

GENERAL INFORMATION

Data of the subject		
Subject name	Heat Transfer	
Subject code	DIM-GITI-314	
Mainprogram	Bachelor's Degree in Engineering for Industrial Technologies	
Involved programs	Grado en Ingeniería en Tecnologías Industriales y Grado en Administración y Dirección de Empresas [Third year] Grado en Ingeniería en Tecnologías Industriales [Third year]	
Level	Reglada Grado Europeo	
Quarter	Semestral	
Credits	4,5 ECTS	
Туре	Obligatoria (Grado)	
Department	Department of Mechanical Engineering	
Coordinator	Luis Mochón Castro	

Teacher Information

Teacher				
Name	Luis Manuel Mochón Castro			
Department	Department of Mechanical Engineering			
Office	Alberto Aguilera 25 [D-308]			
EMail	lmochon@icai.comillas.edu			
Teacher				
Name	Alberto David Jáñez Cordero			
Department	Department of Electrical Engineering			
EMail	adjanez@icai.comillas.edu			
Teacher				
Name	Federico Ramírez Santa-Pau			
Department	Department of Mechanical Engineering			
EMail	framirez@icai.comillas.edu			
Teacher				
Name	José Luis Martínez del Pozo			
EMail	jlmartinez@comillas.edu			
Teacher				
Name	César Ignacio Boró Martín			
Department	Department of Mechanical Engineering			
EMail	ciboro@icai.comillas.edu			

Teacher			
Name	Jorge Sampedro Feito		
Department	Department of Mechanical Engineering		
EMail	jsampedro@comillas.edu		
Teacher			
Name	José Luis Becerra García		
Department	Department of Mechanical Engineering		
EMail	jlbecerra@icai.comillas.edu		
Teacher			
Name	Leopoldo Prieto Fernández		
Department	Department of Mechanical Engineering		
EMail	lpfernandez@icai.comillas.edu		
Profesores de laboratorio			
Teacher			
Name	Iñigo Sanz Fernández		
Department	Department of Mechanical Engineering		
EMail	isanz@icai.comillas.edu		
Teacher			
Name	Juan Norverto Moriñigo		
Department	Department of Mechanical Engineering		
EMail	jnorvert@icai.comillas.edu		

DESCRIPTION OF THE SUBJECT

Contextualization of the subject		
Prerequisites		
Basic knowledge of thermodynamics and fluid mechanics.		

Course contents

Contents

Theory:

- 1. Introduction to heat transfer. Conduction, Convection and Radiation. Energy balance for control volumes and surfaces.
- 2. Conduction. The heat diffusion equation: initial and boundary conditions. One-dimensional, steady-state conduction. Thermal resistance. Thermal contact resistance. Critical radius of insulation. Conduction with thermal energy generation. Fins. Transient conduction: the lumped capacitance model. Geometrical effects. The semi-infinite solid.

- 3. Convection. Hydrodynamic and thermal boundary layers. Laminar and turbulent flow. Nusselt number. Functional forms of convection coefficients. Non dimensional groups in heat transfer. Forced convection: internal and external flow. Free convection: internal and external flow. Mixed convection.
- 4. Heat exchangers. Classification. Overall heat transfer coefficient. Basic equations: the log mean temperature method and the Effectiveness-NTU method.
- 5. Radiation. Blackbody radiation: Planck's, Wien's and Stefan-Boltzmann's laws. Radiation exchange between black surfaces: view factor. Radiative properties of real surfaces. Kirchoff's Law. Radiation exchange between opaque diffuse surfaces. Solar radiation.

Laboratory:

Students will complete three of the six sessions proposed:

- 1. Conductive heat transfer
- 2. Convective heat transfer
- 3. Radiation heat transfer
- 4. Boiling heat transfer
- 5. Heat exchangers
- 6. Numerical methods in heat transfer

Evaluation activities	Evaluation criteria	Weight
Mid-term exams Final Exam	Understanding of concepts Applications of concepts for the resolution of practical problems Analysis and interpretation of the conclusions obtained from problem-solving	75
Labs	Understanding of concepts Application of concepts for the resolution of practical problems and for their implementation in labs Analysis and interpretation of the data obtained in labs Ability to work in groups Oral presentation and writen communication	25

EVALUATION AND CRITERIA

Grading

The following conditions must be accomplished to pass the course:

Syllabus 2024 - 2025

- A minimum overall grade of at least 5 over 10.
- A minimum grade in the final exam of 5 over 10.

The overall grade is obtained as follows:

- Final exam 50%.
- Other exams 25%.
- Lab exam 20%.
- Performance during the lab sessions 5%.

BIBLIOGRAPHY AND RESOURCES

Basic References

- Notes in Moodle
- Heat and mass transfer. Yunus A. Çengel; Afshin J. Ghajar. Mc Graw Hill.

In compliance with current regulations on the **protection of personal data**, we would like to inform you that you may consult the aspects related to privacy and data <u>that you have accepted on your registration form</u> by entering this website and clicking on "download"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792