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Abstract 

Accurate, reliable and scalable predictions are essential in complex real-world scenarios (e.g. 

finance, energy and climate forecasting) where rapid decisions are critical. This study 

evaluates multiple models for short and long-term forecasting and studies how these 

predictions are enhanced by the usage of hierarchical structures in the modelling process. 

Experiments on synthetic and real-world data reveal that DLMs and ARIMA achieve the 

lowest point and probabilistic forecasting errors, but DLMs excel in prediction speed and 

model updates. Reconciliation methods leveraging past residuals improve coherence but 

degrade distributional accuracy. We propose a deployable framework combining DLMs for 

primary forecasts, ARIMA for validation, and MinT Shrink LW reconciliation for improved 

performance. 

Keywords: Time-series forecasting, Machine Learning, ARIMA, Dynamic Linear Models, 

Hierarchical Reconciliation, MinT, S&P500.  

1. Introduction 

Time-series forecasting underpins decisions in in complex real-world scenarios (e.g. 

finance, energy and climate forecasting) by revealing trends that stabilize markets, 

optimize resources, and mitigate crises. Traditional point predictions are easy to compute 

but omit any sort of reliability metric on the forecast.  

Uncertainty measures are crucial in this regard since these algorithms are commonly 

used to aid in decision-making processes. Thus, obtaining calibrate and trustworthy 

intervals in of utmost importance when dealing with sensitive issues. For instance, 

rregulators and security teams increasingly demand these calibrated predictive 

distributions. This study assesses models that natively produce forecast intervals and 

explores hierarchical reconciliation across related series to boost both accuracy and 

uncertainty quantification. 

2. Thesis Scope and objectives 

The scope will be implementing from scratch (in most cases) and making a 

comprehensive comparison between different forecasting models and finding the most 

suitable that meets requirements of accuracy, speed and reliability. Additionally, we will 

investigate the different reconciliation methods to comprehend its potential in situations 

where there are more relationships between the data. To achieve this, we have set the 

following objectives: 

• Implement forecasting and reconciliation techniques from scratch, to provide 

the analysis with a reproducible pipeline to automatically fit each of the ML models.  

• Identify top-performing forecasting models, within the requirements we set for 

our application of fast, reliable and accurate forecasts.   



• Characterize forecast uncertainty, by using evaluation metrics defined as proper 

scoring rules.  

• Test Hierarchical Reconciliation Techniques, evaluate different techniques 

performance and comprehending relationships between nodes within their scalability 

limitations.  

3. Methodology 

The first part of the project has been developing all forecasting models with a customized 

automatic model fit for some models Deep Learning models have been done with 

pytorch, while ARIMA is backed by statsmodels. After reviewing (West & Harrison, 

1997) we implemented our version of DLMs. This makes a total of 7 forecasting models 

to compare: DLM, ARIMA, SMA, EMA, MLP, LSTM and Conv1D. These models were 

chosen since the application required to be lightweight and fast, and implementing big 

deep learning structures are inefficient in terms of reliability and scalability, even with 

results not are not always better.  

The second part of the thesis has been developing the hierarchical reconciliation 

methods. For these experiments, we have built our own framework. This was done 

following the methods described in (Athanasopoulos, Hyndman, Kourentzes, & 

Panagiotelis, 2023) and (Wickramasuriya, Athanasopoulos, & Hyndman, 2018) for point 

forecast. Given that we want to provide reliable forecasts, we also implemented two 

probabilistic methods following the descriptions in (Panagiotelis, Gamakumara, 

Athanasopoulos, & Hyndman, 2023).  

Lastly, we decided to set up two test environments. In the first case, we built a simple 

hierarchical structure with synthetic series at the lowest levels, that then were added to 

form the structure. Secondly, we tested our models in actual data from the S&P500 

Index, building a hierarchy based on Index, Sector, Industry and Stock that would make 

a total of ~600 series. More interestingly, the relationship between these nodes based on 

market-cap weighting, allowing us to see how reconciliation matrices adapted to cases 

without straight aggregation.  

4. Results 

In this Section, we will provide the most important results from our experiments: 

  

 

 

Figure 1 RMSE (+- standard error) against horizon 

 

Figure 2 Forecast +- standard deviation 

for ARIMA and DLM 

 



• The best results were achieved by DLMs and ARIMA models. Due to the DLM’s 

scalability and reliability to a higher extent, we have chosen them as building block 

given our use case requirements.  

• Hierarchical reconciliation results have been positive on the synthetic case. In the 

financial dataset, base forecasts have been fitted more precisely due to the small 

number of samples. The best reconciliation technique has been MinT Shrink LW since 

it partially solves the issue by estimating the covariance matrix. Monte Carlo has 

been chosen over Gaussian given the improved performance and accepting 

computation cost.  

5. Conclusions 

In conclusion, we have studied different forecasting models along reconciliation 

techniques in terms of accuracy, reliability and scalability. In that sense, we have seen 

the DLM as the most appropriate model for the case, followed closely by the ARIMA. 

They will both as cross-checkers predictors in the case study framework. However, 

reconciliation techniques have shown its potential in the synthetic example but lacked 

data for the S&P500 case. We still believe in its use for the case study and recommend 

MinT Shrink LW and Monte Carlo, with a robust hierarchical structure.  
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Resumen 

Predicciones precisas, fiables y escalables son fundamentales en escenarios reales complejos 

(por ejemplo, en finanzas, energía y predicción climática), donde la toma de decisiones 

rápida resulta crucial. Este estudio evalúa múltiples modelos para la predicción a corto y 

largo plazo, y analiza cómo dichas predicciones se ven mejoradas mediante el uso de 

estructuras jerárquicas en el proceso de modelado. Los experimentos realizados con datos 

sintéticos y reales demuestran que los modelos DLM y ARIMA obtienen los menores 

errores, tanto puntuales como probabilísticos, si bien los DLM destacan por su rapidez de 

predicción y capacidad de actualización. Los métodos de reconciliación que aprovechan 

residuos pasados mejoran la coherencia, pero reducen la precisión de la distribución. Se 

propone un marco de implementación que combina DLM para las predicciones principales, 

ARIMA para validación y reconciliación MinT shrink para optimizar el rendimiento. 

Palabras clave: Prediccion series temporales, Machine Learning, ARIMA, Modelos 

Dinamicos Lineales, Concicliación jerárquica, MinT, S&P500.  

1. Introducción 

La previsión de series temporales sustenta la toma de decisiones en escenarios reales 

complejos (como las finanzas, la energía y la predicción climática) al revelar tendencias 

que contribuyen a estabilizar los mercados, optimizar recursos y mitigar crisis. Las 

predicciones puntuales tradicionales son fáciles de calcular, pero carecen de métricas de 

fiabilidad asociadas a la previsión. 

Las medidas de incertidumbre resultan fundamentales, dado que estos algoritmos se 

utilizan habitualmente como apoyo en los procesos de toma de decisiones. Por ello, 

obtener intervalos calibrados y fiables es de suma importancia cuando se abordan 

cuestiones sensibles. Por ejemplo, los reguladores y los equipos de seguridad exigen cada 

vez más distribuciones predictivas correctamente calibradas. Este estudio evalúa 

modelos que generan de forma nativa intervalos de previsión y analiza la conciliación 

jerárquica entre series relacionadas para mejorar tanto la precisión como la 

cuantificación de la incertidumbre. 

2. Enfoque de tesis y objetivos 

El alcance de este trabajo consistirá en implementar desde cero (en la mayoría de los 

casos) y realizar una comparación exhaustiva entre distintos modelos de previsión, con 

el fin de identificar el más adecuado en términos de precisión, velocidad y fiabilidad. 

Adicionalmente, se investigarán los diversos métodos de conciliación para comprender 

su potencial en contextos donde existan mayores interrelaciones entre los datos. Para 

ello, se establecen los siguientes objetivos: 

• Implementar técnicas de previsión y conciliación desde cero, a fin de dotar el 

análisis de una canalización reproducible que permita ajustar automáticamente cada 

uno de los modelos de aprendizaje automático. 



• Identificar los mejores modelos de previsión, de acuerdo con los requisitos 

establecidos para nuestra aplicación: predicciones rápidas, fiables y precisas. 

• Caracterizar la incertidumbre de las previsiones, utilizando métricas de 

evaluación definidas como reglas de puntuación adecuadas (proper scoring rules). 

• Probar técnicas de conciliación jerárquica, evaluar el rendimiento de los 

distintos métodos y comprender las relaciones entre nodos, considerando sus 

limitaciones de escalabilidad. 

3. Metodología 

La primera parte del proyecto ha consistido en desarrollar todos los modelos de 

previsión, incorporando un ajuste automático personalizado para algunos de ellos. Los 

modelos de Deep Learning se implementaron con PyTorch, mientras que ARIMA se 

basó en la librería Statsmodels. Tras revisar (West & Harrison, 1997), se desarrolló 

nuestra propia versión de los DLM. En total, se compararon siete modelos de previsión: 

DLM, ARIMA, SMA, EMA, MLP, LSTM y Conv1D. Estos modelos se seleccionaron 

porque la aplicación debía ser ligera y rápida, y la implementación de arquitecturas de 

Deep Learning de gran tamaño resulta ineficiente en términos de fiabilidad y 

escalabilidad, además de que los resultados no siempre son superiores. 

La 2ª de la tesis se centró en el desarrollo de los métodos de conciliación jerárquica. Para 

estos experimentos se programaron, siguiendo los métodos descritos en 

(Athanasopoulos, Hyndman, Kourentzes, & Panagiotelis, 2023) y (Wickramasuriya, 

Athanasopoulos, & Hyndman, 2018) para previsiones puntuales. Como se buscaba 

proporcionar previsiones fiables, incluimos dos métodos probabilísticos.  

Finalmente, se definieron dos entornos de prueba. En primer lugar, se construyó una 

estructura jerárquica sencilla con series sintéticas en los niveles más bajos, que 

posteriormente se agregaron para conformar la jerarquía. En segundo lugar, se evaluaron 

los modelos con datos reales del índice S&P 500, construyendo una jerarquía basada en 

Índice, Sector, Industria y Acción, que totalizó aproximadamente 600 series. Un aspecto 

especialmente interesante es que la relación entre estos nodos se basó en la ponderación 

por capitalización bursátil, lo que permitió analizar cómo se adaptaban las matrices de 

conciliación en situaciones sin una agregación directa. 

4. Resultados 

En esta sección mostramos los resultados principales de los experimentos: 

Figura 1 RMSE (+- error estándar) contra horizonte 

 

Figura 2 Predicción +- desviación 

típica para ARIMA y DLM 



• Los mejores resultados se obtuvieron con los modelos DLM y ARIMA. Dado que los 

DLM destacan en escalabilidad y fiabilidad en mayor medida, se han seleccionado 

como componente principal, de acuerdo con los requisitos de nuestro caso de uso 

• Los resultados de la conciliación jerárquica han sido positivos en el caso sintético. 

En el conjunto de datos financieros, las previsiones base se han ajustado con mayor 

precisión debido al reducido número de muestras. La técnica de conciliación que ha 

mostrado mejor rendimiento ha sido MinT Shrink LW, ya que solventa parcialmente 

el problema mediante la estimación de la matriz de covarianzas. Se ha optado por el 

método Monte Carlo en lugar del gaussiano, dado su mejor desempeño, asumiendo 

el coste computacional asociado. 

5. Conclusiones 

En conclusión, se han estudiado distintos modelos de previsión junto con técnicas de 

conciliación, evaluándolos en términos de precisión, fiabilidad y escalabilidad. En este 

sentido, se ha identificado el DLM como el modelo más adecuado para el caso de estudio, 

seguido de cerca por el ARIMA. Ambos se utilizarán como predictores complementarios 

en el marco de trabajo propuesto. No obstante, las técnicas de conciliación han 

demostrado su potencial en el ejemplo sintético, pero se ha visto limitada su aplicación 

en el caso del S&P 500 debido a la escasez de datos. Aun así, se mantiene la confianza 

en su utilidad para el estudio y se recomienda emplear MinT Shrink LW y Monte Carlo, 

siempre que se cuente con una estructura jerárquica robusta. 
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1. INTRODUCTION 

Time series forecasting is a classic machine learning 

domain that plays a critical role in identifying trends 

and patterns from temporal data. It underpins critical 

decision-making where these trends drive social and 

economic outcomes. In climate and energy 

forecasting, for example, accurate demand forecasts 

help balance supply, stabilize prices or reduce 

carbon emissions. In Spain, Red Electrica reports 

national forecasts over short-, medium- and long-

term horizons to adjust market prices and anticipate 

needs for different scenarios (Red Electrica, 2025). 

This proves that having a high-performance model 

gives a competitive advantage and can provide fair 

electricity to clients. 

Although point estimates give a good initial 

approach, there is no real measure of how 

trustworthy that prediction is. There is a demand for 

understanding forecast risk. For instance, financial 

regulators require well-calibrated tail risk measures 

to protect against crises (Basel Committe on 

Banking Supervision, 2017). Or cybersecurity 

teams must weigh the probability of a rare but costly 

breach when protecting a system (Naveiro, 

Rodríguez, & Ríos Insúa, 2018). However, 

predictive distributions are more costly and 

complicated to predict that just point forecasts, so 

researchers must define a trade-off for how much 

value they can gain from them. In most applications, 

the highest value in these distributions is that they 

enable risk-aware choices, allowing us to compare 

scenario probabilities or set dynamic safety 

margins.  

In Section 3.1 and 3.2 we will explore some 

forecasting models that, by nature, allow us to 

predict these intervals and compare if we lose any 

forecasting ability in the process. And finally, in 

Section 3.3 and 3.4, we will explore hierarchical 

forecasting techniques that integrate information 

across distinct levels, such as individual assets in 

aggregated portfolios or regional and national 

energy grids. These models should allow us to 

capture dependencies between series and improve 

point forecasts and uncertainty calibration.  

1.1 CONTEXT AND MOTIVATION 

In financial institutions, centralized data servers and 

streamlined ETL pipelines are key for feeding risk‐

forecasting models with some market information 

needed to monitor and manage exposure across 

portfolios (AWS; JPMorgan Chase, 2022). 

Complex dependencies among instruments—

whether equities, derivatives, or fixed-income 

products—must be modelled not only to enhance 

point‐forecast accuracy but, to produce calibrated 

risk measures to support decision-making.  

At the same time, rising data volumes introduce a 

trade-off between model complexity and scalability. 

As the dataset grows, training and inference times 

can lengthen to the point where forecasts arrive too 

late. Managing computational resources efficiently 

to provide accurate and risk-aware predictions is a 

central challenge. It demands scalable architectures, 

with incremental learning techniques and optimal 

information extraction from features. Therefore, 

building hierarchical structures could be an efficient 

way of improving predictions.  

The market for these technologies is huge, For 

instance, High Frequency Trading (HFT) accounts 

for 30% - 40% of total daily equity trades in 

European and American markets (Grand View 

Research, 2024). Forecasting has also become one 

of the most profitable segments of Machine 

Learning. As per (Fortune Business Insights, 2025), 

the Big Data Analytics market was valued at $350bn 

in 2024, with high growth expectations. These 

numbers prove the global interest in finding 

methods that allow for fast, accurate and reliable 

predictions to ultimately increase profits. 

1.2 OBJECTIVES 

To answer to these challenges, we have listed a set 

of main objectives to gain the most understanding of 

the topic, and some secondary goals to give full 

context of implementation in a professional setting. 

• Implement forecasting and reconciliation 

techniques from scratch, to provide the 
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analysis with a reproducible pipeline to 

automatically fit each of the ML models.  

• Identify top-performing forecasting 

models, within the requirements we set for 

our application of fast, reliable and accurate 

forecasts.   

• Characterize forecast uncertainty, by 

using evaluation metrics defined as proper 

scoring rules.  

• Test Hierarchical Reconciliation 

Techniques, evaluate different techniques 

performance and comprehending 

relationships between nodes within their 

scalability limitations.  

And one secondary objectives: 

• Design a practical Implementation 

infrastructure, by choosing the best 

combination of models and techniques, to 

provide a case study where hierarchical data 

is available.   

All of this will be analysed from the perspective of 

accuracy, reliability and fast forecasting. 

1.3 PROJECT STRUCTURE 

The project has been structured to fulfil these 

objectives. Initially, Section 2 will give an overview 

of several state-of-the-art methods used in time 

series forecasting. Following this, we will dive into 

the most recent research done in hierarchical 

reconciliation.  

The next Section, 3, will be a thorough explanation 

of all the methods that will be implemented for the 

experiments. They will be divided into classic 

machine learning and deep learning forecasting 

models, and another subsection for the 

reconciliation methods, including the probabilistic 

techniques.  

In Section 4 we will assess all the different methods 

documented in Section 3. The first experiment will 

be done on synthetic data, with the objective of 

understanding how the different forecasting models 

work. Then, we will choose the best model for an 

application focused on speed, accuracy and 

scalability, and comprehend the reconciliation 

techniques. The second experiment will follow the 

same idea, but in financial data from the S&P500 

Index. We will evaluate the results of the forecasting 

and reconciliation methods too.  

Lastly, Section 5 will serve as a posterior analysis of 

the project in the business world. There, we will 

devise how it could be implemented in a real-world 

application, where the methods used have come 

from the main conclusions from the research.  

1.4 PLANIFICATION AND ECONOMIC 

FEASIBILITY 

The process followed for the project started by 

overviewing the state-of-the-art research on the 

topic. Once we had a clear scope, we implemented 

the initial models and reconciliation techniques in 

Python. This was particularly challenging, as our 

results needed to be in line with results from 

specialised frameworks. Also, finding the correct 

datasets was quite challenging since free financial 

data is scarce and other applications did not fulfil 

our requirements. Lastly, we proceeded with the 

analysis of the results.  

Economically, this project has not required many 

resources besides the technological hardware and 

the open-source data. At an industrial level, it would 

be appropriate to invest in top tier hardware since 

computations take long and there is a lot of data to 

process. Another big issue is finding sources with 

free financial data, which are scares and limited. 

Specially in the case we wanted to use real-time 

data, we would probably need to have Bloomberg 

Terminal (annual fee of $28k) or, more economical, 

FactSet (annual fee of $12k) (Wall Street Prep, 

2025).  

 

2. STATE OF THE ART 

Historically, time series forecasting was 

predominantly performed with moving averages 
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and linear regression. Soon, those methods were 

quickly replaced by exponentials by the 1950s. It 

was not until the 1960s and 70s that some of the 

most well-known statistical models were developed 

(Wong, 2024). In that decade, (Box & Jenkins, 

1976) formalized the ARIMA (p, d, q) model and 

extended it to SARIMA. Moreover, (West & 

Harrison, 1997) textbooks leaded the development 

of Bayesian Dynamic Models (DLMs). And more 

recently, Prophet (Taylor & Letham, 2017) rose as 

a popular alternative in the family of DLMs, given 

its ability to handle seasonality and holiday days.  

The biggest revolution post ARIMA arrived with 

the new Artificial Intelligence era. In the early 

2000s MLPs were already gaining popularity as 

hardware components became more efficient 

(Wong, 2024). This continued with the Deep 

Learning Era with the arrival of LSTMs (Hochreiter 

& Schmidhuber, 1997), that gathered a lot of 

attention in the upcoming decade. The rise of use of 

CNNs for image processing created a new 

application of 1D convolutional networks for time 

series forecasting, with posterior research into 

Temporal Convolutional Networks (Lea, Vidal, 

Reiter, & Hager, 2016). Attention mechanisms were 

evaluated in (Vaswani, et al., 2023) being the latest 

model architectures and effective in other sequence-

to-sequence tasks like NLP. Now, it seems that 

research is being done on probabilistic AI, 

multivariate time series forecasting and hierarchical 

reconciliation (Wong, 2024), which will be 

overviewed later.  

Since time-series forecasting has been a popular 

machine learning task, there is some research done 

on comparing different models. Although these 

types of analysis are quite dependable on the type of 

data being used, one of the most complete 

comparisons we found is in (Tchoketch-Kebir & 

Madouri, 2024) for economic forecasting. Results 

have shown that modern deep learning models tend 

to outperform classic ARIMA processes, making a 

noticeable error increase in long-term forecast. 

Specifically, a simple MLP showed to be the best in 

short-term forecasts, and the LSTM in longer-term. 

However, we missed an analysis and comparison in 

training and inference times between the models.  

As mentioned earlier, another important focus of 

this investigation is hierarchical structures and their 

subsequent reconciliation methods. One of the most 

relevant events these methods where used was the 

M5 (Makridakis) competition, with a hierarchical 

dataset provided by Walmart (Makridakis, Spiliotis, 

& Assimakopoulos, 2022). As per their conclusions 

on the competition, a combination of bottom-up and 

top-down worked better than forecasting series 

separately.  

 

Figure 1 Example of hierarchical structure (Palande & 

Recasens, 2019) 

This field of time-series forecasting assumes there 

is a dependency tree between several series and aims 

to improve predictions by using those relationships 

in the data. In Figure 1 we can see an example, 

where bottom level sales series could more reliable 

than top level, and reconciliation is used to identify 

selling trends in “Buckhead” and “Evanston” to 

improve forecasts. Classically, there were three 

main methods: Bottom-Up (BU), Middle-Out (MO) 

and Top-Down (TD) reconciliation (Hyndman & 

Athanasopoulos, 2021). However, they leave a lot 

of questions unanswered as they assume a lot about 

the nature behind the data. For example, BU directly 

adds each time series as equal to form the “parent”, 

although this does not need to be strictly true (e.g., 

ETFs, where individual stocks form the ETF with 

different weights). TD has a similar issue 

concerning what weight to assign to each “child” 

series. A review of the methods is found in 
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(Athanasopoulos, Hyndman, Kourentzes, & 

Panagiotelis, 2023) 

However, reconciliation techniques delved deeper 

into how to data related to each other. Minimum 

Trace (MinT) optimal reconciliation 

(Wickramasuriya, Athanasopoulos, & Hyndman, 

2018) was created by minimizing the total variance 

of the reconciliation errors from the historical series. 

It assumes that the base forecasts are unbiased and 

that the covariance matrix is known, although in 

cases where it is not available, the paper provides 

different methods to estimate it.   

However given our interest in predicting a 

probability distribution, we must include several 

methods to expand point forecast to a complete 

distribution. Typically, this could be done by 

projecting the base probabilistic forecasts with the 

summing matrix, but there are other methods. Under 

a Gaussian assumption (Quinn, Corliss, & Povinelli, 

2024), this projection admits a closed-form solution 

that minimizes the trace of the reconciled 

covariance matrix, just as in MinT, but generalizing 

to full predictive densities. Other methods that do 

not follow Gaussian behaviour rely on drawing 

base-forecast samples and then applying 

constrained importance sampling (Panagiotelis, 

Gamakumara, Athanasopoulos, & Hyndman, 2023), 

this ensures that every simulated path lies in the 

coherent manifold, giving marginal and joint 

predictive intervals that are both calibrated and 

coherent. 

2.1 CONTRIBUTION 

The value proposal in this project is giving a holistic 

comparison in time-series forecasting where the 

environment requires a fast, accurate and reliable 

method. Also, it will help understand the advantages 

of grouping series and therefore extracting the 

benefits of hierarchical reconciliation to improve 

base forecasts. This will expand the current research 

in terms of adding a time variable to explore, both 

in forecasting and reconciliation, while developing 

the custom architecture.  

3. METHODOLOGY 

This Section will give a thorough explanation into 

all the models and reconciliation techniques 

implemented in Python by us, along some 

frameworks like statsmodels or pytorch. We aim to 

make fitting process as automatic as possible. All 

code is provided in the following GitHub 

Repository: 

https://github.com/HenryECA/DLM_Model 

3.1  STATISTICAL METHODS 

3.1.1 SIMPLE MOVING AVERAGE (SMA) 

SMA is a simple model that computes each forecast 

as the unweighted mean of the most recent k 

observations. For the window 𝑘: 

𝑓𝑡 =
1

𝑘
∑ 𝑦𝑡−1

𝑘−1

𝑖=0

 

The hyperparameter 𝑘 controls the window size. 

The higher it is, the smoother the predictions will be. 

In practice, this parameter could be found with Grid 

Search or visually assessing the predictions’ 

smoothness. We have used 15 as the window size, 

half the horizon.  

The main benefit of this model is its simplicity, and 

selecting k is easy. However, it has many pitfalls. 

When producing k-step ahead forecast, the 

following step will always follow the same trend. 

Also, it has a slow reaction to changes in the series.  

3.1.2 EXPONENTIAL SMOOTHING (EMA) 

Exponential smoothing (or exponential moving 

average) is defined by the following equation: 

𝑆𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑆𝑡−1 

Where 𝑆𝑡 is exponential smoothing factor and 𝛼 ∈
(0,1) is the smoothing coefficient that controls the 

assigned weight to recent observations. As it can be 

seen, it only has one hyperparameter, and one 

running parameter in the model. It can be selected 

https://github.com/HenryECA/DLM_Model
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with Grid Search or manually depending on if the 

user wants to prevail previous data or new ones.  

The problem with this model is that it only works 

for one step forecasts, as 𝑆𝑡 will stay constant, thus 

providing the same forecasts. Ultimately this means 

that these models are limited to short-term 

forecasting and with a slow reaction to changes in 

the regime.  

3.1.3 ARIMA  

The ARIMA(p,d,q) model proposed in (Box & 

Jenkins, 1976) is a univariate time-series model that 

combines three components: 

• Autoregressive (AR – p): the series 𝑦𝑡
(𝑑) 

is 

modeleled following an AR process of order p, 

making it linearly dependent on its own past p 

values.  

• Integrated (I – d): the original series is 

differentiated to achieve stationarity:  

𝑦𝑡
(𝑑)

= (1 − 𝐿)𝑑𝑦𝑡 

• Moving Average (MA – q): the series 𝑦𝑡
(𝑑)

is 

allowed to depend on past white-noise shocks of 

𝜀𝑡−𝑗~𝒩(0, 𝜎2) up to lag q.  

The best way to identify a fitted ARIMA model is 

observing the ACF and PACF functions. The first 

one is used to identify the correlation peaks of a time 

series with itself at different lags, and the PACF is 

used for the same task, but after removing the effects 

of the previous lags. The implementation uses the 

statsmodels class of ARIMA (statsmodels, 2024) 

but is capable of automatically identifying the best 

fit within a set of parameters by brute force. The 

algorithm searches the combinations of p,q up to 4 

and d up to 2, which are in reasonable limits. It uses 

AIC (Akaike’s Information Criteria) as metric to 

evaluate the best combination of parameters. If k is 

the number of estimated parameters and �̂� is the 

maximum value of the likelihood function, then: 

𝐴𝐼𝐶 = 2𝑘 − 2 ∗ 𝑙𝑛(�̂�) 

This metric shows the accuracy and complexity of a 

model in a single statistic. We have preferred this 

over BIC (Bayesian Information Criterion) since the 

dataset we are working is not very large, and BIC is 

stricter on bigger datasets (Jani Data Diaries, 2024).  

After the best model has been identified, 

{𝜙1, … . , 𝜙𝑝, 𝜃1, … . , 𝜃𝑞 , 𝜎2} are estimated and we 

get the residuals 𝑟𝑡. Multi-step forecasts are later 

obtained recursively. For a horizon h: 

𝑓𝑡+ℎ
(𝑑)

= ∑ 𝜙𝑖𝑓𝑡+ℎ−𝑖
(𝑑)

𝑝

𝑖=1

+ ∑ 𝜃𝑖𝑟𝑡+ℎ−𝑖
(𝑑)

𝑞

𝑖=1

 

ARIMA models are very popular as they offer a 

simple to fit, reliable and light-weight model. 

Additionally, it has had many developments since it 

was created, which helps to adjust to specific 

settings for improved performance. For instance, 

SARIMA, which captures seasonal patterns, or 

ARIMAX (Wong, 2024), that incorporates external 

predictor variables. However, even these other 

methods have shown improved performance, they 

also require a more exhaustive computational fitting 

process, which would be incompatible with our 

scalability purposes.  

3.1.4 DYNAMIC LINEAR MODELS (DLM) 

 

Figure 2 Dynamic Linear Model recursive diagram (Locruz, 

Lasala, & Lekuona, 2000) 

Dynamic Linear Models (DLMs), formalized by 

(West & Harrison, 1997), provide a Bayesian 

framework for tie series analysis. An unobserved 

state vector evolves linearly over time generating 

noisy observations. In the text, they also show how 

the models are scalable to express as different 

modules with trend, seasonal or autoregressive 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA MATEMÁTICA E INTELIGENCIA ARTIFICIAL 

 

 

components. As seen in Figure 2, by recursively 

updating with each new data point, it is also able to 

track uncertainty through full posterior 

distributions. Because of this modularity, 

lightweight and probabilistically interpretable 

results, they have become important in modern 

forecasting and online learning.  

In DLMs, we assume that at each time 𝑡 there is a 

latent state vector 𝑥𝑡 ∈ ℝ𝑝 summarizing the 

unobserved structure of our time series. This 

includes all our components: level, linear, 

seasonality or autoregressive. As mentioned, this 

state evolves linearly with noise and produces scalar 

observation 𝑦𝑡 ∈ ℝ with a linear projection.  

The first step in implementing a DLM is defining 

𝑚0 ∈ ℝ𝑝 and 𝐶0 ∈ ℝ𝑝𝑥𝑝, which are the initial guess 

for the latent components and the uncertainty we 

have with them. From our initial guesses, we will 

define a Gaussian prior. 

𝑥0 ~ 𝒩(𝑚0, 𝐶0) 

Typically, this is set with 𝑚0 = 0 or an empirical 

guess, being 𝐶0 = 𝑘𝐼 with 𝑘 large. 

As mentioned, this state vector will drift linearly at 

every step following: 

𝑥𝑡 = 𝐹𝑥𝑡−1 + 𝑤𝑡,        𝑤𝑡 ~ 𝒩(0, 𝑉) 

In which 𝐹 ∈ ℝ𝑝𝑥𝑝 is the state transition matrix and 

𝑉 ∈ ℝ𝑝𝑥𝑝, that controls the variance of 𝑤𝑡. This is 

known as the state evolution phase.  

Once we have calculated the latent state 𝑥𝑡, we will 

observe only a scalar, our prediction: 

𝑦𝑡 = 𝐺𝑥𝑡 + 𝑣𝑡 ,        𝑣𝑡  ~ 𝒩(𝑂, 𝑊) 

Where 𝐺 ∈ ℝ1𝑥𝑝 observation (measurement) 

matrix that maps the state to the observation space 

and 𝑊 ∈ ℝ  observation noise variance.  

However, one of the main benefits of Dynamic 

Linear Models is its update algorithm. To fuse prior 

knowledge with new data we use a Kalman Filter. 

After assuming that 𝑦1:𝑡−1 is our posterior for 𝑥𝑡−1 

and Gaussian with mean 𝑚𝑡−1 and covariance 𝐶𝑡−1, 

we can perform the one-step ahead prediction with  

𝑎𝑡 = 𝐹𝑚𝑡−1,        𝑅𝑡 = 𝐹𝐶𝑡−1𝐹𝑡 + 𝑉 

So that before seeing the true observation 𝑦𝑡, we 

believe that: 

𝑝(𝑥𝑡|𝑦1:𝑡−1 )  =  𝒩(𝑎𝑡, 𝑅𝑡) 

From this distribution we can derive the forecast 𝑓𝑡 

and its uncertainty 𝑄𝑡: 

𝑓𝑡 = 𝐺𝑎𝑡,       𝑄𝑡 = 𝐺𝑅𝑡𝐺𝑡 + 𝑊 

Here we can observe the scalar error 𝑒𝑡 = 𝑦𝑡 − 𝑓𝑡 

and the Kalman gain,  

𝐴𝑡 = 𝑅𝑡𝐺𝑡𝑄𝑡
−1 

These values tell us how much to correct our state 

prediction after knowing the new data: 

𝑚𝑡 = 𝑎𝑡 + 𝐴𝑡𝑒𝑡,   𝐶𝑡 = 𝑅𝑡 − 𝐴𝑡𝑄𝑡𝐴𝑡
𝑇 

This way, 𝑥𝑡|𝑦1:𝑡 ~ 𝒩(𝑚𝑡, 𝐶𝑡).  

In case we want to forecast more than one step ahead 

(horizon h) without further observation, we just 

need to iterate the prediction equations. 

𝑎𝑇+𝑘 = 𝐹𝑚𝑇+𝑘−1      𝑅𝑇+𝑘 = 𝐹𝐶𝑇+𝑘−1𝐹𝑡 + 𝑉 

For 𝑘 = 1, … , ℎ. With this we can get our forecasts 

as: 

𝑓𝑇+ℎ = 𝐺𝑎𝑇+ℎ      𝑄𝑇+ℎ = 𝐺𝑅{𝑇+ℎ]𝐺
𝑡 + 𝑊 

But now, since we do not have true observation 𝑦𝑡 

to compare, we continue assuming 𝑚𝑇+𝑘 = 𝑎𝑇+𝑘 

and 𝐶𝑇+𝑘 = 𝑅𝑇+𝑘 for each of the steps.  

Additionally, DLMs allow us to have a distribution 

for each forecast over our prediction by doing: 

𝜎𝑇+ℎ = √𝑄𝑇+ℎ 
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We have implemented this model in a custom class 

in python. However, it is true that we find hard to 

define the correct components and initial matrices to 

have a stable and accurate DLM. Therefore, we have 

developed an automatic function that fits the DLM 

with a given training data. The user can insert the 

components they want to add, including: 

• Level, random walk with noise with dimension 

𝑝 = 1. It assumes the series can drift up and 

down, moving by a small Gaussian shock. The 

algorithm defines: 

𝐹𝑙𝑣𝑙 = [1]   𝐺𝑙𝑣𝑙 = [1]    𝑉𝑙𝑣𝑙 = 𝜎∆𝑦
2  

• Trend block, implements a local linear trend 

with level 𝑙 and slope 𝑏. It assumes that 𝑏𝑡 can 

also move with small or fixed variance. It 

defines: 

𝐹𝑡𝑟 = (
1 1
0 1

)    𝐺𝑡𝑟 = [1   0]   𝑉𝑡𝑟 = 𝑑𝑖𝑎𝑔(𝜎∆2𝑦
2 ) 

• Seasonal blocks, for each of the supplied 

periods. If the user does not supply any, the 

algorithm detects the highest appearing 

frequencies with FFT (Fast Fourier Transform) 

(Musbah, El-Hawary, & Aly, 2019).  For each 

period p, the added components are: 

𝐹𝑠𝑒𝑎𝑠 = (
𝑐𝑜𝑠(2𝜋/𝑝) 𝑠𝑖𝑛(2𝜋/𝑝)

−𝑠𝑖𝑛(2𝜋/𝑝) 𝑐𝑜𝑠(2𝜋/𝑝)
)  

   𝐺𝑠𝑒𝑎𝑠 = [1   0]   𝑉𝑠𝑒𝑎𝑠 = 𝑑𝑖𝑎𝑔(𝜎𝑦
2) 

• Autoregressive block, the users set an AR order 

𝑘 capturing the k last lags of the series. This 

creates a k-dimensional state. The algorithm fills 

𝐹 and 𝐺 with zeroes and V with the diagonal of 

the variance.  

Lastly, all V matrices are multiplied by a factor the 

user sets up manually. It is usually in the 

[1𝑒−2, 1𝑒−3] range.  

Then, the algorithm combines these matrices 

creating the different modules required for 

forecasting. The matrices are the block diagonal of 

the larger matrices F, G, V, and W.  

Also, we can infer the size of these matrices, and 

number of parameters. If we assume that p is the 

number of seasonal components and k is the 

autoregressive terms: 

𝑠 = 1 + 2 + 2 ∗ 𝑝 + 𝑘 

𝑃𝑎𝑟𝑎𝑚𝑠 = 𝐹 + 𝑉 + 𝐺 + 𝑊 = 𝑠2 + 𝑠2 + 𝑠 + 1 

We have chosen this model for several reasons. 

First, it enables online updating in a very 

lightweight manner. As has been seen, when a new 

datapoint arrives, we need to run one inverse matrix 

and several multiplications. This makes it extremely 

efficient for long series. Additionally, the model is 

modularized, so it is easy to add or discard 

components. And lastly, but most importantly, 

without overhead calculations you also get full 

Bayesian intervals.   

3.2  DEEP LEARNING METHODS 

3.2.1 MLP 

An MLP is thought as a stack of fully connected 

layers forming a neural network, where each layer 

applies a linear transformation, a ReLU activation 

and optional dropout: 

𝑜(𝑖) = 𝑅𝑒𝐿𝑈(𝑊(𝑖)𝑥(𝑖−1) + 𝑏(𝑖)) 

The model includes a last linear layer (fc_out) that 

maps the last h features to a single scalar output.  

The model accepts a fixed-size vector of length 

input_size that is fed into the network. The output 

is a scalar value as the forecast that should continue 

the initial vector. In case we wanted to perform 

multi-step predictions, we would update the initial 

vector with the last forecast. Ultimately, the main 

inconvenient of doing this with an MLP is that 

errors quickly accumulate, since the model has not 

been prepared to manage temporary dependencies 

in the input data. All values in the vector are i.i.d.  
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In addition to input_size, the model requires 

hidden_sizes, a list including the number of 

neurons per layer and the dropout probability. 

Lastly, the model requires the typical deep learning 

training pipeline with its optimizer, loss function, 

training and testing pipelines etc.  

3.2.2 CONV1D 

A 1D convolutional model relies on performing the 

convolution operation over a set of inputs. This is 

sliding a “1D kernel” of small dimensions across the 

input sequence. The output 𝑗 − 𝑡ℎ output feature at 

position t will be defined by:  

(𝑜(𝑖))
𝑡

= 𝑅𝑒𝐿𝑈(∑ 𝑤𝑟𝑥𝑡+𝑟−1 + 𝑏)

𝑘

𝑟=1

 

Lastly, the output vector is flattened and passed 

through a linear layer to get a final forecast. 

Similarly to the MLP, the forecast updates the fixed 

size input vector to get the multi-step forecast.  

The operation could include pooling or striding to 

down-sample each feature map to reduce length or 

enforce invariance. Apart from this decision, we 

also need to define the number of Conv1D layers to 

use, the input, output and kernel sizes, with the 

dropout probability.  

3.2.3 LSTM 

Long-Short Term Memory idea was introduced in 

(Hochreiter & Schmidhuber, 1997), although the 

model has widely been adapted during the 2010s 

into the current implementations. It is an adapted 

recurrent neural network (RNN) designed to capture 

short-term and long-term dependencies with a cell 

state. As it can be seen in Figure 3, the cell state is 

updated by three gates that input different 

information: forget (what information to discard 

from the previous), input (what new information to 

add) and the output gate (controls how much of the 

new cell state influences the next hidden state).  

 

Figure 3 LSTM Architecture (Dive Into Deep Learning, 

2022) 

In the implementation we have made using pytorch, 

the user will need to define the input size from the 

original series (𝑥𝑡), the hidden size of the memory 

cell 𝑐𝑡 and the number of layers.  

What is most attractive of this model is its ability to 

dynamically choose what information to keep at 

each step during long sequences, making it very 

efficient for time-series forecasting. The main 

downside is its complicated learning process with 

these dependencies between weights.  

3.3 HIERARCHICAL RECONCILIATION 

TECHNIQUES 

The second part of this research project is 

understanding the different reconciliation 

techniques and how they update the forecasts to 

make them more accurate. We begin with a set of 

base forecasts, �̂�𝑡 ∈ ℝ𝑚 , which we will try to adjust 

so that the reconciled forecasts are coherent (i.e. 

they respect the aggregation constraints) and they 

minimize overall forecast error across all levels.  

 

Figure 4 Example of summing matrix with Classic. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA MATEMÁTICA E INTELIGENCIA ARTIFICIAL 

 

 

 

If we define m as the total number of series (nodes) 

and n the number of forecasts at the lowest level. 

The summing matrix 𝑆 ∈ ℝ𝑚𝑥𝑛 encodes the 

aggregation structure. So, if we have a vector 𝑏 ∈
ℝ𝑛, then we can get a vector of all series: 

𝑦𝑡 = 𝑆𝑏𝑡 

We will then define a matrix 𝐺 ∈ ℝ𝑚𝑥𝑚 that 

transforms the full vector of base forecasts �̂�𝑡 into 

reconciled forecasts: 

�̃�𝑡 = 𝑆𝑃�̂�𝑡     𝐺 = 𝑆𝑃  

The second equation ensures coherence in the 

reconciliation. 𝑃 ∈ ℝ𝑛𝑥𝑚 is a matrix that projects 

forecasts from all levels back to bottom nodes.   

3.3.2 CLASSIC RECONCILIATION 

Among hierarchical approaches, the two most 

widespread and simple techniques are Bottom-Up 

(BU) and Top-Down (TD), being Middle-Out a mix 

between them. While implementing them, we 

realised that it could be summarized in one function 

that automatically identifies which nodes needs to 

do bottom-up and which ones are top-down.  

Our implementation requires the user to input which 

nodes are the base forecasts, so that it can reconcile 

up from that. This way, the bottom-up process will 

add all nodes with the same weight, and the top-

down will divide equally so it adds up to 1. For 

instance, in figure 4, nodes “BA” and “BB” are 

inferred as top-down since “B” is the last (column) 

base forecast.  

It must be noted there are other methods to estimate 

the weights for top-down, but in this case, we 

wanted to build a baseline model that does not 

require any other information and only the structure. 

Therefore, in cases where the aggregation is not a 

direct addition, we expect it to work badly.  

3.3.3 REGRESSION 

As mentioned, Classic method does not oversee 

well cases where the aggregation is not an equal 

distribution. We found some other documentation 

that followed historical averages and their 

proportions, or using the historic average 

proportion. However, these two methods continued 

to be unrealistic.    

A solution we thought could be worth testing was 

fitting regression weights. Given that we have the 

historical series for all nodes, we could select the 

related ones and perform a fitted regression. This 

can be done when assigning weights from parents to 

children (Top-Down) or from children to parents 

(Bottom-Up). This way we capture more realistic 

relationships between nodes than just assuming 

equality. In this case we do require to have data from 

all series to fit the regression weights, unlike Classic 

reconciliation.  

Also, a reinterpretation of what 𝑆 matrix means (i.e. 

how base forecasts aggregate), would allow us to 

assess with this method as S, given it is the most 

accurate representation of how nodes relate to each 

other. We will evaluate this in Section 4.2.  

3.3.4 MINT RECONCILIATION 

Minimum Trace (MinT) optimal reconciliation was 

initially introduced in (Wickramasuriya, 

Athanasopoulos, & Hyndman, 2018). The objective 

is to reconcile the base forecasts of all nodes in the 

hierarchy by finding a linear adjustment that ensures 

coherence with the aggregation constraints and 

minimizes the total variance of the forecast’s errors.  

The general MinT solution requires to compute the 

residuals of the base forecasts, yielding an m-sized 

vector such that: 

𝑒𝑡+ℎ = 𝑦𝑡+ℎ − �̂�𝑡+ℎ 

If we define 𝑊ℎ = 𝑉𝑎𝑟(𝑒𝑡+ℎ) the covariance matrix 

of the residuals from all nodes, then our optimal 

reconciliation matrix 𝐺 =∈ ℝ𝑚𝑥𝑚 must solve: 

min
𝐺

𝑡𝑟𝑎𝑐𝑒(𝑉𝑎𝑟(𝑒𝑡+ℎ))   𝑠. 𝑡 𝐺𝑆 = 𝑆 
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In the paper (Wickramasuriya, Athanasopoulos, & 

Hyndman, 2018), it is demonstrated that if we 

enforce unbiasedness between the nodes and the 

coherent constraint, we can define matrix G as: 

𝐺𝑀𝑖𝑛𝑇 = (𝑆𝑡𝑊−1𝑆)−1𝑆𝑡𝑊−1 

And that would give us the full reconciliation 

process to end with: 

�̃�𝑡+ℎ = 𝑆𝐺𝑀𝑖𝑛𝑇�̂�𝑡+ℎ 

However, in practice, matrix 𝑊ℎ is unknown and 

must be estimated from historical residuals. 

However, we must have in mind that this matrix can 

be big and ill-conditioned. This means that it will be 

very sensible to its solutions and will make hard to 

get its inverse given its closeness to singularity.  

The paper (Wickramasuriya, Athanasopoulos, & 

Hyndman, 2018) also proposes several methods to 

estimate it.  

MinT OLS 

Ordinary Least Squares (MinT OLS) method has no 

prior information about the residuals of the series. It 

assumes that all series have an equal, uncorrelated, 

residual variance: 

�̂�ℎ
𝑂𝐿𝑆 = 𝑘ℎ𝐼𝑚 

Here, 𝑘ℎ is a scalar multiplier (e.g. the average in-

sample forecast error variance at horizon h) that we 

have assumed for all experiments as 1. 𝐼𝑚 is the m-

dimensional identity matrix.  

The main benefit of this method is that it is always 

well-conditioned. Therefore, it is very easy to 

compute and will not trigger inverse errors.  

WLSS  

Structural Diagonal (WLSS) method does not require 

prior information on the residuals; only how base 

nodes aggregate. It assumes that the bottom-level 

series share a common variance, but the aggregated 

series variance scales with the number of bottom 

components: 

�̂�ℎ
𝑊𝐿𝑆𝑠 = 𝑘ℎΛ      𝑤𝑖𝑡ℎ    Λ = 𝑑𝑖𝑎𝑔(𝑆1𝑛) 

In this equation, 1𝑛 is a vector n-dimensional vector 

of bottom level forecasts., so that ∆ counts how 

many bottom series feeds into each node. 

Meanwhile it is still diagonal and invertible.  

WLSv 

Weighted Least Squares Variances is the simplest 

method to include historical residuals. It assumes 

that only the diagonal variances matter, by allowing 

each node to have its own variance.  

𝑊ℎ
𝑊𝐿𝑆𝑣 = 𝑘ℎ𝑑𝑖𝑎𝑔(�̂�ℎ) 

�̂�ℎ =
1

𝑇
∑ �̂�𝑡+ℎ�̂�𝑡+ℎ

𝑡

𝑇

𝑖=1

 

One of the main benefits of this method is that 

instead of estimating a full covariance matrix 𝑊ℎ ∈
ℝ𝑚𝑥𝑚, we would only need its diagonal, m 

variances. This method continues to be diagonal and 

invertible, and in most cases, still well-conditioned.  

MinT Sample 

This method follows MinT reconciliation without 

assuming anything, as residuals are informative 

enough to estimate 𝑊ℎ:  

�̂�ℎ
𝑆𝑎𝑚𝑝𝑙𝑒 =

1

𝑇
∑(�̂�𝑡+ℎ − �̅�ℎ)(�̂�𝑡+ℎ − �̅�ℎ)𝑡

𝑇

𝑖=1

 

The main benefit of this method is that is can be as 

informative as possible with the information we 

have from all series. However, it requires to 

compute an 𝑚𝑥𝑚 matrix that easily tends to be ill-

conditioned or singular when m is large relative to 

T (residuals length).  

Therefore, we have implemented a small algorithm 

to solve this issue, as we encountered it on several 
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occasion. Once the 𝑊ℎ(0) has been estimated, 

calculated its condition metric, and if it is larger than 

1𝑒5, we have performed Tikhonov regularization. It 

searches within a Grid Search for the most 

appropriate 𝛼 value so that: 

𝑊ℎ(𝛼) = 𝑊ℎ(0) + 𝛼
𝑡𝑟𝑎𝑐𝑒(𝑊ℎ(0))

𝑚
 

This is now better conditioned that the original one.  

3.3.5 MINT SHRINK 

This method is a variant of MinT Sample, which 

aims to stabilize the sample-covariance estimator by 

shrinking it towards a simpler, well-conditioned 

target.  

�̂�ℎ
𝑆ℎ𝑟𝑖𝑛𝑘 = 𝜆�̂� + (1 − 𝜆)�̂�ℎ

𝑠𝑎𝑚𝑝𝑙𝑒
 

In this case, �̂� = 𝑑𝑖𝑎𝑔(�̂�ℎ
𝑠𝑎𝑚𝑝𝑙𝑒), is the structured 

matrix containing the variances of the diagonal. The 

parameter 𝜆 is the shrinkage intensity which 

minimizes the mean-squared error of the estimator.  

Compared to MinT Sample, this method improves 

the condition of the 𝑊ℎ matrix noticeably, although 

it highly depends on the parameter lambda. If it is 

too close to 1, then 𝑊ℎ
𝑠ℎ𝑟𝑖𝑛𝑘 will be closer to 𝑊ℎ

𝑊𝐿𝑆𝑣  

than to 𝑊ℎ
𝑠𝑎𝑚𝑝𝑙𝑒

. Therefore, we have implemented 

two methods to estimate lambda.  

First, we have approximated the variances of the 

correlations of each residual by: 

𝑣𝑎𝑟 𝑟𝑖𝑗
=

(1 − 𝑟𝑖𝑗
2)

2

𝑇 − 1
 

Then, the best 𝜆 has been estimated by summing 

these variances and comparing it to the total 

correlations: 

𝜆 =
∑ 𝑣𝑎𝑟 𝑟𝑖𝑗

∑ 𝑟𝑖𝑗
 

This is clipped between [0,1]. Also, we have 

performed the same algorithm as in MinT Sample, 

to improve the matrix’s condition using Tikhonov’s 

regularization.  

The second method will estimate 𝜆 with the 

LeoditWolf estimator (Leodit & Wolf, 2004). This 

method follows the formulas in MinT Shrink but 

estimates 𝜆 automatically in the 

sklearn.covariance.LeoditWolf. We have named 

MinT Shrink LW for experiments and analysis. We 

also implement the Tikhonov regularization.  

MinT Shrink achieved some of the best results in 

(Wickramasuriya, Athanasopoulos, & Hyndman, 

2018), so we expect a superior performance.  

3.4 PROBABILISTIC RECONCILIATION 

However, these methods only provide “point” 

reconciliation, and we require additional steps to 

provide a distribution over them. We have selected 

two simple methods, each of them following the 

main probabilistic “schools”. The first one, “closed 

form” and “variational” will be based on a Gaussian 

assumption, and the second one is based on Monte 

Carlo sampling.   

The first attempts to provide with full distributions 

were introduced in (Taieb, Taylor, & Hyndman, 

2017), but later works from the previously 

mentioned (Panagiotelis, Gamakumara, 

Athanasopoulos, & Hyndman, 2023) build up on 

that approach. They provide alternative methods to 

estimate W or choose shrinkage targets that work 

better for probabilistic forecasts.  

3.4.2 GAUSSIAN 

In this method, it is assumed that the unreconciled 

base forecasts follow a multivariate normal 

distribution: 

�̂�_𝑡 ~ 𝒩(𝜇_𝑡, 𝑑𝑖𝑎𝑔(𝜎1,𝑡
2 , … . 𝜎𝑚,𝑡

2 ) 

If we take G, the MinT reconciliation matrix 

estimated from any of the previous methods, and W 
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the assumed error-covariance, following the 

Gaussian assumption. 

𝔼[�̃�𝑡] = 𝐺𝜇𝑡,        𝑉𝑎𝑟(�̃�𝑡) = 𝑆𝐺𝑊(𝑆𝐺)𝑡 

In practice, we will extract marginal standard 

deviations (the squared root diagonal of the 

covariance matrix) as coherent uncertainty 

measures for each set of predictions: 

𝜎(�̃�𝑖,𝑡) = √[𝑆𝐺𝑊(𝑆𝐺)𝑡]𝑖𝑖 

This method is very efficient computationally since 

it does not require to calculate further matrices, and 

uses already defined W and G. However, a Gaussian 

assumption on the base forecasts is strong and might 

not always hold.  

3.4.3 MONTE CARLO 

This second alternative is based on Monte Carlo 

sampling, where we will draw samples based on 

each forecast’s distribution and then apply 

reconciliation transform to each draw.  

The first step is to draw 𝑙 = 1 … 𝐾 samples from: 

�̂�𝑡
(𝑙)

~𝒩 (𝜇𝑡, 𝑑𝑖𝑎𝑔(𝜎1,𝑡
2 , … . , 𝜎𝑚,𝑡

2 )) 

For each of the unreconciled samples, we will 

perform: 

�̃�𝑡
(𝑙)

= 𝑆𝐺�̂�𝑡
(𝑙)

 

Lastly, we compute the sample mean and 

covariance: 

μ𝑡
(MC)̂

 =  
1

𝐾
∑ 𝐺

𝐾

l=1

 𝑦𝑡
(l)̂

 

Σ𝑡
(MC)̂

 =  
1

𝐾 − 1
∑ (𝐺 𝑦𝑡

(l)̂ − μ𝑡
(MC)̂

)

𝐾

l=1

 (𝐺 𝑦𝑡
(l)̂ − μ𝑡

(MC)̂
)

t

 

Then we will take the diagonal entries from Σ𝑡
(MC)̂

 

as the coherent variance estimates per series and do 

the square root to get standard deviations.  

The main drawback for this approach is its 

computational cost. Its dependence on the number 

of samples takes, K, means we need to adjust it 

conveniently to correctly manage our resources. 

Unlike the analytical or fixed-formed Gaussian 

method, Monte Carlo reconciles from multiple 

draws from the assumed distribution, yielding more 

realistic forecasts and uncertainty.   

3.5  EVALUATION METHODS 

In this Section, a brief description of the evaluation 

methods used for the experiments. We will name 𝑦𝑖 

the true targets, �̂�𝑖 the model’s point prediction and 

�̂�𝑖 the standard deviation for �̂�𝑖. N is the total 

number of samples.  

3.5.2 RMSE 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − �̂�𝑖)2

𝑁

𝑖=1

 

RMSE is an error metric that penalizes larger errors 

quadratically and then rescales the values to the 

original units. It is widely used when large 

deviations are especially undesirable.  

3.5.3 MAE 

MAE =  
1

𝑁
∑|𝑦𝑖 − 𝑦�̂�|

𝑁

𝑖=1

 

This error metric averages the deviation between 

true and predicted values. It is preferred in cases 

where a linear error penalty is more appropriate.  

3.5.4 EXPECTED CALIBRATION ERROR 

The Expected Calibration Error (ECE) is a metric 

that shows how well a probabilistic model’s 

predicted confidences match its empirical accuracy.  

The first step is to take M equally spread coverage 

levels from the [0,1] interval. The, we will compute 
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the empirical coverage for each of those levels 

following: 

𝑐𝑜𝑣(𝛼𝑗) =
1

𝑁
∑ 1{𝑦𝑖 ∈ [�̂�𝑖 ± 𝑧1−𝛼𝑗

�̂�𝑖]}

𝑁

𝑖=1

 

The, we will calculate the ECE by: 

𝐸𝐶𝐸 =
1

𝑀
∑|𝑐𝑜𝑣(𝛼𝑗) − (1 − 𝛼𝑗)|

𝑀

𝑖=1

 

In cases where the 𝐸𝐶𝐸 = 0, then the model’s 

predicted probability matches its actual correctness 

rate, so it is perfectly calibrated. A larger value of 

ECE tells us that on average the model ‘s confidence 

is misaligned with reality. The main inconvenience 

with this method is defining the correct M, number 

of 𝛼 levels. We have used 10.  

3.5.5 NLL 

Negative log-likelihood (NLL) measures how well 

the model assigns high probability to the observed 

labels. Therefore, we are required to express our 

mean and variance predictions into a probabilistic 

distribution. We will do that by assuming it is 

Gaussian: 

𝑝𝜃( 𝑦𝑖 ∣∣ 𝑥𝑖 ) = 𝒩(𝑦𝑖; �̂�𝑖, 𝜎𝑖
2) 

Then, the NLL becomes: 

𝑁𝐿𝐿 =  −
1

𝑁
∑ 𝑙𝑜𝑔[𝒩(𝑦𝑖; �̂�𝑖 , 𝜎𝑖

2)]

𝑁

𝑖=1

 

And if we substitute the Gaussian distribution 

formula inside the NLL, then it becomes: 

NLL =
1

𝑁
∑ [

1

2
log(2π σ𝑖

2) +
(𝑦𝑖 − 𝑦�̂�)

2

2 σ𝑖
2 ]

𝑁

𝑖=1

 

Therefore, the lower NLL value indicates a better 

characterization of the distribution compared to the 

actual data. It is one of the proper scoring rules 

mentioned in (Gneiting & Raftery, 2007), as it 

effectively measures accuracy of the mean forecast 

and the quality of the uncertainty estimates.  

3.5.6 CRPS  

The last error metric we wanted to compute is the 

Continuous Ranked Probability Score, as it is 

included in one of the proper scoring rules in 

(Gneiting & Raftery, 2007). In that case, CRPS of a 

predictive CDF (Cumulative Distribution Function) 

𝐹 and observed value 𝑦𝑖 is: 

CRPS(𝐹, 𝑦𝑖) = ∫ (𝐹(𝑥) − 1{𝑥 ≥ 𝑦𝑖})2
∞

−∞

 𝑑𝑥 

The intuition behind the metric is that it measures 

how much mass F places around true 𝑦 and the 

squared difference will be large in some regions. So, 

a lower CRPS value indicates a better probabilistic 

forecast. Also, it is important to note that CRPS has 

the same unit as variable y.  

However, our models output a mean and standard 

deviation, as an adapted form assuming Gaussian in 

terms of them is: 

CRPS(𝒩(μ, σ2),  𝑦) = σ [𝑡(2Φ(𝑡) − 1) + 2ϕ(𝑡) −
1

√𝜋
] 

Where: 𝑡 =
𝑦−𝜇

𝜎
, a normal distribution with mean 0 

and variance 1. The cdf (Cumulative Distribution 

Function, 𝜙(𝑡)) is giving the probability that 

standard normal variable is ≤ 𝑡 and the pdf 

(Probability Density Function, Φ(𝑡)) is giving the 

relative likelihood at t.  

 

4 EXPERIMENTS AND RESULTS 

As mentioned, we will test all these methods with 

two different datasets: first, in Section 4.1 we will 

use synthetic data where the distributions of the 

random generators and functions are known. This 

way we will be able to understand the potential and 

pitfalls of each technique in a controlled 

environment. Secondly, in Section 4.2 we will use 

the S&P500 Index, having as base forecasts the 
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stocks and market-capitalization weighting. This 

will help up see how reconciliation techniques 

perform with real data.  

For each dataset, we will give a brief description of 

the structure, along with the analysis of the 

experiments with the forecasting models and the 

reconciliation methods.  

4.1 SYNTHETIC SERIES 

The first step to understanding how the different 

models work is assessing them in a controlled 

environment where randomness and trends are 

known. This will allow us to learn how the model 

behaves under different conditions, providing a 

better characterization of their limitations. Initially, 

we will briefly describe the dataset, Then, we will 

continue with the forecasting experiment and, based 

on it, select a model to perform the hierarchical 

reconciliation analysis. 

Dataset Structure 

To evaluate the performance of the model, both for 

forecasting and reconciliation, we have constructed 

a hierarchical structure as shown in Figure 5:   

 

Figure 5 Synthetic Series Hierarchical Structure 

The selected functions plus Gaussian random noise 

(𝜇 = 0, 𝜎 = 5) for each of the leaf nodes are: 

• 𝐴𝐴 = 5 ∗ 𝑙𝑜𝑔(𝑡) 

• 𝐴𝐵 = 50 ∗ 𝑛𝑝. 𝑠𝑖𝑛(𝑡/5) 

• 𝐵𝐴 = 0.01 ∗ 𝑡 − 50 

• 𝐵𝐵𝐴 = −0.005 ∗ 𝑡 + 33  

• 𝐵𝐵𝐵 = 50 ∗ 𝑐𝑜𝑠(𝑡/3)  

• 𝐵𝐵𝐶 = 50 ∗ 𝑒(−𝑡/500) 

To create the upper nodes, we have added them in 

the structure following the relationships. We have 

chosen this architecture given its variability in the 

type of functions but also the simplicity of each part 

separately.  

Additionally, we find that there could be some 

interest in assigning different weights while creating 

the parent nodes. However, since we want to 

structure the project as an ablation experiment with 

rising complexity, we have decided to leave that 

experiment towards the S&P500 forecasting, in 

Section 4.2.  

To perform this experiment, we generated 10k 

samples from these functions and then propagated 

them upwards in the hierarchy. Experiments have 

been conducted by preserving the last 20% of the 

data for testing. We scaled the data for the Deep 

Learning models (Section 3.3), DLMs and ARIMA 

after seeing better performance.    

Forecasting Experiment 

In this case we will compare the performance on the 

different forecasting models on the top series ‘O’ 

from the hierarchy. Since it is formed by all the 

child’s series, it will be composed with a wide 

variety of functions and their additive Gaussian 

random noise.  

The experiments have been in done in file 

model_runner.py. The user needs to input a numpy 

array with the time series data, along with the 

training percentage, the largest horizon to forecast 

and the window size for SMA, MLP, LSTM and 

Conv1D. Then, the data is scaled using numpy’s 

StandardScaler and processed through each model. 

Given the architecture of Deep Learning methods, 

we need to create the sequences of window_size 

arrays that will output our forecast. In our case we 
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have used a window_size of 15 and max_horizon of 

30.  

In every model, we have conducted one time-step 

forecasts and used that value to update it. In some 

cases (EMA, ARIMA, DLM) to change parameters 

and in others (LSTM, MLP, Conv1D, SMA) to 

append at the end of the input array. We save the 

model state before predicting the full horizon and 

update the initially fitted state of the model.   

Lastly, the model computes the proper scoring 

metrics described in Section 3.5 and saves the 

forecasts. The plots shown here are directly 

provided by the code in plotter.py, available in the 

code repository.  

Figure 6 shows a sample of the forecasts. We have 

plotted the ℎ (1,15,30) forecast for those specific 

indexes. The black lines represent the real data, 

which is kept the same for all three figures although 

it is represented in different scales (horizontal 

scale). This is because forecasts get worse as 

horizon increases, as we will see in posterior plots.  

The first plot, with ℎ = 1, can distinguish three 

methods: EMA, SMA and MLP, that show 

significantly worse performance when compared to 

the other methods. They tend to stay centred in the 

series and not adapting to the needed level of 

flexibility shown by the data. If we go down to 

higher horizons, it seems like they displace their 

peaks in time. In fact, EMA does just that and SMA 

does it with the trend of the first forecast point. The 

behaviour of the MLP looks simpler as it tends to 

shrink the values towards the mean of the series 

when updating the input vector with the forecasts. 

This is because it does not have temporal awareness 

as the input vector values are considered identically 

and independently distributed (i.i.d.).  

Secondly, we have Conv1D and LSTM, where they 

initially tend to follow the series very well. 

However, as the horizon gets bigger, Conv1D 

suffers from an overfitting issue. As we can see in 

ℎ = 15 in the middle and ℎ = 30, towards the end, 

the models over prioritize the latest information 

over the old one. This is shown by the high peaks 

and valleys. However, this is fixed in the cell 

structure in the LSTM, where the model rarely 

deviates in short-term horizons. When it does, it 

adjusts back fast and then continues normally (end 

of ℎ = 15), with the curve in red.  

Lastly, from this visual comparison, we can see that 

the best fitting models have been ARIMA and DLMs. 

ARIMA fits the series every well, although as the 

horizon increases, it loses track of the series. Like 

LSTM, the error it makes usually stays close to the 

true series, and when it misses, it gets fixed easily. 

The best performing model (Figure 7) for this series 

is the DLM since the seasonal and linear trends of 

the series are easily replicated by the model. The 

small displacement in the higher horizons comes 

from model predicting earlier the peaks in the base 

series, probably due to a small shift in the 

seasonality of the series.  

Further analysis could be performed if we analyse 

the RMSE of each model compared to the horizon. 

We have shown RMSE since we want to analyse 

point forecasts first, and then we will see how the 

Figure 6 Point Forecast for h = [1, 15, 30] on "O" 
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predictive intervals behave. Therefore, probabilistic 

evaluation metrics will be analysed after.  

The first thing we can see from Figure 7 is how well 

the DLM adjusts to seasonality, and we can see the 

effect of the mentioned displacement towards 

higher horizons. Another very good proof of its 

performance is how thin and constant standard error 

(interval around each value) is. This means that we 

do not have many outliers in terms of residuals and 

are all quite similar.  

Another good comparison can be seen between 

ARIMA and LSTM. The standard error is much 

thinner in the ARIMA, and more constant, meaning 

that when there is a change in regime, predictions 

are affected less, and the model recovers faster. 

Also, they both tend to work good in the short term, 

although the LSTM is not as used due to scalability 

concerns. The contrary can be seen with SMA and 

EMA, that as we mentioned in Section 3.1, they are 

very resilient to change as new data come in.  

The fact that their RMSE is going down with 

horizons shows the models doing underfitting, like 

SMA and EMA, are benefited over those doing 

overfitting. These models are essentially Deep 

Learning ones and would require less training, more 

data or a bigger structure to be fixed. A clear 

example is the behaviour of Conv1D, which has 

increasing error with increasing standard error too 

when doing long-term forecasts.  

 

 

Table 1 Probabilistic metrics for short, medium and long-

term forecasting on "O" 

In this Table we can see the probabilistic metrics 

computed for DLM and ARIMA, averaged around 

short, medium and long-term horizons. Bold values 

represent the best score for each metric and horizon. 

It also applies to following tables. Other models are 

not shown because they do not predict a distribution. 

Results show that DLM tends to work better on 

longer term horizons, while ARIMA on shorter. 

That could align with what we saw on Figure 7. The 

fact that ARIMA is better in terms of NLL and ECE 

in the short horizon is surprising. Essentially, what 

this means is that ARIMA probabilistic interval 

adjusts better to the actual data distribution, but 

when doing multiple step forecasting, the error in 

the forecast is bigger and the standard deviations 

too. This can be confirmed with Figure A1 in the 

appendix. The fact that CRPS is consistently lower 

for this model is because it also accounts for the 

mean value, which has shown to be better for the 

DLM. In fact, this metric in medium and long-term 

horizon is half the value for the DLM showing that 

in terms of sharpness and calibration, the 

distribution is much better adjusted. This positions 

the DLM as dominant in series strongly governed by 

seasonality, by having less error in terms of point 

forecast and distribution fitting.  

Lastly, we will explore the fact that we recover a 

decreasing behaviour in the ECE metric. This shows 

that as we increase in horizons, the predictive 

intervals grow in the correct direction. They 

resemble better the data and show better calibration 

across several values of 𝛼 in Section 3. 4..  

Figure 7 RMSE (+- standard error) against horizon 
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Table 2 # Parameters and execution times for different 

models 

As mentioned in Section 1, one of the most 

important characteristics we wanted to confirm in 

the analysis is the model complexity. This is shown 

in Table 2 as the average time taken for each task. 

Our baselines, SMA and EMA, but with a noticeable 

decrease in accuracy However, what surprised us 

the most is the difference between DLM, ARIMA 

and then the rest of Deep Learning models, with 

LSTM being the worst.  

Even though DLMs have a complex initialization 

algorithm with FFTs involved, it is surprisingly 

faster than the rest. It does not need to adjust 

parameters like Deep Learning models, which takes 

much longer having many more. Also, the fact that 

ARIMA is worse is because the algorithm is not fully 

optimized. By checking every combination of (p, d, 

q) parameters by brute force it adds a lot of 

complexity.  

Most models lie between similar orders of 

forecasting time (DLM one order faster), but the 

significant difference is made in the updating times. 

This is measured every time the model introduces 

the new data point information. This makes sense as 

the DLM only need to perform a few matrix 

operations, while Deep Learning models need to 

forecast and backpropagate. ARIMA, which we 

expected to work better, updates the internal state of 

the model to adjust the “starting point” of the 

prediction. 

As a conclusion, we have seen that simple models 

like EMA, SMA and, more complex, MLP, do not 

adapt to changes by lagging or shrinking forecasts 

towards the mean due to a lack of temporal 

awareness. Conv1D and LSTM seem to manage 

short-term forecasts, but Conv1D overfits as the 

horizon grows. LSTM mitigates well this with the 

cell structure by maintaining stability between past 

and added information. ARIMA has good 

performance for some of the proper scoring 

probability-related metrics in the short term. 

However, DLMs achieve similar performance in 

short-term predictions in those same metrics, while 

also providing more accurate and consistent point-

wise predictions for the time series, as highlighted 

in Figure 7.  

Reconciliation Experiment 

To evaluate the reconciliation techniques, we have 

designed a script to run them, in charge of pre-

processing the data, forecasting and saving results. 

It reads the data for each of the series and its 

hierarchy structure (a python dictionary). Then, it 

relies on model_runner.py for each of the base 

forecasts with a DLM automatically fitted and 

mixes all information in several dictionaries. Then, 

the residuals are computed to calculate the 

reconciliation matrices. Lastly, they are used to 

perform a forward pass on point Forecasting, 

Gaussian and Monte Carlo methods. The proper 

scoring evaluation metrics are calculated and all 

results saved in different files. All this can be found 

in reconciliation_experiment.py. 

The goal of this experiment is to understand how 

these methods work compared to base forecast, 

which is running the DLM on every series.  
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Table 3 RMSE ranking for probabilistic reconciliation 

variants across short, medium and long-term horizons. 

Table 3 shows us the average ranking results for 

RMSE. These rankings have been computed by 

taking the average RMSE error in each node, rank 

the different models and average the results. The 

best result in bold and the second best underlined in 

each of the probabilistic methods. Also, bold has 

been used to highlight best result, and underlining 

for second-best. The averaged RMSE values are in 

Appendix A.  

The first thing that is clear is that MinT Sample has 

performed the best across both, ranking between 1st 

and 3rd most of the time. This makes sense as we 

have a simple hierarchy, and the matrix is relatively 

small. The inverse operations can be run without 

numerical issues. Both MinT Shrink methods have 

performed second best, being a bit surprising that 

the normal version sometimes is ranked better than 

the MinT Shrink LW method.  

Also, the methods that do not depend on residuals, 

such as Classic, Regression, WLSS have shown the 

lowest performances, even some below the base 

forecast. This is because they do not incorporate 

past information from the models and the 

relationships between nodes are purely 

deterministic on the structure. Therefore, error is not 

reduced, but accumulated across the hierarchy and 

the base forecast performs better.  

With Table 3, we can see that in simple structures, 

with simple addition in the series reconciliation has 

enhanced forecasts in every method except MinT 

OLS, WLSS and WLSV. Our hypothesis was the 

opposite, but we can understand that Monte Carlo 

works a bit worse than Gaussian. Since the 

reconciliation matrices have improved the forecasts, 

a closed-form solution would also tend to improve 

them rather than a more spread average result.  

However, the results from the NLL are prove 

differently, as can be seen in Table 4 

 

Table 4 NLL for probabilistic reconciliation across different 

forecast horizons 

We have chosen to show NLL here as it assesses 

how well the probabilistic forecast fits the actual 

data distribution, since we want to compare 

Gaussian and Monte Carlo. Other metrics like 

CRPS and ECE are available in Appendix A.  

In shorter horizons, Gaussian seems to work better 

than Monte Carlo on average. As the forecasting 

horizon grows, the Gaussian assumption gains 

strength (as is to be expected from a Bayesian-prior 

point of view) and it induces worse results in terms 

of NLL. However, if we compare Monte Carlo with 

the unreconciled forecast, we can see that there is 

not much benefit over the longer horizon.  

From all the methods what can be inferred is that the 

better the reconciliation matrix is over short-term 

prediction, the better performance it has. However, 

on longer horizons, the results in Gaussian seem to 

be better on matrices that come from a deterministic 

method such as Classic, Regression and WLSS. In 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA MATEMÁTICA E INTELIGENCIA ARTIFICIAL 

 

 

the case of Monte Carlo, they continue to work in 

similar orders, probably given that this method is 

more realistic as it is based on sampling over the 

actual predictions. If the matrix is worse, then the 

reconciled samples will continue to be worse.  

To further understand what reconciliation means in 

terms of change in forecast residual structure, we 

can calculate the correlation matrices from the 

residuals of the predictions. Figure 8 measures 

difference between them when doing reconciliation 

with MinT Sample, Gaussian in a short forecast of 

ℎ = 5: 

 

 

Figure 8 Difference in correlation between base and 

reconciled forecasts, in terms of correlation between nodes' 

residuals. 

This matrix shows the difference of correlations 

between the residuals of all nodes in the hierarchy, 

between base forecasts and the case just mentioned. 

The idea of this plot is that if series are more 

uncorrelated, then more information has been 

extracted from base forecasts and supposedly 

improved them. What we can see here is that most 

of the cases correlation has been decreased, 

especially within the highest levels of the hierarchy.  

In conclusion, to achieve the best results through 

reconciliation, we need to carefully construct the 

hierarchical structure to better reflect the inner 

dependencies among time series. We should 

consider qualitative analysis on the nature of the 

series, as we could have some levels that are more 

reliable than others. In this case, with complete 

information, we have seen that could make sense to 

use reconciliation methods in short term forecasts as 

correlation between residuals has decreased and 

accuracy improved. In a simple hierarchical 

structure as this one, we have seen that MinT Sample 

has worked the best in terms of point forecast, 

although shrinked methods outperformed in short-

term forecasts when seeing it as a probabilistic 

distribution. We must have in mind that MinT 

Sample is not always the best method in bigger 

structures than this one. However, in longer term 

horizons, there was not much difference with base 

forecasts in terms of NLL, although it continued to 

rank better in point forecasting (Table 3). And lastly, 

Gaussian seems to work better in short-term and 

Monte Carlo on longer horizons, as the samples 

widen with horizon due to sampling.  

4.2 S&P500 INDEX FORECASTING 

To prove its applicability to a real-world scenario, 

we have decided to use the S&P500 Index. This is a 

market-capitalisation-weighted financial instrument 

meant to track the 500 leading publicly traded US 

companies. It can be subdivided in 11 sectors and 

those into 74 industries. Therefore, the downwards 

order in our hierarchy will be:  

 

Figure 9 Hierarchical Structure for S&P500 

There are several important points related to the data 

processing that should be mentioned. yfinance API 

(Aroussi, n.d.)  does not provide actual information 

at industry or sector level, so we have calculated 

those values in terms of the weighted capitalization 

of the relevant stocks. The market-cap weighted 

aggregation formula used is: 

𝐶𝐺(𝑑)  =  ∑ (
𝑀𝑖

∑ 𝑀𝑗
𝑛
𝑗=1

)

𝑛

𝑖=1

 𝐶𝑖(𝑑) 
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Here, 𝑀𝑗 is the market capitalization (value of the 

company in the market) and 𝐶𝑗(d) is the price of the 

stock on day 𝑑. This is the method used to propagate 

the data throughout the hierarchy, but leaving the 

index as it was downloaded from the API from the 

“^GSPC” ticker. Companies which left the index 

during the last 2 years have been removed for 

improved consistency within the dataset. 

Forecasting Comparison 

As in the previous Section, we have started by 

analysing the time series with the different models 

before we delve into reconciliation techniques. In 

this case, to test the performance of the models in 

real data. Because we want to see the actual average 

error being committed, we have chosen to show the 

MAE for this plot, although other values are shown 

in the appendix.  

 

Table 5 Forecasting MAE for different models across 

increasing horizons. 

The results show a good performance with the 

ARIMA, showing its optimality for near-stationary 

financial series, as it’s the case for the S&P500. It 

performs well on shorter horizons due to its 

momentum, although in high h values, it degrades 

since it cannot extrapolate non-linearities.  

The major difference with the synthetic data 

example is in the DLM. Although it performs well 

in short term, it soon loses accuracy as it’s a very 

reactive model that has a hard time modelling noisy 

data like financial series.  

On the other hand, simple models like EMA and 

SMA show that they are better in longer horizons as 

many models, since predicting averages tends to 

perform better than reactive models that we have 

seen.  

The problem with Deep Learning methods is that 

they require big architecture and a lot of data to 

generalize patterns and trends. Therefore, they can 

mimic patterns in the short term but tend to carry the 

error being made in higher horizons without 

adjusting the series. Similarly, MLP treats each 

vector of inputs as independent variables (i.i.d), so 

the model tends to learn a mean bias rather than 

patterns.   

However, it is true that the results are quite good 

given that the actual value of the ^GSPC is around 

6000pts, we are only committing between a 2.5% in 

short-term forecasts and 5% error in longer horizon 

errors.  

When analysing stocks, it is important to know the 

confidence in the prediction for each horizon. The 

comparison for different horizons and actual values 

for the DLM and the ARIMA are shown in Figure 10: 

These plots show an interesting comparison 

between DLMs and ARIMA. Generally, adjusting a 

DLM requires to define a prior on the uncertainty 

that defines how confident you are on your data. In 

our case, and by estimating it with our algorithm, it 

has shown that the DLM has a lot more uncertainty 

than the ARIMA model.  However, their behaviour 

continues to be quite difference, although as it can 

be seen at the lowest points in the plot, the ARIMA 

tends to forecast in the future close to linearly, and 

Figure 10 Forecast + 1 stdev for the S&P500 
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the DLM has some seasonality (as the horizon 

increases, the forecast goes lower and then 

upwards). Both models have periods that when there 

is a long regime, (see the orange horizons where the 

slope is highest), the uncertainty shrinks 

completely. This is because if your information 

continues to tell you that you are moving in the 

correct direction, then you are surer of those 

predictions. 

However, this plot can be better understood if we 

look at Figure 11:  

 

Figure 11 Multi-step forecast with stdev for different models. 

The plot shows how the forecasts vary with 

increasing horizon from a specific index (around the 

lowest point in Figure 10). The most important 

characteristic this plot shows is how uncertainty 

grows with the forecast horizons, and most 

importantly, how different it is between ARIMA and 

DLM.  

In Table 1 from Section 4.1 we argued that a lower 

ECE value shows that the model is better calibrated, 

which can be seen graphically in Figure 11. The 

DLM distribution tends to include more of the times 

the true series, while the ARIMA has a thinner 

confidence interval. Although sometimes it is 

preferable to have a smaller   

Moreover, we can see the seasonal component in 

correctly adapts to the new trend in the data, while 

all other models behave smoothly, accumulating a 

lot of error due to their slow change in regime. The 

models that we have not shown perform worse. 

Also, we can see how the amplitude of the interval 

increases noticeable for the DLM for around 600, as 

this yields that the interval for one standard 

deviation is 20%.  

In conclusion, we have seen that once we have used 

the models with real data, their performance has 

gone down noticeably. In fact, it proves that over 

longer horizons it is sometimes more appropriate to 

use averaging methods than complex models. In 

short term horizons ARIMA and DLM work best, 

with an error around 2%-5% of the value, but as the 

horizon increases, the uncertainty over the forecast 

becomes big. Also, Deep Learning models have 

underperformed since they need more layers and 

data to generalize better as the series becomes 

noisier.  

Stock reconciliation 

Now that we have seen the performance on a pure 

forecasting task, we can test how well reconciliation 

methods work on predicting distinct levels of the 

S&P500. In Table 6 we have shown the average 

CRPS (proper scoring metrics) values at different 

levels in the hierarchy, along with their unreconciled 

forecasts. The model used has been the DLM, as we 

saw the fastest performance in previous experiments 

and good accuracy on short forecasts: 

 

Table 6 CRPS for probabilistic reconciliation across levels of 

hierarchy in S&P500 

If we recall the meaning CRPS, it measures the 

accuracy of the probabilistic forecasts by combining 

a measurement of its sharpness and calibration. This 

means that a lower CRPS is a better score for a 

distribution. MAE results will be provided in the 

appendix.  

Table 6 shows that reconciliation has only improved 

the forecasts at the stock level, and the base forecast 

still ranks as the best in the other three. It is coherent 

that Gaussian and base forecasts are the same for 
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Classic and Regression at this level since the 

summing matrix does not affect them. However, by 

sampling 1000 forecasts in Monte Carlo, we have 

improved it, showing the effect of averaging the 

results. At this level, the methods that are based on 

residuals have underperformed considerably, as the 

information provided by the reconciliation matrix is 

not useful.  

Levels sector and industry behave quite similar. In 

fact, MinT methods tend to stay in the same order as 

the stock CRPS values. However, they are still 

around 2.5x the base forecasts CRPS values. The 

rationale behind this could be that errors are 

accumulated when reconciling the forecasts instead 

of improving them. Following the same trend as in 

stock level, Monte Carlo tends to work better on 

point forecasting than Gaussian, but the standard 

error is a bit bigger. Again, thanks to sampling effect 

rather than closed-form equations. Here we see that 

when using different weights for each series, Classic 

method performs badly, same as Regression and 

WLSS. MinT OLS, which is also deterministic on the 

hierarchical structure performs surprisingly better 

than them.  

However, the biggest errors are seen at the Index 

level compared to the base forecast. Clearly, MinT 

Sample, MinT Shrink and MinT Shrink have worked 

the best with these models, as Monte Carlo for the 

probabilistic reconciliation. This makes sense as 

they are methods capable of minimizing residuals 

covariance with the reconciliation matrices, 

although not good enough as in the Section 4.1 

experiment with synthetic data.  

According to (Gneiting & Raftery, 2007), a 

relationship between MAE and CRPS can be done 

following that they are in the same scale. If CRPS is 

considerably lower than MAE, then the distribution 

prediction is better than just point forecasting and is 

well calibrated. In Table 7 we can see the same plot 

as Table 6, but with the MAE error: 

 

Table 7 MAE at different levels in the hierarchy per 

reconciliation method 

If we compare the values in the CRPS table, then we 

can see that generally distribution forecasts improve 

point. This is most noticeable at the Index level, 

where there is a difference of around 150pts. In 

levels like Industry the difference is small, which 

means that the distributions are poorly calibrated. 

This can be checked in the NLL plot provided in 

Appendix B.  

However, if we just analyse the errors from Table 7, 

we can see that reconciliation has not improved 

predictions. There are several reasons for this that 

we will highlight in the following paragraphs.  

This dataset has around 630 unique time series that 

makes a huge covariance matrix. As highlighted in 

Section 3.3, one of the key issues with Mint methods 

is numerical instability with inverse matrices. In 

(Wickramasuriya, Athanasopoulos, & Hyndman, 

2018), the authors mention that estimating W is very 

hard when the number of samples is small compared 

to the number of series, as the matrix becomes rank 

deficient and singular. That is the reason MinT 

Shrink was created, to decrease the condition of the 

matrix to make it more inversible. Having a matrix 

this big, with numbers in the thousands could easily 

induce near zero values after the first inverse. These 

results can be seen in the appendix.  

At that point, we were testing without scaling our 

data. Once we changed that, results improved 

drastically. This partly fixed the issue, but wanting 

to improve the condition number we developed the 

current algorithm and implemented MinT Shrink 
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LW. Given that this method optimizes finding the 

shrinkage constant 𝜆, it has achieved the best results, 

demonstrating the importance of the process. 

However, this is not something that should be 

exploited as information gained from the residuals 

is lost. These results can also be found in the 

appendix. 

Secondly, and for the results shown in Table 6, we 

also tweaked the summing matrix to instead of being 

filled with 1s and 0s, it is estimated with the actual 

weights using the regression algorithm. As 

mentioned in Section 3.3, this reinterpretation of the 

coherent constraint for a reconciliation matrix still 

holds, as the nodes are still logically connected. This 

also improved the results considerably.  

Lastly, there is an issue with the method used when 

constructing the dataset. We have followed a 

bottom-up technique to calculate the weight of each 

stock towards each group but stopped at the sector 

level. We have assumed that the ^GPSC value 

downloaded from yfinance matches what should be 

without method. That does need to be necessarily 

true, as there are changes in the index that we have 

not included for simplicity and could end up 

breaking the coherent constraint. Also, we must 

account that market capitalization in the S&P500 

can shift noticeably. We have assumed that in the 

two years of data we have available market caps are 

constant with today’s value. Table A.6 in the 

appendix, provided at (Sather, 2023) shows how 

there are some sectors that can have shifts of ~4% 

in one year, or even more if there are redefinitions. 

This is not accounted in our index, along with 

companies that leave or are added to the index.  

The last analysis we wanted to do is quantitatively 

evaluate the overhead time reconciliation means 

over just predicting with the base forecast. In Tables 

8 and 9 we can see different averaged time metrics 

for reconciliation methods and probabilistic 

methods from these experiments.  

As we expected, Gaussian takes around 1/3s of 

what Monte Carlo probabilistic reconciliation takes. 

This is because Gaussian only consists of 

performing one big matrix multiplication, while 

Monte Carlo needs to do it over many K (1000 for 

us) samples.  

From Table 9 we can see that Classic is clearly the 

fastest method when inferring the reconciliation 

matrix. Regression is fast even though it has many 

fittings it needs to do It is in line with MinT OLS, 

WLSS and WLSV. These are inferred from the 

summing matrix, and for WLSV, only needs to 

calculate variance from each node. Even though we 

expected MinT Sample to take the longest, MinT 

Shrink took more time because it had to estimate 𝜆. 

If we were to choose the best method from these, 

probably MinT Shrink LW is the most appropriate.  

In conclusion, we have seen that good real-world 

results with reconciliation techniques are hard to 

get. You need to have full knowledge on your series 

and maintain the coherent requirement for 

reconciliation. Results have not been particularly 

good compared to the base forecast, although the 

trend we saw with MinT Sample, Shrink and Shrink 

LW leading in the synthetic experiment continues to 

hold. These methods have also been the slowest 

when creating their reconciliation matrix, although 

that was expected as they had the heavy 

computations to calculate covariance matrices 

Lastly, the CRPS value has shown that Monte Carlo 

tends to work better in terms of sharpness and 

calibration over Gaussian, given the averaging Table 9 Forward pass for probabilistic methods 

Table 8 Matrix Initialization time 

per reconciliation method 
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effect on the reconciled forecasts after sampling. 

This comes at the cost of taking 3x longer to perform 

the forward pass to get the reconciled predictions.  

 

5 BUSINESS IMPLEMENTATION 

In the introduction for this project, we wanted to 

find a time-series forecasting model that provided 

accurate, reliable and fast predictions for 

environments where there is an important time-

constraint. As an example, we previously saw 

mentioned (Naveiro, Rodríguez, & Ríos Insúa, 

2018) as an example of DLMs in cybersecurity 

given its scalability capabilities. In this Section, we 

will devise an infrastructure applicable to a financial 

trading desk, based on an actual project:  

We’re designing an internal data-ingestion and 

forecasting server that pulls market data, stores it 

for on-demand access, runs live predictive models, 

and tracks performance. Key requirements: 

• Efficient data collection. Handle multiple 

sources (Bloomberg, Murex, YFinance), 

respecting API rate limits. 

• Fast, reliable storage. Allow real-time writes 

and query reads so traders can access up-to-

date information. 

• Live forecasting engine. Run a primary model 

(plus a secondary backup) on the freshest data 

and log all outputs. 

• Comprehensive monitoring. Track data-

ingestion health, API usage, forecast accuracy, 

and system performance. 

To fulfil this, we have devised the following 

infrastructure: 

 

Figure 12 Trading Desk Infrastructure Example 

This component division ensures that all traders 

machines contribute to the server’s querying 

capacity. Each of them will connect to the main 

server with a fast Kafka topic. The server will 

distribute the data for storage and forecasting, while 

managing monitoring and user queries.  

As shown in Figure 12, the forecasting component 

will provide traders information to anticipate market 

trends. As we saw in Section 4, DLM models 

provide fast, reliable short-term forecasts. To 

address their long-term issues shown in Section 4.2, 

we will run an ARIMA model as a backup, 

enhancing robustness and allowing cross-evaluation 

between models. Both will deliver uncertainty 

estimates, highly valuable for traders as a risk 

measure. We have discarded all deep learning 

models due to their complexity compared to these 

cases.  

After forecasting, a hierarchical reconciliation step 

is applied. After seeing the complexity of this 

technique, we still believe it is still useful in cases 

with more data points and a static hierarchical 

structure. That conditions could still be applied to 

some financial products, and hence, for this case. 

Given the data scale and performance needs, we will 

use MinT Shrink LW with Monte Carlo, a 

combination that improves base forecasts and 

balances computational efficiency as shown in 

Section 4.1.  
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Key forecasting processes, like model initialization 

and update will run automatically. DLM and 

ARIMA models are easy to update, and thanks to 

our algorithms developed in Sections 3.1.3 and 

3.1.4, they will fit automatically. This redundant 

infrastructure also prevents any forecasting down 

time by having DLMs and ARIMA running in 

parallel and will also allow us to compare its 

forecasts to trigger model updates.  

 

 

6 CONCLUSIONS AND FUTURE 

WORK 

In this project we have overviewed the main 

forecasting models along with different hierarchical 

reconciliation techniques, including probabilistic 

methods. All the combinations have been tested in a 

controlled environment with synthetic data and with 

S&P500 Index data from the last 2 years. These 

experiments have been done in scope of finding 

suitable models and techniques to summarize a lot 

of data into improved predictions in environments 

where having fast predictions is key.  

Initial forecasting experiments have shown that 

ARIMA and DLM models have worked the best in 

short-term horizons. In the first case, it continued to 

be one of the best performing in longer forecasting 

periods, as the error did not increase that much. 

However, DLMs have shown a very good 

performance in initial steps and when the data easily 

resembles its components. In the synthetic 

experiment, where the model easily adjusted to 

seasonality it performed well in longer horizons. 

However, in noisier data from the S&P500, 

performance dropped noticeably.   

Still, these two models provide a probabilistic 

advantage compared to deep learning. Many of the 

real-world application of time-series forecasting, 

and hierarchical reconciliation, require some 

knowledge of confidence in these forecasts to be 

aware of how much risk there is attached to them. 

From Table 1 we saw that DLM was better than 

ARIMA. This was strengthened by Figure 11, where 

the DLM distribution forecast seems better 

calibrated although considerable wider.  

Deep Learning models have provided average 

results but are not a viable alternative given their 

issues with scalability and reliance on training 

processes. This is a big downfall that is solved 

efficiently by DLM and ARIMA. Lastly, SMA and 

EMA provide a good baseline to start with these 

models, especially in series that are very constant. 

The results on the S&P500 show that on longer 

horizons sometimes averaging results in better 

results.  

The next step in the project was testing the 

reconciliation methods. To do so, we decided to use 

the DLM given its accuracy on short horizons and, 

specially, its adaptability and speed to make new 

forecasts and update. These reconciliation 

techniques are meant to improve base forecasts for 

a set of time series, but as it has been seen, it is not 

always the case.  

Section 4.1 showed the true benefits of 

reconciliation on a very simple structure. There has 

been a clear difference between the models that rely 

on past residuals and not. In that second group, 

Classic, Regression, MinT OLS and WLS S have 

provided worse results compared to forecasting 

upper time series separately. However, when there 

is full information from past forecast, then it is better 

to use any of the other MinT methods. As shown in 

Sections 3.3 and 4.2, it would make most sense to 

use MinT Shrink LW as the resources needed to 

estimate the covariance matrix are high and this 

simplifies them.  

Although some point reconciliation methods have 

seemed useful, probabilistic reconciliation has not 

been that positive. Initially, Montecarlo gave 

improved results compared to the base forecasts, but 

in real data was unproductive. Gaussian on the other 

hand behaves similarly in longer-term forecasts but 

has the added benefit of a lower computing time.  
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However, S&P500 experiment showed the big 

drawbacks of using reconciliation methods. 

Reconciliation results were far away from base 

forecasts. Although this was not the expected result, 

it makes sense given the low data availability and 

singular matrices that need to be inversed and 

produce numerical instability. The best methods 

identified in 4.1 continued to perform best within 

reconciliation techniques.  

In Section 5 we showed a possible implementation 

for a real-world case scenario for a trading desk, 

where there is special need for fast, reliable and 

accurate forecasts. We concluded that the best 

combination to implement this research would be 

using DLMs as primary forecasting method, with 

ARIMA being used as cross-checker and validation. 

Following this step, reconciliation could be done 

using (MinT Shrink LW, Montecarlo), making the 

model and reconciliation matrices updates simple 

and easily triggered when needed.  

6.2 FUTURE WORK  

Although the project has assessed a varied amount 

of forecasting and reconciliation methods, there are 

more that could be evaluated.  

Although there are not many different models in 

time-series forecasting, prophet could have been 

added to the comparison. However, the research 

could be most benefitted by including probabilistic 

deep learning methods so further comparison with 

ARIMA and DLM could be done. These methods 

were evaluated, although they were ultimately 

discarded due to computational limitations (which is 

incidentally one of the main research lanes for these 

models).  

Moreover, there are not many more different state-

of-the-art reconciliations techniques. However, the 

methods used still show space for improvement, 

especially in areas where there is not much 

information about the upper series. For example, a 

good idea that could be evaluated is changing the 

summing matrix for the regression method, as this 

one has more information about the relationship of 

the series. The most different thing that could be 

tested is making W reconciliation matrix temporal 

dependent. There are versions of pure probabilistic 

reconciliation techniques and structure discovery to 

build interdependence.  that could be worth testing 

with more resources. A good example is a full 

Bayesian model of the interaction parameters, 

although it is high resource demanding.  

Lastly, it could be positive to test reconciliation 

methods with more financial data. One of the main 

reasons the techniques did not perform as expected 

was due to the need of a minimum length in the 

series, which we did not have available. Or this 

could be tested in another application.  
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8 APPENDIX A – SYNTHETIC SERIES 

 FORECASTING 

Figure A.1 Forecast prediction ± 1stdev for DLM and ARIMA 

Figure A.2 Multi Step forecast across different horizons 

 RECONCILIATION 

Table A.1 RMSE averaged for different horizons using reconciliation techniques and Regression as S matrix 
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Table A.2 ECE for different horizons using reconciliation techniques and base forecasts 

 

9.  APPENDIX B – S&P500 EXPERIMENT 

FORECASTING 

 

Table A.3 Probabilistic Metrics for DLM and ARIMA 

 

 

 

 

 

 

 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA MATEMÁTICA E INTELIGENCIA ARTIFICIAL 

 

 

 

Figure A.3 Point forecasts for all models 

 

RECONCILIATION 

Table A.4 MAE per levels of hierarchical structure and using regression as S matrix 
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Table A.5 MAE per levels of hierarchical structure and using usual S matrix.  

 

10. APPENDIX C – ADDITIONAL DOCUMENTS 

Table A.6 Sector weights for S&P500 index during the years, according to (Sather, 2023) 

 

 


