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Abstract

Stock price prediction remains a foundational and complex task in analytical fi-
nance, with the inherent volatility of markets and the limitations of technical
indicators spurring the integration of sentiment analysis. Large Language Mod-
els (LLMs), such as encoder-only FinBERT, are garnering increased attention for
their potential to develop more accurate and adaptive forecasting models in syn-
ergy with machine learning (ML) algorithms. This study investigates the impact of
integrating FinBERT-derived sentiment from Reuters financial headlines alongside
technical indicators on the predictive performance of Long Short-Term Memory
(LSTM) models for IBEX-35 banking sector stock prices.

LSTM models were trained on an extensive set of technical indicators from May
2020 to May 2025, where closing price served as target variable of the research.
Through extensive experimentation across various lookback windows and meticu-
lous hyperparameter tuning, the findings consistently demonstrate that FinBERT-
derived sentiment acts as a differential factor, capturing underlying market dy-
namics unobservable through traditional indicators alone, significantly improving
LSTM model performance across metrics R2 , RMSE, and MAE. The distinct
contribution of this research lies in the application of LSTM models, Reuters news
collection, and FinBERT sentiment extraction to the largely underexplored Span-
ish index, the IBEX-35, as well as solely including sentiment from company-specific
news. Overall results underscore sentiment’s significant potential for enhancing
stock price prediction and warrant further exploration of its impact and interplay
with other models within the IBEX-35.

Keywords: sentiment analysis; stock price prediction; encoder-only model;
FinBERT; technical indicators; LSTM model; IBEX-35
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Chapter 1

Forecasting the Unpredictable:
Framing the Complexity of Stocks

What if the next financial shock is already buried in today’s headlines? From
seasoned professionals to casual traders, every investor faces the same uncertainty:
how will stock prices fluctuate next? Markets rise and fall on the echoes of earnings
reports, the tremors of geopolitical events, and the shifts of public sentiment.
This unpredictable landscape turns forecasting into more than a mathematical
challenge. It becomes a quest to understand human behavior, economic structure,
and news impact.

Stock price prediction remains one of the most foundational and complex tasks
in analytical finance (Kumbure et al. 2022). Volatility of stock prices is not the
exception, but the rule (Chang et al. 2024) as illustrated by Figure 1.1. The graph
depicts the market volatility of the IBEX-35 index in perspective, highlighting how
disruptive events from political crises to scientific breakthroughs have repeatedly
generated unpredictable price swings throughout the years. Hence, the real chal-
lenge for investors and researchers lies in designing adaptable forecasting models
that are not only accurate, but, more importantly, capable of recognizing patterns
and foreseeing market tendencies (Chang et al. 2024). In this direction, numerous
statistical, ML, Deep Learning (DL), and hybrid approaches share a common goal:
to find key variables that influence market dynamics with the potential to improve
the chances of achieving higher risk-adjusted returns than the market (Chatterjee
et al. 2021).

The pursuit of increasing predictive accuracy has led to the widespread adop-
tion of ML and DL models in stock price prediction (D. Kumar et al. 2022). The
ability of models like Support Vector Machines (SVM), Random Forests (RF) or
LSTM models to uncover patterns in complex and noisy data, and to be nur-
tured with diverse input data makes them particularly appealing for these tasks
(Chakravorty 2023; Chatterjee et al. 2021). Yet while these algorithms have greatly
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CHAPTER 1. FORECASTING THE UNPREDICTABLE: FRAMING THE
COMPLEXITY OF STOCKS

Figure 1.1: Market volatility in perspective: The IBEX-35 index frequency of daily
price movements over the past three decades. (BME 2017)

evolved since the introduction of neural networks (NN) for financial purposes in
the early 1990s (Kamijo and Tanigawa 1990), their training on technical indica-
tors often limits their ability to provide consistent robust forecasts, particularly
when faced with unforeseen market shocks (Ma 2024). This limitation has moti-
vated the integration of technical indicators with sentiment analysis derived from
financial news, aiming to better capture market trends and achieve more accurate
predictions (Oriol 2023).

In this context, the development of Natural Language Processing (NLP) has
become crucial, enabling machines to understand human language and extract
emotional cues from different financial texts such as news articles, earnings reports,
and social media. Early sentiment analysis approaches based on lexicons and
keyword frequency have been superseded by a new generation of DL sentiment
models (Inserte et al. 2024). LLMs represent a significant leap forward, exhibiting
a far greater precision in detecting subtle tone changes, recognizing the influence
of the context and understanding complex linguistic structures compared to their
predecessors (Inserte et al. 2024). However, the presence of specific jargon and
nuances in the language requires further specialization in the sectors, which in the
financial context has led to the emergence of tailored Financial Large Language
Models (FinLLMs), such as FinBERT, FinGPT, and BloombergGPT (Li et al.
2023; Wang et al. 2024).

2



1.1. From Hypothesis to Horizon: This Work’s Purpose

The synergy between traditional ML algorithms applied to numerical data and
the ability of FinLLMs to extract underlying investor sentiment from financial
news holds immense potential for the development of more accurate and adaptive
forecasting models (Liu et al. 2023; Talazadeh and Perakovic 2024). Given that
each market has unique characteristics due to its specific configuration, tailored
approaches are necessary as even within a single market model performance can
considerably deviate across companies within the same industry (Todorov and
Sánchez-Lasheras 2023). Recognizing this phenomenon, this thesis aims to delve
into the unexplored banking sector of the IBEX-35, which has been experiencing
profound changes and shocks in recent years, such as the merger between Caixa
and Bankia in 2021, or the takeover bid by BBVA for Sabadell in 2025. The
objective of this research is to investigate and measure the differential impact
of integrating financial news sentiment analysis, derived from the encoder-only
FinBERT, a leading representative of foundational LLM architectures (Jun Gu
et al. 2024), with a robust LSTM framework to improve stock price prediction
accuracy within the Spanish financial market. The resulting analysis should help
towards answering the question ”Does integrating FinBERT-derived sentiment
analysis improve the performance of LSTM models for IBEX-35 banking sector
stock price prediction?”

1.1 From Hypothesis to Horizon: This Work’s

Purpose

The goal of this thesis is to analyze the impact of using sentiment in financial news
extracted by a prominent LLM architecture, encoder-only through the FinBERT
model, as input feature of an LSTM model to predict the stock prices of the
companies in the banking sector within the IBEX-35 index. The first step consists
of developing an LSTM model for each financial institution in the IBEX-35 using
the historical price data of the previous five years to predict its short-term stock
prices over a 1-day horizon, allowing to quantify the impact of sentiment analysis
in daily predictions (Chen and Kawashima 2024).

After developing the benchmark model, a comprehensive dataset of news head-
lines related to both the IBEX-35 index and the specific banking companies com-
prising it (namely Banco Sabadell, Bankinter, Santander, BBVA, CaixaBank and
Unicaja) will be collected from Reuters. News sentiment of the extended news
dataset is extracted with the FinBERT model. The resulting sentiment metrics
extracted from company-specific news will be correspondingly included as supple-
mentary input features into the previously developed benchmark LSTM models,
resulting in the creation of hybrid “LSTM+FinBERT” models for each banking

3
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institution.

As a last step, the initial models will act as benchmarks to assess the perfor-
mance of the “LSTM+FinBERT” hybrid models. The resulting analysis should
identify the different performance levels achieved by incorporating sentiment anal-
ysis from each LLM architecture, and quantify the impact of the inclusion of senti-
ment analysis in each of the cases, providing a clear answer to the research question
”Does integrating FinBERT-derived sentiment analysis improve the performance
of LSTM models for IBEX-35 banking sector stock price prediction?”

1.2 Motivation: Why Bring LLMs into the Mar-

ket?

Stock exchanges are shaped not only by numerical data but by perception, nar-
rative, and sentiment. News headlines and public commentaries, though not as
fundamental as technical indicators, have an important impact on price movements
and understanding of market trends (Oriol 2023). Any forecasting framework that
seeks to reflect market reality in such a complex environment requires a deep un-
derstanding and integration of unstructured text data (R. Kumar and K S 2024).
Traditional as well as modern models often rely purely on numerical features,
remaining language an underutilized source of predictive insight (Liu et al. 2023).

The rise of LLMs, specifically of domain-specific variants like FinBERT, Fin-
GPT, and BloombergGPT has made it possible to extract nuanced sentiment from
financial text with unprecedented precision (Li et al. 2023). Their ability to in-
terpret subtle shifts in tone and implications embedded in natural language is
transforming qualitative content into structured input data for forecasting models
(Liu et al. 2023). Despite their growing presence in numerous financial applica-
tions, the scope and unique composition of financial markets cause many potential
applications of these LLMs to remain unstudied, a gap that this study will revise
in section 2, focusing specifically on the Spanish stock market. While BERT ap-
proaches have been applied to the IBEX-35 (Consoli et al. 2022), the application
of specialized FinLLMs in this market remains largely uninvestigated.

Furthermore, the distinct architectures of LLMs have led to different ways
of processing textual data and extracting sentiment (Guo and Hauptmann 2024).
Although generative pretrained transformer (GPT) frameworks are gaining promi-
nence (Lee et al. 2025), this research focuses on encoder-only architectures, specif-
ically on FinBERT, which has consistently demonstrated its ability to enhance
stock price prediction across various indices (Jun Gu et al. 2024). Building on the
limited exploration of the IBEX-35 and prior successes of BERT-based emotion
classifiers in forecasting accuracy of this index (Consoli et al. 2022), this study aims

4



1.3. How This Thesis Is Built and Reasoned

to establish whether combining FinBERT with an LSTM model demonstrates su-
perior ability to capture underlying market behavior within the novel IBEX-35
banking sector, compared to a plain LSTM benchmark.

1.3 How This Thesis Is Built and Reasoned

Although the technical implementation and results will be detailed in the follow-
ing chapters, this section lays the conceptual and methodological foundation of
the thesis. The thesis adopts a quantitative methodology rooted in a deductive
reasoning approach. The deductive nature of the research derives from its struc-
ture, as the thesis is centered around quantifying the magnitude of the impact of
the encoder-only FinBERT architecture on improving stock price predictions. To
establish a comparative analysis, it is necessary to measure the change in accuracy
with respect to a benchmark LSTM model trained solely on technical indicators:
historical stock price, trading volume, highest price, lowest price, as well as trend
and volatility measures (Chen and Kawashima 2024).

For this purpose, the use of a quantitative framework is particularly suitable,
as it uses error metrics RMSE and MAE to objectively and rigorously compare the
performance (Kim et al. 2023) of the benchmark and hybrid models. The hybrid
models are created by incorporating sentiment scores as additional input features
to the baseline LSTM models. Sentiment is extracted from IBEX-35 and its listed
financial institutions relevant Reuters financial news headlines using FinBERT.
This methodological approach is designed to answer the thesis’ guiding question:
”Does integrating FinBERT-derived sentiment analysis improve the performance
of LSTM models for IBEX-35 banking sector stock price prediction?”.

1.4 A Roadmap Through This Thesis

The thesis is structured into five main sections. The first presents the introduction,
outlining the context of the problem, defining the research question, and setting
the objectives that will guide the project. The second section is dedicated to
reviewing the state of the art, focusing on the main lines of existing research
on stock price prediction, sentiment analysis in finance, and the use of LLMs in
combination with ML algorithms for forecasting purposes. The third part details
the methodology, deepening on the selected techniques, LSTM, FinBERT, the
data sampling and the overall implementation of the solution. The fourth block
describes the obtained results, comparing the performance of the baseline model
with the hybrid “LSTM+FinBERT” models and presenting the main findings on
the impact of endcoder-only LLM architectures on stock price prediction in the
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IBEX-35 banking sector. Lastly, comes the extraction of conclusions, derived
from interpreting and discussing the practical implications of the results, as well
as outlining lines of future work.
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Chapter 2

Blueprints and Building Blocks:
A Revision of the Evolving
Architecture of Stock Price
Prediction

2.1 The Elusive Crystal Ball: Navigating the

Labyrinth of Stock Price Prediction

2.1.1 Decoding the Market’s Pulse: An Introduction to
the Stock Price Enigma

Financial markets are complex systems, where stock prices are influenced by
company performance, economic indicators, market sentiment, and global events
among others. The derived volatility of the confluence of these factors makes stock
price prediction tasks notoriously challenging. The failure of traditional approaches
based on technical analysis, which solely focus on historical price data and trading
volume, to account for broader factors like market sentiment, investor psychology,
and macroeconomic shifts, significantly impacts the accuracy and robustness of
their predictions (Liu et al. 2023).

The limited accuracy of technical analysis can be explained with the adaptive
market hypothesis (AMH), developed by Andrew Lo in 2004. The AMH builds
on the efficient market hypothesis (EMH) developed by Eugene F. Fama in 1970,
which suggested that stock prices reflect all available information and can therefore
not be predicted using existing information (Lo 2004). Fama distinguished three
forms of market efficiency. The weakest form presumes historical prices are of
no help when forecasting future prices, since that information is already captured

7



CHAPTER 2. BLUEPRINTS AND BUILDING BLOCKS: A REVISION OF
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by the current stock price (Fama 1970). Hence, no approach based on technical
analysis can be expected to consistently outperform the market (Kumbure et al.
2022). The strongest form states that stock prices fully reflect all publicly avail-
able information, including fundamental data about economic conditions, political
events, or company-specific information, as well as insider information. This im-
plies that no investor, regardless of their insider knowledge or active management,
can achieve higher returns than the market (Fama 1970).

Over time, the EMH has been challenged by different calendar, technical and
fundamental market anomalies, such as turn-of-year, low price to sales or weekend
effects which generate momentum, overreactions and underreactions in the market
(Latif et al. 2011). Even Eugene Fama himself considered the strong-form market
efficiency rather extreme and not to accurately describe the real-world functioning
(Fama 1970). The doubts raised on the ability of models based on investor ra-
tionality to capture market anomalies led to the emergence of behavioral finance
(Shiller 2003). In this context, the AMH appeared acknowledging and explaining
the existence of anomalies in financial markets. The AMH argues that investors
act mainly rationally, though heightened market volatility can induce irrational
behaviors (Lo 2004). Technical analysis may result less effective when confronted
with rapid changes in the market, abnormal conditions or political upheavals, as
historical data does not account for these changes (Chen and Kawashima 2024).

In this context, recent research has highlighted the growing importance of sen-
timent analysis in predicting stock prices (Chen and Kawashima 2024)(Lakshya
et al. 2022). News sentiment provides insight into the market’s reaction to current
events, which may not be reflected in technical indicators derived from histor-
ical price and volume data, especially in unpredictable situations like political
upheavals or natural disasters. Analyzing the underlying emotions in financial
news can enhance prediction accuracy by reflecting market sentiment and investor
behavior (Chen and Kawashima 2024).

While the integration of sentiment analysis with modern ML techniques is very
promising to provide more accurate and reliable predictions (Kim et al. 2023),
technical indicators constitute the backbone of forecasting models (Chiekezie and
Toromade 2024). Research in stock price prediction based on historical data and
economic indicators has been evolving from classical time series models to ML
models (D. Kumar et al. 2022), although classical methods still remain essential
benchmarks for evaluating the performance and reliability of the newer predictive
systems (Chiekezie and Toromade 2024).

In the following section, we explore these classical methods in more detail.
From time series models that capture temporal dependencies in stock prices, the
focus will shift to several widely adopted ML algorithms, known for their flexibility
in integrating a broader range of input variables.

8



2.1. The Elusive Crystal Ball: Navigating the Labyrinth of Stock Price
Prediction

2.1.2 Yesterday’s Footprints, Tomorrow’s Forecast? A Look
at Technical Stock Prediction Methods

Stock price prediction has long been a key topic in financial modeling. For decades,
time series and econometric models have been widely used for forecasting, though
their limitations in handling complex market dynamics have led to the surge of
alternative models (Bao et al. 2025). ML algorithms emerged to try to capture
the volatility of stock price movements by focusing on modeling non-linear rela-
tionships and being more flexible in accommodating various types of input data
(Kahan and Thomas 2024).

Whispers in the Time Series: Unraveling Patterns with Classical Models

ARIMA Model in Stock Price Forecasting The ARIMA (Auto-Regressive
Integrated Moving Average) model is one of the most broadly used traditional
models in time series analysis. It incorporates auto-regression (AR), differencing
(I), and moving averages (MA) to identify past patterns in historical stock prices
used to generate forecasts of future trends (Chatterjee et al. 2021), excelling par-
ticularly in short-term predictions (Ma 2024). However, its application to financial
data often faces challenges, particularly due to the non-stationary nature of finan-
cial time series data, which can present trends or volatility clustering that ARIMA
may not fully capture (Kahan and Thomas 2024). While it performs well in stable
market conditions, the model struggles in the presence of sudden shocks or struc-
tural breaks. These limitations become most evident during economic recessions,
natural disasters, or geopolitical crises, which require models that incorporate ex-
ternal factors beyond historical price data (Ma 2024).

GARCH Models for Volatility Forecasting To address some of ARIMA’s
limitations, such as the need to stabilize the time series sequences, the GARCH
(Generalized Auto-regressive Conditional Heteroskedasticity) model has been in-
troduced by some studies as an alternative to capture the heteroscedasticity of
financial market fluctuations, a common feature in stock price data (Hu et al.
2020). Volatility clustering, the tendency for high and low volatility periods to be
followed by similar conditions, and time-varying volatility are prevalent character-
istics in stock markets. The ability of GARCH models to capture these phenomena
has established them as cornerstones of volatility modeling. (Marisetty 2024)

While GARCH models manage to effectively capture the dynamics of major
global stock indexes, traditional versions struggle with the asymmetric nature of
financial volatility. The reliance on symmetry assumptions, which often devi-
ate from real-world market behavior, limits and reduces their overall accuracy.
Nonetheless, more advanced models like TGARCH or APARCH offer significant
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improvements by incorporating these asymmetric effects, which lead to enhanced
forecast accuracy. However, even these models have limitations, particularly in
accurately representing extreme market events like financial crises and working
with complex data during model specification. (Marisetty 2024)

The Rise of the Algorithms: ML’s Foray into Market Prediction

ML algorithms have garnered significant attention for stock price prediction due
to their ability to model complex non-linear relationships and their adaptability
to dynamic market conditions. Unlike the previous models, ML algorithms have
two key advantages. For starters, their ability to combine multiple types of input
data, such as historical price data, macroeconomic data, and social media and
news sentiment, into a single predictive framework. The derived advantage is the
increased capacity to adjust to the ever-changing landscape of financial market.
(Chang et al. 2024) Some commonly used ML algorithms for price prediction tasks
will be revised next.

MARS (Multivariate Adaptive Regression Splines) MARS is a regression
technique that builds flexible models by fitting piecewise linear functions to the
data, a particularly useful feature to model complex non-linear behaviors of mar-
kets. Another key strength is its ability to automatically select relevant features
within the data and discard poor contributors to avoid overfitting. However, these
strengths may turn disadvantageous in simple contexts where linear relationships
dominate. Models may underperform as a consequence of mistaking random noise
for structural change and inserting unnecessary knots, or creating redundant splits
with highly correlated predictors. (Chatterjee et al. 2021)

Random Forest and SVM for Stock Price Prediction RF, an ensemble
learning method, builds multiple decision trees and merges their predictions, sig-
nificantly improving accuracy over single decision trees. Its use for stock price
prediction is based on their ability to handle high-dimensional and imbalanced
data (Chatterjee et al. 2021). Empirical findings indicate that the RF model
demonstrates strong accuracy and stability when forecasting stock price move-
ments, particularly in the long-term (Zheng et al. 2024).

Similarly, SVMs are used to identify the boundaries between different classes
of data. In stock price prediction, boundary detection translates to identifying
whether a stock will increase or decrease its price, being particularly useful to
handle high-dimensional spaces where data points are not linearly separable and
to identify non-linear correlations between characteristics in the data (Chakra-
vorty 2023). Results show that SVMs effectively capture dataset diversity and
exhibit strong generalization capabilities, thereby boosting the accuracy of stock
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price predictions. However, incorporating sentiment from financial-specific models
like FinBERT can further enhance this accuracy, especially when combined with
ensemble SVMs and a rolling window approach. This synergy leverages SVM’s
robust classification with FinBERT’s nuanced sentiment analysis to outperform
models using only historical data (Liu et al. 2023).

Nonetheless, a significant limitation of both algorithms lies in their substantial
data requirements (Chakravorty 2023). While integrating diverse datasets encom-
passing news sentiment, financial reports, and social media activity can enrich
feature spaces and potentially enhance predictive accuracy, the performance of
these algorithms is also critically constrained by the careful selection and tuning
of hyperparameters. This sensitivity to both data quantity and optimal param-
eterization presents a key challenge in achieving robust and reliable stock price
forecasts (Chakravorty 2023).

XGBoost and Gradient Boosting for Market Prediction XGBoost is an-
other powerful ML technique that has become popular in stock price prediction.
It builds upon the principles of decision trees and gradient boosting to create ro-
bust predictive models that minimize errors in predictions through an iterative
approach. Some of this model’s most valuable features are its ability to handle
missing data, control overfitting, and capture complex, non-linear interactions be-
tween features (Chang et al. 2024). XGBoost obtains fine and accurate forecasts
when working with large high-dimensional datasets, where interactions between
features are critical (Yifan Zhang 2022). When properly tuned, XGBoost con-
sistently outperforms other ML algorithms like Prophet or ARIMA in stock price
prediction tasks (Chang et al. 2024). Despite the aforementioned powerful capabil-
ities, XGBoost’s performance depends, as well as RF’s and SVM’s, on careful tun-
ing of its hyperparameters, and its accuracy is heavily degraded when confronted
with unexpected and unanticipated market changes brought on by uncertainties
and speculation. (Chang et al. 2024)

LSTM for Long-Term Dependencies and Sequential Data LSTM net-
works are a class of recurrent neural network (RNN), whose design to learn long-
term dependencies makes them particularly suitable for handling sequential data,
such as stock price movements over time (Chatterjee et al. 2021). Although LSTM
networks excel at modeling the temporal aspects of stock price movements, they do
not come without challenges. Realizing their full potential demands high-quality
historical data alongside careful hyperparameter tuning. Their effectiveness heav-
ily relies on the dataset, as learning long-term dependencies requires significant
and quality training data. LSTMs also inherently suffer from lagging, delaying
the reflection of recent data changes. Despite these limitations, integrating exter-
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nal data like news and social media through NLP offers a promising approach to
enhance prediction reliability. (Huang 2023)

2.1.3 Concluding Remarks

Despite the widespread adoption of traditional time series models such as ARIMA
and GARCH in stock price forecasting, the complex and often non-stationary
nature of stock markets reveals some of their inherent limitations. ARIMA’s and
GARCH’s struggles with non-linearity, asymmetric volatility, and sudden market
shocks highlight the need for more adaptive approaches (Marisetty 2024).

The emergence of ML algorithms offers a promising pathway to capture intri-
cate market dynamics (Chakravorty 2023). Models like MARS, LSTM, RF, SVM,
and XGBoost have demonstrated their ability to learn non-linear relationships and
integrate diverse data sources, achieving accurate forecasts across various stock
price indices. Despite these advancements, and while challenges such as the need
for meticulous hyperparameter tuning, substantial high-quality data, and overfit-
ting prevention exist, a more profound limitation shared by all of these algorithms
is their vulnerability to unanticipated and abrupt market shifts, which are inher-
ent to financial markets and can severely undermine their forecasting capabilities
(Chang et al. 2024).

Therefore, to further enhance the accuracy and robustness of stock price predic-
tions, the incorporation of information beyond historical price movements seems
crucial (Huang 2023). Understanding the underlying sentiment driving market
participants’ decisions, often reflected in news and other textual sources, holds the
potential to provide valuable insights that technical data might overlook or lack
(Huang 2023). This brings us to the next critical area of exploration, the study of
financial sentiment analysis and its integration into stock price prediction.

The following section delves into the growing importance of news and sentiment
in market behavior. It explores how news dissemination can ripple through stock
markets, the influence of market sentiment in trading decisions, and the evolution
of sentiment analysis techniques. The incorporation of these techniques aims to
unlock further potential for understanding the complexities of stock price dynamics
and improve prediction accuracy.

2.2 The News Know Best? Unveiling the Senti-

ment Behind Stock Swings

Financial news have the power to foster market bubbles or trigger panic selling
(Song 2023). Their influence on investors, whether positive or negative, shapes
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market expectations and drives stock price fluctuations as supported by the EMH
(R. Kumar and K S 2024). Sudden information shocks, such as unexpected eco-
nomic reports or geopolitical events, can trigger immediate reactions as investors
quickly adjust their expectations and positions to limit their damage or maximize
their benefit.

Analyzing this textual information offers a crucial pathway to understand-
ing the collective mood and expectations that influence trading decisions and ul-
timately impact stock prices (Chen and Kawashima 2024). Early methods for
deciphering sentiment relied on identifying positive or negative keywords within
the text. However, the limitations of these simple approaches in capturing the
nuances and context of language led to the development of more advanced tech-
niques. These newer methods leverage the capabilities of ML to better understand
the subtleties of sentiment expression in financial news, aiming for a more accurate
and insightful measurement that can potentially enhance predictive capabilities.
(Kirtac and Germano 2024) The following subsections delve deeper into these
evolving methodologies.

2.2.1 Sentiment Foundations: From Keywords to Lexicons

The beginnings of sentiment analysis involved the usage of keyword-based and
lexicon-based approaches to analyze textual data. Keyword-based methods use
dictionaries where specific words or phrases are identified with predefined senti-
ment scores. Meanwhile, lexicon-based methods go a step further, utilizing fi-
nancial lexicons, such as the Loughran-McDonald Financial Sentiment Lexicons,
which allow for more accurate sentiment evaluation (Kirtac and Germano 2024).

Both methods help match market sentiment with price movements. Positive
sentiment is often associated with rising prices, while negative sentiment tends
to signal declines, particularly during extreme market conditions (Turner et al.
2021). Although these techniques have been foundational in sentiment analysis,
their design limits their capacity to capture the context and nuances of financial
language, which has led to the development of more advanced approaches (Jishtu
et al. 2022).

2.2.2 Beyond Keywords: Harnessing the Power of ML

Given the notorious limitations of keyword and lexicon-based methods, more so-
phisticated ML techniques have emerged to efficiently capture sentiment. SVMs’
and RFs’ ability to handle noisy datasets, manage missing data, adapt to diverse
data types, and generalize well to unseen data have proven successful when ap-
plied to classifying sentiment in news articles. (Khan et al. 2024) Further, LSTMs
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have also gained prominence in this area, excelling at learning long-term depen-
dencies in sequential data like time-sequenced financial news. (Pandya et al. 2025)
Despite their strengths, these methods encounter considerable limitations, par-
ticularly when dealing with long or nuanced financial texts that feature intricate
long-term dependencies and specialized financial jargon (Pandya et al. 2025). Fur-
thermore, sentiment analysis is often hindered by the difficulty of these algorithms
to distinguish between neutral sentiment and potential biases introduced by im-
balanced datasets, which can contain uneven distributions of positive or negative
samples (Pandya et al. 2025).

To overcome some of these limitations, Large Language Models (LLMs) repre-
sent the next frontier in financial sentiment analysis (Inserte et al. 2024). Unlike
traditional models, LLMs are capable of processing vast amounts of unstructured
textual data and analyze the context of text from all sides. These characteristics
enable them to understand human language with remarkable depth and offer a
more refined approach to understanding financial language. (Kirtac and Germano
2024) The following section explores how LLMs, particularly those fine-tuned for
financial data, are transforming financial analysis, improving prediction accuracy,
and expanding their use in combination with different ML algorithms.

2.3 Bridging the Divide: Harnessing LLMs to

Decipher the Rhythms of Stock Prices

2.3.1 The Language Alchemists: How Large Language Mod-
els are Transmuting Financial Understanding

The ability of LLMs, powered by architectures like BERT, GPT, and T5, to in-
terpret and generate complex financial narratives has transformed the paradigm
of financial Natural Language Processing (NLP) (Yang et al. 2024). The evolu-
tion of LLMs, driven by advancements in computational power, the availability of
large-scale datasets, and the development of novel neural network architectures,
has led to models with impressive capabilities. These models excel at understand-
ing, generating, and reasoning about natural language, derived from their ability
to extract valuable insights from noisy, unstructured data and to learn latent re-
lationships within and across sentences. (Li et al. 2023) This also grants LLMs
superior adaptation and flexibility, enabling them to handle multiple tasks such as
sentiment analysis, summarization, and keyword extraction on financial documents
simultaneously.(Yang et al. 2024)

The extensive pre-training of LLMs on vast corpora, which are collections of
texts and audios in native languages organized into datasets, allows these models to
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leverage enhanced language understanding across various industries and domains,
inferring sentiment, classifying risk and supporting market forecasts in specific
fields. This feature is resembled in FinLLMs, which are specifically adapted LLMs
for the nuances of financial language (Kim et al. 2023).

Speaking the Language of Finance: Navigating the Nuances of Financial
Text

Financial language differs from general purpose language in its use of temporally
grounded, jargon-heavy, and ambiguity-prone constructs. Terms like “bull,” or
“bear,” vary notoriously by context. While in normal contexts both terms repre-
sent two types of animals, in finance they are used to denote the upward trend
(bullish market) or downward trend (bearish market) of the market. (Chen and
Kawashima 2024) FinBERT and BloombergGPT are two of the most popular
examples of LLMs trained on financial documents such as SEC filings, earnings
call transcripts, and regulatory reports. Both fine-tuned models have proven ef-
fective at capturing the subtle sentiment found in financial texts. (Inserte et al.
2024) Studies consistently show that domain-specific LLMs outperform general
ones across natural language tasks like sentiment analysis, question answering, and
summarization (Li et al. 2023). Arguably, the most notable challenge in financial
NLP is that key sentiment cues are often embedded in implicit, domain-specific,
non-obvious expressions, and numerical references, which causes generalist lan-
guage models to fall short and underperform, due to their lack of understanding
of financial texts (Li et al. 2023).

Forging FinBrain: The Emergence of Specialized Financial Language
Models

The growing complexity of financial language and the limitations of general-purpose
language models have spurred the development of specialized financial LLMs (Fin-
LLMs) (Inserte et al. 2024). These FinLLMs are typically built upon two core
architectural paradigms: encoder models like FinBERT or DeBERTa are opti-
mized for understanding input text and generating dense representations for tasks
such as classification, sentiment analysis, or risk scoring. Their compact design
and low-latency performance make them ideal for real-time financial applications
(Guo and Hauptmann 2024). On the other hand, decoder models such as Stock-
GPT are designed for text generation. They are capable of producing detailed
narratives, simulating hypothetical scenarios, and supporting more flexible, open-
ended reasoning, though generally with greater computational demands. (Guo
and Hauptmann 2024) Figure 2.1 illustrates the evolution from general language
models like BERT and GPT towards fine-tuned models that excel at capturing
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financial nuances and gauging market sentiment.

FinBERT marked a pivotal moment in this transition and remains highly in-
fluential in financial sentiment analysis (Jun Gu et al. 2024). As an encoder
model, it builds upon the transformer-based BERT architecture, which undergoes
pre-training to learn general language understanding through tasks like masked
language modeling and next sentence prediction. FinBERT was further fine-tuned
on a substantial financial corpus (4.9 billion tokens from corporate filings, analyst
reports, and earnings calls) (Kim et al. 2023). This specialization to understand
domain-specific phraseology and subtle tone shifts has made it highly effective
for tasks such as analyzing financial articles, news, and reports, and classifying
investor sentiment (Liu et al. 2023).

Another significant leap came with BloombergGPT, a 50-billion parameter
model trained from scratch on a mixed corpus of financial and general data (Wang
et al. 2024). Unlike the adaptation approach of FinBERT, BloombergGPT was
designed to balance domain specificity with broader linguistic competence.The
model’s improved capabilities in finance-related tasks do not come at the expense
of general generative tasks, knowledge assessments, reading comprehension, and
linguistic tasks. This has caused the model to perform well in both financial
benchmarks and general language tasks, making it one of the first truly cross-
functional FinLLMs. Cross-functionality, though, is computationally intensive and
less suited for lightweight applications. (Li et al. 2023)

FinGPT represents another advancement, combining a LLaMA-based archi-
tecture with instruction tuning and LoRA adaptation. This decoder-based model
can generate financial insights, answer analytical questions, and handle tasks be-
yond classification, such as simulating scenarios or summarizing market trends
(Li et al. 2023). Meanwhile, StockGPT and InvestLM are examples of increas-
ingly task-specific models. StockGPT is designed for forecasting and reasoning
in trading scenarios (Mai 2024), while InvestLM is tuned to handle financial in-
structions across multiple text sources, such as stack exchange quantitative finance
discussions and SEC filings (Lee et al. 2025). StockGPT, though relevant, is not
explicitly shown in Figure 2.1.

The inherent differences in how encoder-only like FinBERT and decoder-only
language models like FinGPT process and interpret text, influence the resulting
sentiment analysis (Lee et al. 2025). The development of FinLLMs has unlocked
new possibilities for integrating textual sentiment signals into quantitative fore-
casting frameworks, shifting away from isolated applications (Jun Gu et al. 2024;
Liu et al. 2023). By more effectively capturing and utilizing market sentiment,
these models offer a potential pathway to fight some of the limitations of tra-
ditional approaches in foreseeing market shifts. The potential synergy between
open-source FinLLMs and ML algorithms to enhance stock price prediction will
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be explored in the following section.

Figure 2.1: Evolution of Financial LLMs from general-purpose encoders to domain-
specific fine-tuned models. Source: (Lee et al. 2025)

2.3.2 Synergies in Sight: How LLMs Improve Stock Price
Prediction Performance

Given the potential of sentiment to offer valuable insights into market dynamics,
a growing body of research focuses on integrating advanced stock price prediction
mechanisms (Jun Gu et al. 2024; Oriol 2023), leveraging the power of LLMs to
extract sentiment from news articles and combining these insights with techni-
cal indicators through ML algorithms. While numerous combinations of LLMs
and ML algorithms exist, this section specifically focuses on pairings involving
FinBERT with ML techniques as central case studies.

BERT and XGBoost

In the realm of stock return prediction, XGBoost models have established them-
selves as powerful tools. Their inherent capabilities in handling diverse feature
types, mitigating overfitting, and managing missing values make them well-suited
for the complexities and noise often present in financial datasets. However, the
integration of sentiment information alongside traditional financial indicators has
consistently demonstrated enhanced predictive performance. Interestingly, this
improvement can be achieved even without the explicit use of domain-specific sen-
timent models, as evidenced by stock price predictions made on financial indicators
and the analysis of financial news headlines and bodies of a BERT-based model
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trained on Amazon reviews (Oriol 2023). This finding suggests that even broadly
trained language models can capture valuable sentiment signals relevant to ad-
vancing the accuracy and reliability of stock market forecasting when combined
with robust prediction algorithms like XGBoost.

FinBERT and LSTMs

While LSTMs excel at capturing temporal dependencies within price data, the
incorporation of FinBERT’s sentiment analysis provides crucial contextual un-
derstanding from financial text. Comparing FinBERT-LSTM with Deep Neural
Networks (DNN), which use a sequential arrangement of layers, where each layer
integrates the output from its predecessor and forwards its own to the next layer,
and LSTM models based solely on technical indicators, the LLM’s ability to dis-
cern subtle linguistic nuances in news and identify meaningful information within
complex or even neutral-sounding news furnishes the LSTM with valuable addi-
tional input (Jun Gu et al. 2024). The supplementary information found in the
news headline and summary enables the hybrid model to generate forecasts that
align more accurately with actual price movements, as demonstrated by significant
reduction in error metrics (MSE, RMSE, and MAE) and the improved goodness of
fit (higher R2) observed when sentiment analysis results are included (Kim et al.
2023).

FinBERT and ensemble SVM

Recognizing the potential of FinBERT to enrich stock price prediction through
sentiment analysis, researchers have also explored its integration with SVMs, a
technique valued for its strong generalization ability and resilience to overfitting.
However, to ensure real-world resembling, it is crucial to address the issue of look-
ahead bias, a common pitfall where training data inadvertently includes future
information, leading to inflated performance metrics (Liu et al. 2023). The rolling
window approach provides an effective solution by training and evaluating the
model, preventing the model from gaining an unrealistic advantage.

A key strength of employing FinBERT lies in its three-dimensional sentiment
classification, which distinguishes between positive, negative, and, most impor-
tantly, neutral sentiments. This capability is vital for avoiding the misclassifica-
tion of non-directional text, a limitation often encountered with binary sentiment
analysis models, which restrains the prediction accuracy (Liu et al. 2023). While
a potential drawback of FinBERT is its tendency to classify non-financial senti-
ment as neutral, the benefits of its domain-specific understanding outweigh this
limitation. Empirical evidence suggests that the synergy between FinBERT and
ensemble SVM models integrating the rolling window approach yields superior per-
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formance compared to standalone SVMs, as well as combinations involving simpler
binary sentiment analysis or general-purpose sentiment analyzers like VADER (Liu
et al. 2023).

Concluding Remarks

The previous studies underscore the significant influence of sentiment derived from
financial news on stock price dynamics, offering valuable insights for enhanced risk
management and more informed investment strategies. Integrating LLMs with
ML algorithms paves a promising way for enhancing stock price prediction. As
evidenced, even combining general-purpose LLMs like BERT with XGBoost offers
encouraging results.

The successes of specialized FinLLMs like FinBERT combined with other ML
models suggest a strong potential for further progress. While individual ML models
already offer compelling results in stock price prediction, this research recognizes
a valuable opportunity to delve deeper into the specific impact and analysis of
integrating FinBERT with an LSTM framework. This combinations represents a
valuable, complementary research opportunity to investigate the boundaries of a
hybrid model within specific, novel settings.

2.4 Focusing on the Spanish Stage: Stock Price

Prediction in the IBEX-35 Landscape

Prior research has extensively explored stock price forecasting across U.S. indices
including the S&P 500, the Nasdaq, or the Dow Jones 500 (Jun Gu et al. 2024;
Talazadeh and Perakovic 2024), leaving other markets such as the Spanish market,
the IBEX-35 to be specific, comparatively unexplored. The following section there-
fore focuses on two distinct predictive approaches that researchers have applied to
evaluate the accuracy of stock forecasting in the Spanish financial context.

Within the Spanish stock market, researchers have investigated the effective-
ness of classical time series methods in the form of exponential smoothing tech-
niques for predicting stock prices in the energy sector (Todorov and Sánchez-
Lasheras 2023). Exponential smoothing techniques analyze historical price data,
considering patterns in level, trend, and seasonality to forecast future values. Re-
sults show that the optimal exponential smoothing model can vary significantly
between different stocks in the same industry and national market, highlighting
the importance of selecting forecasting techniques that are well-suited to the indi-
vidual characteristics of each stock’s price history (Todorov and Sánchez-Lasheras
2023). While these traditional methods can provide reliable short-term forecasts,
there is also a recognized potential for integrating more advanced ML techniques
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to further improve predictive accuracy in the complex and volatile dynamics of
the IBEX-35.

In this context, another study explored the potential of leveraging emotional
information extracted from a large corpus of Spanish news articles to improve the
forecasting of daily fluctuations in the IBEX-35 index (Consoli et al. 2022). Recog-
nizing the limitations of traditional time series models in capturing the influence
of market sentiment, Neural Machine Translation (NMT) was used to translate
Spanish news into English. This translation process was enhanced by integrating
a pre-trained Spanish BERT model to ensure a richer understanding of the orig-
inal Spanish text, which was then used for emotion classification via an English
emotion classifier.

The resulting emotional features were then incorporated into DeepAR, an au-
toregressive recurrent neural network that excels at learning complex temporal
dependencies (Consoli et al. 2022). The DeepAR model revealed a clear per-
formance improvement when enriched with news-derived emotions, significantly
outperforming benchmark models relying solely on technical indicators, such as
DeepAR, moving average, and näıve methods (Consoli et al. 2022).

Evidence suggests that sentiment analysis of Spanish news holds the poten-
tial to enhance stock price prediction (Consoli et al. 2022). While LLMs have
been extensively applied alongside ML algorithms in various markets, each market
possesses unique characteristics given their unique blend of economic sectors, reg-
ulatory contexts, geographic locations, and company composition among others.
In this context, the IBEX-35 is one such market that remains relatively underex-
plored. Furthermore, research has demonstrated that even within a single industry
in the same market, optimal methods may exhibit varying degrees of effectiveness
across individual companies (Todorov and Sánchez-Lasheras 2023). For this rea-
son, applying one of the main LLM representatives, encoder-only FinBERT in
combination with an LSTM model, represents a promising and novel approach.
This unexplored combination can potentially provide valuable insights into the
effect of financial news sentiment on stock price prediction within the banking
industry of the IBEX-35, and shed light on how encoder-only LLM architectures
contribute to sentiment classification and the subsequent stock price predictive
performance.
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Chapter 3

Foundations of Foresight:
Constructing the Predictive
Engine

This section outlines the experimental methodology employed to investigate the
impact of news sentiment analysis on stock price prediction. It first presents
the data source and acquisition for both the historical stock price and financial
news articles datasets. Subsequently, the sentiment analysis methodology based
on FinBERT is thoroughly described. Lastly, the LSTM foundational model and
the derived hybrid model, “LSTM+FinBERT”, are further detailed. The complete
workflow is summarized in Figure 3.1.

Figure 3.1: Workflow for FinBERT-Enhanced LSTM Stock Price Prediction.
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3.1 The Information Tapestry: Weaving the

Threads of Knowledge

The experimental design requires two primary data sources to address the the-
sis’s objective of evaluating the impact of news sentiment analysis on stock price
prediction: historical stock market data and financial news articles. Both sets
of information were retrieved from the Refinitv Workspace, a comprehensive
financial data platform that provides access to a broad spectrum of marked data,
including historical prices, company financials, corporate events, financial news,
and earnings estimates among others. Its validated reliability and extensive cover-
age makes it a rigorous source for data extraction (Inserte et al. 2024). To extract
data, the Refinitiv Data Platform (RDP) provides a simple web-based API that
grants access to numerous features, such as daily historical pricing by code value
and news headline search.

3.1.1 Echoes of the Past: Unearthing Historical Market
Narratives

To nurture the historical stock information, daily opening prices, highest daily
prices, lowest daily prices and trading volumes were collected alongside daily clos-
ing prices for the banking companies constituing the IBEX-35. These compa-
nies are made up of Banco Bilbao Vizcaya Argetaria S.A. (BBVA), Bankinter
S.A., CaixaBank S.A., Banco de Sabadell S.A., Banco Santander S.A. and Uni-
caja Banco S.A., and the extracted period comprised a five year span from May
20, 2020, to May 22, 2025, retrieved with the following function call to the RDP
API:

Listing 3.1: Function to Fetch Historical Stock Data with RDP API Call.� �
1 def fetch_historical_prices(ric , days_back =365*10 , dNow):

2 sdate = dNow - timedelta(days=days_back)

3 print(f"Fetching data from {sdate} to {dNow} for RIC:

{ric}")

4

5 close_price = rdp.get_history(

6 universe=ric ,

7 interval="daily",

8 fields =["OPEN_PRC", "TRDPRC_1", "HIGH_1", "LOW_1",

"ACVOL_UNS"],

9 start=str(sdate),

10 end=str(dNow)

11 )
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12

13 close_price = close_price.dropna ()

14

15 return close_price� �
Where in the rdp.get history API call:

• universe: Represents the specific financial instruments, identified by their
unique Refinitiv Identification Code (RIC) value, for which historical data
is requested. Specifically, ric corresponds to the aforementioned bank-
ing companies [BBVA.MC, BKT.MC, CABK.MC, SABE.MC, SAN.MC and
UNI.MC].

• interval: Specifies the granularity of the historical data, set to “daily” to
retrieve end-of-day summary statistics.

• fields: An array specifying the desired data attributes. OPEN PRC denotes
the opening price, TRDPRC 1 the closing price, HIGH 1 the daily high price,
LOW 1 the daily low price, and ACVOL UNS the accumulated unadjusted trad-
ing volume.

• start: Defines the starting date of the data extraction period, represented
by the variable sdate.

• end: Defines the end date of the data extraction period, represented by the
variable dNow.

This extraction process resulted in six extensive datasets, each corresponding
to one banking company, containing the daily open, close, high, low, and volume
data for the specified five-year period. The decision to utilize a five-year histori-
cal period was informed by existing literature while aiming for a balanced scope.
Studies have demonstrated that stock price prediction when combined with models
like FinBERT can yield positive results across various timeframes, as evidenced
by LSTM networks trained on two year (Liu et al. 2023) and eleven year periods
(Jun Gu et al. 2024). However, to effectively capture key information from mul-
tiple dimensions and have a solid data foundation of media trends, stock market
dynamics, and their interrelationships, while balancing data volume and compu-
tational efficiency, a five year historical period was selected, as it has empirically
proven to contain enough information for LSTM networks to produce accurate
S&P500 index predictions (Kim et al. 2023).
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Table 3.1: Sample of Historical Stock Price Data of BBVA.

Date OPEN PRC TRDPRC 1 HIGH 1 LOW 1 ACVOL UNS
2025-05-13 13.0 13.23 13.245 12.945 8560914
2025-05-14 13.25 13.405 13.405 13.145 9666758
2025-05-15 13.3 13.345 13.375 13.28 6093306
2025-05-16 13.34 13.4 13.42 13.305 7457970
2025-05-19 13.42 13.465 13.55 13.35 5877843
2025-05-20 13.5 13.77 13.805 13.5 7496109
2025-05-21 13.665 13.695 13.9 13.645 7102438
2025-05-22 13.615 13.68 13.73 13.365 6376905

3.1.2 Whispers of the Market: Capturing the Pulse of Fi-
nancial News

Financial news articles directly relevant to the six IBEX-35 banking companies
were collected covering the five-year period from May 20, 2020, to May 22, 2025,
consistent with the historical stock price data. The initial extraction of financial
news headlines was performed using the RDP API, filtering for “Significant News”
(Topic: SIGNWS) by RIC value, ensuring that only company related news were
included, and explicitly restricting them to English language content (Language:
LEN), with the following implementation of the RDP API:

Listing 3.2: Function to Retrieve and Store News Headlines� �
1 def fetch_financial_news(riclist, dNow, out_dir=’data’):

2 os.makedirs(out_dir, exist_ok=True)

3 maxenddate = dNow - timedelta(days=365*2)

4 compNews = pd.DataFrame()

5

6 for ric in riclist:

7 try:

8 cHeadlines = rdp.news.get_headlines(

9 "R:" + ric + " AND Language:LEN AND Topic:SIGNWS",

10 start=str(dNow),

11 end=str(maxenddate),

12 count=10000

13 )

14 cHeadlines[’cRIC’] = ric

15 if len(compNews):

16 compNews = pd.concat([compNews, cHeadlines])

17 else:

18 compNews = cHeadlines
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19 except Exception:

20 cHeadlines = pd.DataFrame()

21 pass

22 file_path = os.path.join(out_dir, f’{ric}_news.csv’)

23 cHeadlines.to_csv(file_path, index=True)

24 print(f"Saved {ric} news data to {file_path}")

25 return compNews� �
The filtering criterion of exclusively selecting news articles in English was based

on the fact that the sentiment analysis model FinBERT is pre-trained on English
corpora. Processing news in other languages risks the appearance of inaccuracies
and noise in the sentiment scoring, as non-English news were empirically confirmed
to be classified as neutral. Translating headlines in other languages was also dis-
carded due to the absence of a specialized financial translator in Python capable of
capturing and maintaining domain-specific linguistic subtleties, which could cause
the loss of context and nuance in the headlines.

A challenge encountered during the news collection, is that the RDP API re-
stricts extraction of news to the last 15 months. Therefore, a hybrid approach
was necessary to cover the entire five-year period, having to manually extract the
articles beyond the 15-month window. During the preliminary data collection
it was observed that the further back in time, the scarcer the SIGNWS articles,
except for Banco Santander, which maintained a relatively high volume of signif-
icant news throughout the historical period. To ensure a sufficient representation
of market sentiment across all banking companies, the scope of news topics for
older dates was broadened to “Company News” (Topic: CMPNY), and “Economic
News” (Topic: MCE) all of which related to the corresponding company. Instead
of filtering by source the criterion was to extract the most relevant financial news
to each of the companies. This process resulted in six distinct datasets, one for
each banking company, comprising company-related financial news headlines, with
varying amounts of total news per company as shown in Table 3.2.

Table 3.2: Summary of News per Bank

BBVA Bankinter CaixaBank Sabadell Santander Unicaja

Total News 9930 4354 6822 10211 6758 5191
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3.2 The Language Lens: Decoding Sentiment with

LLMs

To analyze the impact of sentiment analysis with LLMs on stock price predic-
tion, the following section delves into encoder-only LLMs, particularly FinBERT
which has been chosen as representative of this architectural design, due to its
demonstrated ability to enhance stock price forecasting accuracy.

3.2.1 The Financial Lexicon Maestro: Deep Diving with
FinBERT

Encoder-only LLMs generate a corresponding sequence of vector representations
{h1, . . . , hL} to a given input sequence of text tokens X = {x1, . . . , xL}. During
the pre-training phase a subset of X’s tokens are randomly masked, creating a
corrupted input X̂ = {xmask if i ∈ M else xi for all i = 1, . . . , L}, where M ⊂
{1, . . . , L} denotes the indices of the masked tokens. The primary objective of the
pre-training process is to predict these xmask tokens, which are empty placeholders
without inherent semantic meaning by maximizing their likelihood:

log p({xm}m∈M |X̂) =
∑
m∈M

log p(xm|X<m, xmask, X>m) ≈
∑
m∈M

log p(xm|hm) (3.1)

In Equation 3.1, X<m = {x1, . . . , xm−1} and X>m = {xm, . . . , xL} refer to the
tokens preceding and succeeding xm respectively. Maximizing the likelihood of
the masked tokens xm encourages the representation hm to synthesize contextual
information from both the left and right contexts (X>m and X<m). Therefore, the
Transformer’s self-attention mechanisms learn to derive the meaning of hm based
on the similarities between the mask token and its surrounding contextual tokens.
This bidirectional training mechanism is a core advantage of encoder-only models
like BERT, enabling a more profound and contextually nuanced comprehension of
linguistic flows compared to unidirectional approaches, as not only past or following
information is uniquely considered, but both are relevant to understanding the
tokens (Guo and Hauptmann 2024).

The training of FinBERT, a specialized LLM grounded in the BERT model, is
carried out in two stages. First, it leverages the original BERT-base model, which
was pretrained on general-domain corpora, and then continues its pre-training
on a domain-specific financial corpus. This intermediate step, often referred to
as domain-adaptive pre-training, is conducted on the TRC2-Financial dataset,
a filtered subset of Reuters TRC2 containing over 29 million words related to
financial news (Araci 2019). The objective of maximizing the xm likelihood remains
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unchanged during this stage, allowing the model to adapt its representations to
the specialized terminology and syntax of financial discourse.

Following this phase, FinBERT undergoes a supervised fine-tuning process on
labeled datasets. As this thesis harnesses the capabilities of the pre-trained Pro-
susAI/finbert model, accessible via the Hugging Face Model Hub.1, these capa-
bilities are further refined through fine-tuning on the widely recognized Financial
PhraseBank dataset by (Malo et al. 2014). The phrase bank covers a collection
of 4840 senctences, annotated by researchers at Aalto University School of Busi-
ness. The model produces softmax probabilities across three predefined sentiment
categories: positive, negative, and neutral. To mitigate the loss of linguistic gen-
eralization during fine-tuning, FinBERT applies advanced training techniques to
balance the retention of general language understanding with the acquisition of
finance-specific patterns (Araci 2019).

3.2.2 Translating Theory to Code: The Digital Construc-
tion

To implement the sentiment analysis, the first step is to prepare the foundational
environment. Since we’re leveraging the ProsusAI/finbert model, it is neces-
sary to load its corresponding tokenizer and pipeline for the subsequent data
handling and NLP tasks. The tokenizer is FinBERT’s personal linguist, as it
is responsible for acquiring the vocabulary and tokenization rules the model was
trained on. This step is paramount as it ensures that the financial news headlines
are broken down into numerical tokens consistent with the model’s training. This
consistency is key to ensure an accurate interpretation and analysis of the raw
data. After loading the pre-trained FinBERT model and its tokenizer, both ele-
ments are combined into a high-level pipeline. A powerful abstraction provided
by HuggingFace Transformers that streamlines the entire process, from tokeniza-
tion and model inference, to the post-processing of the results. The described
loading process is instanced in Listing 3.3.

Listing 3.3: Loading of the FinBERT Sentiment Analysis Pipeline.� �
1 # Load FinBERT pipeline

2 model_name = "ProsusAI/finbert"

3 tokenizer = BertTokenizer.from_pretrained(model_name)

4 model =

BertForSequenceClassification.from_pretrained(model_name)

5 finbert_sentiment = pipeline("sentiment -analysis",

model=model , tokenizer=tokenizer)� �
1https://huggingface.co/ProsusAI/finbert
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The second part of the implementation is dedicated to the extraction and pro-
cessing of financial news headlines yielded through the process news sentiment

function 3.4. Central to this function’s operation is the nested analyze sentiment

function, which performs a predictive analysis to assess the sentiment embedded
within the input text, the financial headlines to be specific. This analysis outputs
a structured result with the sentiment label, either positive, negative or neutral,
and the associated score, which quantifies how confident the model is in the as-
signed label. The closer to 1, the greater the degree of certainty in the model’s
prediction.

Each day possess multiple different headlines, therefore it is necessary to syn-
thesize all sentiments to achieve a coherent daily representation. To address this,
the designated approach was a polarity mapping, where each categorical sen-
timent label is translated into a numerical polarity value. Namely, ’positive’ is
assigned a value of 1, ’neutral’ a 0, and ’negative’ a -1. This transformation
is essential for converting qualitative sentiment into a quantitative metric and
computing the final weighted score, as the multiplication between the derived
polarity and the sentiment score. This weighting mechanism ensures that pos-
itive and negative sentiment predictions, in which the FinBERT model exhibits
higher confidence, exert a proportionally greater influence on the aggregated daily
sentiment. Listing 3.4 contains the explicit implementation of the sentiment ex-
traction process.
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Listing 3.4: Function for News Headline Sentiment Analysis.� �
1 def process_news_sentiment(news_csv_path, finbert_model,

label_to_polarity=None):

2

3 if label_to_polarity is None:

4 label_to_polarity = {’positive’: 1, ’neutral’: 0, ’negative’: -1}

5

6 def analyze_sentiment(text):

7 try:

8 result = finbert_model(text)[0]

9 return result[’label’], float(result[’score’])

10 except Exception:

11 return ’ERROR’, 0.0

12

13 # Process the main file

14 compNews = pd.read_csv(news_csv_path)

15 sentiments = compNews[’headline’].apply(analyze_sentiment)

16 compNews[’sentiment_label’] = sentiments.apply(lambda x: x[0])

17 compNews[’sentiment_score’] = sentiments.apply(lambda x: x[1])

18 compNews[’polarity’] =

compNews[’sentiment_label’].map(label_to_polarity)

19 compNews[’weighted_score’] = compNews[’polarity’] *

compNews[’sentiment_score’]

20 compNews.to_csv(news_csv_path, index=False)

21 print(f"Processed sentiment for {news_csv_path}")� �
The concluding section of this implementation defines the integration of the

calculated daily sentiment scores with historical stock data, resulting in a unified
dataset for the final financial forecasting. The function loads both the historical
price data and the processed news sentiment data. As the financial news headlines
are a combination of API and manually extracted samples, robust data parsing is
implemented to avoid conflicts between potentially different date formats.

Following the date preparation, the news file is aggregated to derive a sin-
gle daily sentiment score for each day by grouping the data by the extracted
date and calculating the mean of the previously computed weighted score. The
aggregated daily sentiment data is then merged through a left join with the
historical price data. This specific join is used to guarantee the retention of all
historical stock price data points and prevent the loss of historical information,
in case any day happens to be missing its corresponding news sentiment. Sub-
sequently, any missing sentiment values are completed with KNN interpolation

to smooth the sentiment data over time. KNN interpolation identifies patterns
between similar data points, ensuring robust gap filling. This method was chosen
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for its proven ability to effectively leverage missing sentiment data in LSTM stock
price prediction (Wabella 2024). The resulting augmented dataset is finally saved
back to its original file path, rendering the integrated data for the development of
the predictive models, which will be further studied in the upcoming section 3.3.

Listing 3.5: Function for Integrating Sentiment with Price Data.� �
1 def merge_sentiment_with_price(price_file, news_file):

2

3 price_df = pd.read_csv(price_file, parse_dates=[’Date’])

4 news_df = pd.read_csv(news_file)

5

6 # Robust date parsing

7 news_df[’date’] = pd.to_datetime(

8 news_df[’versionCreated’],

9 errors=’coerce’,

10 dayfirst=True,

11 format=’mixed’

12 ).dt.date

13

14 news_df = news_df.dropna(subset=[’date’])

15

16 daily_sentiment =

news_df.groupby(’date’)[’weighted_score’].mean().reset_index()

17 daily_sentiment.columns = [’Date’, ’daily_sentiment_score’]

18 daily_sentiment[’Date’] = pd.to_datetime(daily_sentiment[’Date’])

19 price_df[’Date’] = pd.to_datetime(price_df[’Date’])

20 price_df = price_df.merge(daily_sentiment, on=’Date’, how=’left’)

21 first_valid_idx =

price_df[’daily_sentiment_score’].first_valid_index()

22 if first_valid_idx is not None:

23 price_df = price_df.loc[first_valid_idx:].reset_index(drop=True)

24 price_df[’daily_sentiment_score’] =

price_df[’daily_sentiment_score’].interpolate(method=’nearest’)

25

26 price_df.to_csv(price_file, index=False)

27 print(f"Updated {price_file} with sentiment columns.")� �
Table 3.3 illustrates the FinBERT-derived sentiment label distribution for each

company’s financial news headlines. The headlines show a predominant trend of
neutral and positive sentiment, with these two categories maintaining broadly
equivalent proportional representations among all companies. UNI.MC stands out
as the only company exhibiting a higher presence of negative sentiment, indicating
a more balanced weighting of the three sentiment classes within its financial news
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coverage.

Table 3.3: FinBERT Sentiment Scoring of Financial News.

Labels Positive Neutral Negative
BBVA.MC 39.6% 45.6% 14.7%
BKT.MC 42.2% 40.6% 17.2%
CABK.MC 40.9% 43.1% 16.0%
SABE.MC 38.2% 46.7% 15.1%
SAN.MC 29.0% 51.3% 19.7%
UNI.MC 36.1% 33.3% 30.6%

3.3 The Convergence of Minds: Constructing

the Hybrid Predictive Engine

3.3.1 Sequential Wisdom: The LSTM’s Insight

LSTM models are a form of RNNs specifically designed to overcome some of the
limitations of traditional ones, like the long-term dependency problem, where the
nature of the tanh activation function can prevent earlier information from effec-
tively propagating to later layers (Kim et al. 2023). LSTMs achieve an effective
propagation by incorporating a sophisticated mechanism known as the cell state,
which acts as a memory unit, allowing information to be carried across many time
steps with minimal loss, making them highly effective in capturing long-term de-
pendencies in sequential data. The cell state’s contents are regulated by multiple
gates, each of which is composed of a NN with a sigmoid activation function, that
control the flow of information. The three primary gates are the input, forget, and
output gates. Figure 3.2 illustrates the architecture of a typical LSTM network.

The core of an LSTM’s operation involves updating the cell state Ct and hidden
state ht at each time step, leveraging the previous hidden state ht−1, the previous
cell state Ct−1, and the current input xt. The processing of the inputs involves the
aforementioned primary gates:

• Forget Gate (ft): This gate determines which information from Ct−1 should
be discarded. Its output indicates how much of the old cell state to ”forget”
in a 0 to 1 range, where a value close to 1 preserves all information and a
value near 0 discards all of it.

ft = σ(Wf [ht−1, xt] + bf ) (3.2)
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Figure 3.2: Architecture of LSTM. (Source: Kim et al. 2023)

Here, Wf is the weight matrix, bf is the bias term, and [ht−1, xt] represents
the concatenation of the previous hidden state and current input.

• Input Gate (it, gt): The input gate decides what new information from xt

should be stored in the cell state. It is composed of two parts, it (sigmoid-
activated) determines which values to update, and gt (tanh-activated) creates
a vector of new candidate values.

it = σ(Wi[ht−1, xt] + bi) (3.3)

gt = tanh(Wg[ht−1, xt] + bg) (3.4)

Here, Wi,Wg are weight matrices, and bi, bg are bias terms. Ct is updated
by combining the forgotten old state with the new input:

Ct = ft · Ct−1 + it · gt (3.5)

• Output Gate (ot): The output gate controls which parts of the updated
cell state will be outputted as the new hidden state (ht), which subsequently
serves as the input for the next time step.

ot = σ(Wo[ht−1, xt] + bo) (3.6)

Here, Wo is the weight matrix, and bo is the bias term. ht is derived by
applying tanh to the cell state and then multiplying by the output gate’s
activation:

ht = ot · tanh(Ct) (3.7)
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3.3.2 Paving the Digital Path: Encoding the Prediction
Machine

The proposed stock price prediction model was constructed with an LSTM archi-
tecture within the TensorFlow Keras framework. The model architecture is de-
signed to capture sequential dependencies in the input data, which is comprised of
basic price metrics, specifically closing price (TRDPRC 1), opening price (OPEN PRC),
price high (HIGH 1) and price low (LOW 1), trading volume (ACVOL UNS), and a wide
range of technical indicators to identify market trends and past patterns. The tech-
nical indicators include Exponential Moving Averages (EMA 9EMA 9) and Simple
Moving Averages (SMA 5, SMA 10, SMA 15, SMA 30, SMA 50) over various periods,
daily returns (Returns), and lagged values for open, high, low, and volume. Addi-
tionally, derived features such as Open Close Ratio Lag1, High Low Range Lag1,
Close High Ratio Lag1, and Volume Change Lag1, alongisde volatility (Volati-
lity 5) and a normalized Time Index are included. Such a wide range of technical
indicators has been selected due to their demonstrated relevance in enhancing stock
price prediction (Chen and Kawashima 2024; Fu and Yanbin Zhang 2024).

Moving averages are quantified using both SMAs and EMAs. While SMA
calculates the average price of an asset over a defined period, assigning a uni-
form weight to each data point, EMA prioritizes more recent price data by giving
greater weight to these observations. To try to capture more information from
the historical context a wider range of SMA computations is included. The target
variable for prediction is the next day’s closing price, which represents the final
consensus of traders and investors each day, and is considered the most important
price in the stock market (Chen and Kawashima 2024). All features are scaled
using StandardScaler prior to the sequence creation to normalize their range.
The reason being the reduction of the model complexity, and the avoidance of
overfitting (Kim et al. 2023) and of features with larger values dominating the
prediction, thus generating biased results (Chen and Kawashima 2024).

After preprocessing the input data, all features are transformed into a sequence
using a lookback window. The application of a lookback window implies that
each input sample for the LSTM is composed of features from the past lookback
days, enabling the network to learn from historical patterns over a defined period.
Different window sizes allow to study how models perform with different predefined
periods of historical data, allowing for the preservation of causality. This feature
ensures that the model only uses data that would have been available before the
prediction point, respecting the natural flow of time and mitigating the risk of
an overly optimistic and unrealistic performance. In this thesis a total of seven
lookbacks are used, namely [1, 5, 8, 10, 16 and 20], which have been succesfully
used in short-term stock price prediction (Chen and Kawashima 2024; Kim et al.
2023). The extensive range of lookback window sizes was chosen to study different
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models and to mitigate the risks of both underfitting from short windows unable to
capture long-term dependencies and overfitting from longer windows introducing
noise or outdated patterns.

The pipeline of the model is composed of two LSTM layers each of which
is followed by a dropout layer. The first LSTM layer contains a configurable
number of LSTM units, to try different amounts to find the most suitable model.
The initial layer is configured to return sequences=True to output the sequence
of hidden states for each time step in the input sequence. This configuration is
necessary for stacking multiple LSTM layers, as it allows the subsequent layer to
process the temporal features extracted by this initial layer. The input shape is
dynamically set to accommodate the lookback window and the number of input
features. The activation function for this layer is also configurable and will be
further explored in the hyperparameter tuning section 3.3.3. The dropout layer,
a regularization technique that randomly deactivates a fraction of neurons during
each training step, prevents the model from becoming overly reliant on specific
connections, thereby reducing the risk of overfitting.

Subsequently, a second LSTM layer with half the number of units in the
first layer is added. Unlike the first LSTM layer, it does not return sequences
(return sequences=False). This is a typical configuration for the final recurrent
layer, as it outputs only the final hidden state representing the aggregated infor-
mation from the entire input sequence. The activation function in this layer is also
configurable, matching the hyperparameter options for the first LSTM layer. Here
another dropout layer is applied to further enhance the model’s generalization
capabilities by introducing more regularization before the final output prediction.
The final output layer is a dense layer with a single neuron and no explicit acti-
vation function, making it suitable for the regression task at hand, the prediction
of the continuous value of stock closing prices. The model is compiled using the
Adam optimizer and Mean Squared Error (MSE) as the loss function, which is a
common choice for regression problems (Huang 2023).

3.3.3 Calibrating the Oracle: Optimizing the Model’s Core

To optimize the model’s performance and ensure robust training, a Random
Search (RS) strategy was employed to explore different hyperparameter combi-
nations to achieve the best possible models. RS has been selected as it generally
outperforms Grid Search and requires less computational time (Kim et al. 2023).
The grid of hyperparameters explored during this search is detailed in Table 3.4.

When modeling an LSTM model, the choice of hyperparameters is crucial as
they significantly influence the performance of the model during training. In this
case a total of 7 hyperparameters were used to find the best performing LSTM
models: Unit determines the amount of units in the layer, the more units in the

34



3.3. The Convergence of Minds: Constructing the Hybrid Predictive Engine

model the more complex and slower the learning process; dropout rate removes
random neurons, preventing the model from overfitting; optimizer selects the
optimization algorithm responsible of updating the model’s weights; activation
function selects the non-linear transformation applied by the layer; learning

rate determines the step size at which the model learns, with high learning rates
enabling faster learning, but at the cost of performance; epochs specifies the num-
ber of times the model processes the entire dataset; and batch size is used to
select the number of small batches of data used to train the model. Larger batches
result in faster training, but may cause memory issues. Conversely, a smaller
batch size allows for more frequent weight updates, which can lead to better gen-
eralization. Finding the optimal values for these hyperparameters is essential for
minimizing the selected loss function, the MSE. The values of the hyperparameters
were selected based on their success in achieving high accuracy values to predict
the S&P500 index with an LSTM network (Kim et al. 2023).

Table 3.4: Random Search Hyperparameter Grid

Parameter Grid

units [32, 64, 128, 256]
dropout rate [0.1, 0.2, 0.3, 0.4, 0.5]
optimizer [Adam, Nadam, RMSprop, SGD]
activation [ReLU, tanh, SELU, ELU, Swish]
learning rate [0.001, 0.01, 0.1]
epochs [50, 100, 150]
batch size [16, 32, 64]

Two further features were implemented during the training process of the
LSTM model. The learning rate scheduler (ReduceLROnPlateau) adapts
the learning rate during training. If the validation loss does not improve for 3 con-
secutive epochs (patience=3), the learning rate is reduced in this implementation
by a factor of 0.5 helping the model to fine-tune its weights when it approaches a
minimum and improving convergence. The other element is the early stopping,
which prevents overfitting and optimizes training time, as it halts the training if
the validation loss does not improve for 7 consecutive epochs (patience=7). In
the case of coming to a halt the weights from the epoch with the best validation
loss are restored.

The data is split into 80% for training and 20% for testing before sequence
creation. To ensure the reproducibility of results across different runs and envi-
ronments, a custom set seed function is implemented. The full implementation
of the training process of the LSTM model can be found in Appendix ??.
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Sentiment Integration as Input Data to LSTM

Since the overall goal of the thesis is to measure the impact of including senti-
ment analysis in the stock price prediction model, sentiment scores of FinBERT
need to be included in the training process. When sentiment analysis is enabled
(use sentiment=True), the model integrates the following sentiment features:
daily sentiment score Lag1 to capture immediate influence, sentiment trend 3

and sentiment volatility 3 for observing sentiment momentum and dispersion
over three days, sentiment ma 5 for smoothing out short-term noise and identi-
fying sustained shifts, and sentiment diff 1 for detecting sudden daily changes.
Lastly, interaction terms like volatility x sentiment lag1 between financial in-
dicators such as volatility or volume change and the main lagged sentiment score
are included to vary the sentiment impact based on prevailing financial market
conditions.

3.4 The Acid Test of Foresight: Metrics of Pre-

dictive Performance

To evaluate the models various measures were used, though R2 was selected as
the primary metric to choose the definite model for each company, because it is
a statistical measure that indicates how much of the variance in the dependent
variable, the daily closing price, can be explained by the independent features of
the model. It ranges from 0 to 1, where 0 indicates poor explainability and 1
perfect fit. However, a high value of R2 does not always guarantee accuracy (Kim
et al. 2023), therefore root mean squared error (RMSE) and mean absolute error
(MAE) where chosen to measure how close the predicted values are to the actual
stock prices.

RMSE is the square root of MSE, which measures the difference between the
predicted and actual values by squaring and taking the average of both values.
RMSE is chosen instead of MSE, because the latter is sensitive to the size of the
prediction error, which is severely reduced when taking the square root, allowing
for a more intuitive interpretation of the error size. MAE is an average measure
that as RMSE reacts less sensitively to prediction error size and is less influenced
by outliers compared to MSE. The higher the R2 and the lower RMSE and MAE
values are, the closer the average predictions are to the real stock prices. The
corresponding equations to calculate these metrics are:
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SSE =
n∑

i=1

(yi − ŷi)
2 (3.8)

RMSE =

√
SSE

n
(3.9)

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.10)

SST =
n∑

i=1

(yi − ȳ)2 (3.11)

R2 = 1− SSE

SST
(3.12)

where SSE stands for error sum of squares and SST for total sum of squares, n
is the number of data, yi is the daily stock price of each of the banking companies
in the IBEX-35, and ŷi is the prediction value using the LSTM model.
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Chapter 4

Harvesting Foresight: The Fruits
of Predictive Labor

The performance of the LSTM model in predicting the stock prices of IBEX-35
banking companies was rigorously evaluated across various lookback windows with
and without the integration of FinBERT sentiment scores. As summarized in Ta-
bles 4.1, and A.1 through A.5, the results reveal a complex interplay between the
chosen lookback window, sentiment integration, individual company stock charac-
teristics, and the underlying hyperparameter configurations. Overall, the models
consistently achieved high prediction accuracies across all lookback windows and
most company stocks, evidenced by high R2 values and relatively low RMSE and
MAE. These findings are explored in detail in the following sections.

4.0.1 Temporal Lenses: A Detailed Glimpse Through Look-
back Windows

A granular examination of the results across different lookback periods highlights
the varying impact of sentiment and of hyperparameter combinations on individ-
ual stock predictions. There is no single, unequivocally ”best” lookback window
that optimizes performance for all companies or all metrics simultaneously. Each
lookback length presents unique characteristics and optimal model configurations.
The Tables 4.1, and A.1 through A.5, present the best-performing results obtained
from five iterations of random search hyperparameter tuning. The Figures A.1,
and A.5 to 4.6 illustrate the model predictions alongside the real values corre-
sponding to the best performers for each company. If a company does not appear
in a specific lookback window, it indicates that the inclusion of sentiment did not
improve the underlying baseline model. Though all lookbacks will be discussed,
only the table corresponding to lookback 1 and the figures explicitly mentioned are
included in this section, the remaining tables and figures can be found in Appendix
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A.

Lookback 1

As shown in the line plots for Lookback 1 A.1 to A.4 and 4.1, and detailed in its
corresponding metrics table 4.1, this shortest window takes only the previous day’s
information for predictions. The combination of very recent past information cou-
pled with sentiment proves highly effective here. For instance, SAN.MC shows
the most significant improvement, with its R2 surging from 0.609401 without sen-
timent to 0.898193 with FinBERT, and a reduction in RMSE and MAE values by
0.25 and 0.18 respectively. These enhancements suggest that for SAN.MC, very
recent sentiment is a powerful predictor.

BKT.MC also experienced a progression, with an R2 gain of nearly 0.1 points
and an equivalent reduction in RMSE and MAE. However, Figure 4.1 shows that
this improvement for BKT.MC was mainly concentrated between July 2024 and
January 2025, with the FinBERT-integrated model struggling slightly more in the
final months of 2025 compared to the baseline. For BBVA.MC, CABK.MC,
and SABE.MC, the improvement in their metrics was almost imperceptible, as
they already exhibited very high baseline R2 values (e.g., 0.941285 for BBVA.MC).
The marginal R2 improvements and consistent reduction in error metrics indicate
that sentiment helps to slightly reduce the average prediction error, even for al-
ready well-modeled stocks.

Figure 4.1: BKT.MC: LSTM vs. LSTM+FinBERT with Lookback 1.

Lookback 5

Plots A.5 to A.8 and 4.2 visualize the predictions for this lookback, and its Table
A.1 quantifies the performance for this window. This lookback window continues
to demonstrate strong performance, with BBVA.MC and SAN.MC showing
substantial gains when combining technical indicators with FinBERT sentiment.
BBVA.MC’s R2 improvements by 0.116662, and SAN.MC’s by 0.189153 are accom-
panied with significant RMSE and MAE reductions, reaching a very high explana-
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Table 4.1: Model Performance Comparison of LSTM with Lookback 1.

Company Stock Sentiment Used R2 RMSE MAE
BBVA.MC No Sentiment 0.941285 0.362891 0.266345

finbert 0.941485 0.363390 0.258979
BKT.MC No Sentiment 0.689479 0.636557 0.516674

finbert 0.777859 0.538401 0.387157
CABK.MC No Sentiment 0.904591 0.239320 0.170612

finbert 0.915616 0.225162 0.160908
SABE.MC No Sentiment 0.856522 0.130504 0.097233

finbert 0.896550 0.111670 0.076439
SAN.MC No Sentiment 0.609401 0.516218 0.381220

finbert 0.898193 0.264030 0.196551

tory power. Figure 4.2, for example, shows how SAN.MC forecesting experiences
an overall improvement between the “LSTM” and “LSTM+FinBERT” models.
CABK.MC shows an R2 increase of 0.081526, while the remaining companies
exhibit very slight improvements. UNI.MC is worth mentioning due to its very
low MAE and RMSE values, the lowest in this batch, despite its R2 reaching only
0.67 with FinBERT.

Figure 4.2: SAN.MC: LSTM vs. LSTM+FinBERT with Lookback 5.

Lookback 8

Plots A.9 to A.12 and 4.3 illustrate the model’s predictive paths, with specific
performance metrics provided in the corresponding Table A.2. With this lookback
window both the baseline and FinBERT models are particularly effective forecast-
ers, with the exception of CABK.MC, for which sentiment proves to be a vital
feature. The baseline model for CABK.MC performs surprisingly poorly with an
R2 of 0.279084. However, with the integration of FinBERT sentiment, its R2 sky-
rockets to 0.745272, yielding a massive 0.466188 improvement, and RMSE and
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MAE correspondingly drop by more than 0.25. This indicates that for CABK.MC
at this lookback, sentiment is not merely an enhancement but a fundamental re-
quirement to develop a useful and powerful predictive model. This improvement
is perfectly ressembled in Figure 4.3, wherethe sentiment-enhanced model’s pre-
dictive performance closely aligns with the real values, outperforming the baseline
model, except for April 2025 where it struggles a bit. SABE.MC also sees a
significant R2 improvement of 0.071112, along with good reductions in RMSE and
MAE.

Figure 4.3: CABK.MC: LSTM vs. LSTM+FinBERT with Lookback 8.

Lookback 10

Figures A.13 to A.16 provide a visual understanding of the predictions, and the
associated metrics Table A.3 presents the quantitative results. Unlike previous
lookbacks where only one company was excluded (UNI.MC twice and SABE.MC
once), in this instance, both SABE.MC and BKT.MC do not manage to im-
prove their baseline models with the inclusion of sentiment.

SAN.MC continues to benefit notably, increasing its R2 from 0.913682 to
0.943411, achieving the highest R2 value observed. RMSE and MAE drop accord-
ingly by 0.045914 and 0.033679. UNI.MC, appearing just for the second time,
shows a strong R2 for the first time with an improvement of 0.045426, highlight-
ing the relevance of sentiment for this stock when using longer lookback windows.
CABK.MC, with a baseline model already performing better than its best model
in the previous lookback, is further enhanced by the addition of sentiment.

Lookback 16

The predictive outcomes are showcased in Figures A.17 to A.20, 4.4 and 4.5, and
the performance metrics are detailed in Table A.4. This lookback period presents
companies with baseline models facing considerable struggles, turning sentiment
into a transformative factor. It is worth noting that for the first time all companies
experience an improvement when taking into account sentiment.
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BKT.MC exhibits an astonishing R2 improvement of 1.128878, moving from
a negative R2 of −0.337510, that indicates the model performs worse than a simple
mean prediction, to a more than respectable 0.791369 with sentiment. This tran-
sition from non-existent performance to capturing 80% of the variance in the data
is one of the most compelling pieces of evidence for the power of FinBERT sen-
timent. Evidently the RMSE for BKT.MC dramatically decreases from 1.326464
to 0.523886. This improvement is evidenced in Figure 4.4 where the predictions
evolve from an almost flat line to accurately mirror the real stock’s movements.
Similarly, CABK.MC’s baseline R2 of 0.182898 improves up to 0.573194 with sen-
timent, but struggling particularly in accurately predicting the months of March,
April and May 2025 4.5. SAN.MC is another company, that though less notably
than the others, increases R2 by 0.046148 points, along with small reductions in
RMSE and MAE.

For BBVA.MC and UNI.MC, very high baseline R2 values show only
marginal improvements with FinBERT, which indicates that sentiment only acts
as a fine-tuner. On the other hand, while SABE.MC and SAN.MC manage to
improve their performance, the overall capability of the model remains poor de-
spite having RMSE and MAE values lower than companies like BKT.MC, which
possess a far greater R2.

Figure 4.4: BKT.MC: LSTM vs. LSTM+FinBERT with Lookback 16.

Figure 4.5: CABK.MC: LSTM vs. LSTM+FinBERT with Lookback 16.
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Lookback 20

The model’s predictions for this lookback window are contained in Figures A.21
to A.25 and 4.6, and its metric results can be found in Table A.5. This longest
lookback continues to highlight the stabilizing and performance-boosting effect
of sentiment, especially for stocks that struggle with longer historical price data
alone, as seen with the previous lookback window. BKT.MC shows a substantial
R2 improvement of 0.336189 with FinBERT, demonstrating its vital role for this
stock over longer lookbacks. Its RMSE value also faces a significant reduction
from 0.770927 to 0.388044. The improvement experienced by the inclusion of
sentiment is particularly evident in April and May 2025, where the baseline model
identified a sharp non-existent spike in Bankinter’s stock prices. BBVA.MC
and CABK.MC both show strong R2 improvements of 0.051452 and 0.105331
respectively and considerable RMSE and MAE reductions, reinforcing sentiment’s
value for consistent performance. For SAN.MC, UNI.MC, and SABE.MC,
their R2 improvements are almost imperceptible, however, their baseline R2 values
are adequate, especially for SAN.MC working with an R2 of 0.904007. The case
of Unicaja is interesting, since despite the slight improvement in metrics, Figure
4.6 showcases a seemingly worse predictive approach for the months until January
2025. The following months however demonstrate a notable evolution with a fairly
accurate representation of the real stock as opposed to the baseline model. The
2025 predictions are likely responsible for the light enhancement of R2, RMSE
and MAE values in the case of UNI.MC.

Figure 4.6: UNI.MC: LSTM vs. LSTM+FinBERT with Lookback 20.

4.0.2 The Invisible Hand: The Art and Science of Param-
eter Optimization

A key factor in the consistently high performance observed across all lookbacks is
the careful optimization of hyperparameter configurations. These configurations
were obtained through random search hyperparameter tuning, allowing for the
identification of the best possible combination for each individual model. The
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knowledge extracted from analyzing the hyperparameters of the best models for
the different lookbacks including baseline and sentiment-augmented ones suggest
that there is no single set of “best” hyperparameters that works universally, as
optimal configurations vary significantly between companies and lookback periods.

For example, for BKT.MC at Lookback 1, the baseline model used Units:

256, Dropout: 0.3, Optimizer: Nadam, Activation: relu, Learning Rate:

0.1, Epochs: 100, Batch Size: 32. However, the “LSTM+FinBERT” model,
which showed substantial improvement, used Units: 32, Dropout: 0.2, Opti-
mizer: RMSprop, Activation: relu, Learning Rate: 0.01, Epochs: 50,
Batch Size: 64. In this case incorporating sentiment changed the optimal learn-
ing dynamics, favoring a simpler model with fewer units, lower learning rate, and
fewer epochs, which suggests that the additional information from sentiment sim-
plifies the learning tasks. This pattern is not unique, UNI.MC at Lookback 20,
for instance, exhibited a similar behavior where sentiment enabled a less complex
model with fewer units and fewer epochs while still incrementing R2.

In contrast, for BBVA.MC across Lookbacks 1, 8, 10, 16, and 20,
the optimal hyperparameters for the baseline and sentiment models are almost
identical. This implies that for BBVA.MC, sentiment consistently enhances the
model’s predictive power without fundamentally altering its optimal architecture
or learning strategy. Specifically, for BBVA.MC at Lookback 1, both models
used Units: 128, Dropout: 0.3, Optimizer: SGD, Activation: relu,

Learning Rate: 0.1, Epochs: 150, Batch Size: 32. At Lookbacks 8, 10,
and 16, they designated hyperparameters were Units: 256, Dropout: 0.4,

Optimizer: Adam, Activation: relu, Learning Rate: 0.001, Epochs:

100, Batch Size: 32. The consistent behavior of BBVA.MC’s hyperparame-
ters suggests a robust price stability, where sentiment provides a direct enhance-
ment without needing a fundamental shift in the model’s learning approach.

While hyperparameter configurations are very diverse, certain features appear
frequently in top-performing models. Units vary significantly from 32 to 256,
however, smaller units (e.g., 32) are often seen in sentiment-augmented models
where the sentiment signal might reduce the need for a highly complex network to
extract patterns from raw price data. Within the Optimizers Adam and RMSprop

are the most frequently chosen ones. Interestingly the choice of optimizer often
correlates with the learning rate, Adam is frequently paired with a learning

rate of 0.001 and RMSprop with 0.01. Lastly, among the Activation Functions

relu is the most prevalent due to its computational efficiency and ability to miti-
gate vanishing gradients. elu, tanh, and selu are also used, but their appearance
is more marginal.

The remaining hyperparameters do not show any prevalent trend or relation-
ship with specific models, highlighting the importance of including a vast amount
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of hyperparameters to achieve the best configuration. The fact that the hyper-
parameters like unit change when sentiment is added indicates that sentiment is
not just another input feature, but that it can fundamentally alter the learning
task, leading to different optimal model complexities and learning strategies. This
emphasizes the importance of performing separate hyperparameter searches for
models with and without additional features like sentiment.
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Chapter 5

Crystallizing Wisdom: Definitive
Learnings from the Predictive
Endeavor

The financial domain has extensively investigated the complex and volatile world of
stock price prediction. To achieve more robust and accurate forecasts, numerous
studies have explored the integration of sentiment analysis from financial news,
employing different extraction methods like FinBERT or FinGPT, consistently
highlighting the significant influence sentiment exerts on stock price prediction
(Liu et al. 2023; Talazadeh and Perakovic 2024).

In this context, this thesis has rigorously investigated the impact of integrating
FinBERT-derived sentiment analysis from Reuters financial headlines on the
predictive performance of LSTM models for IBEX-35 banking sector stock
prices. Although the primary objective was to evaluate sentiment’s effect, the
model was trained on an extensive set of technical indicators alongside the closing
price, our target variable. The rationale behind not combining only sentiment with
closing price resides in the fact that the aim of the study is to determine whether
sentiment truly acts as a differential factor, capable of capturing underlying market
dynamics not accessible through traditional indicators like returns, volatility,
or other technical signals. The core of the thesis aims to answer the research ques-
tion: ”Does integrating FinBERT-derived sentiment analysis improve
the performance of LSTM models for IBEX-35 banking sector stock
price prediction?” Through extensive experimentation across various lookback
windows and with meticulous hyperparameter tuning, our findings consistently
support the affirmative.

The LSTM model was chosen for stock price prediction due to its proven suit-
ability for sequential data analysis and as a consequence of similar researches hav-
ing successfully managed to achieve consistent improvements in the prediction of
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other indices when integrating sentiment analysis to it (Kim et al. 2023). FinBERT
was selected, because of its specialization in financial contexts, believing that its
nuanced understanding of financial language would be crucial for extracting the
most accurate sentiment scores, which have a direct impact on their contribution
to the LSTM’s predictive power. Our focus on the IBEX-35 banking sector
addressed a notable gap in existing literature, since American indices like the S&P
500 and Nasdaq have been extensively researched (Jun Gu et al. 2024; Talazadeh
and Perakovic 2024), but the IBEX-35 remains largely unexplored as stated in Sec-
tion 2.4. Recognizing the unique characteristics inherent to each stock exchange,
its industries, and constituent companies (Todorov and Sánchez-Lasheras 2023),
the thesis focuses on the Spanish banking sector, an area which, to my knowledge,
is unprecedented in academic study. The analysis is performed using a five-year
dataset, covering the period from May 2020 to May 2025.

Therefore, this study’s distinct contribution lies not in pioneering the individual
methodologies, namely the usage of an LSTM algorithm for prediction, the news
collection through Reuters, or the sentiment extraction with FinBERT, but rather
in its novel combination and application to the main Spanish index. No
prior research has investigated this specific intersection, with the closest approach
using DeepAR in combination with an emotion classifier of Spanish news (Consoli
et al. 2022). Another differentiating feature was the focus on company-related
and specific news, rather than general news articles to focus specifically on the
most relevant information to the prediction targets.

5.0.1 Pillars of Discovery: Key Contributions to Predic-
tive Science

The integration of FinBERT sentiment generally led to noticeable and often
substantial improvements in model performance across most companies
in the different lookback windows. This enhancement is primarily evidenced by
the models incorporating FinBERT sentiment frequently demonstrat-
ing higher R2 values, indicating that a greater proportion of the variance in
actual stock prices was explained. For instance, in Lookback 1, SAN.MC experi-
enced a remarkable R2 increase from 0.609401 without sentiment to 0.898193 with
FinBERT, representing an improvement of 0.288792. Similarly, BBVA.MC for
Lookback 5 showed a substantial R2 improvement of 0.116662, and CABK.MC
at Lookback 8, initially performing poorly with an R2 of 0.279084, skyrocketed to
0.745272 after integrating sentiment into the LSTM model.

Alongside the improved R2 values, lower RMSE and MAE values were
also consistent. A reduction in the average magnitude of prediction errors means
a closer alignment between predicted and actual stock prices. Following the previ-
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ous example, SAN.MC at Lookback 1 saw its RMSE drop by 0.252189 and MAE by
0.184669 with sentiment. Even in rare instances where baseline performance was
already exceptionally high like BBVA.MC RMSE’s at Lookback 1 or UNI.MC’s
MAE at Lookback 20, sentiment contributed to fine-tuning, leading to marginal
yet positive error reductions.

Perhaps one of the most compelling findings was the sentiment’s ability to fun-
damentally transform models that initially struggled to understand the patterns
in the data and provide accurate predictions. For companies like CABK.MC at
Lookback 8 and, most strikingly, BKT.MC at Lookback 16, where baseline mod-
els exhibited surprisingly poor or even negative R2 values (e.g., BKT.MC’s baseline
R2 at Lookback 16 of −0.337510), the integration of FinBERT sentiment proved
to be not merely an enhancement but a fundamental requirement for achieving
a useful and powerful predictive model. BKT.MC’s astonishing leap to 0.791369
with sentiment at Lookback 16 highlights the sentiment’s capacity to convert poor
performance into robust predictability.

Another insight derived from this study is the diverse impact sentiment has
on hyperparameter configurations. Sometimes, it fundamentally alters the
model’s core, while in other cases, it simply enhances an existing stable architec-
ture. The integration of BKT.MC at Lookback 1 and UNI.MC at Lookback
20, for example, allowed to develop a simpler model architecture with fewer units,
lower learning rates and fewer epochs. In contrast, for BBVA.MC across
Lookbacks 1, 8, 10, 16, and 20, the optimal hyperparameters for both baseline
and sentiment models remained very consistent. This dual behavior underscores
that regardless of how sentiment impacts the model’s structure or learning dy-
namics, its inclusion consistently aids performance, emphasizing the importance
of performing separate and comprehensive hyperparameter searches for models
with and without sentiment.

The overall high performance across lookbacks is attributed to the careful op-
timization of hyperparameter configurations through random search tuning.
While no single set of ”best” hyperparameters was universal, Adam and RMSprop

were the most frequently chosen optimizers, often correlating with specific learning
rates 0.001 and 0.01 respectively. ReLU emerged also as the most prevalent activa-
tion function due to its efficiency and ability to mitigate vanishing gradients. The
observed variability in Units (from 32 to 256), epochs, and batch sizes across dif-
ferent stock-lookback combinations further highlights the adaptive nature required
for optimal model fitting in this complex domain.

In conclusion, this study revealed that FinBERT sentiment analysis is a highly
relevant feature in predicting stock prices for IBEX-35 banking companies. By in-
tegrating relevant and context-specific sentiment, LSTM models achieved superior
performance, providing investors and analysts with more precise tools for risk man-
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agement and informed investment strategies within the IBEX-35 banking sector.
Ultimately, the findings provide a clear answer to the research question, demon-
strating that FinBERT-derived sentiment analysis does indeed improve model per-
formance, even if the degree of improvement varies from subtle enhancements at
already high accuracy levels to significant, transformative gains in other instances.
Regardless of the magnitude, the inclusion of sentiment has consistently proven to
be beneficial in enhancing stock price prediction tasks.

50



Chapter 6

Uncharted Territories: New
Trajectories for Predictive
Discovery

While this study provides compelling evidence for the value of FinBERT sentiment
in stock price prediction in the IBEX-35, it also lays the groundwork for several
promising avenues of future research:

Firstly, while the LSTM model demonstrated superior forecasting capabilities
for sequential data in this study, its limitations in handling extreme price drops or
rapid spikes (Kim et al. 2023) warrant further investigation. To comprehensively
evaluate model efficacy, future work should explore and compare the predictive ca-
pabilities of a broader range of ML models like XGBoost, SVM, and advanced
hybrid models. A rigorous comparative analysis of their respective performances
will offer deeper insights into the most effective modeling approaches for sentiment-
augmented stock price forecasting and the context in which each is more robust
and adequate.

Secondly, given the critical role of sentiment in our findings, an important fu-
ture direction involves comparing FinBERT’s performance with other senti-
ment models. This includes exploring alternative pre-trained language models,
such as FinGPT or custom models trained on diverse financial corpora. Com-
paring the sentiment scores generated by these different methodologies and their
subsequent impact on predictive performance will help assess the robustness and
generalizability of FinBERT’s specific contribution and identify whether other an-
alyzers yield better results.

Thirdly, while this study focused exclusively on the IBEX-35 banking sector,
future research should expand the analysis to other industries within the
IBEX-35 index. Investigating sectors such as utilities, telecommunications, or
retail will reveal whether the observed benefits of sentiment integration and spe-
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cific hyperparameter dynamics are consistent across diverse economic domains or
if their impact is sector-dependent. This broader scope will provide a more com-
prehensive understanding of sentiment’s applicability across the Spanish market.

Furthermore, this study deliberately focused on short-term stock price forecast-
ing. However, understanding long-term market trends holds significant value for
investors. Therefore, a crucial future research avenue is to attempt to apply our
methodology to long-term predictions. This would involve exploring different
data aggregation strategies, considering a wider array of long-term macroeconomic
factors, and adapting model architectures to capture more sustained price move-
ments, thereby extending the practical utility of sentiment-driven insights beyond
daily fluctuations.
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Appendix A

The Atlas of Predictive Outcomes

Figure A.1: BBVA.MC: LSTM vs. LSTM+FinBERT with Lookback 1.

Figure A.2: CABK.MC: LSTM vs. LSTM+FinBERT with Lookback 1.
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Figure A.3: SABE.MC: LSTM vs. LSTM+FinBERT with Lookback 1.

Figure A.4: SAN.MC: LSTM vs. LSTM+FinBERT with Lookback 1.

Table A.1: Model Performance Comparison of LSTM with Lookback 5.

Company Stock Sentiment Used R2 RMSE MAE
BBVA.MC No Sentiment 0.803925 0.664249 0.573381

finbert 0.920587 0.423756 0.339759
BKT.MC No Sentiment 0.784687 0.530849 0.404281

finbert 0.788968 0.525544 0.351257
CABK.MC No Sentiment 0.735125 0.398907 0.321218

finbert 0.816651 0.331575 0.247314
SAN.MC No Sentiment 0.719508 0.437449 0.348058

finbert 0.908661 0.250088 0.172841
UNI.MC No Sentiment 0.636179 0.136228 0.092242

finbert 0.672833 0.129183 0.090411
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Figure A.5: BBVA.MC: LSTM vs. LSTM+FinBERT with Lookback 5.

Figure A.6: BKT.MC: LSTM vs. LSTM+FinBERT with Lookback 5.

Figure A.7: CABK.MC: LSTM vs. LSTM+FinBERT with Lookback 5.

Figure A.8: UNI.MC: LSTM vs. LSTM+FinBERT with Lookback 5.
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Table A.2: Model Performance Comparison of LSTM with Lookback 8.

Company Stock Sentiment Used R2 RMSE MAE
BBVA.MC No Sentiment 0.927186 0.404789 0.307838

finbert 0.928830 0.401160 0.288617
BKT.MC No Sentiment 0.831722 0.469786 0.374724

finbert 0.839666 0.458563 0.364781
CABK.MC No Sentiment 0.279084 0.658323 0.488279

finbert 0.745272 0.390389 0.237709
SABE.MC No Sentiment 0.836716 0.139612 0.099888

finbert 0.907828 0.105527 0.082247
SAN.MC No Sentiment 0.909555 0.248861 0.185093

finbert 0.936849 0.208322 0.157441

Figure A.9: BBVA.MC: LSTM vs. LSTM+FinBERT with Lookback 8.

Figure A.10: BKT.MC: LSTM vs. LSTM+FinBERT with Lookback 8.
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Figure A.11: SABE.MC: LSTM vs. LSTM+FinBERT with Lookback 8.

Figure A.12: SAN.MC: LSTM vs. LSTM+FinBERT with Lookback 8.

Table A.3: Model Performance Comparison of LSTM with Lookback 10.

Company Stock Sentiment Used R2 RMSE MAE
BBVA.MC No Sentiment 0.919962 0.424999 0.319221

finbert 0.932286 0.391486 0.299153
CABK.MC No Sentiment 0.787615 0.357321 0.281881

finbert 0.859034 0.290413 0.216399
SAN.MC No Sentiment 0.913682 0.243117 0.174892

finbert 0.943411 0.197203 0.141213
UNI.MC No Sentiment 0.821872 0.095500 0.076810

finbert 0.867298 0.082428 0.062268
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Figure A.13: BBVA.MC: LSTM vs. LSTM+FinBERT with Lookback 10.

Figure A.14: CABK.MC: LSTM vs. LSTM+FinBERT with Lookback 10.

Figure A.15: SAN.MC: LSTM vs. LSTM+FinBERT with Lookback 10.

Figure A.16: UNI.MC: LSTM vs. LSTM+FinBERT with Lookback 10.
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Table A.4: Model Performance Comparison of LSTM with Lookback 16.

Company Stock Sentiment Used R2 RMSE MAE
BBVA.MC No Sentiment 0.930879 0.395345 0.286476

finbert 0.933750 0.387319 0.307998
BKT.MC No Sentiment -0.337510 1.326464 0.816368

finbert 0.791369 0.523886 0.397212
CABK.MC No Sentiment 0.182898 0.700655 0.401543

finbert 0.573194 0.505201 0.346027
SABE.MC No Sentiment 0.167472 0.315672 0.214332

finbert 0.200073 0.311762 0.283105
SAN.MC No Sentiment 0.411842 0.636771 0.378531

finbert 0.457990 0.612243 0.364090
UNI.MC No Sentiment 0.898668 0.072166 0.056748

finbert 0.911175 0.067566 0.051880

Figure A.17: BBVA.MC: LSTM vs. LSTM+FinBERT with Lookback 16.

Figure A.18: SABE.MC: LSTM vs. LSTM+FinBERT with Lookback 16.
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Figure A.19: SAN.MC: LSTM vs. LSTM+FinBERT with Lookback 16.

Figure A.20: UNI.MC: LSTM vs. LSTM+FinBERT with Lookback 16.

Figure A.21: BBVA.MC: LSTM vs. LSTM+FinBERT with Lookback 20.

Figure A.22: BKT.MC: LSTM vs. LSTM+FinBERT with Lookback 20.

Figure A.23: CABK.MC: LSTM vs. LSTM+FinBERT with Lookback 20.
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Figure A.24: SABE.MC: LSTM vs. LSTM+FinBERT with Lookback 20.

Figure A.25: SAN.MC: LSTM vs. LSTM+FinBERT with Lookback 20.

Table A.5: Model Performance Comparison of LSTM with Lookback 20.

Company Stock Sentiment Used R2 RMSE MAE
BBVA.MC No Sentiment 0.884565 0.511148 0.386861

finbert 0.936017 0.380769 0.290570
BKT.MC No Sentiment 0.549731 0.770927 0.458619

finbert 0.885920 0.388044 0.267557
CABK.MC No Sentiment 0.754359 0.383789 0.291370

finbert 0.859691 0.289664 0.203822
SABE.MC No Sentiment 0.649591 0.205018 0.172101

finbert 0.681692 0.196663 0.145243
SAN.MC No Sentiment 0.904007 0.257250 0.184338

finbert 0.907271 0.253238 0.192276
UNI.MC No Sentiment 0.656576 0.133117 0.085217

finbert 0.669165 0.130654 0.101400
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Appendix B

The Blueprint of the LSTM
Engine

The complete code can be found in https://github.com/Elconme/IBEX-Sentizer.
git.

Listing B.1: Python Code for LSTM Stock Price Prediction and Hyperparameter
Tuning� �

1 def set_seed(seed_value):

2 np.random.seed(seed_value)

3 tf.random.set_seed(seed_value)

4 random.seed(seed_value)

5 os.environ[’PYTHONHASHSEED’] = str(seed_value)

6

7 # Create sequence of data for LSTM input

8 def create_sequences(X, y, lookback=1):

9 Xs, ys = [], []

10 for i in range(lookback, len(X)):

11 Xs.append(X[i - lookback:i])

12 ys.append(y[i])

13 return np.array(Xs), np.array(ys)

14

15 # Build LSTM model

16 def build_lstm_model(input_shape, units, dropout_rate, optimizer_name,

activation_function, learning_rate):

17 if optimizer_name == ’Adam’:

18 optimizer = Adam(learning_rate=learning_rate)

19 elif optimizer_name == ’Nadam’:

20 optimizer = Nadam(learning_rate=learning_rate)

21 elif optimizer_name == ’RMSprop’:
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22 optimizer = RMSprop(learning_rate=learning_rate)

23 elif optimizer_name == ’SGD’:

24 optimizer = SGD(learning_rate=learning_rate)

25 else:

26 raise ValueError(f"Unknown optimizer: {optimizer_name}")

27

28 model = Sequential([

29 LSTM(units, return_sequences=True, input_shape=input_shape,

activation=activation_function),

30 Dropout(dropout_rate),

31 LSTM(units // 2 if units > 32 else units,

activation=activation_function),

32 Dropout(dropout_rate),

33 Dense(1)

34 ])

35 model.compile(optimizer=optimizer, loss=’mse’)

36 return model

37

38 # Training of LSTM

39 def prepare_and_train_lstm(data, lookback=1, use_sentiment=False,

units=64, dropout_rate=0.2, optimizer_name=’Adam’,

activation_function=’tanh’, learning_rate=0.001, epochs=100,

batch_size=16, verbose=0):

40

41 data = data.copy()

42

43 if ’Date’ in data.columns:

44 data[’Date’] = pd.to_datetime(data[’Date’], errors=’coerce’)

45 data[’day_of_week’] = data[’Date’].dt.dayofweek

46 data[’month’] = data[’Date’].dt.month

47 data = data.sort_values(by=’Date’).reset_index(drop=True)

48 else:

49 raise ValueError("Missing ’Date’ column for calendar feature

extraction. Please ensure your CSV has a ’Date’ column.")

50

51 data[’EMA_9’] = data[’TRDPRC_1’].ewm(span=9,

adjust=False).mean().shift(1)

52 data[’SMA_5’] = data[’TRDPRC_1’].rolling(window=5).mean().shift(1)

53 data[’SMA_10’] = data[’TRDPRC_1’].rolling(window=10).mean().shift(1)

54 data[’SMA_15’] = data[’TRDPRC_1’].rolling(window=15).mean().shift(1)

55 data[’SMA_30’] = data[’TRDPRC_1’].rolling(window=30).mean().shift(1)

56 data[’SMA_50’] = data[’TRDPRC_1’].rolling(window=50).mean().shift(1)

57 data[’Returns’] = data[’TRDPRC_1’].pct_change()
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58 data[’Open_Lag1’] = data[’OPEN_PRC’].shift(1)

59 data[’High_Lag1’] = data[’HIGH_1’].shift(1)

60 data[’Low_Lag1’] = data[’LOW_1’].shift(1)

61 data[’Volume_Lag1’] = data[’ACVOL_UNS’].shift(1)

62

63 data[’Open_Close_Ratio_Lag1’] = (data[’TRDPRC_1’].shift(1) -

data[’Open_Lag1’]) / data[’Open_Lag1’]

64 data[’High_Low_Range_Lag1’] = data[’High_Lag1’] - data[’Low_Lag1’]

65 data[’Close_High_Ratio_Lag1’] = (data[’High_Lag1’] -

data[’TRDPRC_1’].shift(1)) / (data[’High_Lag1’] -

data[’Low_Lag1’] + 1e-6)

66 data[’Volume_Change_Lag1’] = data[’ACVOL_UNS’].pct_change().shift(1)

67

68 data[’EMA_9_Lag2’] = data[’EMA_9’].shift(1)

69 data[’Returns_Lag2’] = data[’Returns’].shift(1)

70 data[’High_Lag2’] = data[’HIGH_1’].shift(2)

71 data[’Low_Lag2’] = data[’LOW_1’].shift(2)

72 data[’Open_Lag2’] = data[’OPEN_PRC’].shift(2)

73 data[’Volume_Lag2’] = data[’ACVOL_UNS’].shift(2)

74

75 data[’Volatility_5’] =

data[’TRDPRC_1’].rolling(window=5).std().shift(1)

76 data[’Time_Index’] = np.arange(len(data)) / len(data)

77

78 if use_sentiment:

79 sentiment_cols = [’daily_sentiment_score’]

80 for col in sentiment_cols:

81 if col not in data.columns:

82 raise ValueError(f"Missing ’{col}’ column for FinBERT

sentiment. Cannot use sentiment analysis.")

83 data[’daily_sentiment_score_Lag1’] =

data[’daily_sentiment_score’].shift(1)

84 data[’sentiment_trend_3’] =

data[’daily_sentiment_score’].rolling(3).mean().shift(1)

85 data[’sentiment_volatility_3’] =

data[’daily_sentiment_score’].rolling(3).std().shift(1)

86 data[’sentiment_ma_5’] =

data[’daily_sentiment_score’].rolling(5).mean().shift(1)

87 data[’sentiment_diff_1’] =

data[’daily_sentiment_score’].diff().shift(1)

88

89 main_sentiment_lag1_col = None

90 if use_sentiment == True and ’daily_sentiment_score_Lag1’ in
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data.columns:

91 main_sentiment_lag1_col = ’daily_sentiment_score_Lag1’

92

93 if main_sentiment_lag1_col and not

data[main_sentiment_lag1_col].isnull().all():

94 data[’volatility_x_sentiment_lag1’] = data[’Volatility_5’] *

data[main_sentiment_lag1_col]

95 data[’returns_x_sentiment_lag1’] = data[’Returns’] *

data[main_sentiment_lag1_col]

96 data[’volume_change_x_sentiment_lag1’] =

data[’Volume_Change_Lag1’] * data[main_sentiment_lag1_col]

97 else:

98 if use_sentiment:

99 print(f"Warning: Main sentiment column

’{main_sentiment_lag1_col}’ not found or all NaN for

interaction terms. Skipping interaction terms.")

100

101 data[’Target’] = data[’TRDPRC_1’].shift(-1)

102 data = data.dropna()

103

104 if len(data) < lookback:

105 raise ValueError(f"Not enough data after dropping NaNs for

lookback {lookback}. Data length: {len(data)}")

106

107 feature_cols = [’EMA_9’, ’SMA_5’, ’SMA_10’, ’SMA_15’, ’SMA_30’,

’SMA_50’, ’Returns’,

108 ’Open_Lag1’, ’High_Lag1’, ’Low_Lag1’, ’Volume_Lag1’,

109 ’Open_Close_Ratio_Lag1’, ’High_Low_Range_Lag1’,

’Close_High_Ratio_Lag1’, ’Volume_Change_Lag1’,

110 ’EMA_9_Lag2’, ’Returns_Lag2’, ’High_Lag2’, ’Low_Lag2’,

111 ’Open_Lag2’, ’Volume_Lag2’, ’Volatility_5’,

’Time_Index’,

112 ’day_of_week’, ’month’]

113

114 if use_sentiment:

115 feature_cols += [’daily_sentiment_score_Lag1’,

’sentiment_trend_3’, ’sentiment_volatility_3’,

116 ’sentiment_ma_5’, ’sentiment_diff_1’]

117 if ’volatility_x_sentiment_lag1’ in data.columns and not

data[’volatility_x_sentiment_lag1’].isnull().all():

118 feature_cols += [’volatility_x_sentiment_lag1’,

’returns_x_sentiment_lag1’,

’volume_change_x_sentiment_lag1’]
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119

120 missing_cols = [col for col in feature_cols if col not in

data.columns]

121 if missing_cols:

122 raise ValueError(f"Missing required feature columns:

{missing_cols}. Please check your data.")

123

124 scaler = StandardScaler()

125 X_scaled = scaler.fit_transform(data[feature_cols])

126 y = data[’Target’].values

127

128 X_seq, y_seq = create_sequences(X_scaled, y, lookback=lookback)

129

130 if len(X_seq) == 0:

131 raise ValueError(f"No sequences created for lookback {lookback}.

Check data length and lookback value.")

132

133 split = int(len(X_seq) * 0.8)

134 X_train, X_test = X_seq[:split], X_seq[split:]

135 y_train, y_test = y_seq[:split], y_seq[split:]

136

137 if len(X_train) == 0 or len(X_test) == 0:

138 raise ValueError(f"Train or test set is empty after splitting.

X_train: {len(X_train)}, X_test: {len(X_test)}")

139

140 model = build_lstm_model(

141 input_shape=(lookback, X_train.shape[2]),

142 units=units,

143 dropout_rate=dropout_rate,

144 optimizer_name=optimizer_name,

145 activation_function=activation_function,

146 learning_rate=learning_rate

147 )

148

149 early_stop = EarlyStopping(patience=7, restore_best_weights=True,

monitor=’val_loss’)

150 lr_scheduler = ReduceLROnPlateau(monitor=’val_loss’, factor=0.5,

patience=3, verbose=0, min_lr=1e-6)

151

152 history = model.fit(X_train, y_train, validation_data=(X_test,

y_test),

153 epochs=epochs, batch_size=batch_size,

verbose=verbose,
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154 callbacks=[early_stop, lr_scheduler])

155

156 y_pred = model.predict(X_test).flatten()

157

158 mae = mean_absolute_error(y_test, y_pred)

159 mse = mean_squared_error(y_test, y_pred)

160 rmse = np.sqrt(mse)

161 r2 = r2_score(y_test, y_pred)

162

163 if verbose > 0:

164 print(f"\n MAE: {mae:.4f}")

165 print(f" MSE: {mse:.4f}")

166 print(f" MSE (RMSE): {rmse:.4f}")

167 print(f" R : {r2:.4f}")

168

169

170 return rmse, mae, r2, history.history[’val_loss’][-1], model

171

172 # Random Search for hyperparameters

173 def run_random_search(data, num_iterations, lookback_value,

use_sentiment, sentiment_model_type, seed):

174 set_seed(seed)

175

176 param_grid = {

177 ’units’: [32, 64, 128, 256],

178 ’dropout_rate’: [0.1, 0.2, 0.3, 0.4, 0.5],

179 ’optimizer_name’: [’Adam’, ’Nadam’, ’RMSprop’, ’SGD’],

180 ’activation_function’: [’relu’, ’tanh’, ’selu’, ’elu’, ’swish’],

181 ’learning_rate’: [0.001, 0.01, 0.1],

182 ’epochs’: [50, 100, 150],

183 ’batch_size’: [16, 32, 64]

184 }

185

186 param_combinations = []

187 for _ in range(num_iterations):

188 combo = {k: random.choice(v) for k, v in param_grid.items()}

189 param_combinations.append(combo)

190

191 results = []

192 best_model_for_search = None

193 best_r2_for_search = -np.inf

194

195 print(f"\n--- Starting Random Search for {num_iterations} iterations
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(Lookback: {lookback_value}, Sentiment: {use_sentiment}, Model:

{sentiment_model_type}) ---")

196

197 for i, params in enumerate(param_combinations):

198 print(f"\n Iteration {i+1}/{num_iterations} with params:

{params}")

199 try:

200 rmse, mae, r2, val_loss, current_model =

prepare_and_train_lstm(

201 data=data.copy(),

202 lookback=lookback_value,

203 use_sentiment=use_sentiment,

204 sentiment_model_type=sentiment_model_type,

205 units=params[’units’],

206 dropout_rate=params[’dropout_rate’],

207 optimizer_name=params[’optimizer_name’],

208 activation_function=params[’activation_function’],

209 learning_rate=params[’learning_rate’],

210 epochs=params[’epochs’],

211 batch_size=params[’batch_size’],

212 verbose=0,

213 plot_results=False

214 )

215 result = {

216 ’Units’: params[’units’],

217 ’Dropout’: params[’dropout_rate’],

218 ’Optimizer’: params[’optimizer_name’],

219 ’Activation’: params[’activation_function’],

220 ’Learning Rate’: params[’learning_rate’],

221 ’Epochs’: params[’epochs’],

222 ’Batch Size’: params[’batch_size’],

223 ’RMSE’: rmse,

224 ’MAE’: mae,

225 ’R^2’: r2,

226 ’Validation Loss’: val_loss

227 }

228 results.append(result)

229

230 if r2 > best_r2_for_search:

231 best_r2_for_search = r2

232 best_model_for_search = current_model

233

234 print(f" Iteration {i+1} completed. R^2: {r2:.4f}, RMSE:
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{rmse:.4f}")

235 except ValueError as ve:

236 print(f" Iteration {i+1} skipped due to data error: {ve}")

237 except Exception as e:

238 print(f" Iteration {i+1} skipped due to unexpected error:

{e}")

239

240 return pd.DataFrame(results), best_model_for_search� �
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Appendix C

Declaración de Uso de
Herramientas de Inteligencia
Artificial Generativa en Trabajos
Fin de Grado

ADVERTENCIA: Desde la Universidad consideramos que ChatGPT u otras
herramientas similares son herramientas muy útiles en la vida académica, aunque
su uso queda siempre bajo la responsabilidad del alumno, puesto que las respuestas
que proporciona pueden no ser veraces. En este sentido, NO está permitido su
uso en la elaboración del Trabajo Fin de Grado para generar código porque estas
herramientas no son fiables en esa tarea. Aunque el código funcione, no hay
garant́ıas de que metodológicamente sea correcto, y es altamente probable que no
lo sea.

Por la presente, yo, Elena Conderana Medem, estudiante de Máster en
Ingenieŕıa de Telecomunicación y Business Analytics de la Universidad
Pontificia Comillas al presentar mi Trabajo Fin de Grado titulado ”[T́ıtulo del
trabajo]”, declaro que he utilizado la herramienta de Inteligencia Artificial Gen-
erativa ChatGPT u otras similares de IAG de código solo en el contexto de las
actividades descritas a continuación [el alumno debe mantener solo aquellas en las
que se ha usado ChatGPT o similares y borrar el resto. Si no se ha usado ninguna,
borrar todas y escribir “no he usado ninguna”]:

1. Interpretador de código: Para realizar análisis de datos preliminares.

2. Constructor de plantillas: Para diseñar formatos espećıficos para sec-
ciones del trabajo.
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INTELIGENCIA ARTIFICIAL GENERATIVA EN TRABAJOS FIN DE
GRADO

3. Corrector de estilo literario y de lenguaje: Para mejorar la calidad
lingǘıstica y estiĺıstica del texto.

Afirmo que toda la información y contenido presentados en este trabajo son
producto de mi investigación y esfuerzo individual, excepto donde se ha indicado
lo contrario y se han dado los créditos correspondientes (he incluido las referencias
adecuadas en el TFG y he explicitado para qué se ha usado ChatGPT u otras
herramientas similares). Soy consciente de las implicaciones académicas y éticas de
presentar un trabajo no original y acepto las consecuencias de cualquier violación
a esta declaración.

Fecha: 17.06.2025

Firma:
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