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Summary 

This project improves the scalability of the Reference Electrification Model (REM) by 

replacing its brute-force clustering step with a faster and technically feasible algorithm. The 

new method iteratively merges customer groups using spatial proximity and technical 

constraints, balancing cost and feasibility. The solution was developed on a dataset of 10,000 

customers and tested on a dataset of more than 250,000 customers and achieved notable 

performance gains. Compared to the original REM output, the new approach reduced the 

cost per client while also cutting the total runtime. 

Key words: REM, clustering, PRIM, minimum spanning tree (MST), Voltage drop 

1. Introduction 

Access to electricity plays a central role in improving quality of life and economic 

opportunity. However, many remote and rural areas still lack reliable energy access. 

Planning electrification in these settings is a complex task that requires balancing 

technical constraints, infrastructure costs, and social needs. Traditional planning tools 

often struggle with scalability, making it difficult to adapt quickly to new data or changes 

in policy. 

One of the most detailed planning tools available is the Reference Electrification Model 

(REM), which simulates the cost-optimal electrification strategy for each individual 

building. It decides whether each location should be connected to the main grid, served 

by a mini-grid, or powered through a standalone system. Although REM offers high-

resolution results, its computational demands are extremely high. The core of this 

challenge lies in its clustering algorithm, which evaluates countless groupings of 

potential customers to find the most efficient network layout. This brute-force approach 

often requires several days of computation to produce a single output. 

This project proposes an improved approach that improves the technical accuracy of 

REM while drastically reducing the time needed to generate a solution. By redesigning 

the clustering phase with artificial intelligence techniques and efficient heuristics, this 

new method enables faster, scalable, and flexible electrification planning. 

2. Project Definition 

The project focuses on reengineering the clustering phase of the REM, which is 

responsible for grouping buildings into electrification units. The original approach 

attempts to evaluate all possible combinations of customer groupings and is extremely 

slow. Instead, this new method begins with each customer as an independent unit and 

incrementally merges them into larger clusters if doing so leads to a lower overall system 

cost. 

The merging decision is based on three factors: spatial proximity, electrical feasibility, 

and economic gain. For each proposed merge, the algorithm verifies that the chosen 

transformer can handle the combined demand and that voltage drop limits are respected 



along the cable layout. If these conditions are met and the merge leads to a reduction in 

total infrastructure cost, it is accepted. 

The overall process is iterative: clusters are selected randomly to avoid repetitive 

patterns, and the algorithm continues merging until no further cost-saving opportunities 

remain. This local, greedy approach avoids the need to explore every possibility, 

drastically reducing runtime while maintaining practical feasibility. 

3. System Description 

Each cluster in the system is defined by its customer’s energy demand, its geographical 

center, and the internal network layout that connects all customers to a shared 

transformer. The layout is constructed using Prim’s algorithm, which builds a minimum 

spanning tree that minimizes total cable length while ensuring every customer is 

connected. The transformer, located at the root of the layout, distributes power to all 

customers in the cluster. 

The algorithm checks that the transformer can supply the total cluster demand and 

calculates the voltage drop along the network. It then searches for a cable type that keeps 

the drop within limits, and among the feasible options, selects the cheapest one to ensure 

cost-efficiency. 

To further optimize the process, the algorithm only considers a small number of nearest 

neighbors for merging, reducing computational overhead while maintaining quality 

results. This neighborhood search is performed using spatial indexing, allowing the 

method to scale to national datasets with hundreds of thousands of customers. 

 

Electric Grid Solution 

4. Results 

The algorithm was first validated on a development-scale dataset of 10,000 clients, 

where it successfully generated technically viable electrification plans while reducing 

computation times compared to the original REM implementation. This smaller test case 

allowed for fine-tuning of merging heuristics, voltage drop validation, and cable layout 

strategies. The real test, however, came with the national-scale dataset containing 

250,000 customers.  



 

Statistics Comparison Versus Dataset 250,000 Customers 

In this scenario, the proposed algorithm was able to cluster and connect every single user, 

achieving full coverage, unlike the baseline REM model, which left more than 1,400 

clients unserved due to feasibility constraints. This comprehensive coverage was 

achieved while ensuring compliance with transformer loading limits and voltage drop 

regulations. Furthermore, the infrastructure design showed high levels of 

standardization: 86.7% of the deployed transformers were 160 kW units (which has the 

cheapest cost per kW), and almost 99% of the cable length consisted of LV-10mm², the 

cheapest cable in the catalog. 

The total runtime was reduced from approximately seven hours in the original REM to 

just three hours and seventeen minutes using the new approach, representing a 

performance improvement of over 50%. This consistency across the system significantly 

simplifies procurement, logistics, and future maintenance, while also reducing overall 

network complexity. 

5. Conclusions 

The proposed algorithm delivers significant improvements in both technical feasibility 

and practical scalability, making it a robust alternative to the original REM clustering 

approach. Its localized merging strategy, guided by spatial heuristics and electrical 

constraints, replaces brute-force enumeration with a streamlined process capable of 

handling hundreds of thousands of customers efficiently.  

The results demonstrate that full client coverage can be achieved without sacrificing 

performance or violating technical thresholds. Moreover, the high standardization in 

component selection reduces costs and simplifies the rollout of rural electrification 

infrastructure. By drastically shortening computation times, this method makes high-

resolution planning tools like REM suitable for national-scale deployments, enabling fast 

simulations and agile adaptation to policy or demographic changes. 

Looking forward, this work opens the path toward integrating AI models such as 

encoder-decoder architectures or Graph Neural Networks, which could learn from 

generated layouts and provide instant configuration recommendations. Such future 

systems could combine spatial data, electrical simulation, and real-time optimization, 

moving rural electrification planning into a new era of intelligence and speed. 
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Resumen 

Este proyecto mejora la escalabilidad del Reference Electrification Model (REM) al sustituir 

su fase de agrupamiento por fuerza bruta por un algoritmo más rápido y técnicamente viable. 

El nuevo método fusiona iterativamente grupos de clientes utilizando criterios de proximidad 

espacial y restricciones técnicas, equilibrando coste y viabilidad. La solución se desarrolló 

sobre un conjunto de datos de 10,000 clientes y se probó en otro de más de 250,000 clientes, 

logrando mejoras notables en rendimiento. En comparación con la salida original de REM, 

el nuevo enfoque redujo tanto el coste por cliente como el tiempo total de ejecución. 

Palabras clave: REM, agrupamiento, PRIM, árbol de recubrimiento mínimo (MST), caída 

de tensión 

1. Introducción 

El acceso a la electricidad desempeña un papel central en la mejora de la calidad de vida 

y las oportunidades económicas. Sin embargo, muchas zonas rurales y remotas aún 

carecen de un acceso fiable a la energía. Planificar la electrificación en estos contextos 

es una tarea compleja que requiere equilibrar restricciones técnicas, costes de 

infraestructura y necesidades sociales. Las herramientas tradicionales de planificación 

suelen tener dificultades de escalabilidad, lo que dificulta su adaptación ágil a nuevos 

datos o cambios de política. 

Una de las herramientas de planificación más detalladas es el Reference Electrification 

Model (REM), que simula la estrategia de electrificación más rentable para cada edificio 

individual. Decide si cada ubicación debe conectarse a la red principal, servirse mediante 

una mini-red o alimentarse a través de un sistema autónomo. Aunque REM ofrece 

resultados de alta resolución, sus exigencias computacionales son extremadamente 

elevadas. El núcleo de este desafío radica en su algoritmo de agrupamiento, que evalúa 

un número enorme de combinaciones posibles de clientes para encontrar la disposición 

de red más eficiente. Este enfoque por fuerza bruta puede requerir varios días de cálculo 

para generar una única salida. 

Este proyecto propone un enfoque mejorado que aumenta la precisión técnica del REM 

y reduce drásticamente el tiempo necesario para obtener una solución. Al rediseñar la 

fase de agrupamiento con técnicas de inteligencia artificial y heurísticas eficientes, este 

nuevo método permite una planificación de electrificación más rápida, escalable y 

flexible. 

2. Definición del Proyecto 

El proyecto se centra en rediseñar la fase de agrupamiento del REM, responsable de 

agrupar edificios en unidades de electrificación. El enfoque original intenta evaluar todas 

las combinaciones posibles de agrupamientos de clientes y es extremadamente lento. En 

su lugar, este nuevo método comienza tratando cada cliente como una unidad 



independiente y los fusiona progresivamente en grupos más grandes si ello conduce a 

una reducción del coste total del sistema. 

La decisión de fusionar se basa en tres factores: proximidad espacial, viabilidad eléctrica 

y ganancia económica. Para cada fusión propuesta, el algoritmo verifica que el 

transformador seleccionado pueda manejar la demanda combinada y que se respeten los 

límites de caída de tensión a lo largo del trazado del cable. Si estas condiciones se 

cumplen y la fusión reduce el coste de infraestructura, se acepta. 

El proceso global es iterativo: los clústeres se seleccionan aleatoriamente para evitar 

patrones repetitivos, y el algoritmo continúa fusionando hasta que no queden más 

oportunidades de ahorro de costes. Este enfoque local y codicioso evita la necesidad de 

explorar todas las posibilidades, reduciendo drásticamente el tiempo de cálculo sin 

comprometer la viabilidad técnica. 

3. Descripción del Sistema 

Cada clúster en el sistema se define por la demanda energética de sus clientes, su centro 

geográfico y el trazado interno de red que conecta a todos los clientes con un 

transformador compartido. El trazado se construye utilizando el algoritmo de Prim, que 

genera un árbol de recubrimiento mínimo que minimiza la longitud total del cableado y 

asegura que todos los clientes estén conectados. 

El algoritmo comprueba que el transformador pueda abastecer la demanda total del 

clúster y calcula la caída de tensión a lo largo de la red. Luego busca un tipo de cable 

que mantenga la caída dentro de los límites y, entre las opciones viables, selecciona el 

más barato para garantizar la rentabilidad. 

Para optimizar aún más el proceso, el algoritmo solo considera un número reducido de 

vecinos más cercanos al momento de fusionar, lo que reduce la carga computacional 

manteniendo resultados de alta calidad. Esta búsqueda por vecindad se realiza mediante 

indexación espacial, lo que permite que el método escale a conjuntos de datos nacionales 

con cientos de miles de clientes. 

 

Cluster Layout Using Prim’s Algorithm: Displays the minimum spanning tree connecting all customers to the 

transformer with minimal cable lengt 

4. Resultados 

El algoritmo fue validado inicialmente en un conjunto de datos de desarrollo con 10,000 

clientes, donde logró generar planes de electrificación técnicamente viables y redujo los 

tiempos de cálculo en comparación con la implementación original del REM. Este caso 

de prueba más pequeño permitió ajustar las heurísticas de fusión, la validación de la 



caída de tensión y las estrategias de trazado de cables. Sin embargo, la verdadera prueba 

vino con el conjunto de datos a escala nacional, que contenía 250,000 clientes. 

 

Comparación entre Solución Original y Propuesta por el Algoritmo 

En este escenario, el algoritmo propuesto logró agrupar y conectar a todos los usuarios, 

alcanzando una cobertura total, a diferencia del modelo REM original, que dejó sin 

servicio a más de 1,400 clientes debido a restricciones de viabilidad. Esta cobertura 

completa se logró cumpliendo con los límites de carga de los transformadores y las 

regulaciones de caída de tensión. Además, el diseño de infraestructura mostró altos 

niveles de estandarización: el 86.7% de los transformadores desplegados eran unidades 

de 160 kW (el coste más barato por kW), y casi el 99% de la longitud de cable utilizada 

fue LV-10mm², el más barato del catálogo. 

El tiempo total de ejecución se redujo de aproximadamente siete horas en el REM 

original a solo tres horas y diecisiete minutos con el nuevo enfoque, lo que representa 

una mejora de rendimiento de más del 50%. Esta consistencia en el sistema simplifica 

notablemente la adquisición de componentes, la logística y el mantenimiento futuro, al 

tiempo que reduce la complejidad de la red. 

5. Conclusiones 

El algoritmo propuesto aporta mejoras significativas tanto en viabilidad técnica como en 

escalabilidad práctica, posicionándose como una alternativa robusta al enfoque de 

agrupamiento original del REM. Su estrategia de fusiones localizadas, guiada por 

heurísticas espaciales y restricciones eléctricas, sustituye la enumeración por fuerza bruta 

con un proceso optimizado capaz de manejar cientos de miles de clientes de forma 

eficiente. 

Los resultados demuestran que es posible alcanzar una cobertura total de clientes sin 

sacrificar el rendimiento ni violar límites técnicos. Además, la alta estandarización en la 

selección de componentes reduce costes y simplifica el despliegue de infraestructuras de 

electrificación rural. Al acortar drásticamente los tiempos de cálculo, este método hace 

que herramientas de planificación de alta resolución como REM sean aptas para 

implementaciones a escala nacional, permitiendo simulaciones rápidas y adaptación ágil 

ante cambios demográficos o políticos.  

De cara al futuro, este trabajo abre la puerta a la integración de modelos de IA como 

arquitecturas encoder-decoder o Graph Neural Networks, que podrían aprender de los 

diseños generados y ofrecer recomendaciones instantáneas de configuración. Estos 

sistemas futuros podrían combinar datos espaciales, simulación eléctrica y optimización 

en tiempo real, llevando la planificación de electrificación rural a una nueva era de 

inteligencia y velocidad. 
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1. INTRODUCTION 

1.1. CONTEXT AND MOTIVATION 

Electricity access is essential for development, as it 

supports basic services like healthcare, education, 

and communication, and enables economic 

activities such as lighting, refrigeration, and digital 

tools. Without it, communities face serious 

limitations and miss many opportunities to improve 

their quality of life (LHer et al. 2023). 

Despite progress in recent decades, rural and remote 

areas often remain unelectrified due to isolation, low 

population density, and limited infrastructure. 

Electrifying these regions involves complex trade-

offs between cost, technical feasibility, and diverse 

user needs, while also requiring adaptability to 

changes in demand or policy. 

The Reference Electrification Model (REM) is a 

detailed planning tool that helps determine the least-

cost option for each user—grid extension, mini-

grid, or standalone system—based on spatial and 

demand data. However, its detailed clustering 

process is computationally intensive and can take 

several days or even weeks for large datasets, 

limiting its responsiveness. 

Improving REM’s performance, particularly in the 

clustering phase which is the bottleneck of the 

computational time of the algorithm, is key to 

enabling faster and more flexible planning. This 

phase is based on a brute-force approach that 

evaluates all possible customer groupings, making it 

extremely time-consuming. A more efficient model 

would support real-time decision-making, scenario 

testing, and broader stakeholder engagement. These 

improvements directly contribute to the 

achievement of several Sustainable Development 

Goals, especially SDG 7 (affordable and clean 

energy), SDG 1 (no poverty), and SDG 10 (reduced 

inequalities), by accelerating access to modern 

energy in underserved areas. 

1.2. OBJECTIVES 

The main objective of this project is to improve the 

efficiency and scalability of the REM clustering 

phase using artificial intelligence (AI) techniques. 

This involves designing and testing new clustering 

strategies that can reduce execution time while 

preserving or improving the quality of the resulting 

electrification plans. 

The work focuses on three specific goals: first, to 

implement and compare different clustering 

algorithms; second, to define and evaluate 

meaningful metrics that assess the quality of these 

clustering in both technical and economic terms; 

and third, to apply the improved approach to a large-

scale dataset not used during training, in order to test 

the model’s generalization ability. This final step is 

essential to validate the robustness of the proposed 

solution in real-world settings. 

1.3. PLANNING AND ECONOMIC FEASIBILITY 

The project was implemented using open-source 

tools and executed on the Instituto de Investigación 

Tecnológica (IIT) high-performance computing 

infrastructure at Universidad Pontificia Comillas, 

ensuring low development cost and high scalability. 

Testing was structured in two phases: an initial 

prototype with 10,000 customers to verify 

performance and tune parameters, followed by 

deployment on a national dataset with over 250,000 

customers. 

The proposed method significantly reduces runtime 

by replacing REM’s brute-force logic with spatially 

constrained heuristics and local merging decisions. 

This improves responsiveness and lowers the 

computational burden, enabling broader use of 

REM in real-time or iterative planning contexts. 

Moreover, the final output achieves a lower cost per 

client and per kW than the original configuration, 

confirming the practical viability of the approach in 

economic terms. 

1.4. STRUCTURE OF THE THESIS 

This thesis is structured as follows. Section 2 

reviews the state of the art, focusing on the main 

characteristics and limitations of the REM and its 
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clustering component within the broader context of 

rural electrification tools. Section 3 presents the 

proposed methodology, including the technical 

details of the algorithm. Section 4 describes the 

experimental framework, covering the datasets 

employed, the configuration of the simulations, and 

the specific testing phases. Section 5 discusses the 

results, comparing different configurations in terms 

of runtime, infrastructure cost, and network design. 

Finally, Section 6 presents the main conclusions and 

outlines future research directions that build on the 

findings of this work. 

2. STATE OF THE ART 

The REM is the most detailed and technically 

rigorous tool for electrification planning at the 

building level (Ciller et al., 2019). Its key innovation 

is that it models every individual household or 

facility and determines the least-cost way to 

electrify it, whether through grid extension, a local 

mini-grid, or a standalone system. At the heart of 

REM lies its clustering phase, which is responsible 

for grouping nearby customers into electrification 

units. This phase is where most of REM’s 

computational burden occurs. 

REM uses a fully brute-force approach: it explicitly 

evaluates all possible combinations of customer 

groupings to identify the configuration that 

minimizes total cost. For each possible cluster, it 

recalculates infrastructure costs, including cable 

lengths, transformer selection, and load distribution. 

It does not rely on approximations, learned rules, or 

pre-filtering. Every possible merge is tested, and 

every potential configuration is compared. This 

means that for even a modest number of buildings, 

the number of combinations explodes, making the 

process extremely time-consuming. The algorithm’s 

merging logic is greedy, but each decision is backed 

by a full recalculation of technical and economic 

feasibility, meaning that no shortcuts are taken. 

While this brute-force nature ensures optimality in 

many local decisions, it makes REM fundamentally 

hard to scale (González, 2024). 

In contrast, geospatial tools such as OnSSET adopt 

more scalable, high-level approaches. OnSSET uses 

settlement-level demand data combined with 

heuristic rules and regression-based cost models to 

choose between grid extension, mini-grids, or 

standalone solar systems. This makes it suitable for 

national-scale scenario analysis, though with 

significantly less technical detail. As discussed in 

recent studies, OnSSET’s modeling outcomes are 

highly sensitive to user-defined parameters and 

input assumptions, which can substantially affect 

the resulting technology mix (Sahlbert et al. 2023). 

Its speed and simplicity come at the cost of 

resolution and electrical accuracy, especially when 

compared to building-level models like REM. 

3. METHODOLOGY 

This algorithm addresses the challenge of the REM 

of planning rural electrification systems by 

proposing an iterative process that combines spatial 

clustering, cost minimization, and technical 

feasibility. The main objective is to group nearby 

customers into electrification units that can be 

connected to a single transformer, while minimizing 

infrastructure cost and ensuring that the resulting 

design complies with electrical and operational 

constraints. 

The process begins by treating each customer as an 

independent unit, each equipped with its own 

transformer. Each of these units is defined by its 

location (Coordinate X and Coordinate Y), demand 

(kW), and the corresponding infrastructure costs ($). 

From this initial state, the algorithm enters a loop 

where it searches for opportunities to merge small 

clusters into larger ones if doing so reduces the 

overall system cost. Merging decisions are based on 

cost-benefit evaluations that consider the sum of 

cable expenses, transformer costs, and technical 

constraints like allowable voltage drop. 

When merging clusters, the algorithm first checks 

whether there exists a transformer capable of 

handling the combined demand, in kW, of all 

customers within the proposed cluster. Only if a 

suitable transformer is available for the combined 
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demand does the algorithm proceed to evaluate the 

internal layout and technical feasibility of the new 

grouping.  

If a transformer meets the requirements, the 

algorithm determines the optimal location for the 

shared transformer. This location is computed as the 

demand-weighted centroid of the customers' 

coordinates, specifically, the average of the 

Coordinate X and Coordinate Y positions, each 

weighted by the respective customer's kW demand. 

 

Figure 1 - Transformer Location via Demand-Weighted 

Centroid: Shows how the transformer's position is calculated 

based on the weighted average of customer coordinates using 

their power demand 

Then, the method continues with the construction of 

the network layout within each cluster. To 

approximate how customers would be physically 

connected to the transformer, the algorithm 

generates a minimum spanning tree (MST) using 

Prim algorithm. This ensures that the internal layout 

of each cluster is realistic, reflecting the most 

efficient way to lay out cables between the 

transformer and the connected customers. The 

figure below illustrates a typical layout produced by 

the algorithm. 

 

Figure 2 - Cluster Layout Using Prim’s Algorithm: Displays 

the minimum spanning tree connecting all customers to the 

transformer with minimal cable length 

Then, the technical feasibility of the configuration is 

assessed based on voltage drop constraints. The 

voltage drop along the feeder is calculated segment-

by-segment, considering that loads are not evenly 

distributed but instead connected at discrete points. 

For each segment 𝑖, the current 𝐼𝑖 flowing through it 

is computed as a function of the total downstream 

demand. This current is then used to estimate the 

voltage drop: 

ΔVi = Ii ⋅ (r′ ⋅ cos φ + x′ ⋅ sinφ) ⋅ ΔLi 

Where 𝑟′ and 𝑥′ are the resistance and reactance per 

kilometer of the cable, 𝜑 is the power factor angle 

(cos𝜑 is 0.9) and Δ𝐿𝑖 is the length of the segment in 

kilometers. Summing the contributions of all 

segments gives the total voltage drop from the 

transformer to the furthest customer: 

Vtotal = ∑ ΔVi

n

i=1

 

The result is then normalized by the nominal system 

voltage (428 V in low-voltage systems) and 

compared against the maximum allowable drop:  

Vtotal

Vnom
≤ maximum allowable drop 

The result is then normalized by the nominal system 

voltage and compared against a maximum 

allowable voltage drop. This threshold was not 
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predefined but instead inferred by analyzing the 

original solution, where the calculated voltage drops 

suggested that the system was operating within a 

range of over- and under-voltage of 7%. This value 

was therefore adopted as the benchmark for 

evaluating the feasibility of new configurations. 

At this point, the algorithm evaluates the available 

cable types. From a catalog of candidates, it filters 

those that satisfy the voltage drop constraint. 

Among the viable options, the algorithm selects the 

cable with the lowest cost per kilometer. This cost-

efficiency often comes with a trade-off in electrical 

characteristics: cables with lower cost per unit 

length generally have higher resistance and 

reactance values, which can increase voltage drop. 

Conversely, cables with lower 𝑟′ and 𝑥′ values tend 

to be more expensive but are better suited for longer 

or higher-load segments due to their reduced 

impedance. The algorithm thus balances technical 

constraints and economic optimization by selecting 

the cheapest cable that still guarantees compliance 

with the voltage drop requirement. 

The algorithm begins by selecting a random cluster 

and identifying the 𝑛 nearest neighbors using a K-D 

tree (Anzola et al., 2018; Bentley, J. L., 1975), a 

spatial indexing structure optimized for fast nearest-

neighbor retrieval in multidimensional space. This 

approach avoids brute-force distance calculations 

and significantly improves efficiency when 

operating on large-scale datasets. Once the 

neighboring clusters are found, the algorithm 

generates all possible combinations among them 

and evaluates each potential merge. 

Each grouping is assessed based on two criteria: 

technical feasibility—ensuring transformer capacity 

and voltage drop limits are not exceeded—and 

overall infrastructure cost, which includes 

transformer and cable expenses. If a merge results 

in a lower total cost while satisfying all technical 

constraints, it is accepted and the clustering 

configuration is updated. 

Empirical results showed that setting 𝑛 = 4 yielded 

the best trade-off between computational efficiency 

and merge quality. This choice minimized execution 

time at scale while consistently producing lower-

cost network designs, thanks to more effective 

cluster combinations. 

This process is repeated iteratively. The clusters are 

processed in randomized order to prevent repetitive 

behavior and improve convergence. The algorithm 

stops when no further merges can be found that 

reduce the total cost of the system. 

3.1. PRIM  

Prim’s algorithm (Akinwale, 2022) is a well-

established method for constructing a MST, which 

in the context of electrification planning serves to 

connect a central transformer to all surrounding 

customer locations using the shortest total length of 

cable. By assuming that cable cost is proportional to 

Euclidean distance, the algorithm produces a 

network layout that minimizes infrastructure 

expenses while ensuring every customer is 

connected. 

The process starts by treating the transformer as the 

root of the network and iteratively grows the tree by 

identifying and connecting the closest customer 

location that has not yet been incorporated. At every 

iteration, the algorithm maintains a distinction 

between locations that are already part of the tree 

and those that are still pending. For each 

unconnected customer, it evaluates the shortest 

connection available to any node already in the 

network. The customer with the smallest such 

distance is selected, and a direct connection is 

established. This step-by-step, greedy approach 

guarantees that the tree expands in the most cost-

efficient way at every stage. 

Throughout this process, a record is kept of how 

each customer is connected to the rest of the 

network. Each point is assigned a unique parent 

node—the one it links to directly—resulting in a 

clear hierarchical structure rooted at the 

transformer. This tree structure ensures that the 

network is continuous and acyclic, which simplifies 

both the design and later maintenance. 
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To improve computational efficiency, the algorithm 

is implemented with a heap-based priority queue 

that keeps track of the current best candidate for 

expansion (Fredman & Tarjan, 1987). This reduces 

the cost of selecting the next node to 𝑂(log 𝑛) per 

operation, compared to 𝑂(𝑛) in a naïve 

implementation. However, this per-operation gain 

does not change the overall complexity in dense 

graphs. When every node can connect to nearly 

every other (as in Euclidean distance graphs), the 

number of potential edge updates still grows as 

𝑂(𝑛2), since each of the n nodes may require 

distance updates involving up to n neighbors. 

Thus, even with a heap, the total runtime remains 

𝑂(𝑛2 log 𝑛), but the practical performance is 

substantially improved. The heap reduces the 

number of full scans over the remaining nodes and 

makes local decisions more efficient. This 

optimization is crucial for handling large-scale 

problems involving hundreds or thousands of 

customers, where naïve approaches become 

computationally intractable. 

The MST constructed through Prim’s algorithm is 

especially valuable in applications that require clear 

and traceable network hierarchies. Since each node 

has a unique path back to the transformer, the 

structure supports efficient calculations of total 

cable requirements, cost estimates, and even 

technical assessments like load flow or voltage drop 

simulations. Moreover, it enables planners to 

simulate electricity distribution from the 

transformer outward and to visualize how demand 

aggregates as one moves up the tree. This makes the 

algorithm particularly useful for rural electrification 

projects, where infrastructure must be both low-cost 

and reliable across challenging geographic areas. 

3.1.1. OTHER APPROACHES 

Other layout strategies were also evaluated to 

compare their performance and practicality in rural 

electrification contexts. The main alternatives 

explored were: 

• Pure star: every customer is connected straight 

back to the transformer; it is trivial to generate 

and easy to phase in the field, but total trench 

length grows almost linearly with the number of 

customers. That translates into higher capital 

cost and no route redundancy. 

• Kruskal: In general, Prim is faster than Kruskal 

when the graph is dense. Kruskal needs to sort 

all edges first, which takes 𝑂(𝐸 log 𝐸) time 

(Kruskal, 1956). In fully connected graphs, 

where the number of edges 𝐸 is approximately 

𝑛2, this sorting phase dominates the runtime, 

growing as  𝑂(𝑛2 log 𝑛). Once sorted, Kruskal 

constructs the MST by iteratively adding the 

next shortest edge that does not create a cycle, 

using a disjoint-set data structure to manage 

connectivity. 

Although Kruskal produces a valid MST, it does 

not define a root node by default. In this project, 

a post-processing step was added to reconstruct 

a transformer-centered tree structure by 

traversing the MST and assigning a parent to 

each node based on proximity to the 

transformer. While this makes Kruskal usable 

for electrification modeling, it introduces extra 

computational overhead and complexity. 

Empirically, Prim consistently achieves faster 

execution times than Kruskal in dense spatial 

networks. Its ability to avoid global edge sorting 

and to exploit localized expansions through a 

heap structure makes it significantly more 

scalable in practice. The graph below illustrates 

the runtime differences between Prim and 

Kruskal. As the number of evaluated neighbors 

increases, and consequently more calls to the 

algorithms are triggered, the total computation 

time grows accordingly. Prim consistently 

outperforms Kruskal, particularly at scale. 
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Figure 3 - Runtime Comparison, Prim vs Kruskal: Compares 

the execution times of both algorithms for cluster layout 

generation, highlighting Prim’s superior performance on 

dense graphs. 

3.2. OTHER TESTED CLUSTERINGS 

During the development of the clustering 

component for rural electrification planning, 

various algorithmic strategies were explored in an 

attempt to replace the computationally intensive 

brute-force method used in the REM. These early 

efforts focused on adapting standard unsupervised 

learning algorithms to the task of grouping 

customers in a way that was both spatially coherent 

and technically feasible, particularly with regard to 

transformer capacity constraints and network layout 

requirements. 

The first method evaluated was DBSCAN (Density-

Based Spatial Clustering of Applications with 

Noise), selected for its ability to identify clusters of 

arbitrary shape without requiring the number of 

clusters to be predefined (Ester et al., 1996). This 

density-based approach initially appeared well-

suited for rural environments, where settlement 

patterns are often irregular and do not conform to 

uniform spatial distributions. The algorithm’s key 

parameters—𝜀 (the maximum distance between two 

points to be considered neighbors) and min_samples 

(the minimum number of points required to form a 

dense region)—offered some control over clustering 

behavior. However, in practice, DBSCAN proved 

difficult to calibrate across diverse geographic 

conditions. In densely populated rural centers, small 

𝜀 values produced reasonable results, but in sparser 

areas, much larger values were needed to capture 

any meaningful structure. Increasing 𝜀, however, 

significantly inflated computational costs, as the 

algorithm had to compute and compare more 

pairwise distances. Despite efforts to improve 

performance through a custom Python 

implementation and optimization of the region 

query step using spatial indexing, the clustering 

output remained unstable. A large number of 

customers were classified as noise, and cluster 

boundaries shifted unpredictably across runs. 

Ultimately, DBSCAN's sensitivity to parameter 

choice and its high runtime made it unsuitable for 

reliable use at scale. 

K-Means clustering was the second technique 

tested, selected for its computational efficiency and 

simplicity (Likas et al., 2003). The number of 

clusters was estimated by dividing the total demand 

of all customers by the capacity of the largest 

available transformer, which provided a rough 

upper bound. The algorithm then attempted to 

minimize intra-cluster variance by assigning 

customers to the nearest centroid and iteratively 

updating the centroids until convergence. Despite its 

speed, K-Means suffered from core limitations in 

this context. The algorithm assumes that clusters are 

convex and roughly spherical in Euclidean space—

an assumption that does not hold in rural 

environments shaped by terrain, road infrastructure, 

and spatial constraints. Moreover, K-Means is 

fundamentally a top-down algorithm, beginning 

with abstract centroids that may not correspond to 

physically or electrically meaningful positions. In 

multiple trials, K-Means created clusters that 

exceeded transformer capacities or violated network 

layout constraints. As a result, even though the 

method completed quickly, its outputs were often 

technically infeasible and economically suboptimal. 

A third method, Fuzzy C-Means (Ghosh & Dubey, 

2013), was briefly explored due to its ability to 

assign soft cluster memberships. This approach 

assigns each data point a degree of belonging to 

each cluster rather than forcing a binary assignment. 

Initially, this flexibility seemed promising, 

especially for areas where customer locations fell 

between multiple potential service zones. However, 
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the soft assignments conflicted with the hard 

requirements of electrification infrastructure. In this 

context, each customer must be connected to exactly 

one transformer, and fractional memberships have 

no physical or operational meaning. Attempts to 

convert the soft outputs into hard clusters—

typically by assigning each point to the cluster with 

the highest membership degree—led to uneven and 

unbalanced groupings. Some clusters exceeded the 

transformer’s capacity limits, while others failed to 

meet voltage drop constraints. In addition, the 

increased computational complexity introduced by 

maintaining membership degrees did not provide 

sufficient benefits to justify its use. 

4. EXPERIMENTS 

4.1. OBJETIVES 

The objective of the experiments is to assess the 

effectiveness of the clustering algorithm developed 

as part of this project. The experiments are intended 

to evaluate three main aspects: technical feasibility, 

cost efficiency and computational performance. 

The first goal is to determine whether the proposed 

method can generate valid cluster groupings that 

comply with electrical design constraints, 

particularly transformer capacity limits and voltage 

drop thresholds. Ensuring that each customer group 

is served by a suitable transformer and connected 

through feasible cable layouts is critical to guarantee 

that the resulting electrification plan could be 

implemented in practice. 

The second goal is to measure the extent to which 

the algorithm reduces overall infrastructure costs. 

These costs include both the cost of the transformers 

and of the cable required to connect all users within 

each cluster. A well-performing solution should 

strike a balance between minimizing the number of 

transformers deployed and controlling the total 

cable length, which directly affects the project’s 

financial viability. 

Finally, the third goal is to analyze the scalability 

and runtime behavior of the algorithm. By testing 

different configurations and input sizes, the 

experiments provide insight into how quickly the 

algorithm converges, how it responds to changes in 

parameters and whether it remains efficient when 

applied to large-scale national datasets. This aspect 

is particularly relevant for future real-world 

applications, where electrification planning tools 

must operate on datasets with hundreds of thousands 

of users. 

4.2. DATASETS 

The experiments were conducted using data from 

real rural electrification scenarios, more 

specifically, used in Rwanda. Each customer in the 

dataset is defined by two spatial coordinates, 

Coordinate X and Coordinate Y and a power 

demand expressed in kW; i.e., considering different 

types of consumers. These points are distributed 

over rural terrain with varying density patterns, 

including compact village centers as well as isolated 

households. This diversity is essential to test the 

algorithm’s ability to adapt its clustering logic to 

different spatial conditions. 

Two datasets were used in the experimental phase. 

The first one is a small instance of approximately 

ten thousand customers. This version served as a 

development benchmark to test the convergence and 

correctness of the merging algorithm. It enabled 

early debugging and the calibration of algorithmic 

parameters such as the neighborhood size and the 

stopping condition. Once the algorithm was 

validated at small scale, the second dataset—a full-

scale national simulation containing more than 

250,000 users—was employed. This large input 

allowed for robust testing of the algorithm’s runtime 

performance, scalability, and cost-effectiveness 

under real-world conditions. 

The transformers catalog used in the simulations 

consists of a series of standard transformer sizes, 

each with an associated cost and kW distribution 

capacity. The algorithm must choose, for each 

cluster, the smallest transformer that can safely 

serve the total demand of the group without 

violating capacity constraints. 
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Similarly, the cable catalog includes various options 

characterized by their electrical resistance, 

reactance, and cost per kilometer. These values 

determine not only whether a given cable can be 

used in a particular cluster, but also how much the 

connection will cost and what the voltage drop will 

be. The cable selected must meet both the thermal 

current requirement and the voltage constraint 

defined for the system. 

4.3. CONFIGURATION 

All simulations were executed on a high-

performance server from the Instituto de 

Investigación Tecnológica (IIT), equipped with two 

processors Intel(R) Xeon(R) Silver 4314, each 

offering 16 cores at 2.40 GHz, and 256 GB of RAM. 

During the experiments, the system allocated 8 

physical cores and approximately 94 GB of RAM to 

the Python process, as observed through system 

monitoring tools. The operating system was 

Windows Server, which manages resource 

distribution dynamically depending on concurrent 

usage. The algorithm was implemented and run 

using Python 3.12.2, with core packages including 

NumPy, pandas and SciPy.  

5. RESULTS 

The experimental evaluation is structured in two 

phases, corresponding to two datasets of increasing 

complexity and scale: one with 10,000 customers 

and another with 250,000 customers. This 

separation allows for a detailed analysis of the 

algorithm’s scalability, cost efficiency, and 

technical feasibility across different operational 

contexts. 

5.1. EVALUATION ON 10,000-CUSTOMER 

DATASET 

The first objective of the experimental phase was to 

ensure that the configurations generated by the 

algorithm were technically feasible. As a starting 

point, the original REM-based solutions were 

carefully analyzed to establish a baseline for 

comparison. This analysis revealed a pair of 

conditions that compromised their validity. First, 

some transformers were assigned a total demand 

that exceeded their rated capacity, making the 

configurations infeasible from an electrical 

engineering standpoint. Second, inconsistencies 

were found in the cable layout, where different types 

of cables were used along the same distribution line. 

Such mixing of cable types leads to uneven 

electrical performance and complicates both 

installation and maintenance, ultimately increasing 

operational risk and cost. Due to these issues, only 

the technically valid portion of the original solution 

was retained for comparison. This allowed for a fair 

evaluation of the proposed algorithm, focusing on 

both its feasibility and its potential to improve cost 

and scalability, as detailed in the table below where 

a proposed solution is compared to only a 42% of 

the whole solution using the 10,000 customers 

dataset. 

 

Table 1 - General Statistics Comparison Versus Dataset 

10,000 Customers 

Table 1 highlights the overall efficiency of the 

proposed solution in terms of both scale and cost, 

revealing a network architecture that is not only 

more expansive but also significantly more 

economical on a per-unit basis. Although the 

proposed solution entails a higher total investment 

in absolute terms, this is justified by its ability to 

serve a considerably larger user base. Specifically, 

it supports more than twice the number of clients 

compared to the original solution and delivers more 

than double the total installed power capacity in 

kilowatts. This broader coverage allows the network 

to spread infrastructure costs over a much larger set 

of beneficiaries, thereby achieving notable 

economies of scale. 

As a result, the average cost per client in the 

proposed solution is markedly lower— around $261 

versus $354—despite the higher total expenditure. 
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This reduction demonstrates a more efficient 

allocation of resources. Similarly, the cost per 

kilowatt installed also drops significantly, from 

$219.65 in the original solution to $182.82 in the 

proposed one.  

Beyond cost metrics, the structural characteristics of 

the network further underscore its superior design. 

The proposed solution not only increases the total 

number of clusters but also achieves a higher client 

density within each cluster. With an average of 

98.74 clients per cluster, compared to 65.28 in the 

original layout, each grouping serves a larger 

concentration of demand. This increased density is 

particularly advantageous from an engineering and 

operational standpoint. It means that each 

transformer, cable segment, and associated 

component is used more intensively, enhancing the 

utilization rate of capital equipment. 

Higher client density per cluster translates into 

reduced per-client infrastructure requirements. 

Transformers operate closer to their optimal 

capacity, minimizing underutilization, while cable 

lengths and distribution paths can be optimized to 

serve more endpoints within a compact area. This 

reduction in redundancy and distribution overhead 

contributes to better load balancing and system 

efficiency. Moreover, a well-concentrated layout 

simplifies maintenance and monitoring, as 

infrastructure is centralized rather than dispersed. 

 

Table 2 - Transformers Comparison Versus Dataset 10,000 

Customers 

The transformer distribution highlights one of the 

key advantages of the algorithm: it strongly favors 

the use of a single transformer type, resulting in a 

more scalable and cost-effective network 

configuration. Specifically, the proposed solution 

selects 160 kW units in 92.7% of cases (103 out of 

111), compared to only 57.7% (41 out of 71) in the 

original solution. This high degree of 

standardization reduces complexity during 

procurement and simplifies both deployment and 

maintenance across rural regions. 

The 160 kW transformer is also the most 

economical per unit of capacity, with a cost of $75 

per kW, versus $104 for 100 kW units and $138 for 

50 kW units. By concentrating usage on the most 

cost-efficient option, the Optimized Clustering 

Algorithm lowers the average cost per installed 

kilowatt and avoids the fragmentation seen in the 

original REM-based design. The result is a more 

homogeneous infrastructure that is easier to scale 

and replicate in national electrification efforts. 

 

Table 3 - Cables Comparison Versus Dataset 10,000 

Customers 

The proposed solution clearly outperforms the 

original configuration by standardizing almost 

entirely on the use of LV_10mm² cable, the cheapest 

option in the catalog at approximately $2.35 per 

meter. Out of a total of 111 cable segments, 110 

(99.1%) use LV_10mm², compared to only 13 out 

of 71 (18.3%) in the original design. This strong 

standardization not only lowers costs but also 

simplifies procurement and implementation. In 

contrast, the original solution relies heavily on 

thicker and more expensive cables: 49 segments 

(69.0%) are LV_25mm², while the remaining 

segments are spread across LV_50mm², 

LV_70mm², and LV_95mm², which can reach 

prices up to $14.51 per meter. This diversification, 

although potentially beneficial in addressing 

localized electrical constraints, results in a 

significantly higher overall cost for the network 

infrastructure. 

What makes the proposed design particularly 

efficient is its ability to maintain adequate technical 

performance while relying almost exclusively on 

the thinnest and least expensive cable. This implies 

a high degree of optimization in the layout, cluster 

sizing, and load distribution, effectively eliminating 
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the need for thicker conductors. The minimal use of 

LV_25mm² cable—only one segment (0.9%)—and 

the complete absence of higher cable sizes not only 

simplify procurement and reduce material costs but 

also streamline installation and maintenance 

processes. Ultimately, the proposed solution ensures 

compliance with voltage drop and thermal limits 

using minimal resources, yielding a substantially 

lower total cabling expenditure and demonstrating 

strong scalability for large-scale rural 

electrification. 

5.2. EVALUATION ON 250,000-CUSTOMER 

DATASET 

To assess the algorithm’s scalability and robustness 

under realistic, large-scale conditions, the second 

phase of the evaluation was conducted using a 

national dataset of over 250,000 customers. The 

comparative results are summarized below. 

 

Table 4 - Statistics Comparison Versus Dataset 250,000 

Customers 

Although the original solution appears slightly less 

costly in absolute terms—$69.39 million versus 

$72.49 million—this difference is largely explained 

by a critical omission: 1,400 customers remain 

unconnected. These clients were excluded under the 

assumption that they would be electrified 

separately, likely due to their geographic dispersion 

or high connection cost. However, internal 

estimates indicate that reaching these users already 

requires at least $1.4 million in additional 

infrastructure. Therefore, if these customers were to 

be connected, the total cost of the original solution 

would exceed the reported figure, eliminating its 

apparent cost advantage and positioning the 

proposed configuration as more comprehensive and 

economically competitive. 

In contrast, the proposed method connects the full 

set of 250,401 clients, achieving universal coverage 

without compromising technical feasibility. It does 

so with a streamlined infrastructure: 2,791 of the 

3,222 (86.7%) transformers deployed are 160 kW 

units—the most cost-efficient in the catalog—and 

nearly 99% of the total cable length uses LV-

10mm², the cheapest available option. This high 

degree of standardization simplifies logistics, 

reduces procurement and installation effort, and 

minimizes complexity during operation and 

maintenance. The original design, on the other hand, 

uses a more diverse set of transformer sizes and 

cable types, including a substantial share of thicker 

and more expensive conductors. 

The difference in computational efficiency is also 

substantial. The original REM-based solution 

required approximately 7 hours and 5 mins to 

generate the full network layout, following a brute-

force evaluation of cluster combinations. In 

contrast, the proposed algorithm, based on localized 

merging and spatial heuristics, completes the same 

task in just 3 hours and 17 minutes. This represents 

more than a 50% reduction in runtime, making the 

method far more practical for large-scale 

deployments, policy scenario testing, or iterative 

design processes.  

6. CONCLUSIONS AND FUTURE 

WORK 

This thesis demonstrates that the application of 

artificial intelligence techniques can substantially 

improve the scalability, cost-efficiency, and 

practical usability of high-resolution electrification 

planning tools. By reengineering the clustering 

phase of the REM, this project replaces its brute-

force, computationally intensive logic with an 

iterative, spatially guided merging algorithm that 

respects electrical and economic constraints. The 

new method successfully improves the technical 

precision of the REM while reducing runtime and 

simplifying infrastructure design. 

The algorithm was tested on two levels: a 

development-scale dataset of approximately 10,000 
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users and a full-scale national simulation with 

250,401 customers. In both cases, it generated 

technically valid electrification plans that fully 

complied with transformer loading limits and 

voltage drop thresholds.  

The proposed algorithm demonstrated strong 

performance improvements in layout compactness, 

cluster sizing, and economic efficiency, consistently 

producing feasible networks while significantly 

reducing cost compared to REM’s original 

clustering method. At large scale, the algorithm 

delivered substantial improvements in 

computational performance and scalability, 

reducing total runtime by over 50%. This efficiency 

gain makes the method practical for use in large-

scale electrification efforts, real-time scenario 

testing, and iterative policy planning. The resulting 

network also displayed a high degree of 

standardization in component selection, which 

facilitates procurement, installation, and long-term 

maintenance. 

The improvements observed in this work are not 

limited to cost and coverage. By eliminating the 

need for brute-force enumeration of customer 

groupings and replacing it with local decisions 

based on spatial heuristics, the algorithm opens the 

door to much faster and more scalable electrification 

planning. This methodological shift allows detailed, 

building-level models like the REM to be applied at 

national scale in a fraction of the time. 

One of the most promising directions for future 

research in rural electrification system design is the 

integration of models capable of learning optimal 

connection configurations while accounting for 

technical and economic constraints. In particular, 

developing neural networks that can infer feasible 

and cost-effective layouts based on past data could 

transform the current heuristic-based process into a 

more adaptive and intelligent framework. 

The algorithm proposed in this project relies on a 

greedy, rule-based approach that iteratively merges 

customer clusters based on cost-benefit evaluations 

and electrical feasibility. While effective, this 

strategy follows a fixed decision path and lacks the 

flexibility to generalize or adapt rapidly to new 

scenarios. A promising model architecture would be 

an encoder-decoder neural network, where the 

encoder processes geospatial and demand data from 

the input region and the decoder generates a 

proposed network configuration that adheres to the 

constraints (Salehi & Davulcu, 2019). Another 

compelling direction is the use of Graph Neural 

Networks, which are especially well-suited for 

modeling electrical grids (Scarselli et. al, 2008; 

Corso et. al, 2024). 

In summary, this work confirms that artificial 

intelligence can serve as a catalyst for transforming 

how rural electrification systems are planned, 

designed, and optimized. By maintaining the 

technical depth of the REM while overcoming its 

computational limitations, the proposed algorithm 

offers a concrete, feasible, scalable, and 

economically pathway toward universal energy 

access. It lays the foundation for future models that 

are not only more intelligent and adaptive, but also 

capable of supporting real-time decision-making 

across entire regions. 
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