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Abstract

In [5] it was shown that if {1, b, c, d} is a D(−1) quadruple with
b < c < d and b = 1 + r2, then r and b are not of the form r = pk, r =
2pk, b = p or b = 2pk, where p is an odd prime and k is a positive
integer. We show that an identical result holds for c = 1 + s2, that is,
the cases s = pk, s = 2pk, c = p and c = 2pk do not occur for the
D(−1) quadruple given above. For the integer d = 1 + x2, we show
that d is not prime and that x is divisible by at least two distinct odd
primes. Furthermore, we present several infinite families of integers
b, such that the D(−1) pair {1, b} cannot be extended to a D(−1)
quadruple. For instance, we show that if r = 5p where p is an odd
prime, then the D(−1) pair {1, r2+1} cannot be extended to a D(−1)
quadruple.

AMS Subject Classification: 11D09, 11R29, 11E16. Keywords: Diophantine m tuples,

binary quadratic forms, Quadratic diophantine equation

1 Introduction

Let n be a non zero integer. A diophantine m tuple with the property D(n),
is a set of m positive integers such that if a, b are any two elements from this
set, then ab + n = k2 for some integer k. We will look at the case n = −1.
The cases n = 1 and n = 4 have been studied in great detail and still continue
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to be areas of active research. For more details on these cases, the reader
may consult the references given in [5] or [?], where a comprehensive and up
to date list of references is available.

In the case of n = −1, it has been conjectured that there is no D(−1)
quadruple. The first significant progress was made by Dujella and Fuchs [2],
who showed that if {a, b, c, d} is a D(−1) quadruple with a < b < c < d, then
a = 1. Subsequently, Dujella et. al. [3] proved that there are only a finite
number of such quadruples. Filipin and Fujita ([4]) showed that if {1, b, c} is
D(−1) triple with b < c, then there exist at most two d’s such that {1, b, c, d}
is a D(−1) quadruple.

Recently, Filipin, Fujita and Mignotte [5] showed that if b = r2 + 1,
then in each of the cases r = pk, r = 2pk, b = p and b = 2pk, where p is
an odd prime and k is a positive integer, the D(−1) pair {1, b} cannot be
extended to a D(−1) quadruple {1, b, c, d} with b < c < d. The existence of a
D(−1) quadruple is closely related to the existence of solutions of quadratic
diophantine equations of the type X2 − (1 + Z2)Y 2 = Z2. The above result
of [5] is a corollary of an extremely useful result proved therein ([5, Theorem
1.1] or Lemma 4.1 for a partial result) on the equivalence of certain solutions
of the diophantine equation X2 − (1 + r2)Y 2 = r2. We use this result in
conjunction with our methods from class groups to prove our theorems. Our
first theorem shows that the result in [5] mentioned above, also holds for c
and d. (Note that d is known to be odd and b, c and d cannot be of the form
pk with k > 1 and p prime.)

Theorem 1.1. Let {1, b, c, d} with 1 < b < c < d be a D(−1) quadruple
where c = 1 + s2. Let p be an odd prime and k a positive integer. Then the
cases c = p, d = p, c = 2pk, s = pk and s = 2pk do not occur. Moreover,
if d = 1 + x2, then x is divisible by at least two distinct odd primes.

In the case of a product of two odd primes, we have the following result.

Theorem 1.2. Let {1, b, c, d} be a D(−1) quadruple with b < c < d. If

b = 1 + r2 and r = pq, where p and q are distinct odd primes, then p, q > r
1
4 .

Corollary 1.3. Suppose that α is a positive integer such that for each r ≤ α
the D(−1) pair {1, r2+1} cannot be extended to a D(−1) quadruple. Then for

each odd prime p ≤ α
1
4 and any odd prime q 6= p, the D(−1) pair {1, (pq)2+1}

cannot be extended to a D(−1) quadruple.
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Remark 1.4. To illustrate a concrete case of the above corollary, note that
one may verify that if r ≤ α = 54, then the D(−1) pair {1, r2 + 1} cannot
be extended to a D(−1) quadruple. Hence if p = 5, then for r = pq > 54, we

have p = 5 = α
1
4 and therefore by Corollary 1.3 the D(−1) pair {1, (5q)2 +1}

cannot be extended to a D(−1) quadruple for any odd prime q.

Theorem 1.5. Let r = Pφ, where P is prime and φ < r
1
4 . Then there is no

D(−1) triple {1, r2 + 1, s2 + 1} with gcd(r, s) = 1.

We provide an entirely new approach via the theory of binary quadratic
forms and the class group to study this problem. This is possible as the
existence of a D(−1) triple is intimately connected to the representations of
integers by certain binary quadratic forms and hence to the class group.

2 Binary quadratic forms and the class group

In this section we present the basic theory of binary quadratic forms. An
excellent and delightful reference for this topic is [7], where in particular, the
reader may consult Sections 4 to 7 and Section 11 for the material presented
here. Other useful references are [6] and [1], where the former uses the
language of ideals and the latter that of forms.

A primitive binary quadratic form f = (a, b, c) of discriminant d is a
function f(x, y) = ax2 +bxy+cy2, where a, b, c are integers with b2−4ac = d
and gcd(a, b, c) = 1. We sometimes refer to the integer a as the first coefficient
of the form f . Note that the integers b and d have the same parity. All forms
considered here are primitive binary quadratic forms and henceforth we shall
refer to them simply as forms.

Two forms f and f ′ are said to be equivalent, written as f ∼ f ′, if for

some A =

(
α β
γ δ

)
∈ SL2(Z) (called a transformation matrix), we have

f ′(x, y) = f(αx+ βy, γx+ δy) = (a′, b′, c′), where a′, b′, c′ are given by

a′ = f(α, γ), b′ = 2(aαβ + cγδ) + b(αδ + βγ), c′ = f(β, δ). (2.1)

It is easy to see that ∼ is an equivalence relation on the set of forms of
discriminant d. The equivalence classes form an abelian group called the
class group with group law given by composition of forms (see Definition
2.2).
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The identity form is defined as the form (1, 0, −d
4

) or (1, 1, 1−d
4

), depending
on whether d is even or odd respectively. The inverse of f = (a, b, c) denoted
by f−1, is given by (a,−b, c).

A form f is said to represent an integer m if there exist integers x and
y such that f(x, y) = m. If gcd(x, y) = 1, we call the representation a
primitive one. Observe that equivalent forms primitively represent the same
set of integers, as do a form and its inverse.

We put together some basic facts about forms of discriminant d in the
following lemma.

Lemma 2.1. ([7, Solutions of problems 1, 2 and 3, Section 7]) The following
hold for forms of discriminant d.

1. An integer n is primitively represented by a form f if and only if f ∼
(n, b, c) for some integers b, c.

2. If f = (n, b, c) and f ′ = (n, b′, c′) are two forms such that b ≡ b′

(mod 2n), then f ∼ f ′.

3. Let n be a positive integer such that either n = 4 or gcd(n, 2d) = 1
and n is primitively represented by some form. If w(n) is the number
of distinct primes dividing n, then there are at most 2w(n)−1 pairs of
classes of forms {f, f−1} that represent n.

In the following definition we present the formula for the composition of
forms that gives the group multiplication for the class group.

Let f1 = (a1, b1, c1) and f2 = (a2, b2, c2) be two binary quadratic forms of
discriminant d.

Definition 2.2. Let g = gcd(a1, a2, (b1 + b2)/2) and let v1, v2, w be integers
such that

v1a1 + v2a2 + w(b1 + b2)/2 = g.

If we define a3 and b3 as

a3 =
a1a2
g2

,

b3 = b2 + 2
a2
g

(
b1 − b2

2
v2 − c2w

)
(mod 2a3),

then the composition of the forms (a1, b1, c1) and (a2, b2, c2) is the form
(a3, b3, c3), where c3 is computed using the discriminant equation b23−4a3c3 =
d. Note that b3 is taken modulo 2a3 because of Lemma 2.1, part 2.
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3 The diophantine equation x2 − dy2 = n

The study of D(−1) quadruples leads to the study of forms (1, 0,−d) =
x2 − dy2 of discriminant 4d. If (x, y) is a primitive representation of an
integer n by this form (i.e. x2 − dy2 = n), then there exist integers α and β

such that the matrix A =

(
x α
y β

)
has determinant 1. By (2.1) the matrix

A transforms the form (1, 0,−d) to a form (n, 2b, c). Observe that the choice
of α and β is not unique. The following facts are easy to verify (see for
example [7, Solution of problem 3, Section 7]). Any choice of integers u, v,
such that xv − yu = 1, yields a transformation matrix that takes (1, 0,−d)
to a form (n, 2b′, c′) where b′ ≡ b (mod n). Moreover, it may be verified
that if (n, 2b′, c′) ∼ (1, 0,−d) is a form such that b′ ≡ b (mod n), then there
exist integers u, v such that xv − yu = 1. Therefore, for each primitive
representation (x, y) of n by the form (1, 0,−d), there corresponds a unique
integer b (mod n). We say in this case that the representation (x, y) belongs
to b.

If two primitive representations (x, y) and (x′, y′) (of n by (1, 0,−d))
belong to the same integer b, then it may be verified that

xx′ ≡ dyy′ (mod n), xy′ ≡ yx′ (mod n). (3.1)

We call such representations as equivalent. The congruences in (3.1) may
be used to define equivalence of general solutions (that are not necessarily
primitive) as follows.

Definition 3.1. Two solutions (x, y) and (x′, y′) of X2−dY 2 = n are said to
be equivalent, written as (x, y) ∼ (x′, y′) if the congruences (3.1) are satisfied.

The following lemma is easy to verify using the theory of class groups.
The first part of this lemma has been used by several authors in the study
of the current problem, such as [5, Lemma 6.2]. We provide a sketch of the
proof to give a flavour of the elegant infrastructure of the class group of a
real quadratic field.

Lemma 3.2. Let d = 4(1 + s2) and n be an integer such that 1 < |n| ≤ s.
Then the following hold.

1. There are no primitive solutions (x, y) such that x2 − (s2 + 1)y2 = n.
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2. If s = 2pk and (x, y) is a primitive solution of 4x2 + 2xy − p2ky2 = n,
then |n| = 4 or pk.

Proof. The reader may refer to [1, Chapter 3] for details on cycles of forms
in real quadratic fields and how to compute them. Each equivalence class in
the class group is represented by a finite cycle of forms. The identity class
here is represented by the cycle

(1, 2s,−1) ∼ (−1, 2s, 1),

and when s = 2pk, the cycle corresponding to the form (4, 2,−p2k) is

(pk, 2(pk + 1),−3pk + 2) ∼ (−3pk + 2, 2(2pk − 3), 4) ∼ (4, 2(2pk − 1),−pk) ∼

(−pk, 2(pk + 1), 3pk − 2) ∼ (3pk − 2, 2(2pk − 3),−4) ∼ (−4, 2(2pk − 1), pk).

It is easy to show that if |m| <
√
d
2

and m is primitively represented by a
form f , then there is a form (m, b, c) for some integers b, c that appears in the

cycle representing f ([6, Corollary 1.4.3, p. 19]). Note that |n| ≤ s <
√
d
2

. In
the first part of the lemma, n is primitively represented by the identity form
(1, 0,−(s2 + 1)) and in the second part, by the form (4, 2,−p2k). Therefore,
by the result mentioned above, n must appear as a first coefficient of some
form in the first cycle given above for part 1 (which is not the case), and the
second cycle for part 2 (which gives |n| = 4 or pk).

The following result is a useful consequence of the above lemma that we
use to prove our theorems.

Lemma 3.3. Let k = ff ′ be a positive integer such that 1 < f < k. If
x2 − (k2 + 1)y2 = f ′2 for some coprime integers x and y, then f ′ is not an
odd prime power.

Proof. As x2 − (k2 + 1)y2 = f ′2, it follows from Lemma 3.2 that f < f ′,
that is f ′ >

√
k. Moreover, as (1, 0,−(k2 + 1)) primitively represents f ′2, by

Lemma 2.1, part 1, there is a form (f ′2, 2b, c) for some integers b, c such that
(1, 0,−d) ∼ (f ′2, 2b, c).

Observe that (f ′2, 2,−f 2) is a form of discriminant 4(k2+1). If f ′ is an odd
prime power, then by Lemma 2.1 part 3, we have (f ′2, 2b, c) ∼ (f ′2, 2,−f 2)
or (f ′2, 2b, c) ∼ (f ′2,−2,−f 2) and hence as equivalent forms primitively rep-
resent the same integers, the form (1, 0,−d) primitively represents −f 2 (as
the forms (f ′2,±2,−f 2) represent −f 2 via the representation (0, 1)), which
is not possible by Lemma 3.2, as f 2 < k.
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4 Proofs of theorems

The following terminology will hold throughout this section.
Let {1, b, c, d} be a D(−1) quadruple with 1 < b < c < d. Let

b = 1 + r2, c = 1 + s2, d = 1 + x2

and
bd = 1 + y2, cd = 1 + z2, bc = 1 + t2.

Then
t2 − (1 + r2)s2 = r2 (4.1)

and
t2 − (1 + s2)r2 = s2. (4.2)

Observe that for any positive integer k > 1, the equation X2−(k2+1)Y 2 = k2

has the inequivalent solutions (k, 0) and (k2 + 1− k,±(k − 1)).

Lemma 4.1. ([5, Theorem 1.1]) The solution (t, s) given in (4.1) of X2 −
bY 2 = r2 is not equivalent to any of the solutions (b−r,±(r−1)) and (±r, 0).

Lemma 4.2. [4, Proof of Theorem 1, p. 389] If M = lcm(r, s), then x ≡ 0
(mod M2).

For the following lemma note that if (x, y) is a primitive solution of X2−
(k2 + 1)Y 2 = k2, then (x, y) 6∼ (x,−y). Note also that if the representation
(x, y) belongs to the integer b, then (x,−y) belongs to the integer −b.(See
beginning of Section 3.)

Lemma 4.3. Let k be an odd positive integer such that there are two primitive
solutions (a, b) and (a′, b′) to X2−(k2+1)Y 2 = k2 such that (a, b) 6∼ (a′,±b′).
Then there exist coprime integers p, q both greater than 1, with k = pq such
that p4 and q4 are primitively represented by the form X2 − (k2 + 1)Y 2.

Proof. The given two primitive solutions to X2−(k2+1)Y 2 = k2, by Lemma
2.1 part 1, give rise to two forms P1 and P2 equivalent to (1, 0,−(k2 + 1))
such that P1 = (k2, 2b1, c1) and P2 = (k2, 2b2, c2), where b1, b2 satisfy b1 6≡
±b2 (mod k2) (see remark preceding this lemma). Observe that from the
discriminant equation we have b21 ≡ b22 (mod k2). As gcd(k, bi) = 1, there
exist coprime integers p, q greater than 1 with k = pq such that

b1 + b2 ≡ 0 (mod p2), b1 − b2 ≡ 0 (mod q2). (4.3)
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Let I = (p2, 2b1, c1q
2) and J = (q2, 2b1, c1p

2). By Definition 2.2 (composition
of forms), as p, q are coprime, we have IJ ∼ P1 and I−1J ∼ P2 and hence

(1, 0,−(k2 + 1)) ∼ P1 ∼ IJ ∼ P2 ∼ I−1J.

It follows that
I ∼ I−1 ∼ J,

and therefore I2 ∼ J2 ∼ (1, 0,−(k2 + 1)). Using Definition 2.2 again, it is
easy to verify that I2 = (p4, 2φ, ψ) for some integers φ and ψ and hence, as
I2 ∼ (1, 0,−(k2 + 1)), the form (1, 0,−(k2 + 1)) primitively represents p4.
Similarly (1, 0,−(k2 + 1)) also primitively represents q4.

Proof of Theorem 1.1 Suppose that c = p for some odd prime p. From
(4.1) we have

t2 − s2 = r2(1 + s2) (4.4)

so that for some decomposition r = r1r2 we have

t− s
r21

t+ s

r22
= 1 + s2 = p.

Therefore either
t− s = pr21, t+ s = r22 (4.5)

or
t− s = r21, t+ s = pr22. (4.6)

In the case of (4.5) we have

2s+ cr21 = r22

which is not possible as b− 1 = r2 < c < 2s+ cr21 = r22 ≤ r2.
Assume now that (4.6) holds. Then

2s+ r21 = cr22 (4.7)

which is possible only when r2 = 1, as 2s2 ≥ 2s+ r2 ≥ 2s+ r21 = cr22 > s2r22.
If r2 = 1 then r1 = r and from (4.6) we have t − s = r2. However this
is not possible as t ≡ s (mod r2) implies by Definition 3.1 (equivalence of
solutions) that (t, s) ∼ (b− r, 1− r), which by Lemma 4.1 is not true.

The proofs in the cases when c = 2pk and d = p are similar, where in the
latter case we work as above with the equation y2 − x2 = r2d.
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Assume now that s = pk. Considering (4.2) modulo 4 we see that t is
odd and r is even. Therefore gcd(t + r, t − r) = 1 or gcd(t + r, t − r) = pm

for some m ≥ 1 (as gcd(t, r)|s). From (4.2) we have t2 − r2 = bs2 so that if
gcd(t+ r, t− r) = 1, then for some factorization b = b1b2 we have either

t− r = b1s
2, t+ r = b2 (4.8)

or
t− r = b1, t+ r = b2s

2. (4.9)

If (4.8) holds, then we have b1s
2 + 2r = b2 ≤ b = 1 + r2 which is not possible

as r < s. If (4.9) holds, then 2r+ b1 = b2s
2 ≤ 2r+ 1 + r2, which gives b2 = 1,

in which case from (4.9) we have s = r + 1 and t = r2 + s. The latter is not
possible as seen above in the proof of the case when c = p.

We assume now that gcd(t+ r, t− r) > 1 so that t = pmt1 and r = pmr1
where gcd(t1, r1) = 1 and 1 ≤ m ≤ k. Then (4.2) gives

t21 − cr21 = p2k−2m, (4.10)

which by Lemma 3.3 is not possible if m < k. If m = k, then s|r, which is
not true as r < s.

Next we turn to the case when s = 2pk. Note from (4.2) that either t and
r are both even or both odd. Moreover(

t

gcd(t, r)

)2

− c
(

r

gcd(t, r)

)2

=

(
s

gcd(t, r)

)2

. (4.11)

If gcd(t, r) = 2pm with 0 ≤ m < k, the above equation by Lemma 3.3 is
not possible. If m = k, we have s|r, which is again not possible. Having
thus discarded the case when gcd(t, r) is even, we assume now that t and r
are both odd. We first consider the case gcd(t, r) = 1. It follows from (4.2)
that gcd(t + r, t − r) = 2 (note that b ≡ 2 (mod 4)). Moreover there is a
factorization b = b1b2 such that

t− r = 2b1p
2k, t+ r = 2b2 (4.12)

or
t− r = 2b2, t+ r = 2b1p

2k. (4.13)

Observe that if b1 is even above, then (4.12) and (4.13) take the form of (4.8)
and (4.9) and hence following the reasoning given therein we conclude that
b1 is odd.
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Assume that (4.12) holds. Then we have b2 = r + b1p
2k, which gives

1 + b1
s2

4
= 1 + b1p

2k ≤ r + b1p
2k ≤ b = 1 + r2, so that b1

4
≤ 1. Therefore

b1 = 1 or 3, as b1 is odd. We may discard the value 3 as b = 1 + r2 is a sum
of two co-prime squares. If b1 = 1, then b2 = b and b = r + p2k, which gives
p2k = 1 + r2 − r. Hence (r− 1)2 < p2k < r2, that is, r− 1 < pk < r, which is
not possible. The case when (4.13) holds is analogous.

It remains to consider the case when gcd(t, r) > 1, that is t = pmt1 and
r = pmr1, where m ≥ 1 and gcd(t1, r1) = 1. We have from (4.2)

t21 − cr21 = 4p2k−2m, (4.14)

that is the identity form (1, 0,−c) primitively represents the integer 4p2k−2m.
Note by Lemma 3.2 that m < k. It follows from Lemma 2.1 part 1, that
(1, 0,−c) ∼ (4p2k−2m, u, v) for some integers u, v. Using the composition
formula (Definition 2.2) it is easy to verify that

(4p2k−2m, u, v) ∼ (4, u, vp2k−2m)(p2k−2m, u, 4v)

and hence (as (1, 0,−c) ∼ (4p2k−2m, u, v) represents the identity class)

(4, u, vp2k−2m) ∼ (p2k−2m,−u, 4v). (4.15)

From Lemma 2.1 part 3, there are only two classes of forms that represent 4,
namely (4,±2,−p2k) and two classes of forms that represent p2k−2m, namely,
(p2k−2m,±2,−4p2m). Therefore from (4.15) it follows that (4, 2,−p2k) is
equivalent either to the form (p2k−2m, 2,−4p2m), or to its inverse. In ei-
ther case, as a form and its inverse represent the same integers, the form
(4, 2,−p2k) primitively represents both p2k−2m and −4p2m. As one of p2k−2m

or 4p2m is less than or equal to s, we have by Lemma 3.2 that 2m = k.
Following the same reasoning used to obtain (4.12) and (4.13), we have, as
t21 − r21 = 4bpk, either

t1 − r1 = 2b1p
k, t1 + r1 = 2b2 (4.16)

or
t1 − r1 = 2b2, t1 + r1 = 2b1p

k, (4.17)

where b = b1b2. If (4.16) holds then

b2 = r1 + pkb1
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and hence b = 1 + r2 = 1 + pkr21 = b1b2 = b1r1 + pkb21, so that

b1r1 − 1 = pk(r21 − b21) = pk(r1 + b1)(r1 − b1).

It follows from the above equation that b1 < r1 and hence

pkr1(r1 − b1) < pk(r1 + b1)(r1 − b1) < r21,

which implies that
s

2
= pk <

r1
r1 − b1

.

As r1 = r
pk/2

< r
2
, the above equation yields s

2
< r

2(r1−b1) ≤
r
2
, a contradiction.

We conclude the proof here for s = 2pk with some remarks in the case when
(4.17) holds. Here we obtain s

2
< b1

b1−r1 . It may be shown that in this case
b1 < b2 and hence b1 < r, so that if b1 − r1 ≥ 2, then we have the required
contradiction of s < r. If b1 − r1 = 1, then s

2
< r1 + 1 < r

3
+ 1.

In the case of the integer x, note by Lemma 4.2 that x is divisible by
the least common multiple of r and s. Therefore if x is not divisible by two
distinct odd primes, then

r = 2αpm, s = 2βpn,

where m,n, α, β are non negative integers and p is an odd prime. Observe
that r|s is not possible as this implies by Definition 3.1 that the solutions (r, 0)
and (t, s) are equivalent, contradicting Lemma 4.1. It follows that m = n is
not possible, as in this case either r|s (if α ≤ β), or s|r (if β ≤ α). If m < n,
then β < α (as r 6 |s) and g = gcd(t, s) = gcd(t, r) = gcd(r, s) = 2βpm, so
that from (4.2) (

t

g

)2

− c
(
r

g

)2

= p2n−2m,

which is not possible by Lemma 3.3. In the case when n < m, we conclude
similarly, using (4.1).

Proof of Theorem 1.2
We have n = gcd(t, s)|r. Note that n 6= r as if r|s, then as seen in the

proof above, by Definition 3.1 the solutions (r, 0) and (t, s) are equivalent,
which is not the case by Lemma 4.1. Therefore, if n > 1, then n = p or
n = q. If t = nt1 and s = ns1 with gcd(t1, s1) = 1, then from (4.1) we have

t21 − bs21 =
( r
n

)2

(4.18)
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which is not possible by Lemma 3.3. Thus n = 1 and we have two primitive
solutions of X2 − bY 2 = r2, namely (b − r, (r − 1)) and (t, s). By Lemmas
4.1 and 4.3 it follows that p4 and q4 are primitively represented by the form
(1, 0,−b). Finally, Lemma 3.2 gives p4 > r and q4 > r, which yields the
desired result.

.
Proof of Corollary 1.3
If b = (pq)2 + 1 and pq ≤ α, then by assumption the D(−1) pair {1, b}

cannot be extended to a D(−1) quadruple. Hence we assume that pq > α.

If p ≤ α
1
4 ≤ (pq)

1
4 , then by Theorem 1.2 it follows that the D(−1) pair {1, b}

cannot be extended to a D(−1) quadruple.

Proof of Theorem 1.5
If gcd(r, s) = 1, then gcd(t, s) = 1 and it follows from (4.1) and Lemma 4.1

that there are two primitive solutions of X2−bY 2 = r2, namely (b−r, (r−1))
and (t, s), that satisfy (b−r, r−1) 6∼ (t,±s). Therefore by Lemma 4.3, there
exists a factorization r = pq, where p and q are coprime and both greater
than 1, such that p4 and q4 are primitively represented by the form (1, 0,−b).
However as r = Pφ, at least one of p or q say p, divides φ < r

1
4 and thus

p4 < r which is not possible by Lemma 3.2.
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