría

1. Introducción a la robótica

- Historia de la robótica
- Tipos de robots (manipuladores industriales, robots colaborativos, robots con ruedas, con patas, voladores...)
- El ciclo ver-pensar-actuar

2. Robot Operating System (ROS 2)

- ¿Qué es ROS?
- Sistema de archivos
- Grafo de computación (nodos, parámetros, mensajes, temas, servicios, acciones...)
- ROS 2 en Python
- Archivos de lanzamiento
- Herramientas de visualización y depuración

3. Percepción

• Clasificación y principio de funcionamiento de sensores de uso habitual en robótica

4. Modelado cinemático de robots con ruedas

- Tipos de ruedas
- Sistemas holonómicos y no holonómicos
- Cinemática directa e inversa de un robot con configuración diferencial
- Otras configuraciones cinemáticas (triciclo, Ackermann, robots con ruedas omnidireccionales y Mecanum...)

5. Localización

- Filtro de histograma (localización de Markov)
- Filtros de Kalman
- Filtro de partículas (localización de Monte Carlo)

6. Planificación de rutas

- Métodos de rejilla: A*
- Métodos de hoja de ruta: Grafos de visibilidad y diagramas generalizados de Voronoi (GVD)
- Métodos basados en muestreo: Hojas de ruta probabilísticas (PRM) y árboles aleatorios de exploración rápida (RRT, RRT*)
- Campos potenciales artificiales

7. Seguimiento de rutas

- Sigue la zanahoria (follow-the-carrot)
- Persecución pura
- Otras técnicas de seguimiento de trayectorias (Stanley, LQR, MPC...)

8. Localización y mapeo simultáneos (SLAM)

- EKF SLAM
- GraphSLAM
- SEIF SLAM
- FastSLAM

9. Fundamentos de C++ para robótica

- Tipos de datos
- Sintaxis básica (expresiones y sentencias de control de flujo)
- Contenedores: Librería de plantillas estándar (STL)

- **Funciones**
- Punteros, punteros inteligentes y referencias
- Clases
- ROS 2 en C++

Laboratorio

1. Robot Operating System (ROS 2)

ROS es el estándar de facto para el desarrollo de aplicaciones robóticas en la comunidad investigadora y en los últimos años se ha ido extendiendo progresivamente a entornos industriales. El objetivo de esta sesión de laboratorio es establecer un primer contacto con ROS 2, familiarizarse con todos sus componentes y aprender a construir software sencillo para robótica.

2. Exploración: Seguimiento de pared

Se aprenderá a comunicar ROS 2 y CoppeliaSim, el simulador de robots que se utilizará a lo largo del curso, y se programará un nodo en Python para lograr que un robot con cinemática diferencial siga una pared en entornos con intersecciones. La solución se probará tanto en un robot Turtlebot3 simulado como físico. El objetivo es poder explorar un entorno desconocido sin chocar.

3. Localización: Filtro de partículas

Partiendo de la práctica anterior, los alumnos implementarán desde cero un filtro de partículas básico que permitirá al robot localizarse mientras explora el entorno con seguridad siguiendo las paredes.

4. Planificación y seguimiento de rutas

En primer lugar, se implementará un algoritmo de los vistos en las sesiones de teoría para planificar la trayectoria desde una posición inicial conocida hasta un destino determinado. La trayectoria se suavizará para que sea más fácil de seguir independientemente de la cinemática del robot. Posteriormente, se programará un nodo de seguimiento utilizando el algoritmo de persecución pura para recorrer la trayectoria suavizada.

Proyecto

El proyecto final es una actividad de integración en la que cada equipo combinará y perfeccionará todos los módulos desarrollados durante las prácticas de laboratorio, tanto en simulación como utilizando un TurtleBot3 físico. El robot partirá de una posición aleatoria en un entorno de tipo laberinto. Primero tendrá que localizarse y, a continuación, desplazarse hasta una ubicación determinada en el menor tiempo posible. Se organizará una competición en la que se concederán puntos adicionales.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Metodología Presencial: Actividades

Clases magistrales expositivas y participativas. El profesor introducirá y explicará los principales conceptos de cada tema utilizando presentaciones dinámicas y pequeños ejemplos prácticos. Se fomentará la participación activa planteando preguntas abiertas para promover el debate.

CE09, CG02, CG06, CG14, CE30, CE33, CE35

Sesiones prácticas de laboratorio. Se formarán grupos de trabajo para realizar prácticas regladas con las CE09, CG02, CG06, CG07,

que afianzar los conceptos teóricos y aprender a manejar el equipamiento del laboratorio.

CG14, CE30, CE33, CE35

Proyectos. Durante las últimas semanas cada grupo integrará todos los módulos desarrollados durante las prácticas para construir un robot capaz de realizar una actividad concreta.

CE09, CG02, CG06, CG07, CG09, CG14, CE30, CE33, CE35

Actividades de evaluación continua del rendimiento. Aparte de la prueba intersemestral, durante las clases magistrales se propondrán preguntas utilizando una herramienta en línea que servirán para mantener la atención, comprobar la intuición de los alumnos y verificar la comprensión de los contenidos.

CE09, CG02, CG06, CG07, CG14, CE30, CE33, CE35

Tutorías. Se realizarán en grupo e individualmente para resolver las dudas que se planteen después de haber trabajado los distintos temas, y para orientar al alumno en su proceso de aprendizaje.

Metodología No presencial: Actividades

Estudio personal. El alumno debe realizar un trabajo personal posterior a las clases teóricas para comprender e interiorizar los conocimientos aportados en la materia.

CE09, CG02, CG06, CG14, CE30, CE33, CE35

Ejercicios prácticos y resolución de problemas. Una vez estudiados los conceptos teóricos, el alumno debe ponerlos en práctica para resolver problemas. Pasado un cierto tiempo desde su planteamiento, dispondrá de la solución y podrá solicitar tutorías con el profesor si lo necesita.

CE09, CG02, CG06, CG07, CG14, CE30, CE33, CE35

Sesiones prácticas de laboratorio. Las prácticas de laboratorio requerirán la realización de un trabajo previo de preparación y finalizarán con la redacción de un informe.

CE09, CG02, CG06, CG07, CG14, CE30, CE33, CE35

Proyectos. Los alumnos deberán adelantar fuera del aula aquellas tareas que no necesiten de equipamiento especial, frecuentemente utilizando herramientas de simulación, para aprovechar al máximo las sesiones presenciales con el robot físico.

CE09, CG02, CG06, CG07, CG09, CG14, CE30, CE33, CE35

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES				
Clases magistrales expositivas y participativas	Tutorías para resolución de dudas	Actividades de evaluación continua del rendimiento	Sesiones prácticas de laboratorio	Proyectos
42.00	5.00	3.00	15.00	15.00
	HORAS N	O PRESENCIALES		
Estudio personal Ejercicios prácticos y resolución de problemas Sesiones prácticas de laboratorio Proyectos				
45.00	25.00	30.00	45.00	
CRÉDITOS ECTS: 7,5 (225,00 horas)				

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso

CuestionariosPrueba intersemestralExamen final	 Comprensión de los conceptos teóricos. Aplicación de estos conceptos a la resolución de problemas prácticos. Análisis crítico de los resultados numéricos. Comunicación escrita. 	45
• Prácticas	 Comprensión de los conceptos teóricos. Aplicación de estos conceptos a la resolución de problemas prácticos. Habilidad para usar y desarrollar software para robots móviles. Análisis crítico de los resultados experimentales. Comunicación oral y escrita. 	30
• Proyecto	 Habilidad para usar y desarrollar software para robots móviles. Análisis crítico de los resultados experimentales. Robustez de funcionamiento. Autonomía y habilidad para resolver problemas. Trabajo en equipo. Comunicación oral y escrita. 	25

Calificaciones

Convocatoria ordinaria

El peso de cada una de las actividades de evaluación será el siguiente:

- Teoría (45%)
 - Cuestionarios: 5%
 - o Prueba intersemestral: 10%
 - Examen final: 30%
- Laboratorio (55%)
 - o Prácticas: 30%
 - o Proyecto: 25%

La calificación final se calculará atendiendo a estas **restricciones**:

- La nota del examen final debe ser mayor o igual que 4 sobre 10 puntos.
- La media ponderada de teoría debe alcanzar el 5 sobre 10.
- La media ponderada de laboratorio debe ser al menos un 5 sobre 10.

Si se verifican todas las restricciones, la calificación final de la asignatura se obtendrá según las ponderaciones indicadas anteriormente. En caso contrario, será la mínima de las tres restricciones.

Convocatoria extraordinaria

Se realizará un examen extraordinario que sustituirá al examen final de la convocatoria ordinaria. Si el laboratorio está aprobado, se conservarán todas las demás notas; en caso contrario, se deberá realizar un nuevo proyecto individual y repetir todas aquellas prácticas que estén suspensas. La calificación final se obtendrá de la misma forma que en la convocatoria ordinaria y atendiendo a las mismas restricciones.

Normativa

La asistencia a clase es obligatoria según el Artículo 93 del Reglamento General de la Universidad Pontificia Comillas y el Artículo 6 de las Normas Académicas de la Escuela Técnica Superior de Ingeniería (ICAI). El incumplimiento de esta norma, que se aplicará de forma independiente para las sesiones de teoría y laboratorio, puede acarrear las siguientes consecuencias:

- Los alumnos que no asistan a más del 15% de las sesiones de teoría podrán perder el derecho a presentarse al examen final de la convocatoria ordinaria.
- La ausencia a más del 15% de las sesiones de laboratorio puede impedir presentarse a lo exámenes de las convocatorias ordinaria y extraordinaria. En cualquier caso, las faltas no justificadas a sesiones de laboratorio serán penalizadas en la evaluación.

Los alumnos que cometan una irregularidad en cualquier actividad calificada recibirán una nota de cero en la actividad y se abrirá un procedimiento disciplinario (cf. Artículo 168 del Reglamento General de la Universidad Pontificia Comillas).

PLAN DE TRABAJO Y CRONOGRAMA

Actividades	Fecha de realización	Fecha de entrega
Cuestionarios	En cada clase teórica	
Prueba intersemestral	Semana 8	
Examen final	Periodo de exámenes ordinarios	
Prácticas de laboratorio	Semanalmente	
Estudio de los contenidos teóricos	Después de cada clase	
Resolución de problemas propuestos	Semanalmente	
Preparación de las sesiones de laboratorio	Antes de cada sesión	
Elaboración de informes de laboratorio		La semana siguiente a la finalización de la práctica
Proyecto final	Desde la semana 11	La última semana

Preparación de la prueba intersemestral	Una semana antes del examen	
Preparación del examen final	Abril	

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- Apuntes y presentaciones de la asignatura (disponibles en Moodle).
- R. Siegwart, I. R. Nourbakhsh y D. Scaramuzza, Introduction to Autonomous Mobile Robots, 2^a Ed., MIT Press, 2011. ISBN-13: 978-0-262-01535-6
- S. Thrun, W. Burgard y D. Fox, Probabilistic Robotics, 1a Ed., MIT Press, 2006. ISBN-13: 978-0-262-20162-9
- Robot Operating System (ROS 2), [En línea]. Disponible: https://www.ros.org/

Bibliografía Complementaria

- B. Siciliano y O. Khatib (eds.), *Springer Handbook of Robotics*, 2^a Ed., Springer-Verlag Berlin Heidelberg, 2016. ISBN-13: 978-3-319-32550-7
- K. M. Lynch y F. C. Park, *Modern Robotics: Mechanics, Planning and Control*, 1^a Ed., Cambridge University Press, 2017. ISBN-13: 978-1-107-15630-2
- S. M. LaValle, Planning Algorithms, 1a Ed., Cambridge University Press, 2006. ISBN-13: 978-0-521-86205-9
- P. Corke, *Robotics, Vision and Control: Fundamental Algorithms in MATLAB*, 2^a Ed., Springer International Publishing, 2017. ISBN-13: 978-3-319-54412-0
- J. Lospinoso, C++ Crash Course: A Fast-Paced Introduction, 1a Ed., No Starch Press, 2019. ISBN-13: 978-1-593-27888-5
- CoppeliaSim, [En línea]. Disponible: https://www.coppeliarobotics.com/

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792