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Abstract: Semiconductor superlattices are periodic nanostructures consisting of epitaxially grown
quantum wells and barriers. For thick barriers, the quantum wells are weakly coupled and the
main transport mechanism is a sequential resonant tunneling of electrons between wells. We review
quantum transport in these materials, and the rate equations for electron densities, currents, and the
self-consistent electric potential or field. Depending on superlattice configuration, doping density,
temperature, voltage bias, and other parameters, superlattices behave as excitable systems, and can
respond to abrupt dc bias changes by large transients involving charge density waves before arriving
at a stable stationary state. For other parameters, the superlattices may have self-sustained oscillations
of the current through them. These oscillations are due to repeated triggering and recycling of charge
density waves, and can be periodic in time, quasiperiodic, and chaotic. Modifying the superlattice
configuration, it is possible to attain robust chaos due to wave dynamics. External noise of appropriate
strength can generate time-periodic current oscillations when the superlattice is in a stable stationary
state without noise, which is called the coherence resonance. In turn, these oscillations can resonate
with a periodic signal in the presence of sufficient noise, thereby displaying a stochastic resonance.
These properties can be exploited to design and build many devices. Here, we describe detectors
of weak signals by using coherence and stochastic resonance and fast generators of true random
sequences useful for safe communications and storage.

Keywords: semiconductor superlattices; resonant quantum tunneling; quantum transport; excitable
media; coherence resonance; stochastic resonance; self-sustained oscillations; chaos

1. Introduction

Semiconductor superlattices (SSLs) are periodic nanostructures consisting of epitaxi-
ally grown quantum wells and barriers [1–3]. A simple SSL consists of many periods, each
comprising two layers of semiconductors with different energy gaps but similar lattice
constants. The structure is cut into a square or circular mesa, whose lateral extension is
much larger than the superlattice period. Quantum wells (QWs) and quantum barriers
(QBs) in the conduction band of the SSL correspond to the semiconductor with a smaller
and larger energy gap, respectively. Typically, two contacts are attached to the ends of
the nanostructure and connected to a circuit, as sketched in Figure 1a. While SSLs were
postulated by Esaki and Tsu [1] to observe Bloch oscillations, which required thin barri-
ers to achieve miniband transport [3], many early experiments were carried out on SSLs
with thick barriers [4], such that the barrier width is much larger than the typical electron
wavelength inside the QB. For thick barriers, the quantum wells are weakly coupled and
the main transport mechanism is the sequential resonant tunneling of electrons between
wells [3,5–7]. Figure 1b depicts the electric potential profile of a stationary state compris-
ing a low field domain (LFD) separated by a charge accumulation domain wall from a
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high field domain (HFD). In the LFD, electrons tunnel across QBs from the lowest energy
level of a QW to the lowest energy level of the next QW. In the HFD, electrons tunnel
from the lowest energy level of a QW to an excited state of the next QW, followed by
a scattering event that brings them down to the lowest energy level before they tunnel
through the next QB. We review the quantum transport in these materials and the rate
equations for electron densities, currents, and the self-consistent electric potential or field,
which are spatially discrete. Depending on the superlattice configuration, doping density,
voltage bias, temperature, and other parameters, these superlattices behave as excitable
systems, and can respond to abrupt changes in dc bias voltage by large transients involving
charge density waves before arriving at a stable stationary state. They can also exhibit
self-sustained oscillations of the current (SSOC) through the SSLs. The oscillations are due
to repeated triggering and recycling of charge density waves, which can be periodic in time,
quasiperiodic, and chaotic. Modifying the superlattice configuration, it is possible to attain
robust chaos due to wave dynamics. External noise of appropriate strength can generate
SSOC when the superlattice is in a stable stationary state without noise, which is called
coherence resonance (CR). In turn, oscillations from coherence resonance can resonate
themselves with a periodic signal in the presence of sufficient noise, thereby displaying a
stochastic resonance (SR). In the last ten years, a novel design of AlGaAs/GaAs SSLs with
45% Al in their quantum barriers allows us to attain these nonlinear phenomena at room
temperature [8], whereas they could be observed only at ultralow temperatures with the
usual AlGa/GaAs superlattices [3]. These properties can be exploited to design and build
many devices. Here, we describe detectors of weak signals by using coherence, stochastic
resonance, and fast generators of true random sequences useful for safe communications
and storage that exploit chaotic attractors.

Figure 1. (a) Sketch of a voltage biased semiconductor superlattice. An epitaxially grown succession
of alternate layers of two semiconductors is cut into a mesa, whose cross section is a square (or
a circle) with sides measuring tens of microns. The semiconductor with smaller (larger) bandgap
forms the QWs (QBs) of the superlattice conduction band. Here, QWs are 10 nm layers of GaAs
negatively doped in their central part, and QBs are 4 nm undoped layers of AlGaAs. (b) Sketch of
a stationary electric potential profile in the SSL conduction band, comprising a LFD followed by a
charge accumulation domain wall and a HFD. In the LFD, sequential resonant tunneling of electrons
is from the lowest subband to the lowest subband of the adjacent QW across the QB. In the HFD,
electrons tunnel from lowest subband to first excited subband of the adjacent QW, followed by a fast
scattering event that transfers electrons to the lowest subband of the same QW.

What do SSLs have to do with excitable systems and media? An excitable dynamical
system has a stable attractor, but has two ways to return to it when disturbed. For small
disturbances from the attractor, it goes back rapidly, whereas the system undergoes a large
excursion before returning provided the disturbance surpasses a finite threshold value.
Spatially extended systems are excitable media when a stimulus of sufficient size can trigger
a wave that will propagate through the medium. In excitable media, there is a refractory
period before a similar disturbance can trigger another wave [9–11]. In physiology, excitable
cells include cardiac and muscle cells, secretory cells, and most neurons [12]. The effects of
spatial discreteness are important in many physical and biological systems consisting of
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interacting components, such as atoms, quantum wells, cells, etc. Besides weakly coupled
SSLs, examples include atoms adsorbed on a periodic substrate [13], propagation of cracks
in a brittle material [14,15], microscopic theories of friction between solid bodies [16], crystal
growth and interface motion in crystalline materials [17], motion of dislocations [18–22],
sliding of charge density waves [23], superconductor Josephson array junctions [24], pulse
propagation in myelinated nerves [12], unzipping of DNA hairpins and modular pro-
teins [25,26], etc. While these examples are very different, their common features are related
to wave propagation and pinning of waves in spatially discrete systems [27]. In spatially
discrete equations that have wave fronts or pulses as solutions, there may be intervals
of a control parameter for which these waves have zero velocity and become stationary
solutions. Outside the pinning intervals, the waves move. Excitability is related to a sudden
change in the control parameter outside the pinning interval, which triggers an appropriate
wave. For weakly coupled SSLs, the control parameter is dc voltage [3].

Weakly coupled SSLs are excitable media when there is a stable stationary state. It can
be one branch of the multistable stationary states that appear for appropriate high doping
densities, or it can be the stable stationary state past a saddle-node infinite period (SNIPER)
bifurcation of a limit cycle. In both cases, the stable state has the field profile of a pinned
wave front, which is a domain wall (DW) separating low field domains (LFDs) and high
field domains (HFDs). The large excursion after a disturbance over a threshold consists of
generation of an HFD bounded by charge accumulation and depletion DWs at the emitter,
and motion of the existing DWs until a stable stationary state is reached. Accumulation
and depletion DWs move at velocities that depend on the instantaneous value of the total
current density. The latter satisfies a universal equation, which depends on the number
and type of DWs moving on the SSL [5]. DW dynamics also explain the stages of SSOC in
SSLs that have appropriately low doping density [3,5]. Under a controllable external noise,
the excitability and oscillatory properties of SSLs can be exploited to produce coherence
and stochastic resonances.

This paper also reviews properties of SSLs that behave as excitable and oscillatory
media. The paper is organized as follows. Section 2 describes different approaches to
quantum transport in SSLs, with particular emphasis on the microscopic sequential resonant
tunneling model, which has different effective masses and voltage drops at quantum wells
(QWs) and quantum barriers (QBs) [7,28]. Section 3 explains how weakly coupled SSLs
with high doping density are excitable media in which large disturbances of a stationary
state produce long excursions of the total current density until the SSL goes back to a
stationary state. Section 4 shows that SSOCs appear for a certain interval of dc voltages
for appropriate values of the SSL parameters. Using our detailed transport model, we
describe how noise can change stable states of excitable SSLs in Section 5. In previous
works, we used an averaged version of the detailed transport model to describe the same
phenomena [29]. Starting from a dc voltage just outside of the region of SSOC (past a
SNIPER bifurcation), sufficiently large external noise can produce a periodic oscillation of
the current, which is called a coherence resonance (CR). Noise can also be used to produce
a resonance between the CR and a weak sinusoidal external voltage signal immersed
in noise, which is a stochastic resonance (SR) that could be used to detect weak signals.
In Section 6, we explain how to insert two equally modified QWs in an otherwise ideal
SSL with identical periods to produce robust chaotic dynamics [7,28]. This design can
be achieved with currently available growth techniques, and it persists under reasonable
disorder due to epitaxial growth and internal and external noise. Section 7 contains the
conclusions of this work.

2. Quantum Transport in Semiconductor Superlattices

Different approaches to electron transport in SSLs are reviewed in [3,6]. Essentially, we
have to choose states of single electron transport in a periodic potential as an appropriate
basis, and derive a quantum kinetic equation, which is then analyzed to explain nonlinear
phenomena such as excitability and oscillations. Ignoring electron–electron interaction and
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scattering, at a zero electric field, we can use extended Bloch states for electron minibands
or localized Wannier states [6]. These one-dimensional (1D) states have to be multiplied by
plane waves in the direction perpendicular to SSL growth (subband energies) [30].

If the QBs are thin, the applied electric fields are not overly large, and the minibands
are wide, only the first miniband is populated. Then, a Boltzmann transport equation with
appropriate collision terms describes the electron transport in the semiclassical limit for
the resulting strongly coupled SSL. Electron–electron interaction is described by a Poisson
equation for the electric potential in a Hartree mean field approximation, in which electron
density is calculated from the Boltzmann equation. For the resulting system, it is possible
to obtain hydrodynamic or drift–diffusion partial differential equations in the limit in
which the Bloch frequency (proportional to the electric field) is of the same order as the
collision frequency. For simple collision kernels of the Bhatnagar–Gross–Krook type, these
equations can be derived explicitly by a Chapman–Enskog method [3]. A variety of SSOCs
are solutions of these equations and explain many experiments; see the review [3]. If a
Wigner transport equation is used instead of the Boltzmann equations, the same procedure
yields nonlocal quantum drift–diffusion equations describing nonlinear SSOCs with small
quantum effects [31]. For sufficiently large electric fields, electrons may be found in more
than one miniband, and quantum resonant tunneling occurs during SSOC [32].

If QBs are thick, the appropriate one-electron basis for the resulting weakly coupled
SSL comprises Wannier states, which can be approximated by subband states of isolated
QWs. Sequential resonant tunneling is the main transport mechanism if the intrasubband
scattering time to be much shorter than the intersubband scattering time, which is much
shorter than the interwell tunneling time across QBs; see the reviews [3,5,6]. Then, the
electrons are in local equilibrium within the subbands of each QW at the instantaneous
values of electric field, average density, and chemical potential. The tunneling current
between subbands of adjacent QWs is stationary, and it depends on the subband electron
densities and the average electric field, which evolve on the much longer time scale of
dielectric relaxation time [33]. These assumptions for weakly coupled SSLs have been
validated by experiments [3]. The subband populations and the values of the electric field
of each SSL period satisfy rate equations and spatially discrete Poisson equations [7]. Strictly
speaking, only the subband with lowest energy of each QW is appreciably populated if the
intersubband scattering time is much shorter than the interwell tunneling time, which is
the usual case in sequential resonant tunneling [7]. Spatially discrete dynamics for weakly
coupled SSLs were suggested by experiments by Esaki and Chang [4], and proposed by
Suris [34] and later authors [33,35–37].

What is the appropriate description for intermediate cases between strongly and
weakly coupled SSLs? We would need a one-electron basis that interpolates between
them (typically, Wannier states multiplied by plane waves along the transverse direction)
and a general quantum kinetic equation. Under a number of restrictions, it is possible to
derive a quantum transport equation for the matrix-valued nonequilibrium Green function
(NEGF) [6,38]. This equation yields the stationary tunneling current between Wannier
states of adjacent QWs, provided the electric field is homogeneous and stationary. Other
approaches using density matrices or Wannier–Stark states produce tunneling current
densities that can also be obtained from NEGF in appropriate limits [6]. An important
advantage of the NEGF approach is that numerical simulations thereof yield the current
density and the current–voltage curve of the device, including appropriate modeling of
scattering, which compares very well with experimental measurements [39]. NEGF can be
calculated numerically for a variety of nanodevices including SSLs, quantum wires and
quantum cascade lasers [39–46], and nanoscale MOSFET and transistors [47–50].

Thus, it could seem that the NEGF is the most general approach to obtain the balance
rate equations for electron densities and electric fields. This is not so, because the NEGF
produces stationary tunneling currents for different nanostructures only by assuming that
the electric field is homogeneous and constant [6,44]. To derive rate equations describing
space-dependent nonlinear phenomena, we need to postulate the same separation of time



Entropy 2024, 26, 672 5 of 23

scales as in the case of weakly coupled SSLs [33]. Then, we have to replace the homogeneous
constant electric field a posteriori by time-dependent local electric fields at each SSL period,
and use the NEGF to calculate numerically a stationary current density to be inserted
into a constitutive equation for the tunneling current [46]. In practice, we postulate the
spatially discrete drift–diffusion equations coupled to the Poisson equation for the electric
field. Then, we insert where needed the numerically calculated tunneling current density
obtained by solving the special case of NEGF equations homogeneous in space under
constant electric field [6,46]. To improve this theory beyond such a patchwork, one would
need to derive the equations for QW electron densities and local electric fields directly
from a space inhomogeneous NEGF coupled with the Poisson equation for the electric
potential, possibly followed by some coarse-graining procedure to obtain the spatially
discrete equations. To this day, this remains an open problem.

2.1. Rate Equations for Ideal Superlattices

In weakly coupled SSLs, QBs are thick and electrons tunnel from the lowest energy
subband at one QW to subbands at the next one. If the subband to which they tunnel
is an excited one, scattering may lower the electrons to the lowest one, from which they
repeat the process. This mechanism is sequential resonant tunneling. Here, we shorten the
description in our previous paper [7], where further details can be found. Following [7,33],
we assume: intrasubband scattering time ≪ intersubband scattering time ≪ interwell tunneling
time across barriers ≪ dielectric relaxation time. The electrons are at local equilibrium within
each subband with 2D electron densities n(ν)

i related to their chemical potentials µ
(ν)
i by [5]

n(ν)
i =

mWkBT
πh̄2

∫ ∞

0
ACν(ϵ) ln

(
1 + e(µ

(ν)
i −ϵ)/kBT

)
dϵ, ν = 1, . . . , n, (1)

ACν(ϵ) =
γν

π

1
(ϵ − ECν)2 + γ2

ν
(2)

Here, i = 1, . . . , N, where N is the number of identical SSL periods, each with length
dB + dW (dB and dW are barrier and well widths, respectively). ECν is the energy of subband
ν (measured from the bottom of the ith QW), and mW , T, and kB are the electron effective
mass at QWs, the lattice temperature, and the Boltzmann constant, respectively. The
Lorentzian functions (2) have half-widths γν = h̄/τsc, where τsc is the lifetime associated
with any scattering process dominant in the sample.

The wave function of an electron in miniband ν is eiqx+k⊥ ·x⊥uν
q(x) (a plane wave on the

lateral directions x⊥ = (y, z) times a Bloch state on the direction of the superlattice vertical
growth; uν

q(x) is a periodic function of x with the SSL period). The energy minibands ϵν(q)
corresponding to the Bloch states solve a 1D Kronig–Penney model [30]

cos ql = cos kdW cosh αdB − 1
2

(
1
ξ
− ξ

)
sin kdW sinh αdB, (3)

k =

√
2mWϵ

h̄
, α =

√
2mB(eVB − ϵ)

h̄
, ξ =

mWα

mBk
=

√
mW
mB

(
eVB

ϵ
− 1
)

.

In the limit, as αdB → ∞, Equation (4) produces the subbands ϵ = ECν appearing in
Equation (2):

cos kdW − 1
2

(
1
ξ
− ξ

)
sin kdW = 0. (4)

2.2. Charge Continuity and Tunneling Current

The constitutive relation between the tunneling current and electron densities can
be obtained using density matrices [51], nonequilibrium Green functions [6,46], or the
Transfer Hamiltonian [5,52,53]. Here, we use the latter approach [5,7]. Provided that the
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scattering times between higher subbands and those with lower energy are much smaller
than the dielectric relaxation time, the first subband is the only that is appreciably populated,
n(ν)

i ≈ 0 for ν > 1 and n(1)
i ≈ ni, µ(1) ≈ µi. Then, the charge continuity equation is

ṅi =
1
e
(Ji−1→i − Ji→i+1), i = 1, . . . , N, (5)

where the tunneling current density is [7]

Ji→i+1 = J+i→i+1(Vi−1, Vi, Vi+1, µi, T)− J−i→i+1(Vi−1, Vi, Vi+1, µi+1, T), (6)

J+i→i+1 =
eh̄kBT
2mB

n

∑
ν=1

∫ ∞

0
AC1(ϵ) ACν

(
ϵ + eVi +

edWεB
4dBεW

(Vi−1 + Vi+1 + 2Vi)

)
× Bi−1,i(ϵ) Bi,i+1(ϵ) Ti(ϵ) ln

(
1 + e

µi−ϵ
kBT

)
dϵ,

J−i→i+1 =
eh̄kBT
2mB

∫ ∞

0
AC1(ϵ) AC1

(
ϵ + eVi +

edWεB
4dBεW

(Vi−1 + Vi+1 + 2Vi)

)
Bi−1,i(ϵ)

×Bi,i+1(ϵ)Ti(ϵ) ln
[

1 + exp
(

1
kBT

(
µi+1 − ϵ − eVi − edWεB

Vi−1 + Vi+1 + 2Vi
4dBεW

))]
dϵ.

In these equations, energies ϵ are measured from the bottom of the ith QW, Vi and Vwi ,
i = 1, . . . , N, are the respective non-negative QB and QW potential drops, and

Bi−1,i = ki

[
dW +

(
1

αi−1
+

1
αi

)(
mB
mW

sin2 kidW
2

+ cos2 kidW
2

)]−1
,

h̄ki =
√

2mWϵ, h̄ki+1 =

√
2mWe

(
ϵ

e
+ Vi +

Vwi + Vwi+1

2

)
,

h̄αi =

√
2mBe

(
VB − Vwi

2
− ϵ

e

)
, h̄αi−1 =

√
2mBe

(
VB +

Vwi

2
+ Vi−1 −

ϵ

e

)
,

h̄αi+1 =

√
2mBe

(
VB − Vwi

2
− Vi − Vwi+1 −

ϵ

e

)
,

Ti(ϵ) =

[
(ki + ki+1)

2

4kiki+1
+

1
4

(
mBki
mWαi

+
mWαi
mBki

)(
mBki+1

mWαi
+

mWαi
mBki+1

)
sinh2(αidB)

]−1

. (7)

Here, mW and mB are the effective masses at QWs and QBs, respectively, and h̄Bi,i+1/mB
are the attempt frequencies related to sequential tunneling through the ith QB. The electrons
are concentrated on a plane located at the end of each QW. The QW wave number ki
depends on the electric potential at the center of the ith QW, whereas the QB wave number
αi depends on the potential Vwi /2 at the beginning of the ith QB [5,7]. The QBs separating
the SL from the emitter and collector contacts have potential drops V0 and VN , respectively.
eVB is the QB height for Vwi = Vi = 0. In Equation (6), Ti, given by Equation (7), is the
transmission probability through the ith barrier separating QWs i and i + 1 [7].

The current density at emitter and collector contacts can be assumed to adopt phe-
nomenological Ohm laws:

J0→1 = σe
V0

dBe

, JN→N+1 = σc
nN

NDN

VN
dBc

. (8)

Here, σj and dBj , j = e, c, are the conductivities and effective lengths of the contacts,
respectively. NDN is an effective 2D doping density of the collector.
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2.3. Discrete Poisson Equations

The Poisson equation yields the QB and QW potential drops:

εW
Vwi

dW
= εB

Vi−1

dB
+

e
2
(ni − ND), ni =

n

∑
ν=1

n(ν)
i , (9)

εB
Vi
dB

= εB
Vi−1

dB
+ e(ni − ND), i = 1, . . . , N, (10)

where εW , εB and ND are QW and QB static permittivities, and the 2D intentional doping
density at the QWs, respectively [5]. These equations produce the relation

εWVwi

εBdW
=

Vi−1 + Vi
2dB

, i = 1, . . . , N. (11)

Then, the dc voltage bias condition is

Vdc =
N

∑
i=0

Vi +
N

∑
i=1

Vwi =

(
1 +

εBdW
εWdB

) N

∑
i=0

Vi −
εB(V0 + VN) dW

2εWdB
. (12)

We differentiate Equation (10) with respect to time, and eliminate ni = ∑n
ν=1 n(ν)

i by
using Equation (5). The result is

εB
dB

dVi
dt

+ Ji→i+1 = J(t), i = 0, 1, . . . , N. (13a)

where J(t) is the total current density, which is independent of the QW index.
The time-dependent model consists of the 3N + 2 Equations (1), (10), (12), and (13a)

[the currents are given by Equation (6)], which contain the 3N + 2 unknowns nj, µj
(j = 1, . . . , N), Vj (j = 0, 1, . . . , N), and J. Thus, we have a system of equations which,
together with appropriate initial conditions, determine our problem completely and self-
consistently. For convenience, we again list the minimal set of equations we need to solve
in order to completely determine all of the unknowns:

εB
dB

dVi
dt

+ Ji→i+1 = J(t), i = 0, 1, . . . , N,

εB
Vi
dB

= εB
Vi−1

dB
+ e (ni − ND), i = 1, . . . , N, (13b)

ni =
mWkBT

πh̄2

∫ ∞

0
AC1(ϵ) ln

(
1 + e(µi−ϵ)/kBT

)
dϵ, i = 1, . . . , N, (13c)

Vdc =

(
1 +

εBdW
εWdB

) N

∑
i=0

Vi −
εBdW

2εWdB
(V0 + VN), (13d)

together with the constitutive relations given by Equations (6) and (8).
Additional simplifications of electrostatics and the integrals over the energy ϵ lead to

simpler versions of Equations (6) and (13) with Fi ≈ Vi/dB [5,54]:



Entropy 2024, 26, 672 8 of 23

ε
dFi
dt

+ Ji→i+1 = J(t), (14a)

Ji→i+1(Fi, ni, ni+1) =
e
l
v( f )(Fi)

{
ni −

m∗kBT
πh̄2 ln

[
1 + e−

eFi l
kBT

(
e

πh̄2ni+1
m∗kBT − 1

)]}
, (14b)

ni = ND +
ε

e
(Fi − Fi−1), ε =

dB + dW
dB
εB

+ dW
εW

, l = dB + dW , (14c)

v( f )(Fi) =
n

∑
j=1

h̄3l(γC1+γCj
)

2m∗2 Ti(EC1)

(EC1 − ECj + eFil)2 + (γC1 + γCj)
2 , m∗ =

mBdB + mWdW
dB + dW

, (14d)

Vdc = l
N

∑
i=0

Fi. (14e)

Alternatively, we can obtain a tunneling current density Jhom(Fl) by numerically
simulating the NEGF equations with periodic boundary conditions for identical bias drop
Fl over all SSL periods (or modules in the case of a quantum cascade laser), and use

Ji→i+1 = Jhom(Fil)
ni − ni+1e−

eFi l
kBT

ND − NDe−
eFi l
kBT

, (15)

instead of Equation (14b) [6,46].

3. Domains, Wave Fronts and Excitable Ideal SSL

For a sufficiently large doping density, the current–voltage curve of SSLs display a
number of stable branches of stationary solutions, whereas for lower doping density, it
has a flat plateau corresponding to SSOC [3]. In both cases, the SSL field profile comprises
domains of low and high field values (LFD and HFD) separated by steep DWs with
intermediate values of the field. The DWs are the building blocks of multistable stationary
branches and of stable SSOC. They can be approximated by solutions of the discrete
Equations (13) or (14) for constant current J and large N.

3.1. Domain Walls and Wave Fronts

Let us consider an infinite SSL at constant current bias J and F(j)(J), which are as in
Figure 2a, i.e., they solve

Ji→i+1(F, ND, ND) = J =⇒ F = F(n)(J), n = 1, 2, 3. (16)

The discrete Equation (14) have solutions that satisfy Fi → F(1)(J) as i → −∞ and
Fi → F(3)(J) as i → ∞ (charge accumulation wave front) or Fi → F(3)(J) as i → −∞ and
Fi → F(1)(J) as i → ∞ (charge depletion wave front). These wave fronts (domain walls)
satisfy Fi(t) = F(i − ct), and can be either stationary (pinned wave front with c = 0) or
moving (depinned wave front with c > 0 for smaller values of J and c < 0 for larger values
of J past the interval where c = 0), as indicated in Figure 3. That there is a finite interval
of values of J, for which c = 0 is a feature of spatially discrete equations, such as (14),
whereas the corresponding continuum equations have c = 0 for a single value of J [27]. The
pinning–depinning transition is a continuous global bifurcation that appears in discrete
equations [21,25–27].
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3.2 Configuración del sistema y características principales 29
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Fig. 3.2 Curva característica de densidad de corriente frente a campo eléctrico
(línea continua) y densidad de corriente del contacto inyector (línea discontinua),
para campo eléctrico uniforme (8i , Fi = F ). La primera intersección (rombo)
da la densidad de corriente túnel crítica, Jcr, y el campo eléctrico asociado, Fcr,
correspondientes a una conductividad æe dada. El primer máximo local da el par
de valores de referencia para la densidad de corriente y para el campo eléctrico,
(Fref, Jref). En este caso particular, æe = 0.763A/Vm, Fcr = 10.3265kV/cm, y Jcr =
78.7959A/cm2. Figura (sólo cuadro principal) extraída de [60].

de manera viable en experimentos. Con lo cual podemos considerar que son una

característica adicional del modelo.

3.2.2 Comportamiento según la conductividad del contacto

Vamos a realizar un análisis previo sobre la influencia de la conductividad del

contacto, æe, sobre la dinámica del sistema.

Salvo por una región acotada del espacio de fases que puede verse en la figura 3.3,

el sistema se hallará en un estado estacionario linealmente estable. Es decir, el perfil

del campo eléctrico a lo largo de la superred, (F0, . . . ,FN ), se hallará en un punto fijo

atractor.

Si los parámetros (VSL,æe) se encuentran dentro de la región acotada, por contra,

el sistema se hallará en un régimen de comportamiento oscilatorio. Esta región

tiene dos zonas diferenciadas, indicadas con diferentes colores en la figura 3.3: en

las zonas de bajo voltaje hay oscilaciones de alta frecuencia, mientras que en el resto

las hay de baja frecuencia. Estas zonas de alta y baja frecuencia vienen definidas

por el comportamiento interno de la superred y, para un determinado valor de la

conductividad, denotaremos por Vd al voltaje crítico donde ocurre el cambio de

una zona a otra.
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Figure 2. (a) Tunneling current density versus field for a homogeneous field Fi = F and density
ni = ND showing constant solutions F(n)(J), n = 1, 2, 3 of Ji→i+1 = J. (b) Tunneling current density
versus voltage (ni = ND, Vi = V) comparing the reference configuration (ref.) dB = 4 nm, dW = 7 nm
to J0→1 in Equation (8) (dot-dashed straight line) and to configurations having QWs with more or
less monolayers (m.l.). The rhombus marks the critical current Jcr and voltage Vcr at which the
contact Ohm’s law intersects the reference configuration. When the current surpasses Jcr, a new
HFD is created at the emitter. Reprinted from E. Mompó, M. Carretero, L. L. Bonilla, Designing
hyperchaos and intermittency in semiconductor superlattices, Physical Review Letters 127, 096601
(2021); https://doi.org/10.1103/PhysRevLett.127.096601 [28].
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Figure 3. Velocities of wave fronts shown in the inset versus current bias, I. GaA/AlAs SSL
parameters are dW = 9 nm, dB = 4 nm, ND = 1.5 × 1011 cm−2, and cross section 1.13 × 10−4 cm2.
Courtesy of Andreas Wacker, appeared in [3].

3.2. Excitability

We now consider the behavior of the SSL under a sudden change in voltage ∆V, as in-
dicated in Figure 4. There are a number of stationary branches that solve Equation (14) with
boundary conditions (8). Starting at the voltage marked in Figure 4, we may decrease the
voltage toward the values of the preceding branches, or increase it toward larger voltages.

If ∆V < 0, the new stable position of the DW separating low and high field domains
is to the right of the old one because the LFD is wider, corresponding to a lower voltage.
The DW has to move with positive velocity following the flow of the electrons.

If ∆V > 0, the SSL response depends on the size of the voltage step. For small ∆V > 0,
the new stable position of the DW corresponds to the stationary branch just following the
old one, and the DW is one SSL period closer to the emitter. To reach this position, the
current has to grow to the region of c < 0 in Figure 3, the DW (wave front) then moves one
SSL period towards the left and stays there. This is shown in Figure 5a,b. If ∆V > 0 is so
large that the final position of the DW is more than one SSL period towards the emitter,
the response is quite different. Firstly, the current increases, and the DW moves one SSL
period to the emitter with c < 0. Then, a new HFD formed by accumulation and depletion
layers (a charge dipole) forms at the emitter, and starts moving towards the collector, while
the old DW moves towards the collector, which is a combined charge dipole–monopole
(tripole) scenario [54]. To be more precise, we need a quantitative argument [5]. Consider a

https://doi.org/10.1103/PhysRevLett.127.096601
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profile of moving high and low field domains with n+ accumulation DWs moving with
velocity c+(J) > 0 and n− depletion DWs moving with velocity c−(J). The velocities as
functions of the current are shown in Figure 3. If we ignore small regions that contribute
little to the voltage, the dc voltage per unit length is

ϕ =
Vdc
Nl

= F(1)(J) + [F(3)(J)− F(1)(J)]
1
N ∑

f ronts
[X−(t)− X+(t)], (17)

where X±(t) are the positions of the DWs. Time differentiation of this equation yields the
following evolution equation for the total current density [5]:

dJ
dt

=
n+c+(J)− n−c−(J)

N
[F(3)(J)− F(1)(J)]2

F(3)(J)−ϕ
v′1(J) + ϕ−F(1)(J)

v′3(J)

, N ≫ 1, (18)

v′n(J) =
∂

∂F
Ji→i+1(F(n)(J), ND, ND), n = 1, 2, 3.
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Figure 4. Numerically simulated sawtooth current–voltage characteristic and current response vs.
time of a 40-well AlAs/GaAs superlattice (dB = 4 nm, dW = 9 nm). Upper branches correspond to
voltage up-sweep, lower branches to down-sweep. The arrows in (a) indicate the starting and end
points of imposed voltage steps. (b) gives an enlarged view of the initial operating point Vi = 0.75 V
(box), as well as of different final points (circles) below and above the voltage threshold for triggering
a large excursion of the current. (c) Current vs. time for different initial positive voltage steps.
(d) Same for negative voltage steps. For clarity, the curves are shifted vertically in units of 20 µA in
(c) and 30 µA in (d). Reprinted from [54].

These approximate equations do not capture other features seen in numerical simu-
lations and corroborated by experiments [3]. Importantly, each time an accumulation
DW crosses a barrier into a new SSL period, the current J(t) displays a small spike.
Equation (18) describes a time average that smoothens out these small current spikes.



Entropy 2024, 26, 672 11 of 23

T
im

e
 [

µ
s
]

0
1

0

Well1 40

T
im

e
 [

µ
s
]

0
1

0

Well1 40

(a)

Vstep= +0.6 V Vstep= +0.7 V

-1 0 1 2 3 4 5

Time [µs]

0

50

100

150

200

C
u

rr
en

t 
[µ

A
]

+0.5V

+0.6V

+0.7V

+0.9V

(b) (c)

Figure 5. Response of the current (a) and evolution of electron densities (b,c) for different values of
∆V. Reprinted from [54].

Just after a large voltage step ∆V > 0, the current increases (as shown in Figure 5a) to
allow for c < 0 in Figure 3. However, when doing that, the current surpasses the critical
value (diamond in Figure 2), and a new HFD appears at the emitter. It is formed by an
accumulation DW at its back and a depletion DW at its front, moving with velocities c+(J)
and c−(J), respectively. The old DW moves with velocity c+(J) towards the collector. Thus,
we have n+ = 2, n− = 1 in Equation (18). The current J tends towards the value that solves
2c+(J) = c−(J), while numerical simulations show double spikes corresponding to the
motion of the two DWs. After the old DW reaches the collector, n+ = n− = 1 and the
current tends towards the intersection between c+ and c− in Figure 3. Simulations show
single spikes corresponding to the motion of a single DW. The depletion DW at the front of
the dipole continues moving until it exits at the collector. This is shown in Figure 5a,c.

The behavior of the SSL we have described is typical of an excitable medium. What
happens if the voltage step is not applied abruptly? If the voltage step ∆V is applied
during a certain time ∆t, for example by the linear function ∆V(t) = ∆V

∆t t for 0 < t < ∆t,
then different scenarios can occur, from adiabatic switching from one stationary branch to
another, to triggering of tripole scenarios and skipping stationary branches; see [55].

4. Self-Sustained Oscillations of the Current

Equation (18) is also the key to understanding the oscillatory behavior of SSLs. De-
pending on the composition, doping density, temperature, and configuration of the SSL,
it may behave as an excitable medium, as explained in the previous section, or it may
exhibit stable oscillations of the current under dc voltage bias [3]. In the latter case, under dc
voltage bias and for a sufficiently large N (N ≥ 14 for the SSL of Figure 6), the oscillations
occur on an intermediate range of voltages, outside which the SSL is in a stable stationary
state. As Vdc increases, the SSOC appear as a supercritical Hopf bifurcation and finish
at either a Hopf or a SNIPER bifurcation. The corresponding field profiles are repeated
generation of HFDs at the emitter that either die before reaching the collector (lower part
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of the SSOC voltage interval) and have high frequency, or reach the collector and have
low frequency; see Figure 6. A SNIPER bifurcation is observed in experiments [56] and in
numerical simulations [29].

For larger voltages, a typical stable oscillation of the current in a long weakly coupled
SSL is a relaxation oscillation with periods having different stages. In the first stage, a HFD
bounded by accumulation and depletion DWs moves towards the collector. According to
Equation (18), the current evolves rapidly to the value J∗ where c+(J) = c−(J) in Figure 3.
When the depletion DW reaches the collector, n+ = 1, n− = 0, and J(t) increases according
to Equation (18). When the current surpasses the critical value in Figure 3, a new HFD
is triggered at the emitter. Then, n+ = 2, n− = 1, and the current decreases to the value
such that 2c+(J) = c−(J). When the accumulation layer of the original HFD reaches the
collector, n+ = n− = 1 and we are back at the first stage, having completed a period of the
oscillation. These stages are illustrated in Figure 6 that shows the evolution of the current
and of the electric field profiles during one oscillation period. What happens for large
voltages close to the SNIPER bifurcation is that the HFD close to the collector never exits
and the new HFD triggered when the current increases past its critical value has a shorter
motion between the emitter and the accumulation DW of the exiting HFD as shown in
Figure 6. For voltages past the SNIPER bifurcation, the current falls below the critical value
(the saddle-node part of the SNIPER), new HFD are not triggered at the emitter and only a
stable stationary LFD followed by a HFD next to the collector remains.
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Figure 6. Evolution of the current (a,b) and of the electric field profile (c,d) during typical high-
and low-frequency SSOCs on the left and right panels, respectively. High frequency oscillations
correspond to a supercritical Hopf bifurcation (left panel), whereas low frequency oscillations appear
near the SNIPER bifurcation (right panel). Reprinted from the supplementary material of [29].

Depending on the emitter conductivity, the previous scenario can be modified. If the
conductivity is very large, the current J0→1 does not intersect Ji→i+1(F, ND, ND). Then,
SSOCs are due to the dynamics of accumulation DWs, according to numerical
simulations [3,5]. If the emitter conductivity is fine-tuned, it is possible to trigger sev-
eral HFD and the oscillations become more complicated, even chaotic [3,57].

5. Effects of Noise: Coherence and Stochastic Resonances

So far, we have not considered the very important effects of internal and external noise
and disorder on the nonlinear phenomena in SSLs. Here, we consider the effects on an
ideal SSL of an external noise provided by a voltage source. Internal shot and thermal
noises produce much weaker effects, and can be ignored. Thus, the SSL can be described
by Equation (14) with

l
N

∑
i=0

Fi = V + η(t), η(t) = ηth(t) + ηc(t), (19)
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replacing Equation (14e), or by Equation (13) with(
1 +

εBdW
εWdB

) N

∑
i=0

Vi −
εBdW

2εWdB
(V0 + VN) = V + η(t), η(t) = ηth(t) + ηc(t), (20)

replacing Equation (13d). In these equations, V may consist of the dc voltage bias Vdc
and an ac signal Vac = Vsin sin(2πνt) (Vsin =

√
2 Vrms

sin ), whereas η(t) has one component,
ηth(t), related to the noise of the source, and the external noise ηc(t). ηth(t) is simulated by
picking random numbers every 5 × 10−11 s from a zero mean distribution with a standard
deviation of 2 mV. ηc(t) is a white noise with bandwidth of 1 GHz and tunable amplitude
Vrms

noise [29]. For these noise values, numerical simulations of the model agree qualitatively
with the results of the experiments reported in [56]. In the present paper, we have simulated
numerically the detailed Equation (13) (corresponding to having different effective mass
and permittivities at barriers and wells) with the voltage bias of Equation (20). In our
previous work [29], we solved Equations (14) and (19) for average mass and permittivities.
The results of numerical simulations of both detailed and averaged rate equations are
qualitatively the same and quantitatively quite similar. Compared to experiments, it is
known that the total current and the frequency of its SSOC are lower than observed [3].

We study an ideal AlGaAs/GaAs 50-period SSL at room temperature with three
populated subband energies, 41.6, 165.8, and 354.3 meV, calculated using Equation (4).
The subband broadenings due to scattering are 2.5, 8, and 24 meV, respectively, and the
2D doping density is ND = 6 × 1010 cm−2 [55]. The SSL has cross section A = s2 with
s = 30µm, and mW = 0.063 me, mB = (0.063+ 0.083x)me = 0.1me (for x = 0.45), dB = 4 nm,
dW = 7 nm, l = dB + dW , εB = 10.9ϵ0, εW = (12.9 − 2.84x)ϵ0, ϵ0, and Vdc are the effective
electron mass at QW and QBs, the (Al,Ga)As QB thickness, the GaAs QW thickness, the
SSL period, the QB permittivity, the QW permittivity, the dielectric constant of the vacuum,
and the dc voltage bias, respectively. We select contact conductivities σc = σe = 0.49 A/Vm
and the same doping density ND for emitter and collector.

Figure 7a shows the current versus dc voltage diagram. For η(t) = 0, the branch
of SSOC appears as a supercritical Hopf bifurcation at Vdc = 0.257 V and ends at a
SNIPER at Vdc = 0.372 V. These values are lower than observed experimentally, as we have
not included the large resistor in series with the SSL sample and more realistic contact
boundary conditions [56]. Near the SNIPER, the oscillation frequency is proportional
to

√
VSNIPER − Vdc, as shown in Figure 7b. For larger voltages, there remains a stable

stationary profile comprising a LFD followed by a HFD that ends at the collector. This
is the same scenario of the experiments [56]. Earlier experiments had demonstrated CR
on a AlAs/GaAs SSL at 77K by adding a white noise ηc(t) of varying strength in Equa-
tion (19) [58].
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Figure 7. (a) Current–voltage diagram of the numerically simulated AlGaAs/GaAs SSL. Maximum,
minimum and time-averaged values of the current are shown for voltages on the interval of SSOC.
(b) Frequency of the SSOC near the voltage VSNIPER that shows the square root dependence charac-
terizing a SNIPER bifurcation.
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In nonlinear excitable systems [12], noise of appropriate strength can trigger coherent
oscillations, a CR, and enhance the signal-to-noise ratio of a periodically driven bistable
system, an SR. These effects of noise are typically demonstrated in systems of few degrees of
freedom that allow for analytical and simple numerical studies. A particle in a double-well
potential under white noise and ac driving forces experiences SR [59], whereas a CR is
demonstrated in the excitable FitzHugh–Nagumo equation [60,61]. For an AlAs/GaAs SSL
at ultralow temperature, which is a system with many degrees of freedom, Hizanidis et al.
predicted CR by numerically simulating Equation (14) with added internal noise of tunable
intensity [62]. They placed the voltage close to a SNIPER bifurcation on the side where
a stationary state is stable. Then, they increased the strength of their internal noise and
demonstrated numerically CR.

When we impose the same external noise (20) as in the experiments [56], CR arises past
the SNIPER at Vdc = 0.372 V. Adding noise with increasing amplitude at Vdc = 0.373 V,
a CR appears as coherent SSOC; see Figure 8a–e for Vrms

noise ≥ 4 mV. For smaller values,
as shown in Figure 8a, the noise randomly triggers current spikes corresponding to the
emission of an HFD (charge dipole wave) at the injecting contact and its motion towards
the collector. However, the frequency spectrum does not exhibit an appreciable peak; see
Figure 8f. For larger values of Vrms

noise, larger current spikes form a periodic pattern and a
large peak appears in the frequency spectrum, which indicates a CR. Its frequency follows
the interspike average frequency [marked by triangles in Figure 8f–j] produces the CR
frequency, which increases with Vrms

noise.
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Figure 8. Coherence resonance: (a–e) ac components of the time dependent current, and (f–j) the
corresponding frequency spectra (the triangle marks the interspike average frequency) for different
noise amplitudes at Vdc = 0.373 V. Values of Vrms

noise are 3, 4, 6, 8, and 10 mV. Current traces have been
shifted to have zero current at the stationary state. (k) Fourier spectra of the current traces J(t) for
different values of the bandlimited white noise RMS amplitude. Darker (brighter) colors represent
higher (lower) frequency amplitudes (in arbitrary units). The frequency associated with the mean
interspike time is represented by a dashed red line. (l) Normalized standard deviation versus Vrms
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noise (ηth = 0). Inset: mean interspike interval versus Vrms

noise. The vertical asymptotes (dashed lines)
occur at Vrms

noise = 2.494 mV.
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Figure 8k shows the Fourier spectra of J(t) for different values of Vrms
noise. The dashed red

line indicates the frequency associated with the mean interspike time. For Vrms
noise ≤ 3 mV,

the noise causes a rapid small-amplitude oscillation of the current and large spikes sepa-
rated by long-time intervals. Between spikes, the current is close to a constant value slightly
above the critical current defined in Figure 2. Each large spike of the current corresponds
to triggering a HFD (charge dipole) that moves towards the collector, as explained in the
excitability scenario of Section 3. The field profile for currents different from large spikes
is quasistationary: Fi ≈ Fcr near the emitter, then Fi decreases to F(1)(J), stays there for
several periods, and increases again near the collector.

Figure 8l depicts the normalized standard deviation RTa =
√
⟨T2

a ⟩ − ⟨Ta⟩2/⟨Ta⟩ of
the interspike time interval, Ta, versus Vrms

noise. It has a minimum after an abrupt drop,
followed by a smooth increase. This behavior is expected for voltages close to a SNIPER
bifurcation [62]. The inset of Figure 8l shows that the mean interspike interval ⟨Ta⟩ first
decreases from infinity at Vrms

noise = 2.294 mV and rather more smoothly for Vrms
noise > 4 mV.

This behavior agrees qualitatively with the experimental results [56].
Having shown the existence of a CR, we can add a weak sinusoidal signal to the

bias and try to see whether it resonates with the CR for appropriate noise, giving rise
to a stochastic resonance, and can be discovered. This is shown in Figure 9a–e: a small
amplitude ac signal with a frequency within the CR range is added to the dc voltage and the
noise amplitude is increased. For Vrms

noise < 4 mV, there appear large current spikes separated
irregularly by long intervals. Figure 9g–i show that the SSL oscillates at a frequency locked
with that of the ac signal, as the noise amplitude increases. At larger Vrms

noise, Figure 9j shows
that the main frequency increases and ceases to be locked to that of the ac signal. This is the
signature of a SR, which is also observed in experiments [56].

−0.2

0.0

(a)

−0.2

0.0

(b)

−0.2

0.0

(c)

−0.2

0.0

(d)

−0.2

0.0

0 500 1000

(e)

0

1
(f) (4 mV)

0

1
(g) (6 mV)

0

1
(h) (7 mV)

0

1
(i) (8 mV)

0

1

0 20 40 60

(j) (10 mV)

I a
c
(m

A
)

Time (ns)

A
m
p
li
tu
d
e
(a
rb
.u

ni
ts
)

Freq. (MHz)

0

15

30

45

3 4 5 6 7 8 9 10 11 12

Fr
eq

u
en

cy
(M

H
z)

V rms
noise (mV)

(k)

0

2

4

6

8

10

0 1 2 3 4 5

V
rm

s
no

is
e
(m

V
)

V rms
sin (mV)

(l)

Figure 9. Stochastic resonance: (a–j) are as in Figure 8, but now a 15 MHz ac signal with
Vrms

sin = 1.8 mV has been added. The values of Vrms
noise are 4, 6, 7, 8, and 10 mV. (k) Fourier spec-

tra of J(t) for different values of Vrms
noise. Darker (brighter) colors represent higher (lower) frequency

amplitudes (in arbitrary units). The frequency associated with the mean interspike time is represented
by a dashed red line and the CR frequency is indicated by a dashed black line. (l) Values of Vrms

noise
needed to trigger periodic SSOC versus Vrms

sin .
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Figure 9k shows the Fourier spectra of the current traces J(t), including that of the
15 MHz sinusoidal ac signal. We observe how the frequency associated with the mean
interspike time and the CR frequency come together as Vrms

noise increases. Figure 9l shows the
values of Vrms

noise that trigger periodic SSOC versus the amplitude of the sinusoidal signal,
Vrms

sin . Clearly, Vrms
noise decreases as the amplitude of the ac signal Vrms

sin increases, a trend that
is also observed in experiments [56]. As explained in the latter reference, the SR can produce
an enhancement of the signal-to-noise ratio by more than 30 dB [56]. Thus, excitable SSL
devices could be used to amplify weak ac signals, similarly to lock-in amplifiers that amplify
and detect weak ac signals immersed in strong background noise.

6. Modified Superlattices and Robust Chaos

Chaotic SSOC under dc [63] or dc + ac [64] voltage bias were first observed at ultralow
temperatures in GaAs/AlAs SSL. Theoretical predictions using spatially discrete models
of ideal SSL anticipated experimental observations in the ac-driven case [65], but not for
spontaneous chaos. The latter was associated with fine tuning of the conductivity of the
emitter in ideal weakly coupled SSLs (so that a variable number of HFDs can be triggered
at the emitter) [57], or to transitions between different oscillation modes at thin intervals of
dc voltage (HFDs that die before arriving to the collector versus HFDs that arrive at the
collector before a new HFD is triggered) [66]. In the latter case, chaos can be enhanced or
induced by noise [66,67].

A change in the composition of QBs has resulted in the observation of SSOC at room
temperature in GaAs/Al0.45Ga0.55As SSLs [8]. SSOCs include time periodic, quasiperiodic
and chaotic oscillations, but the latter occur for wider voltage intervals than those predicted
by numerically simulating ideal SSLs with identical periods [8]. This could be due to
disorder related to growth techniques, because it is empirically known that the ability to
display chaos varies from sample to sample. In this section, we explain how to exploit this
observation to enhance chaos by appropriate design of the SSL [7,28].

Why is chaos important? Quantum tunneling of electrons is a random unpredictable
process at the microscopic level [68]. This essential randomness is enhanced by collective
transport of the electrons at the macroscopic level. Then, the entropy generated by tun-
neling is enhanced by collective transport and it can produce true random sequences, not
pseudorandom sequences as produced, e.g., by computers. Thus, chaos in SSLs can be used
to build fast generators of true random sequences, which can be used in safe data trans-
mission and storage, encryption, electronic commerce [69–72], stochastic simulation [73],
Monte Carlo simulations [74], etc.

How can we enlarge the voltage intervals where the SSL response is chaotic? On
ideal SSLs, chaos is associated with the transition between high-frequency small-amplitude
current oscillations corresponding to HFDs that die before arriving at the collector and
low-frequency large-amplitude oscillations corresponding to HFDs arriving at the collector
and being recreated at the emitter [66]. The voltage window for this type of chaos is
necessarily narrow. The mechanism of triggering many HFDs by modifying the emitter
conductivity [57] is not feasible as it is not possible to control the contact conductivity
with the necessary accuracy. Thus, our main idea is to change the SSL so that HFDs
(charge dipole waves) can be triggered at different QWs of the sample. To this end, it is
important that we understand how to generate chaotic attractors on wide voltage intervals
by appropriate design [7,28]. This topic has been discussed extensively in [7], to which we
refer for details. We give a shortened discussion below adapted from [7].

6.1. Inserting Wider Wells on the Ideal SSL

Figure 2b shows the current−voltage curve for the reference configuration of an ideal
SSL (with ni = ND, voltage V, dB = 4 nm, dW = 7 nm), the resulting curves when we add
or subtract a number of monolayers (0.3 nm wide each) to dW , and Ohm’s law at the contact,
J0→1(V). Ji→i+1(V) exhibits a single maximum at the shown voltage range. Widening
(respectively, narrowing) the well decreases (respectively, increases) the maximum and
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shifts it toward lower (respectively, higher) voltages. The intersection of Ji→i+1(V) and
J0→1(V) (marked with a rhombus for the reference configuration) changes accordingly.
This intersection roughly marks the voltage and current at which the contact issues a
dipole wave (HFD) [3,5–7,28]. We surmise that lowering the threshold to trigger HFDs
should enrich their dynamics, which implies inserting wider QWs with more than six extra
monolayers [7]. As explained in [7], it is convenient to insert modified QWs having 10 extra
monolayers (i.e., dW = 10 nm). The first three energy levels (subbands), given by solving
Equation (4), are EC1 = 24.0 meV, EC2 = 96.1 meV, EC3 = 214.7 meV.

If we put a single modified QW at i = iw, there appear SSOCs for sufficient voltage.
They are repeatedly nucleated at iw, move toward the collector and disappear there, pro-
vided the voltage is large enough and the number of SSL periods surpasses the minimum
number of SSL periods required for oscillations [3,5]. Numerical simulations show that the
SSOC are similar to those of the unmodified ideal SSL, except that the charge dipoles move
over a smaller part of the SSL. No chaos is observed [7].

Suppose we insert two modified QWs at i1 and i2 (i1 < i2 < N), with dWj = 10 nm,
j = 1, 2. If the wider wells are different, the resulting dynamics is similar to that of one
modified well, for one of the modified wells will dominate the other [7]. If both QWs are
identical, we denote the intervals i < i1, i1 < i < i2, and i > i2 as regions I, II, and III,
respectively. We fix i1 = 5, so that dipole nucleation occurs at i1 and not at the injector [7].
We then vary i2. If regions II and III have more than 14 wells, dipole waves can be nucleated
at i1 and at i2, they travel through regions II and III, respectively, and their motion is
strongly correlated. In general, each region II and III can support only one dipole wave. By
tuning i2, we have observed different types of chaos in numerical simulations. Here, we
give a general idea of the results while a detailed study can be found in [7].

Figure 10 shows the rich dynamical behavior on the SSOC voltage range. Taking the
time traces of two well-separated periods, Figure 10a,b show the Poincaré maps constructed
by plotting V42(t) and of V̇42(t), respectively, at times t∗, where V12(t) takes on its mean
value in time and V̇12(t∗) > 0. In contrast to spontaneous chaos in shorter ideal SSLs, chaotic
oscillations do not ensue through the Feigenbaum period-doubling cascade scenario [75].
Instead, chaos is related to quasi-periodicity. Firstly, a supercritical Hopf bifurcation yields
a periodic attractor, whose field profile exhibits repeated nucleation of HFDs at the i1
and i2 QWs that die before reaching the end of their respective regions [7]. The resulting
high frequency is displayed in the density plot of the normalized Fourier spectrum of
Figure 10d. At Vdc = 0.96 V, another periodic attractor appears and interacts with the
first one, resulting in a hyperchaotic attractor with two positive Lyapunov exponents, as
shown in Figure 10c. In the hyperchaos interval 0.961 < Vdc < 1.1, HFDs nucleated at the
i2 QW either do not reach the collector or, if they do, HFDs cannot stay in the QWs near
the collector [7]. For 1.10 < Vdc < 1.37, there appears intermittent chaos corresponding to
the emergence of another cycle that interacts with the others and eventually disappears
at a saddle point [7]. The intermittency comprises irregular bursts corresponding to a
cycle separated by intervals for which the trajectories are close to the saddle point. The
quiescent stage of intermittency is associated with HFDs that reach the collector, stop there
and remain in the last SSL periods. The periodic bursts are associated with recycling of
HFDs in Regions II and III. On the intermittency interval, the second Lyapunov exponent
is smaller, but still positive. At Vdc = 1.2 V, the saddle point expands to a saddle cycle
and the intermittent behavior now has low frequency oscillations at the quiescent stage [7].
At Vdc = 1.37 V, the intermittency becomes a period 3 cycle (three loop trajectories in
the phase plane). At larger dc voltages, chaos has disappeared and the periodic behavior
becomes even simpler (two loops at 1.43 V, a single loop for larger voltages). The transition
from periodic attractors with three loops to two loop ones at 1.43 V is rather abrupt, as
shown in Figure 10a,b. Sweeping up or down the dc voltage about 1.43 V, we have detected
a hysteresis cycle about this value. The time periodic SSOC disappear at a supercritical
Hopf bifurcation.
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Figure 10. Poincaré maps from (a) V42(t) and (b) V̇42(t), (c) Lyapunov exponents, and (d) Fourier
spectrum as functions of Vdc for the modified SSL with i1 = 5 and i2 = 30. There are jumps between
periodic attractors at Vdc = 1.3V and Vdc = 1.43V (Poincaré map) corresponding to quasi-periodic
attractors with different incommensurate frequencies (Fourier spectrum). There is hyperchaos
(2 positive Lyapunov exponents of comparable magnitude) for Vdc < 1.08V and intermittent chaos
for Vdc > 1.08V (λ1 ≫ λ2 ≈ 0). Reprinted from E. Mompó, M. Carretero, L. L. Bonilla, Designing
hyperchaos and intermittency in semiconductor superlattices, Physical Review Letters 127, 096601
(2021); https://doi.org/10.1103/PhysRevLett.127.096601 [28].

6.2. Effects of Disorder and Noise on Chaotic Attractors

To build feasible devices with chaotic behavior due to insertion of two modified QWs,
we need to discuss how noise and disorder change SSL SSOC. Let us consider disorder first.
When growing SSLs, it is difficult to control perfectly the width of the layers of the two
semiconductors. To account for unintended growth disorder, we add random numbers to
QW widths, selecting them from a zero mean normal distribution with standard deviation σ,
and numerically solve the SSL model. Depending on the resulting disordered configuration,
intervals of hyperchaos or intermittent chaos are either destroyed or remain. When there

https://doi.org/10.1103/PhysRevLett.127.096601
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are long voltage intervals where the chaotic behavior of the SSL without disorder remains,
we consider these examples as successes. If disorder changes chaos in ideal SSLs to time
periodic or stationary solutions, we consider these examples as failures. For a given σ, the
success rate of disordered SSLs that still exhibit chaotic behavior is shown in Figure 10
of [7]. For σ < 0.015 nm, chaotic attractors observed for the SSL without disorder remain.
However, σ = 0.024 nm is sufficient to have a lower success rate of 70%.

To design SSL devices with voltage windows of chaos, we need to control disorder
effects as well as possible. During epitaxial growth [2], Al atoms within each interface alloy
monolayer may be segregated into local clusters or not be randomly positioned in the Ga
or the As sublattice [76]. This yields a nonzero σ, even if there are no errors in the number
of monolayers per QB and QW (recall that the monolayer width is 0.3 nm). It is possible
to attain σ < 0.018 nm in simpler devices [76,77], which would yield reliably chaotic SSLs
according to the success rate of Figure 10 in [7].

In sharp contrast with chaos in ideal SSLs [66], the Lyapunov exponents of modified
SSLs are not affected by internal noise (shot and thermal noise) and external voltage noise
(2 mV rms for a 50 Ohm resistor) [7]. For hyperchaos, noise does not change the two largest
Lyapunov exponents, but it produces a dispersion near their deterministic values, with
larger standard deviation for the second largest exponent. For intermittent chaos, the two
largest Lyapunov exponents are noticeably smaller than their values in the absence of
noise. The explanation could be that noise forces the system to visit more often contraction
regions of the phase space, such as the quiescent regions between bursts in intermittent
chaos, which lowers the largest Lyapunov exponent [78]. The third Lyapunov exponent
may increase with noise, but it remains negative [7].

7. Conclusions

In weakly coupled SSLs, the main transport mechanism is resonant tunneling. Here,
we have reviewed a detailed theory of nonlinear transport based on a hierarchy of time
scales: from the shortest intrasubband relaxation times to intersubband scattering times, to
the much larger dielectric relaxation times [33]. Time scale separation justifies describing
SSL behavior by the spatially discrete rate Equation (13) for voltage drops at QBs and QWs
and for electron densities [7]. These equations can be further simplified to Equation (14)
for the average electric fields and electron densities at QWs [5]. Theories based on density
matrices or NEGFs yield different expressions for the tunneling current [6], but they still
assume the same hierarchy of time scales. A first-principles derivation of spatially discrete
transport equations does not exist at the present time.

Using Equation (14), we show that weakly coupled SSLs are excitable media [3,54].
For large doping density, the I − V curve displays a number of branches corresponding
to stable stationary states. Applying an abrupt voltage step, the current of the SSL either
goes rapidly to a stationary state or it performs a large excursion before reaching the
latter. This excursion corresponds to the generation of a HFD (charge dipole wave) at the
emitter contact and its motion to the collector [54]; see [55] for the effects of applying a time
dependent voltage step.

Noise in some excitable systems is known to produce a stable oscillatory state when
its strength is appropriate, which is a coherence resonance [60,61]. In SSLs, coherence
resonance was predicted in [29] and observed experimentally in [56]. The prediction
was the result of numerically simulating Equations (14) and (19), whereas here, we have
studied the same phenomenon using the detailed Equations (13) and (20). The results are
qualitatively the same, although we require larger noise strengths in the more detailed
model used here to obtain CR. These values are closer to (albeit still smaller than) those
found in the experiments [56]. Once we have found that noise produces CR, it is natural to
see whether we can use noise to detect weak signals by stochastic resonance with it [59].
SR is predicted by the numerical simulations of the detailed model we use here, by the
averaged model [29], and it has been experimentally demonstrated at room temperature
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in [56]. Thus, these excitable SSL devices could be used to amplify and detect weak ac
signals immersed in strong background noise.

Lastly, we have reviewed our previous results of attaining robust chaotic dynamics by
insertion of two identical and wider QWs in appropriate periods of a SSL [7]. Chaos in SSL
can be used to produce fast sequences of true random numbers [8,69], which are useful for
safe storage and transmission of data [71,72], encryption via chaos synchronization [79,80],
etc. In the modified design of the SSL, hyperchaos and chaos by intermittencies are the
result of triggering dipole waves at the modified QWs and their interaction. Adding noise
and disorder within bounds achievable with current technology does not change chaotic
dynamics [7,28]. Thus, our design of robust chaos could be used to obtain more reliable
chaotic dynamics in SSLs. It remains to explore whether insertion of more identical wider
QWs in longer SSLs increases the number of Lyapunov exponents of chaotic attractors, and
whether such SSLs could be successfully grown.
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The following abbreviations are used in this manuscript:

1D, 2D One dimensional, two dimensional
CR Coherence resonance
DW Domain wall
HFD High field domain
LFD Low field domain
QB Quantum barrier
QW Quantum well
SNIPER Saddle-node infinite period
SSOC Self-sustained oscillations of the current
SSL Semiconductor superlattice
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