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A B S T R A C T

The determinants of inflation rates have been extensively studied with no clear consensus. Recent research
highlights the growing influence of global supply factors, notably supply chain disruptions and commodity
price shocks. This paper analyzes the changing impact of these global supply chain disruptions and commodity
price shocks, compared to demand shocks, on inflation rates in Germany, Japan, the U.K., and the U.S. from
1998 to 2022. The findings reveal that since the mid-2010s, supply shocks have become the predominant
drivers of inflation. After the Global Financial Crisis, commodity price shocks significantly affected inflation
in Germany, the U.K., and the U.S., while the influence of global supply chain disruptions on inflation in all
four countries surged following the COVID-19 pandemic.
1. Introduction

Supply chain bottlenecks suffered in the aftermath of the COVID-19
shock and the recent energy crisis that followed Russia’s invasion of
Ukraine have triggered significant increases in inflation rates world-
wide. According to the global supply chain pressure index (GSCP)
by Benigno et al. (2022), disruptions that began in April 2020 waned
in October but remounted to a maximum peak by December 2021.
On the other hand, the great dependence of EU countries on Russian
energy and the EU decision to cut out Russian energy imports as much
as possible, have been followed by pronounced rises in energy prices.
By the end of the first quarter of 2022, crude oil prices had doubled,
coal prices tripled, and natural gas prices increased more than five-fold
relative to early 2021 (IMF, 2022). Other commodities also experienced
price surges, particularly due to the standing of Ukraine as a major
agricultural exporter. Following these events, annual inflation rates
in the U.S., the U.K., and Germany rose to 8.1%, 9.1%, and 8.5% in
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October 2022, while inflation in Japan remained at 2% (OECD, 2022).
In particular, inflation driven by global supply shocks, such as these,
constitutes a great concern, given the increased risk of stagflation and
the fact that monetary policy acts through demand channels to stabilize
inflation. Moreover, the global nature of these shocks implies that their
effects are more difficult to control with domestic policies.

This context of high and diverse inflation rates, therefore, begs
several questions of interest; i.e., (i) have global supply shocks become
more relevant for inflation rates in major economies? (ii) what is the
magnitude and persistence of the effect of global supply chain disrup-
tions and commodity price shocks on inflation?; (iii) which commodi-
ties present a prime concern for policymakers in terms of controlling
inflation?; (iv) what explains such a diverse behavior of Japanese
inflation given the global nature of these shocks? This paper addresses
these questions by estimating the differential impact of global supply
chain disruptions and commodity price shocks in Germany, Japan,
https://doi.org/10.1016/j.econmod.2024.106860
Received 18 August 2023; Received in revised form 13 August 2024; Accepted 16
vailable online 22 August 2024 
264-9993/© 2024 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/ ). 
August 2024

ticle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.journals.elsevier.com/economic-modelling
https://www.journals.elsevier.com/economic-modelling
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
mailto:emdaguiluz@comillas.edu
mailto:jcunado@unav.edu
mailto:fgracia@unav.edu
https://doi.org/10.1016/j.econmod.2024.106860
https://doi.org/10.1016/j.econmod.2024.106860
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


E.M. Diaz et al.

i
(
U

s
e
t

Economic Modelling 140 (2024) 106860 
the U.K., and the U.S. Not only can these countries be considered
a geographically diverse representation of developed economies, but
each country has its own currency and monetary policy stance for the
stabilization of inflation. We, therefore, examine the magnitude and
persistence of the inflationary effects of global supply shocks by means
of a structural vector autoregressive (SVAR) model estimated for each
economy over the period 1998–2022. The main contribution of this
paper is, therefore, that it estimates the time-varying percentage of
these four countries’ inflation rates explained by these shocks, and does
so for a long time span including major episodes, such as the Global
Financial Crisis, the Brexit or the COVID-19 pandemic.

Regarding global supply chain disruptions, the literature has fo-
cused on bottlenecks generated in maritime transportation, due to
the fact that 80% of international trade is conducted through sea
transport. This has given rise to two main methods for identifying
such shocks. Kilian et al. (2023) construct a monthly indicator of
the volume of container trade to and from North America, the North
American Container Trade Index (NACTI), and identify shocks to the
global supply chain as changes in container trade that cannot be
explained by shifts in U.S. aggregate domestic and foreign demand
(measured through personal consumption and manufacturing industrial
production). Diaz et al. (2023) employ this approach, extending the
model by Kilian et al. (2023) to estimate the impact of both commodity
price and global supply chain shocks on U.S. inflation rates, and find
that inflation is significantly affected by both exogenous shocks. An
alternative approach is presented by Benigno et al. (2022), who esti-
mate the co-movement of several cross-country and global indicators of
supply chain pressures, to propose a novel indicator, the Global Supply
Chain Pressure (GSCP) index.1 Based on this index, di Giovanni et al.
(2022) find that global supply chain bottlenecks played a significant
role in inflation rates in the U.S. and, especially, in the euro area, over
2020 and 2021. Also, Finck and Tillman (2022) estimate the impact
of global supply chain shocks on the euro area business cycle and
find that a global supply chain shock causes a drop in euro area real
economic activity and an increase in consumer prices.2 However, the
global nature of the supply chain suggests that inflationary effects are
likely to be transmitted worldwide, expecting similar effects for regions
other than the euro area and the U.S., such as Japan and the U.K.

Moreover, a properly functioning supply chain relies not only
on transportation but on the availability of input materials for the
production process. In terms of a global supply chain, commodities
are the main input for a wide range of industries across the globe.
A supply shock in a commodity market, such as a geopolitical event,
therefore, also represents a disruption to the distribution chain, where
the resulting price increase will not only drive inflation higher but
also depress economic activity. There is, in particular, vast literature
documenting the significant impact of energy prices on inflation rates
(i.e., Hooker, 2002; Blanchard and Gali, 2010; Kilian, 2009; Baumeis-
ter and Peersman, 2013; Baumeister and Kilian, 2016; Gelos and
Ustyugova, 2017; Kilian, 2019; Garzon and Hierro, 2021; Kumar and
Mallick, 2024). Additional empirical studies investigate the inflationary
impact of other commodity prices (i.e., Mallick and Sousa, 2013; Chen
et al., 2014; Furceri et al., 2016; Garratt and Petrella, 2022). It is,
therefore, of interest for academics as well as policymakers, to identify
the commodities that are the main drivers of imported stagflation in an
economy. Particularly, as stated in Diaz et al. (2023), one must consider
the time-varying importance of each commodity for inflation, given

1 This indicator contains information on 27 variables, including delays
n shipments, the cost of shipping and air transportation, and country-level
including countries in the euro area, China, Japan, South Korea, Taiwan, the
.K., and the U.S.) manufacturing data.
2 Also, recently, Isaacson and Rubintson (2023) studied the pass-through of

hipping costs to U.S. import price inflation using variation across products in
xposure to shipping price increases. However, their empirical findings suggest

hat the pass-through of shipping costs is small.

2 
potential structural changes in an economy, including the introduction
of policies for the energy transition. Moreover, despite the global
nature of commodity markets, it is not clear whether this time-varying
relevance is the same for all economies given the geographical and
structural differences between countries. We, therefore, follow (Diaz
et al., 2023) in estimating a time-varying Cost-Push Commodity (CPC)
factor, and do so for each country, by recursively selecting, through
a genetic algorithm, the combination of commodity prices that best
explains domestic inflation over time. Notedly, each CPC factor will
be constructed with commodity prices that generate inflation that is
not pulled by demand, but rather pushed by supply.

We then estimate an SVAR model that includes the GSCP (Benigno
et al., 2022), the CPC factor, and inflation for each country. Addition-
ally, we account for demand shocks (industrial production, monetary
policy, trade balance ratios, financial conditions), given the finding
of Kabaca and Tuzcuoglu (2023) that, not only supply shocks but
changes in demand were a main driver of inflation during the recovery
of the COVID-19 pandemic. Finally, considering the nature of Germany,
Japan, and the U.K. as small open economies, we also control for real
exchange rate shocks. Do note that we focus on relative price changes
(supply and demand shocks) that get counted into aggregate price
level changes, and do not control for how monetary factors (inflation
expectations and budget deficits), which also cause commodity price
changes (Benk and Gillman, 2023), drive aggregate inflation over time.

The main contributions of the paper will, consequently, include the
following. First, this paper considers a long time span, from 1998 to
2022, which will allow us to identify the average and time-varying
impacts of commodity price shocks and supply chain pressures on each
country’s inflation rates over the entire period. Second, we construct
a CPC factor for each of the countries with time-varying weights on
commodities, which will allow us to determine the relative importance
of the price of each commodity in explaining the inflation rates in each
country. Third, we complement the recent study by Hall et al. (2023)
where, instead of covering the drivers of the recent inflation in three
currency areas (namely the U.S., the euro area, and the U.K.) we also
add a fourth relevant Asian currency area represented by the Japanese
economy. We also complement and extend previous very related em-
pirical studies, such as those of di Giovanni et al. (2022), Finck and
Tillman (2022), and Diaz et al. (2023). Moreover, we compare the
time-varying percentage contribution of supply and demand shocks on
each of these four countries’ inflation rates. Finally, important policy
implications will be derived from the results.

Our main results suggest that supply shocks, rather than demand
shocks, have become the main drivers of inflation in these four
economies since the mid-2010s, increasing the risk of stagflation. In
particular, supply chain disruptions have had significant and perma-
nent effects on inflation rates in the U.S., the U.K., and Germany after
the COVID-19 pandemic, although not in Japan. In the case of Japan,
demand shocks were the main drivers of inflation rates until the COVID-
19 pandemic, while commodity price shocks were the key contributors
to inflation after the pandemic. Furthermore, while commodity price
shocks have only transitory effects on inflation rates, their increased
importance for inflation, relative to demand shocks, suggests that
global supply shocks are likely to continue to pose an inflationary risk
for domestic economies.

The remainder of the paper is structured as follows. Section 2
describes the methodology to construct the CPC factor for each of
the four economies. Section 3 presents the SVAR model used in the
empirical analysis, Section 4 presents a discussion of the results, and
Section 5 develops a series of robustness checks. Finally, Section 6
contains concluding comments and policy implications.

2. Estimation of the cost-push commodity factors

We begin by estimating the commodity factors that best explain
supply-driven inflation in each of the four countries; that is, fluctuations
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Table 1
Variable description and sources.

Name Description Source

Inflation Year-to-year percentage change of
CPI for all items, for each country

FRED Economic
Data (Federal
Reserve Bank of
St. Louis)

Commodity
prices

Real commodity prices (deflated
by each country’s CPI),
log-linearly detrended

World Bank

GSCP Global supply chain pressure
index

Federal Reserve
Bank of New
York

Credit spread Market yield on U.S. Treasury
securities at 10-year constant
maturity, quoted on an
investment basis

FRED Economic
Data (Federal
Reserve Bank of
St. Louis)

Economic
activity

Industrial production index for
each country, seasonally adjusted,
log-linearly detrended

FRED Economic
Data (Federal
Reserve Bank of
St. Louis)

Trade ratio Net international trade, value in
goods, in national currency, over
industrial production

OECD

Real effective
exchange rate

Real effective exchange rate,
broad basket, for the euro area,
Japan, and the U.K.

Bank for
International
Settlements

Shadow rate

Euro Area (Wu and Xia, 2016)
shadow rate

Author’s
personal website

Japan (Ikeda et al., 2024) shadow
rate

Author’s
personal website

U.K. Wu and Xia (2016) shadow
rate

Author’s
personal website

U.S. Wu and Xia (2016) shadow
rate

Author’s
personal website

in inflation rates, 𝜋, after accounting for changes in demand (measured
through industrial production, 𝐼𝑃 ; trade ratio, 𝑇𝑅; monetary policy
hadow rate, 𝑅; and the credit spread, 𝐶𝑆), as well as controlling for
lobal supply chain disruptions, 𝐺𝑆𝐶𝑃 , and the real effective exchange
ate, 𝑅𝐸𝐸𝑅.3

Table 1 shows a description of all variables and sources. We use
he GSCP proposed by Benigno et al. (2022) to measure global supply
hain disruptions. Notedly, while the NACTI (Kilian et al., 2023) is only
vailable until April 2021 and is based on maritime trade activity in
he U.S. and Canada, the GSCP is available for the full sample and
onstructed based on supply chain pressures across a wide variety
f countries. Also, while industrial production serves as a monthly
roxy for domestic economic activity in each country, the inclusion
f the real effective exchange rate and the trade balance ratio be-
omes necessary due to the nature of Germany, Japan, and the U.K.
s open economies. Additionally, given recent literature that shows
hat U.S. monetary policy and financial conditions are determinants
f international macroeconomic fluctuations (Miranda-Agrippino and
ey, 2022), the shadow rates for each country as well as the U.S. credit
pread are included as control variables.4 However, we do not consider
ny measures of inflation expectations or budget deficits, as the paper
ocuses on supply and demand effects on inflation.

3 This is only considered for Germany, Japan, and the U.K. For the U.S.,
he real effective exchange rate is excluded given that commodity prices are
lready quoted in USD.

4 Given the lack of availability of the GZ credit spread by Gilchrist and
akrajšek (2012) for our spanned sample, we alternatively employ the market
ield on 10-year U.S. Treasury securities. This variable is also implemented
y Gordon and Clark (2023) as a control in examining the effects of global

upply chain disruptions on inflation.

3 
We define the CPC factor, 𝑓𝑡, for a given country, through the
following factor model:

𝑥𝑖𝑡 = 𝜆𝑖𝑓𝑡 + 𝑒𝑖𝑡 ∀ 𝑖 ∃ {1,… , 𝑛𝑠} (1)

where 𝑥𝑖𝑡 is the log-level of the real price of commodity 𝑖 at time 𝑡,
𝜆𝑖 is a loading factor, 𝑒𝑖𝑡 is an error term, and 𝑛𝑠 is the total number
of commodities selected as determinants of each of the inflation rates.
Eq. (1) is estimated using Principal Component Analysis (PCA), where
𝑓𝑡 is the first principal component.

Note that, through PCA estimation, the CPC factor, 𝑓𝑡, is constructed
as a weighted average of the selected commodities, where assigned
weights (𝜆2𝑖 ) are higher for those commodities 𝑖 that drive most of the
movements of all the selected commodity prices.

2.1. Selection of commodities

For the selection of commodities, as in Diaz and Perez-Quiros (2021)
and Diaz et al. (2023), we begin by defining 𝐴𝑞 as a binary vector of
size 1× 𝑛, where 𝑛 is the total number of all available commodity price
series, such that

𝐴𝑞 = (𝑎1𝑞 , 𝑎2𝑞 ,… , 𝑎𝑛) (2)

whose elements 𝑎𝑖𝑞 take the value 1 when commodity 𝑖 is selected for
the estimation of the CPC factor, and 0, otherwise.

This implies that for any 𝐴𝑞 , an original data set of all commodity
price series of size 𝑇 × 𝑛 is reduced by eliminating all columns 𝑖, where
𝑎𝑖𝑞 = 0. We define the resulting data set as 𝑋𝑞 , which is a matrix of
size 𝑇 × 𝑛𝑠𝑞 , containing the standardized log-levels of the real prices of
commodities 𝑖 for which 𝑎𝑖𝑞 = 1, and where 𝑛𝑠𝑞 equals the total of all
𝑎𝑖𝑞 = 1. We then perform PCA on matrix 𝑋𝑞 and define its first principal
component as 𝑓𝑞 . The commodity factor, 𝑓𝑞 , is, therefore, a function of
𝐴𝑞 such that 𝑓𝑞(𝐴𝑞).

We are searching for the commodity factor, 𝑓𝑞 , that best explains
inflation, 𝜋, in each of the four countries after accounting for changes
in the control variables, such that

𝜋𝑡 = 𝜇 +
𝑝
∑

𝑗=1
𝜃𝑗𝑦𝑞𝑡−𝑗 + 𝜖𝑡 (3)

where 𝜇 is a constant, 𝜃𝑗 represents the response of 𝜋𝑡, at time 𝑡, to 𝑦𝑞𝑡−𝑗
at all 𝑝 lags, 𝑦𝑞𝑡 = [𝐼𝑃𝑡, 𝑓𝑞𝑡(𝐴𝑞), 𝐺𝑆𝐶𝑃𝑡, 𝑇𝑅𝑡, 𝑅𝑡, 𝐶𝑆𝑡, 𝑅𝐸𝐸𝑅𝑡, 𝜋𝑡], and 𝜖𝑡
is an error term. Eq. (3) is estimated through Ordinary Least Squares
(OLS), allowing the error term to be defined as a function of 𝐴𝑞 , such
that 𝜖𝑡(𝐴𝑞). We therefore define our optimization problem as

min
𝐴𝑞

∑

𝑡
𝜖2𝑡 (𝐴𝑞) (4)

where we minimize the sum of squared errors resulting from the
estimation of Eq. (3), by selecting 𝐴𝑞 .5

Following (Diaz and Perez-Quiros, 2021) and (Diaz et al., 2023),
we solve this optimization problem through the use of the genetic
algorithm. This nature-inspired optimization algorithm was developed
by Holland (1975) and is based on evolutionary theory. Diaz and Perez-
Quiros (2021) show that it is well suited for the selection of variables,
given the binary nature of the solution variable, 𝐴𝑞 . Please refer to the
Appendix in Diaz and Perez-Quiros (2021) for a full description of the
procedure for implementing the genetic algorithm in the selection of
commodities.

The optimal solution for the optimization problem in Eq. (4) is then
defined as 𝐴∗, and the CPC factor as 𝑓 ≡ 𝑓𝑞(𝐴∗).

5 Note that minimizing the sum of squared errors is equivalent to maxi-
izing the 𝑅2 statistic of the regression in Eq. (3), which was the approach

adopted by Diaz and Perez-Quiros (2021) in their application. Addition-
ally, like the authors, we restrict the algorithm to select a minimum of 3
commodities to avoid the PCA from degenerating.
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Fig. 1. CPC Factors, GSCP, and Inflation Rates.
Notes: The figure above shows the year-to-year inflation rates for Germany, Japan, the U.K., and the U.S. along with their corresponding CPC factors and the GSCP index. All
series are at a monthly frequency.
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Fig. 1. (continued).
2.2. CPC factors

We perform a recursive estimation of the CPC factors, where the
genetic algorithm is allowed to select the pool of commodities with
the information available up to time 𝑡, in order to determine the time-
varying relevance of commodities for inflation rates in each country.6
This implies that the CPC factors, 𝑓𝑡, are constructed with the optimal
combination of commodities, 𝐴∗

𝑡 , selected by the genetic algorithm,
where 𝐴∗

𝑡 is generated by using a set of information available at time 𝑡,
which we denote as 𝐼𝑡. In this sense, 𝑓𝑡 can be defined as a function
of (𝐴∗

𝑡 ∣ 𝐼𝑡). We, therefore, create the series {𝑓1(𝐴∗
1 ∣ 𝐼1), 𝑓2(𝐴∗

2 ∣
𝐼1),… , 𝑓𝑇 (𝐴∗

𝑇 ∣ 𝐼𝑇 )} for each country. We use data starting in January
1998 and perform the recursive estimation from January 2005 until
August 2022. We have a total of 𝑛 = 56 commodity price series
available from the World Bank. These include energy commodities,
metals, raw materials, and agricultural products.

Fig. 1 shows the evolution of the inflation rate along with the GSCP
index, and the recursively estimated CPC factor for each of the four
countries. Between January 1998 and August 2022, prices increased
only 4% in Japan compared to almost 49% in Germany, 78% in the
U.K., and 78% in the U.S. We can observe a long-run relationship
between the CPC factors and inflation rates, although especially during
the most recent time, the post-COVID-19 period, and for Germany,
the U.K., and the U.S. However, we cannot observe the same long-
run relationship with the GSCP index. A relationship seems to arise
only during the last portion of the sample, following the COVID-19
pandemic.

It is worth mentioning that the CPC factor estimated for Japan
does not seem to align with this country’s inflation rate for the sample
period. No graphical relationship can be observed with the GSCP
index, either. Related literature has provided different explanations
for persistently low inflation rates (as well as expected inflation) in
Japan (see, for example, Ikeda et al., 2022; Yagi et al., 2022 and
references therein). Frequently, low inflation rates are explained by the
deflationary effect of the aging of the population (see, for example, the
recent study by Braun and Ikeda, 2022). Japan presents the highest
proportion of seniors in the world, which places persistent downward
pressure on the level of prices, as well as on potential output, labor
market participation, and real interest rates. In addition, labor market
conditions for full-time employees with a permanent contract also
help to understand the low inflation rate dynamics in Japan. The

6 This ensures that, for the spanned sample, one would have been able to
construct this indicator in real time.
5 
collective bargaining of the trade unions of full-time workers tends
to ask for wage increases considering observed inflation rather than
expected or target inflation. Nevertheless, a more detailed analysis will
provide further insights regarding the determinants of inflation for all
economies.

2.3. Cost-push commodities in each of the four countries

First, we examine which are the commodities that have induced
inflation in each of the countries during the recursively estimated
sample period. To do so, we present the aggregated weights assigned
to each commodity type (energy, raw materials, metal, agricultural
commodities). These are defined in the following way:

𝜆2𝑡,𝐸 =
∑

𝑖
𝜆2𝑡,𝑖 ∀ 𝑖 ∃ 𝛺𝐸

𝜆2𝑡,𝑀 =
∑

𝑖
𝜆2𝑡,𝑖 ∀ 𝑖 ∃ 𝛺𝑀

𝜆2𝑡,𝑅 =
∑

𝑖
𝜆2𝑡,𝑖 ∀ 𝑖 ∃ 𝛺𝑅

𝜆2𝑡,𝐴 =
∑

𝑖
𝜆2𝑡,𝑖 ∀ 𝑖 ∃ 𝛺𝐴

(5)

where 𝜆2𝑡,𝐸 , 𝜆2𝑡,𝑀 , 𝜆2𝑡,𝐼 , and 𝜆2𝑡,𝐴 are the aggregated weights assigned
at period 𝑡 to energy commodities (𝛺𝐸), metals (𝛺𝑀 ), raw industrial
commodities (e.g., fertilizers, raw materials, fats and oils and denoted
𝛺𝑅) and agricultural commodities (𝛺𝐴), respectively, and 𝜆𝑡,𝑖 is defined
as in Eq. (1).

Fig. 2 shows the weights for each commodity type. We can observe
that these weights have varied significantly over time and that they are
different for each of the countries. This shows that despite the global
nature of commodity markets, the transmission of commodity price
shocks into domestic economies is asymmetric. These results could be
very useful for policymakers to understand which commodities present
a prime concern in terms of controlling for inflation. In particular, the
predominance of a certain commodity type calls for an improvement
in the management of inventories and strategic reserves by firms and
governments for short-term solutions. Moreover, long-term solutions
require investments aimed at increasing the economy’s resilience to
these commodity price shocks, by either driving production away from
the use of these commodities or by searching for alternative sources of
supply.

Note that, for most of the sample, weights are given primarily to
crude oil, natural gas, iron ore, and fertilizers for all four countries.7

7 Weights per commodity per country are available upon request.
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Fig. 2. Time-varying Weights of Commodities for the Estimation of the CPC Factors.
Notes: The figure above shows the time-varying weights assigned by the genetic algorithm to each commodity type (energy, metals, raw material, and agricultural products) for
the construction of the CPC factors for Germany, Japan, the U.K., and the U.S. The weights are estimated with the information available up to date.
Nevertheless, the relative importance of price shifts in these commodi-
ties varies across countries according to their economic structure. For
example, as far as energy prices are concerned, their weights with
respect to the inflation rates in Germany and the U.S. have been higher
6 
and more persistent than in Japan and the U.K. This is in line with Ikeda
et al. (2022) who state that there are differences in how energy prices
transmit across regions (U.S. vs Japan and Europe) due to variations
across local energy market structures and in the rates of increase of
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Fig. 2. (continued).
natural gas prices. Particularly, weights are higher for crude oil in
Germany and the U.S., but it is natural gas prices that are a larger
determinant of inflation rates in Japan and the U.K.

Furthermore, it is also worth mentioning that while the weight
of energy prices was high in the four countries before the Global
Financial Crisis (GFC), its weight gradually decreased in Japan and
the U.K. until 2017. Note that there is virtually no weight assigned
to energy commodities in either of these countries from close to 2012
until 2017. This coincides with fluctuations in natural gas prices, which
continuously decreased reaching a decade-low in 2016. Also, while the
weights in Japan shifted primarily to energy prices after this period,
in the U.K. the shift was mainly to fertilizer prices. This is in line
with the expected effects of Brexit on both the imports of fertilizers,
which mainly proceed from the European Union or countries such as
Morocco, Algeria, and Egypt. The energy mix in the U.K. is made up
of roughly 40% of natural gas, 50% of which is imported. Thus, the
lower dependence of the U.K. on the European Union for imports and
exports of energy commodities explains the lower weights of energy
prices, relative to agricultural products and raw materials, observed in
this country after the Brexit referendum in June 2016. These results are
in line with those in Pollit (2017, 2022).

Moreover, it is only in Japan that we observe a new decrease in the
inflationary effects of energy prices, particularly after the COVID-19
pandemic. We could, thus, assume that inflation rates in Germany, the
U.K., and the U.S. are now more vulnerable to energy prices than the
Japanese inflation rate. Therefore, in the context of high energy prices,
countries such as Germany, the U.K., and the U.S. will be more willing
to shift away from fossil fuels to renewable energy sources, speeding
up their energy transition.

3. SVAR for inflation rates: Modeling and empirical evidence

3.1. SVAR model

Following the estimation of the CPC factors, in order to examine
the effect of global supply chain disruptions and cost-push commodity
shocks on inflation rates, we estimate an SVAR model for each of
the four economies, including industrial production, the trade ratio,
the shadow rate, the credit spread, the real effective exchange rate,
the GSCP proposed by Benigno et al. (2022), the CPC factor and the
inflation rate. It is defined as follows:

𝑦𝑡 = 𝛽0 +
𝑝
∑

𝑗=1
𝛽𝑗𝑦𝑡−𝑗 + 𝜀𝑡 (6)

where 𝑝 is the number of lags, 𝑦𝑡 = [𝑓𝑡, 𝐺𝑆𝐶𝑃𝑡, 𝐶𝑆𝑡, 𝐼𝑃𝑡, 𝑇𝑅𝑡, 𝜋𝑡,
𝑅 , 𝑅𝐸𝐸𝑅 ]′, 𝛽 denotes the 𝑗th coefficient matrix for all lags
𝑡 𝑡 𝑗

7 
𝑗 ∃ {1,… , 𝑝}, and 𝜀𝑡 is an error term with a normal distribution
𝑁 ∼ (0, 𝛴).

The structural shocks are identified as follows:
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where the responses of the variables are freely estimated. Particularly,
we assume that commodity shocks will impact domestic economies im-
mediately, but commodity prices will respond with a delay to domestic
shocks, given the global nature of commodity markets. This is in line
with the conventional assumption that commodity prices are predeter-
mined to domestic macroeconomic aggregates, as suggested by Kilian
and Vega (2011), who using a wide range of U.S. macroeconomic news,
find no evidence of feedback to crude oil prices at daily or monthly
horizons.

Also, given that the nature of commodity shocks suggests shifts in
the supply of commodities, these are allowed to immediately affect
international trade; whereas, per Kilian et al. (2023), we assume that
due to the presence of inventories, frictions in the global supply chain
are expected to affect commodity markets with a delay.

Furthermore, Kilian and Vega (2011) also studied the response of
the dollar-euro exchange rate to U.S. macroeconomic news and found
a strong and statistically significant response. Therefore, there can be
no indirect feedback from the exchange rate to commodity prices, or
that would have resulted in a correlation with macroeconomic news
as well. Thus we can treat commodity prices as predetermined to the
exchange rate at the monthly frequency. An analogous assumption can



E.M. Diaz et al. Economic Modelling 140 (2024) 106860 
be made for the response of commodity prices to interest rates. Because
interest rates clearly respond to macroeconomic news instantaneously,
the fact that commodity prices do not, allows us to assume that they
are predetermined to changes in the shadow rate.

Additionally, given the equally global nature of the GSCP index, we
instill the same assumptions as those made for the commodity factor
and define it as predetermined to macroeconomic aggregates, interest
rates, and exchange rate shocks.

Followingly, note, in Eq. (7), that there are not enough restrictions
to differentiate between financial, domestic demand, or foreign demand
shocks. It is not within the scope of this paper to disentangle the effects
of these shocks. These will, therefore, simply be aggregated as ‘‘demand
shocks’’.

Demand shocks are then distinguished from residual shocks to infla-
tion by the assumption that the latter do not contemporaneously affect
real output, and monetary policy shocks are identified as the residual of
the shift in the shadow rate after accounting for the contemporaneous
feedback of the global supply shocks and macroeconomic aggregates.
Because events in the money market transmit to the real economy
through medium and long-term loans provided to firms and households,
it is reasonable to assume a sluggish reaction of the macroeconomy to
a shift in monetary policy.

Also, as in Kilian and Zhou (2022), the assumption of sluggish
inflation expectations in response to an exchange rate shock is based
on findings by Mishkin (2008) that even large depreciations exert
only small effects on consumer prices and real output in industrialized
economies.

Finally, unexplained changes in inflation are termed residual shocks
that cannot be explained by the other variables in the model. These
include the role of inflation expectations and budget deficits, which
have been found to cause aggregate inflation over time (Benk and
Gillman, 2023). The identified supply and demand shocks, therefore,
capture the effect on relative price changes and do not examine how
fiscal deficits cause aggregate inflation across history and countries.

Note that, because demand shocks will be aggregated, we can
proceed to estimate 𝐵−1

0 through the Cholesky decomposition of the
variance–covariance matrix 𝛴, identify the shocks of interest, and ag-
gregate the effects of demand shocks. For robustness, we also estimate
all results considering the alternative that industrial production and
8 
the trade ratio are predetermined to CPC shocks and global supply
chain disruptions. We find that altering the order of the variables
in the structural VAR has no effect on the results, which provides
further evidence of the CPC factor and the GSCP as measures of supply
disruptions.8

3.2. Impulse response functions

This section reports the estimates of the impulse response functions
of both a CPC shock and a global supply chain disruption. Figs. 3 and
4 show the average Impulse Response Functions (IRFs) to a CPC shock
and a global supply chain disruption, respectively. These are shown
with a 95% confidence interval, where 𝑓𝑡 corresponds to the recursively
estimated CPC factor for each country, and show the response of each
variable to a one standard deviation shock.

It is interesting to compare the structural impulse response estimates
for the selected four economies to an increase in commodity prices
(Fig. 3). As expected, according to economic theory, the response of
inflation rates to a CPC shock is positive and qualitatively similar in
the short-run (from 1 to 6 months) for Germany, the U.K., and the U.S.
However, CPC shocks generate significantly different impacts after 7
months. For example, the CPC shock has a much weaker impact on
inflation rates in the U.S. than in Germany and the U.K., where inflation
rates suffer the greatest impact in the long run. Furthermore, there is
only a weak positive response of inflation rates in Japan in the 4th
month after an increase in commodity prices.

Furthermore, when we focus on the impact of a global supply chain
disruption shock on inflation rates (Fig. 4), we observe a long-run
positive and significant effect in Germany, the U.K., and the U.S. The
U.K. is affected the most, with a significant positive effect from the 2nd
until the 16th month after impact. However, both for Germany and the
U.S., the effect does not become statistically significant until after 9
and 6 months, respectively, which might be showing the delay caused
by inventory management. Moreover, inflation rates in Japan, however,
continue not to respond to a global supply shock, such as a supply chain
disruption.

8 Results are available upon request.
Fig. 3. Impulse Response Functions of Inflation to a CPC Shock.
Notes: The figure above shows the impulse response functions with a 95% confidence interval for Germany, Japan, the U.K., and the U.S., using the recursively estimated CPC
factor for each country in the full sample.
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Fig. 4. Impulse Response Functions of Inflation to a Global Supply Chain Disruption.
Notes: The figure above shows the impulse response functions with a 95% confidence interval for Germany, Japan, the U.K., and the U.S., using the recursively estimated CPC
factor for each country in the full sample.
Nevertheless, these impulse response functions do not account for
possible structural changes in the way inflation rates respond to either
of these shocks. Given that we have already observed a time-varying
shift in the relevance of commodities for inflation (Fig. 2), we proceed
to analyze the time-varying effects of both structural shocks of interest
(CPC shock and global supply chain disruption).

Fig. 5 plots the recursively-estimated impulse responses of inflation
for Germany, Japan, the U.K., and the U.S. to a commodity price shock,
in three dimensions. All economies exhibit positive significant impact
responses and hump-shaped medium-run responses for most of the
sample. Note, however, that for all economies, the effect of a CPC shock
is only significant until after the 2008 financial crisis. Moreover, in the
case of Japan, this effect gradually increased in significance until the
end of the sample. It is only in the case of the U.S. that one cannot
9 
observe a significant structural change throughout the sample after
the financial crisis. Both for the U.K. and Germany, it is clear that
after the COVID-19 pandemic, the effect of commodity price shocks on
inflation has become more permanent rather than just medium-term.
These results are qualitatively similar to Diaz et al. (2023) regarding
the sign of the response of inflation rates to a CPC shock. In a recent
study on the inflation rate in Japan during the COVID-19 shock, Ikeda
et al. (2022) found an increasing cost-push pressure due in part to the
effects of rising commodity prices with a positive short-run impact on
the inflation rate.

Additionally, in Fig. 6 we can observe the time-varying IRFs of
inflation rates to a global supply chain disruption. Similar to Fig. 5,
these IRFs are plotted in three dimensions. For global supply chain
disruptions, we can observe significant structural changes in the way
Fig. 5. Time-Varying Impulse Response Functions of Inflation to a CPC Shock.
Notes: The 3-D figure above shows the recursively estimated impulse response functions of inflation to a CPC shock for Germany, Japan, the U.K., and the U.S. The sample period
is from January 2005 to August 2022 and the model is estimated with 12 lags. Green values denote a significantly positive response within a 95% confidence interval. Red values
denote a significantly negative response within a 95% confidence interval. Yellow values denote insignificant values within a 95% confidence interval. x-axis: months after shock;
y-axis: magnitude of response; z-axis: sample date.
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Fig. 6. Time-Varying Impulse Response Functions of Inflation to a Global Supply Chain Disruption.
Notes: The 3-D figure above shows the recursively estimated impulse response functions of inflation to a global supply chain disruption for Germany, Japan, the U.K., and the U.S.
The sample period is from January 2005 to August 2022 and the model is estimated with 12 lags. Green values denote a significantly positive response within a 95% confidence
interval. Red values denote a significantly negative response within a 95% confidence interval. Yellow values denote insignificant values within a 95% confidence interval. x-axis:
months after shock; y-axis: magnitude of response; z-axis: sample date.
inflation rates respond to these shocks, in all economies. The effect
becomes statistically significant after the COVID-19 pandemic. One can
observe short-term effects before the pandemic, in Germany, Japan,
and the U.S., although for the latter, this effect is delayed (probably
due to inventory management). More importantly, the inflation rates of
Germany and the U.K. have a permanent long-term effect in response
to global supply chain disruptions since the COVID-19 crisis, whereas
it is humped-shaped for the U.S., and unclear for Japan. Overall,
our main results are in line with the recent related literature that
studies supply drivers of inflation during the COVID-19 shock (see, for
example, Benigno et al., 2022; and Finck and Tillman, 2022).

4. Discussion of the results

This paper empirically estimates the time-varying impact of com-
modity price shocks and supply chain disruptions, while controlling
for demand shocks, on inflation rates in Germany, Japan, the U.K.,
and the U.S. over the period from January 1998 to August 2022.
Interesting results and policy implications can be derived from the main
findings of the paper. To facilitate the interpretation and discussion of
the results, we calculate now the percentage of contribution of each
shock on inflation by observing the average forecast error variance
decomposition (FEVD). Given the structural changes we have observed
in the time-varying impulse responses in the previous subsection, we
proceed to plot the average FEVD for each recursively estimated IRF.
The averages are taken over the 18-month horizon, and the effect of
demand shocks is aggregated for innovations on the credit spread,
industrial production, and trade ratio. Fig. 7 shows the results for each
country.

We can observe that, on average, the variables included in the
model explain around 60% of innovations in inflation for Germany,
the U.K., and the U.S., while we can only explain around 40% of
innovations in Japanese inflation rates. Note also, that, after the 2008
financial crisis, shifts in commodity prices explain around 30% of
unexpected shifts in inflation in Germany, the U.K., and the U.S., while
global supply chain disruptions only explained between 5 and 10%
throughout most of the sample for Germany and the U.S., with an even
smaller percentage for the U.K. and Japan. These results suggest that
the Japanese economy has been less vulnerable to those two supply
shocks, which explains the lower inflation rates in this country in recent
moments of high commodity prices and global supply chain disruptions.
10 
Nonetheless, global supply chain disruptions become much more
relevant after the COVID-19 pandemic, explaining around 20% of
inflation innovations in Germany and the U.S., and 10% of innovations
in the U.K. during 2022. This is not the case, however, for Japan, where
global supply chain disruptions explain an even lower percentage of
shifts in inflation than it does throughout the sample.

Moreover, it is important to note the importance of demand shocks
on inflation. Particularly in Japan, 30% of inflation innovations,
throughout most of the sample, can be explained by changes in de-
mand. This decreases to about 20% after 2019 when commodity price
shocks go from explaining 10% to 20% of unexpected movements in
inflation. In the case of Germany, the U.K., and the U.S., the importance
of demand shocks decreases gradually over time, from an initial 40%,
30%, and 30% of inflation innovations explained by changes in demand
to only 10%, 5%, and 15% by the end of the sample, respectively.

Results also show that monetary policy has not been effective in
driving inflation. For Germany, the introduction of unconventional
monetary policy by the European Central Bank was not successful in
stimulating the euro area economies and increasing inflation after the
Euro Sovereign debt crisis. Moreover, we need to consider the long-
lasting liquidity trap in Japan, which has also hindered the ability
of monetary policy to translate into the real economy, as evidenced
in Fig. 7b. We can observe a relatively higher efficacy of monetary
policy actions undertaken by the Bank of England and the Federal
Reserve throughout the sample. Particularly, monetary policy shocks
explain between 5 and 10% of innovations in inflation in the U.K.
between 2014 and 2020, during which developed economies faced risks
of deflation. Likewise, from 2014 to 2022, changes in the value of
the British pound explain between 10 and 15% of unexpected shifts in
inflation. For the U.S., on the other hand, the effectiveness of monetary
policy has been more stable throughout the sample, but only able to
explain around 5% of innovations in inflation, on average. However,
the percentage of fluctuations in inflation that cannot be explained by
any of the variables in the model does suggest a heightened importance
of the residual term, which includes the effect of inflation expectations
and fiscal budgets on inflation. This is left for further research.

Overall, results suggest that the relevance of global supply shocks
has not increased merely as a result of the COVID-19 pandemic. While
this may hold for global supply chain disruptions, commodity price
shocks have incrementally explained unexpected changes in inflation
rates since after the financial crisis for Germany, the U.K., and the
U.S., and since 2019 for Japan. While domestic demand shocks remain
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Fig. 7. Time-Varying Forecast Error Variance Decompositions.
Notes: The figure above shows the time-varying forecast error variance decompositions. These correspond to the recursively estimated IRFs, averaged across the 18-month horizon.
relevant in understanding inflation, our study suggests that given the
global nature of raw materials and the supply chain, supply shocks are
likely to continue to pose inflationary risks for domestic economies. In
11 
particular, given the sluggish global economic growth since 2010, our
results show that demand shocks have been relatively less responsible
for fluctuations in inflation, while scarcity, in the form of tightness in
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Fig. 7. (continued).
supply, constitutes an increased risk of stagflationary shocks stemming
from commodity markets and the supply chain. This is a primary
concern for policymakers, given that monetary policy may become inef-
fective as it works through demand channels. Rather, the results suggest
a growing need for strategic management of inventories and reserves
to accommodate short-term supply shocks and important investments
for finding alternative sources for the supply of commodities.

5. Robustness checks

We perform two robustness checks to assert the validity of our
results. First, we examine the importance of having an individual and
time-varying CPC factor for each economy. To do so, we study how our
results compare to: (i) estimating a constant CPC factor that is common
to all four economies and (ii) estimating a time-varying CPC factor that
is common to all four economies. Second, we investigate whether using
the NACTI (Kilian et al., 2023) as an alternative to the GSCP (Benigno
et al., 2022) significantly alters our results.

5.1. Constant and time-varying common CPC factor

In order to consider a common factor, the genetic algorithm is
set to maximize the sum of the 𝑅2 statistics of the regressions for
all four economies (Eq. (3)), simultaneously. For the constant CPC
factor, there is a single optimization using the full sample, while for
the time-varying, the CPC factor is estimated recursively.

Fig. 8 shows a significant difference between a constant and a
recursively estimated CPC factor. Notably, by construction, the constant
CPC factor will correlate most with inflation, given that the selection of
commodities is performed looking to best fit the entire sample. How-
ever, this would question the selection of the sample. When performing
12 
a recursive selection, the CPC factor changes significantly, which would
make us expect further changes with the income of new information
(that is, a change in sample).

Smaller changes can be observed between the common (Fig. 8)
and the individual time-varying CPC factors (Fig. 1). However, a close
look will show that differences arise at several periods. Firstly, the
in-sample portion shows that British inflation did not have the same
increase as the one observed in Germany and the U.S. Moreover, larger
contrasts are found during the commodity boom in the mid-2000s for
all economies. Note also, that individual CPC factors suggest a lagged
increase of inflation during the 2008 financial crisis for Japan and the
U.K. relative to Germany and the U.S. Also, while the individual CPC
factors all show deflationary pressures in the years following the 2008
crisis, these seem to occur at different rates. Finally, for the COVID-19
crisis, the Japanese CPC factor suggests stronger deflationary pressures
stemming from commodity prices than in the other three countries.

Note also, in Fig. 9, the difference in the weights that are optimally
assigned by the genetic algorithm for the different model specifications.
Notably, a constant-weighted CPC factor discards the relevance of metal
prices for the entire sample. This is not the case for a time-varying CPC
factor in which some periods denote the inflationary relevance of metal
prices. Additionally, in the mid-2010s, while energy prices remained
relevant in Germany and the U.S., this was not the case for Japan and
the U.K. (Fig. 2). Nevertheless, a common CPC factor discounts the
continuing relevance of energy prices in Germany and the U.S. during
this period.

Furthermore, Fig. 10 shows that, by construction, IRFs have a
stronger statistical significance when the CPC is constantly weighted.
This is expected as these IRFs are estimated for the full sample. How-
ever, when the CPC factor is recursively estimated, we observe that
Fig. 8. Constant and Time-Varying Common CPC Factors.
Notes: The figure above shows the constant and time-varying common CPC factors for Germany, Japan, the U.K. and the U.S.
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Fig. 9. Weights of Commodities for the Estimation of Common CPC Factors.
Notes: The figure above shows the time-varying weights assigned by the genetic algorithm to each commodity type (energy, metals, raw material, and agricultural products) for
the construction of the common CPC factors for Germany, Japan, the U.K., and the U.S.
Fig. 10. Impulse Response Functions of Inflation to a CPC Shock with Common CPC Factors.
Notes: The figure above shows the impulse response functions with a 95% confidence interval for Germany, Japan, the U.K. and the U.S. with the two alternative measures of a
common CPC factor.
Fig. 11. Time-Varying Impulse Response Functions of Inflation to a CPC Shock with Common CPC Factors.
Notes: The 3-D figures above show the recursively estimated impulse response functions of inflation to a CPC shock for Germany, Japan, the U.K., and the U.S. The sample period
is from January 2005 to August 2022 and the model is estimated with 12 lags. Green values denote a significantly positive response within a 95% confidence interval. Red values
denote a significantly negative response within a 95% confidence interval. Yellow values denote insignificant values within a 95% confidence interval. x-axis: months after shock;
y-axis: magnitude of response; z-axis: sample date.
almost no statistical significance can be obtained when this is a com-
mon CPC factor. For the U.S., one even observes a deflationary pressure
of increasing commodity prices as the economy transitions back to
equilibrium.

Concerning recursively estimated IRFs (Fig. 11), we can observe an
increasing statistical significance through time when the CPC factor is
time-varying. This is most noticeable in Germany and the U.S., where
the statistical significance of CPC shocks gradually decreases for a
shorter sample when using a constant CPC factor. Furthermore, the
individual German CPC factor better captures the inflationary effect of
CPC shocks during the commodity boom (Fig. 5) than does a common
13 
factor. Also, stronger inflationary effects are captured for Japan for the
2010–2020 decade when the CPC is individually constructed (Fig. 5).
Fewer differences can be observed for the U.K., suggesting that this
country may be driving the optimization of the common CPC factor.
Finally, a common CPC factor suggests a lower inflationary effect of
commodity prices in the mid-2010s for the U.S. This is the case because
the common factor is not weighting energy prices, which were strongly
relevant for the U.S. during this period.

These results are confirmed by the forecast error variance decom-
positions in Fig. 12. A lower percentage of fluctuations in inflation can
be explained for Germany during most of the decade between 2010
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Fig. 12. Time-Varying Forecast Error Variance Decompositions with Common CPC Factors.
Notes: The figure above shows the time-varying forecast error variance decompositions. These correspond to the recursively estimated IRFs, averaged across the 18-month horizon.
and 2020 with a common CPC factor. Also, a higher percentage of
Japanese inflation is explained since 2019 with an individual factor
(Fig. 7). Finally, while similar results are obtained for the U.K., a lower
percentage of U.S. inflation can be explained with a common CPC factor
for the mid-2010s.

We also found no significant changes in the estimated effects of
global supply chain disruptions on inflation in any of the countries,
showing the robustness of these results concerning the different speci-
fications of the CPC factor.9

Overall, results are in line with Diaz et al. (2023), who argue that
the relevance of commodity prices for inflation may shift over time.
While oil prices are typically considered the most relevant for price
levels, one might consider the recent increase in natural gas prices after
the sanctions imposed on Russia for the invasion of Ukraine, as well as
the increase of agricultural prices, such as those of wheat and corn. One
would also expect an increase in the relevance of natural gas prices after
the Fukushima accident in 2011, for Japanese inflation. Moreover, we
have viewed recent periods when increases in the prices of fertilizers
became topical. The same could be said about prices of metals related
to the production of microchips. The lack of materials in recent years
also created inflationary issues which begs the question of whether the
issue behind was only related to global supply chain disruptions or to
the price of the materials themselves. All in all, structural changes in
economies, including the introduction of policies for the energy transi-
tion, are expected to change the relevance of certain commodities for
inflation. Moreover, despite the global nature of commodity markets,
it is not clear whether this time-varying relevance is the same for all
economies given the geographical and structural differences between
countries. Note also, that the construction of a common CPC factor
requires a simultaneous optimization of the four regression models.
For the robustness check, the four countries were equally weighted.
However, constructing a global CPC factor would require not only
more countries but would also question the weight that should be
assigned to each one. All in all, we find that both time-variance and an
individual estimation of the CPC factors allow for a better explanation
of fluctuations in inflation in all four economies.

5.2. Alternative measure for global supply chain disruptions: NACTI

To examine the use of the NACTI (Kilian et al., 2023) as an alterna-
tive to the GSCP (Benigno et al., 2022), we are required to modify the
order of the variables in the structural VAR. In line with Kilian et al.
(2023), demand shocks are considered to be predetermined to container

9 Results are available upon request.
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trade, and a global supply chain disruption is identified as a change in
NACTI that demand shocks cannot explain.

We estimate an SVAR model for the four economies, where 𝑦𝑡 =
[𝑓𝑡, 𝐶𝑆𝑡, 𝐼𝑃𝑡, 𝑇𝑅𝑡, 𝐺𝑆𝐶𝑃𝑡, 𝜋𝑡, 𝑅𝑡, 𝑅𝐸𝐸𝑅𝑡]′ and the structural shocks are
identified as follows:
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The responses of the variables are freely estimated. However, the
sample is limited until April 2021, given the availability of the NACTI.

Notably, from Figs. 1 and 13, the NACTI and the GSCP are quite dif-
ferent. For NACTI, demand and supply shocks need to be disentangled;
while this has already been done for the GSCP. Note that the estimated
CPC factors for each country remain similar whether the estimation
is controlled for GSCP or NACTI. A few significant differences can be
observed for Germany and the U.K. during the in-sample estimation
until 2005, which could be explained by the difficulty of filtering out
demand shocks from NACTI using those countries’ demand indexes.
Nevertheless, results show, in general, that the estimated CPC factors
remain quite similar for the sample spanned until April 2021.

Furthermore, notice that the weights assigned to each commodity
type remain similar, particularly for the U.S. and Germany (Figs. 2
and 14). We do observe a large difference for Japan starting in 2016.
Nevertheless, the impulse response functions in Fig. 15 show no sig-
nificant differences in the effects on inflation of the corresponding
CPC shocks for Japan. This is also the case for Germany and the U.S.

However, the difference in weights assigned for commodities in the



E.M. Diaz et al. Economic Modelling 140 (2024) 106860 
Fig. 13. CPC Factors, NACTI, and Inflation Rates.
Notes: The figure above shows the year-to-year inflation rates for Germany, Japan, the U.K., and the U.S., their estimated CPC factors, and the NACTI, which has been scaled for
a better visualization. All series are at a monthly frequency.
Fig. 14. Time-varying Weights of Commodities for the Estimation of the CPC Factors (using NACTI).
Notes: The figure above shows the time-varying weights assigned by the genetic algorithm to each commodity type (energy, metals, raw material, and agricultural products) for
the construction of the CPC factors for Germany, Japan, the U.K., and the U.S. using the NACTI to account for global supply chain disruptions. The weights are estimated with
the information available up to date.
Fig. 15. Impulse Response Functions of Inflation (using NACTI).
Notes: The figure above shows the impulse response functions with a 95% confidence interval for Germany, Japan, the U.K. and the U.S. with the NACTI for global supply chain
disruptions.
U.K. (particularly after 2017), does reduce the statistical significance of
the CPC shocks to British inflation. Yet, the recursively estimated IRFs
(Fig. 16) for responses of inflation to CPC shocks remain consistent,
whether estimations are performed controlling for GSCP or NACTI.

More importantly, concerning the impulse response functions to
global supply chain disruptions, Fig. 15 shows an appropriate shape
for the IRFs in the case of the U.S. and Japan. The shocks only have a
15 
short-term effect, though, as opposed to what is shown with the GSCP
(Fig. 4). Moreover, the NACTI does not seem to capture inflationary
effects for Germany, while the GSCP does. Note that while NACTI only
accounts for maritime container trade, the GSCP is built with delays in
different transportation methods. Germany’s imports and exports are
also frequently traded by land. Moreover, for the U.K., a deflationary
effect of supply chain disruptions is obtained. This does bring into
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Fig. 16. Time-Varying Impulse Response Functions of Inflation (using NACTI).
Notes: The 3-D figure above shows the recursively estimated impulse response functions of inflation to a CPC shock and a global supply chain disruption for Germany, Japan,
the U.K., and the U.S. The sample period is from January 2005 to August 2022 and the model is estimated with 12 lags. Green values denote a significantly positive response
within a 95% confidence interval. Red values denote a significantly negative response within a 95% confidence interval. Yellow values denote insignificant values within a 95%
confidence interval. x-axis: months after shock; y-axis: magnitude of response; z-axis: sample date.
Fig. 17. Time-Varying Forecast Error Variance Decompositions (using NACTI).
Notes: The figure above shows the time-varying forecast error variance decompositions. These correspond to the recursively estimated IRFs, averaged across the 18-month horizon.
question whether the use of the NACTI index can be easily extrapolated
to regions besides North America. Particularly in Fig. 16, regarding the
time-varying IRFs for the effect of global supply chain disruptions on
inflation, we can still observe coherent results for Japan and the U.S. in
the short term. However, IRFs suggest a long-term deflationary effect
of global supply chain disruptions for these countries, no statistical
significance for Germany, and a counter-intuitive result for the U.K.

Finally, results given by the Forecast Error Variance Decompositions
remain consistent with the use of the GSCP or NACTI (Figs. 7 and 17).
Results are slightly better with the GSCP than with NACTI, except for
the U.K. Overall results suggest that the NACTI index is capturing more
of a demand shock for the U.K. than a supply shock, which suggests
that a different identification scheme would be necessary to use the
NACTI to measure supply disruptions for the U.K. This is left for further
research.

Overall, results remain consistent, proving the robustness of em-
pirical analysis in the paper, and confirming that, for an international
analysis, the GSCP measure is preferred.

6. Conclusions

This paper examines the differential impacts of both commodity
price shocks and global supply chain disruptions while controlling for
demand shocks, on the inflation rates of Germany, Japan, the U.K., and
the U.S. This is performed through a structural model with monthly
data from 1998 to 2022. Based on the idea that the inflationary effect
of particular commodities is time-varying, we calculate a CPC factor
through a genetic algorithm which allows us to recursively select the
combination of commodity prices that best explain each country’s
inflation rate over time. To account for global supply chain disruptions,
we use the GSCP index proposed by Benigno et al. (2022). We also
control for demand shocks through shifts in industrial production and
the trade balance ratio, and for financial conditions, monetary policy
shocks, and the real effective exchange rate. This allows us to focus
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on relative price changes stemming from supply and demand shocks,
rather than on the monetary aspect that drives aggregate inflation.

The main results of the paper can be summarized as follows. First,
the estimation of the CPC factors shows the varying relevance of
each of the commodities for each of the country’s inflation rates. For
example, we observe that inflation rates in Germany, the U.K., and
the U.S. are very sensitive to energy prices. In contrast, in the case
of Japan, while the weight of energy prices on inflation rates varies
throughout the period of analysis, it remains low for the last part of the
sample, and inflation rates currently respond mainly to raw materials
and agricultural products. Second, average impulse response functions
calculated from the model suggest that CPC shocks have a medium-
term effect on inflation rates in Germany, the U.S., and the U.K., but a
weaker effect on the Japanese inflation rate. Regarding energy policy
implications, these results suggest that, since their inflation rates are
currently more vulnerable to energy price shocks, countries such as
Germany, the U.K., and the U.S. have a higher need to shift away from
fossil fuels to renewable energy in order to reduce stagflationary risks
stemming from high energy prices.

IRFs also indicate that global supply chain pressures have a signif-
icant and permanent impact on inflation rates in Germany, the U.K.,
and the U.S., suggesting that current inflation rate increases in these
countries are mainly driven by recent supply chain disruptions suffered
in the aftermath of the COVID-19 pandemic. However, the inflation rate
in Japan has not significantly responded to these supply chain shocks.
Such results call for a strategic management of inventories and reserves
not only for commodities but across the entire supply chain.

Finally, forecast error variance decompositions show that global
supply shocks have incrementally explained unexpected changes in in-
flation since 2010, showing that scarcity in supply constitutes a contin-
uously increasing risk of stagflation. Overall, while demand shocks re-
main relevant in understanding inflation, global supply shocks, mainly
commodity price shocks, have become the main drivers of international
inflation.
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We believe our results are useful for all agents concerned with
inflation rates. For example, they allow us to understand to which
extent inflation rates can be explained by supply or demand factors.
Since monetary policies to control inflation rates work through demand
channels, identifying when inflation rates are mainly supply-driven in-
vites the use of other measures to contain inflation. In particular, there
is a growing need for strategic management of inventories and reserves
to accommodate short-term supply shocks and important investments
for finding alternative sources for the supply of commodities. Knowing
the relevance of each commodity allows for a more efficient allocation
of such policies. Particularly, regarding energy transition policies, our
results allow us to further understand the vulnerability of each domestic
economy to energy price shocks and the need for each country to invest
in renewable energy sources.

Declaration of competing interest

None of the authors hold any paid or unpaid positions as offi-
cer, director, or board member of relevant non-profit organizations
or profit-making entities, whose policy positions, goals, or financial
interests relate to the article.

This declaration applies also to the close relatives and partners of
the authors. Finally, no other party had the right to review the paper
prior to its circulation.

The views and opinions expressed in this article are those of the
authors and do not necessarily reflect the official policy or position of
the affiliated institutions.

Data availability

All data and replications codes are available in the following link:

Replication Folder. Global Drivers of Inflation: The Role of Supply Cha
in Disruptions and Commodity Price Shocks (Original data) (Mendeley
Data)

References

Baumeister, C., Kilian, L., 2016. Lower oil prices and the U.S. economy: Is this time
different? Brook. Pap. Econ. Act. 287–336.

Baumeister, C., Peersman, G., 2013. Time-varying effects of oil supply shocks on the
U.S. economy. Am. Econ. J.: Macroecon. 5, 1–28.

Benigno, G., di Giovanni, J., Groen, J., Noble, A.I., 2022. The GSCPI: A new barometer
of global supply chain pressures. Federal Reserve Bank of New York Staff Paper
1017.

Benk, S., Gillman, M., 2023. Identifying money and inflation expectation shocks to real
oil prices. Energy Econ. 126, 106878.

Blanchard, O., Gali, J., 2010. The macroeconomic effects of oil price shocks: Why are
the 2000s so different from the 1970s? In: Galí, J., Gertler, M. (Eds.), International
Dimensions of Monetary Policy, University of Chicago Press (Chicago, IL). pp.
373–428.

Braun, R.A., Ikeda, D., 2022. Why aging induces deflation and secular stagnation.
Federal Reserve Bank of Atlanta Working Paper 2022-12.

Chen, Y.C., Turnovsky, S.J., Zivot, E., 2014. Forecasting inflation using commodity
price aggregates. J. Econometrics 183, 117–134.

di Giovanni, J., S, K.-O., Silva, A., Yildirim, M.A., 2022. Global supply chain pressures,
international trade, and inflation. In: Conference Proceedings: Challenges for
Monetary Policy in a Rapidly Changing World, ECB Forum on Central Banking.

Diaz, E.M., Cunado, J., de Gracia, F.P., 2023. Commodity prices and U.S. international
trade. Finance Res. Lett. 58, 104495.
17 
Diaz, E.M., Perez-Quiros, G., 2021. GEA tracker: A daily indicator of global economic
activity. J. Int. Money Finance 115, 102400.

Finck, D., Tillman, P., 2022. The macroeconomic effects of global supply chain
disruptions. In: Bank of Finland, Bank of Finland Institute for Emerging Economies
BOFIT Discussion Papers 14/2022.

Furceri, D., Lungani, P., Simon, J., Wachter, S., 2016. Global food prices and domestic
inflation: some cross-country evidence. Oxf. Econ. Pap. 68, 665–687.

Garratt, A., Petrella, I., 2022. Commodity prices and inflation risk. J. Appl.
Econometrics 37, 392–414.

Garzon, A., Hierro, L., 2021. Asymmetries in the transmission of oil price shocks to
inflation in the eurozone. Econ. Model. 105, 105665.

Gelos, G., Ustyugova, Y., 2017. Inflation responses to commodity price shocks - How
and why do countries differ? J. Int. Money Finance 72, 28–47.

Gilchrist, S., Zakrajšek, E., 2012. Credit spreads and business cycle fluctuations. Amer.
Econ. Rev. 102 (4), 1692–1720.

Gordon, M., Clark, T., 2023. The impacts of supply chain disruptions on inflation. Econ.
Comment. 2023–08.

Hall, S.G., Tavlas, G., Wang, Y., 2023. Drivers and spillover effects of inflation: The
United States, the euro area, and the United Kingdom. J. Int. Money Finance 131,
102776.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. University
of Michigan Press.

Hooker, M., 2002. Are oil shocks inflationary? Asymmetric and nonlinear specifications
versus changes in regime. J. Money Credit Bank. 34, 540–561.

Ikeda, S., Inatsugu, H., Kishaba, Y., Kondo, T., 2022. Inflation in Japan: Changes during
the pandemic and issues for the future. Bank of Japan, Working Paper Series
22-E-18.

Ikeda, D., Li, S., Mavroeidis, S., Zanetti, F., 2024. Testing the effectiveness of
unconventional monetary policy in Japan and the United States. Am. Econ. J.:
Macroecon. 6 (2), 250–286.

IMF, 2022. Surging Energy Prices in Europe in the Aftermath of the War: How to
Support the Vulnerable and Speed up the Transition Away from Fossil Fuels. IMF
eLibrary, 2022:152.

Isaacson, M., Rubintson, H., 2023. Shipping prices and import price inflation. In:
Federal Reserve Bank of St. Louis Review, Second Quarter. pp. 89–107.

Kabaca, S., Tuzcuoglu, K., 2023. Supply drivers of US inflation since the pandemic.
Bank of Canada, No. 2023-19.

Kilian, L., 2009. Not all oil price shocks are alike: Disentangling demand and supply
shocks in the crude oil market. Amer. Econ. Rev. 99, 1053–1069.

Kilian, L., 2019. Measuring global real economic activity: Do recent critiques hold up
to scrutiny? Econom. Lett. 178, 106–110.

Kilian, L., Nomikos, N., Zhou, X., 2023. Container trade and the U.S. recovery. Int. J.
Central Bank. March, 1053–1069.

Kilian, L., Vega, C., 2011. Do energy prices respond to U.S. macroeconomic news?
A test of the hypothesis of predetermined energy prices. Rev. Econ. Stat. 93 (2),
660–671.

Kilian, L., Zhou, X., 2022. The impact of rising oil prices on U.S. inflation and inflation
expectations in 2020. Energy Econ. 113, 106228.

Kumar, A., Mallick, S., 2024. Oil price dynamics in times of uncertainty: Revisiting the
role of demand and supply shocks. Energy Econ. 129, 107152.

Mallick, S., Sousa, R., 2013. Commodity prices, inflationary pressures, and monetary
policy: Evidence from BRICS economies. Open Econ. Rev. 24, 677–694.

Miranda-Agrippino, S., Rey, H., 2022. The global financial cycle. In: Gopinath, G.,
Helpman, E., Rogoff, K. (Eds.), Handbook of International Economics 5.

Mishkin, F., 2008. Exchange rate pass-through and monetary policy. NBER Working
Paper 13889.

OECD, 2022. Consumer price index news release.
Pollit, M., 2017. The economic consequences of Brexit: energy. Oxf. Rev. Econ. Policy

33, S134–S143.
Pollit, M., 2022. The further economic consequences of Brexit: energy. Oxf. Rev. Econ.

Policy 38, 165–178.
Wu, J., Xia, F., 2016. Measuring the macroeconomic impact of monetary policy at the

zero lower bound. J. Money Credit Bank. 48 (2–3), 253–291.
Yagi, T., Kurachi, Y., Takahashi, M., Yamada, K., Kawata, H., 2022. Pass-through of

cost-push pressures to consumer prices. Bank of Japan, Working Paper Series,
22-E-17.

https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
https://data.mendeley.com/datasets/7mk8w57ypc/1
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb1
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb1
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb1
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb2
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb2
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb2
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb3
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb3
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb3
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb3
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb3
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb4
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb4
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb4
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb5
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb5
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb5
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb5
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb5
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb5
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb5
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb6
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb6
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb6
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb7
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb7
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb7
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb8
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb8
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb8
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb8
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb8
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb9
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb9
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb9
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb10
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb10
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb10
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb11
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb11
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb11
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb11
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb11
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb12
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb12
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb12
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb13
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb13
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb13
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb14
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb14
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb14
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb15
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb15
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb15
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb16
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb16
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb16
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb17
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb17
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb17
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb18
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb18
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb18
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb18
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb18
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb19
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb19
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb19
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb19
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb19
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb20
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb20
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb20
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb21
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb21
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb21
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb21
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb21
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb22
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb22
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb22
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb22
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb22
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb23
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb23
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb23
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb23
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb23
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb24
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb24
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb24
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb25
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb25
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb25
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb26
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb26
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb26
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb27
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb27
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb27
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb28
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb28
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb28
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb29
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb29
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb29
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb29
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb29
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb30
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb30
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb30
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb31
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb31
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb31
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb32
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb32
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb32
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb33
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb33
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb33
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb34
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb34
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb34
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb35
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb36
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb36
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb36
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb37
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb37
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb37
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb38
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb38
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb38
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb39
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb39
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb39
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb39
http://refhub.elsevier.com/S0264-9993(24)00217-7/sb39

	Global drivers of inflation: The role of supply chain disruptions and commodity price shocks
	Introduction
	Estimation of the Cost-Push Commodity Factors
	Selection of Commodities
	CPC Factors
	Cost-Push Commodities in Each of the Four Countries

	SVAR for Inflation Rates: Modeling and Empirical Evidence
	SVAR Model
	Impulse Response Functions

	Discussion of the Results
	Robustness Checks
	Constant and Time-Varying Common CPC factor
	Alternative measure for global supply chain disruptions: NACTI

	Conclusions
	Declaration of competing interest
	Data availability
	References


