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Abstract

This thesis replicates and extends the One-Pixel Attack (OPA), an adversarial strategy that
perturbs a single pixel to mislead Convolutional Neural Netowkrs (CNNs), as introduced by
(Su, Vargas, and Sakurai[2019)). We begin by reproducing the original results and addressing
specific methodological inconsistencies in the generation of OPA samples. Then, the analysis
is extended in two directions: First, we investigate whether a model’s classification accuracy
correlates with its vulnerability to such attacks; second, we assess whether modifying the
theoretical receptive field of early convolutional layers affects the influence of the perturbed
pixel. All experiments are conducted on models based on CNNs and trained on the CIFAR-
10 dataset. Code for reproducing the experiments as well as pretrained model weights can
be found at GitHub.

Keywords: CNN, Adversarial Attacks, OPA, Black-box, Robustness-accuracy Trade-off

1. Introduction

Over the last decade, Convolutional Neural Networks (CNN)-based image classifiers have
achieved remarkable success across diverse fields such as medical imaging, autonomous driv-
ing, and industrial quality control. However, these models are known to be vulnerable to
adversarial attacks, where small input perturbations can lead to incorrect predictions. These
can be classified into white-box or black-box, depending on the knowledge about the model
the attacker uses.

Our work focuses on a particularly striking case of the latter kind: the One-Pixel Attack
(OPA, as per its acronym), where modifying a single pixel in an image can lead the network
to misclassify it with high confidence. This counterintuitive result raises important questions
regarding the decision processes of CNNs: What features do these models rely on in order
to 'understand’ an image? What is the geometry of their decision boundaries? May they be
excessively complex, thus indicating overfitting? In conclusion, to what extent can we trust
their predictions in safety-critical settings?


https://github.com/Javirios03/Adversarial_Attacks_Classifiers
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2. Project Overview

We use the CIFAR-10 dataset, consisting of 60,000 32x32 RGB images across 10 classes,
which are already labeled. Our first goal is to replicate the results reported in the original
OPA paper by training CNN classifiers to match the stated accuracies and applying the
Differential Evolution (DE) algorithm to generate adversarial samples. After reproducing the
baseline results, we explore two extended settings: First, we test whether model accuracy
correlates with robustness to OPA, a topic with mixed findings in the literature (Tsipras
et al. 2019).

Then, we investigate whether changing the theoretical receptive field (TRF) in early
layers - by increasing kernel sizes and adjusting paddings - affects the pixel’s impact. While
some evidence suggests broader receptive fields may dampen localized perturbations (Suresh,
Nayak, and Kalyani [2024)), thus attenuating their propagation, others argue that theoretical
changes do not always translate into effective influence propagation (Luo et al. [2017))

3. Methodology

3.1. Classification Models

Throughout the paper, we will deal with three main models: AllConv, Network-in-Network
(NiN) and VGG16. All of them are based on the CNN architecture with certain caveats:
NiN and AllConv both avoid the use of dense layers for the final classification (thus, relying
on less number of parameters), replacing them with 1x1 convolutions. VGG16, on the other
hand, is significantly deeper and heavier, due to the use of three large fully connected layers.

In the table below, the main properties of each model are described. For a deeper expla-
nation of the individual structures, please refer to the Appendix (Al).

Model | Accuracy (%) | # Parameters

AllConv 85.6 1,369,738
NiN 87.2 2,736,458

VGG16 83.3 33,638,218

Table 1: Comparison of the models by Original Accuracy (Su, Vargas, and Sakurai 2019)
and Complexity

3.2. Adversarial Attack Algorithm

One-Pixel Attack employs Differential Evolution (DE) to generate adversarial samples by
modifying a single pixel in the image. This black-box method requires only the output
probabilities from the target model, without access to its internal parameters or gradients
(thus, making it a more realistic setting).
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In the OPA framework, each candidate solution represents a potential pixel modification,
defined by its position and RGB values, thus having 5 individual parameters. DE then
iteratively evolves these candidates to minimize the model’s confidence in the correct class
(untargeted attack) or maximize the assigned probability to a given class (targeted attack).

4. Results

With respect to the replication of the original results, our algorithm performs successfully
4.44%, 6.56% and 7.48% of the targeted attacks on AllConv, NiN and VGG16, respectively.
In terms of the untargeted success rates, we find 28%, 38.67% and 41% of natural images
can be perturbed as to lead the models to misclassify them. In the image below, we visualize
one example of the targeted kind: By modifying one pixel of an image originally labeled as
automobile, specifically the one at position [14,17], we are able to mislead AllConv so that
it outputs bird as its prediction.

True Label: automobile

Original prediction: automobile
Probability for original label (automobile):1.00
Probability for original prediction (automobile):1.00

Perturbed prediction: bird
Probability for original prediction (automobile):0.34
Probability for perturbed prediction (bird):0.64

Original Image Perturbed Image

.
»

0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 1: Example of a CIFAR-10 Image Before vs. After Successful OPA (AllConv)

Regarding our two additional scenarios, our findings can be summarized in the following
way:

1. The variants we develop with higher accuracy are less vulnerable to both targeted
and untargeted attacks than their original counterparts. Specifically, improvements of
4.36 and 6.36 percentage points in test accuracy (for AllConv and VGG16) yield a
relative reduction in vulnerability to targeted attacks of 8 and 15 percentage points,
respectively. Thus, accuracy and robustness to attacks are not strictly in opposition.
Instead, other factors such as model capacity must be taken into account.
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2. Increasing the TRF in early layers by increasing kernel sizes (but maintaning spatial
dimensions constant by means of higher padding) results in diminished adversarial
robustness. Particularly, increasing it to k& = 5 implies a change in targeted attack
success from 3.06% to 3.78%. Taking this even further only diminishes the performance
more drastically, with the variant with k£ = 7 incurring in a targeted success rate of 5%

5. Conclusions

Starting from the results obtained by Su, Vargas, and Sakurai (2019), we confirm that mini-
mal pixel-level perturbations can mislead even deep models such as VGG16 and NiN. With
our extended studies, we demonstrate that while there may be a certain tension between
test accuracy and robustness to adversarial attacks, the specific relationship must be studied
carefully, since its variables seem to be more complex than just accuracy. Our hypothesis
points at overfitting being the main actor. Moreover, our results on modifications intended
to expand early-layer receptive fields (i.e., increasing TRF via larger kernels) underscore the
vital distinction between TRF and the effective receptive field, which only reinforces the
importance of focusing on truly impactful representations rather than purely architectural
expansions.
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1 Introduction

1.1 Motivation and Relevance of Adversarial Robustness

In recent years, deep learning models have achieved remarkable success in a wide range of
tasks, from medical diagnosis and autonomous driving to surveillance and biometric security.
However, their vulnerability to adversarial attacks - often imperceptible perturbations that
can completely alter the model’s output - presents a critical threat to the reliability and
trustworthiness of these systems. The One-Pixel Attack (OPA), in particular, demonstrates
just how fragile models can be: a single manipulated pixel can be enough to mislead a
classifier. This fragility is not just a technical flaw; it hinders the deployment of Al systems
in high-stakes environments, where these apparently innocuous errors can carry significant
economic, legal, or even life-threatening consequences.

This thesis contributes to the broader effort of understanding and mitigating such vul-
nerabilities by analyzing and extending the OPA on multiple convolutional neural network
architectures. We go beyond replication, studying how architectural choices and training
strategies - such as model accuracy or the theoretical receptive field - affect adversarial ro-
bustness. Our work offers practical insights for building more secure Al systems; ones which
our society can truly trust. From a societal standpoint, ensuring that machine learning mod-
els behave reliably and as they’re expected to is foundational to increasing public trust and
ensuring the ethical deployment of Al in sensitive domains. From a research standpoint,
it emphasizes the growing need to evaluate models not only in terms of accuracy but also
robustness and interpretability.

1.2 Goals

The primary goal of this paper is to replicate and extend the One-Pixel Attack (OPA) on
deep convolutional classifiers trained on CIFAR-10, in order to better understand the factors
that influence adversarial robustness. Specifically, we aim to evaluate how variations in
model accuracy and architectural design — such as increasing the theoretical receptive field
(TRF) — impact a model’s susceptibility to targeted attacks. Through quantitative analysis
and class-wise breakdowns, we seek to identify structural and training-related patterns that
affect the decision boundaries of neural networks, ultimately contributing to the design of
more robust and interpretable models.
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1.3 Planning and Economic Feasibility

This project was carried out over a period of several months, following a structured research-
development-evaluation cycle, which is compressed in the Gantt Diagram shown below.

Jan 2025 Feb 2025 Mar 2025 Apr 2025 May 2025
ID i TaskName H
25 30 06 13 20 27 03 10 17 24 03 10 17 24 31 07 14 21 28 05 12 19 26

2 Infrastructure Modeling [

3 Inital Testing I o

4 Variants: Higher Accuracy & Bigger TRF ]

s Contrastof Results it Lterature et

Figure 2: Gantt Diagram of our Thesis Development

From an economic perspective, the resources required for this work were minimal thanks
to the use of open-source tools and publicly available datasets. All experiments, as well
as the training of the models, were conducted using Google Colab Pro environments with
a single NVIDIA T4 GPU (16GB VRAM), leveraging the libraries PyTorch and NumPy
for the attack generation and model training software. Moreover, the project offers cost-
effective insights into model vulnerability without requiring access to gradients or internal
model parameters. The methodological framework is adaptable to different datasets or model
architectures with minimal reconfiguration, thus offering high return on effort for real-world
deployment evaluations.

1.4 Structure of the Paper

Our paper is organized as follows. In Section 2, we review the related works, including prior
studies on the OPA, as well as literature addressing the relationships between model accu-
racy, receptive field design, and robustness. Section 3 outlines the technical methodology,
detailing the dataset, model architectures, and the adversarial sample generation process.
Section 4 focuses on the replication of the original OPA results, highlighting methodological
inconsistencies encountered during reproduction. Section 5 presents the results of our ex-
tended experiments, which analyze the role of accuracy and receptive field size in adversarial
robustness. In Section 6, we briefly discuss the broader implications of our findings. Section
7 presents potential directions for future research. Finally, Section 8 concludes the paper and
summarizes our contributions.

2 Related Works

2.1 One-Pixel Attacks and Black-Box Methods

With the introduction of the OPA, Su, Vargas, and Sakurai (2019)) demonstrated surprising
vulnerabilities in State-of-the-Art Deep Neural Networks (DNNs) under extreme sparsity con-
ditions. Subsequent works have improved and broadened the method’s scope: Some focused
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on enhancing the optimization process behind the attack (Zhou, Agrawal, and Manocha[2022}
Nam et al. 2024), while others evaluated cross-domain applicability (Nguyen et al. [2021) and
generalization across architectures (Ghosh et al. 2021).

Beyond pixel-level heuristics, other approaches to black-box adversarial attacks have
emerged. Decision-based attacks - such as Brendel, Rauber, and Bethge (2018) - craft
adversarial inputs using only the model’s final label, reflecting even more limited, albeit
realistic, scenarios where confidence scores are unavailable. Together, these works define a
spectrum of black-box techniques - ranging from pixel-level evolution to gradient-free bound-
ary and score-based search - each reflecting distinct assumptions about attacker capabilities
and model access.

2.2 Differential Evolution in Adversarial Contexts

Differential Evolution is a stochastic, population-based optimization strategy introduced by
Storn and Price (1997)), and it has been effectively adapted to the adversarial image attacks
under black-box constraints. Beyond the implementation by Su, Vargas, and Sakurai (2019)),
several works harness the gradient-free approach to perform adversarial attacks. Z. Lin et
al. (2023) allow for dynamic adjustments of the algorithm parameters and operation strate-
gies. Their method significantly improved attack success rates on CIFAR-10 and MNIST -
surpassing OPA in both efficiency and perturbation sparsity.

2.3 Accuracy-Robustness Trade-off

A growing body of research has revealed that, contrary to what intuition might lead us to,
high accuracy on a given dataset does not guarantee robustness to adversarial perturbations.
Moreover, recent studies identify a trade-off between the two, which implies the two must
be weighed together in order to reach an optimal balance. In this respect, Tsipras et al.
(2019) argue that this trade-off "is a consequence of robust classifiers learning fundamentally
different feature representations than standard classifiers". These features, additionally "tend
to align better with salient data characteristics and human perception".

Thus, a model’s high accuracy may provoke a certain lack of robustness to adversarial
attacks. At this point, though, we must introduce a caveat. Some authors argue that the
main actor behind this reduction of robustness is the predominant use of over-parametrized
networks and training-until-convergence attitudes (Rice, Wong, and Kolter [2020). These
common practices "surprisingly do not unduly harm the generalization performance of the
classifier", but "overfitting to the training set does in fact harm robust performance to a
very large degree in adversarially robust training". Thus, the trade-off identified by previous
authors may be avoided by using techniques such as early stopping.
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2.4 Theoretical vs. Effective Receptive Field and Robustness

Understanding how architectural choices influence both the spatial context captured by Con-
volutional Neural Networks (CNNs) and their vulnerability to adversarial perturbations is
crucial for building robust models. These architectures are often analyzed in terms of their
TRF, which grows with kernel size and network depth (the greater the kernel size used in
the convolution operation, the broader perspective’ our network should have on the image).
However, Luo et al. (2017) introduced the concept of the effective receptive field (ERF) and
demonstrated that, in practice, only a central Gaussian-shaped core of the TRF strongly
influences neuron activations. Additionally, the ERF grows sublinearly and is significantly
smaller, meaning most pixels within the TRF have negligible impact.

Recent works by Ding et al. (2022) revisited the use of large early-layer kernels. They
found that increasing kernel sizes not only expands the ERF but also shifts features biases
from texture towards shape. Shape-biased features have been previously linked with improved
adversarial robustness (Geirhos et al. [2022)).

These findings tend to the following conclusions: while expanding TRF (e.f., via larger
kernels or deeper stacks) increases theoretical context, actual influence is constrained by the
ERF’s Gaussian core - limiting robustness benefits. Therefore, simply increasing the TRF
doesn’t automatically translate to higher robustness to adversarial attacks.

3 Methodology

3.1 Models and Datasets
3.1.1 CIFAR-10

The original One-Pixel Attack paper applied its method to several datasets: CIFAR-10,
CIFAR-100 and ImageNet. Due to limitations in both computational resources and time,
our study focuses exclusively on the first. Composed of 60,000 32x32 RGB images across 10
classes[[] CIFAR-10 is a benchmark dataset of labeled images, commonly used for supervised
learning tasks. It offers a well-established benchmark for evaluating adversarial robustness.
Importantly, its low resolution - each image consisting of only 1,024 pixels - makes it par-
ticularly suitable for this work. Given that the OPA is constrained to modifying a single
pixel, higher-resolution datasets would significantly reduce the likelihood of successful per-
turbations, especially in a black-box setting.

3.1.2 Overview of NiN, AllConv and VGG16 Architectures

As per the models, we focus on CNN-based architectures. Even though some exciting new
architectures have come up in the last years, such as Vision Transformers (Dosovitskiy et al.

List of classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck
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2021)), CNNs remain crucial in all image-related tasks. Therefore, studying the robustness of
these models is key in order to understand the algorithms we use on a daily basis.

The Network-in-Network (NiN) architecture (M. Lin, Chen, and Yan [2014)), innovated
the traditional CNN by incorporating 1 x 1 convolutions - acting like per-pixel multilayer
perceptrons - immediately after larger 5 x 5 kernels. This replacement of fully connected
layers drastically reduces parameter count and improves spatial generalization.

The AllConv model (Springenberg et al. |[2015]) simplifies, in a similar way, common CNN
architectures by removing pooling options entirely and replacing them with strided convo-
lutions. Thus, the authors argue, replacing pooling by convolutions "can also be seen as
learning the pooling operation rather than fixing it", which allows models to determine op-
timal ways to reduce spatial dimensions while preserving important information. Added to
this, it enables a more easier inversion of the process, since max-pooling is an inherently
non-invertible operation, so approximations are needed.

Last, the VGG16 model (Simonyan and Zisserman [2015)) is the most classic DNN out
of the three. Composed of 13 convolutional layers (using 3 x 3 kernels) and 5 Max-pooling
layers, it is a really deep architecture that delivered strong performance on ImageNet, and it
scales effectively to smaller datasets like CIFAR-10. To better understand the computational
complexity and baseline performance of each architecture, Table [2| summarizes the original
authors’ reported accuracies and parameter counts on CIFAR-10.

Model | Accuracy (%) | # Parameters

AllConv 85.6 1,369,738
NiN 87.2 2,736,453

VGG16 83.3 33,638,218

Table 2: Model Performance Comparison on CIFAR-10

3.2 Adversarial Attack Setup

This section details our black-box adversarial attack method against CNNs on CIFAR-10.
We follow the protocol established by Su et al. (2017), adapting it in key respects to ensure
methodological rigor.

3.2.1 One-Pixel Attack Definition

The One-Pixel Attack is an extreme case of adversarial perturbation: only a single pixel
may be modified arbitrarily. Thus, it represents a constrained L, optimization, albeit it
doesn’t restrict the magnitude of this modification. Given an input image z € R32X32x3
a classifier f (in our case, a neural network), let "true" represent the original class. the
attacker seeks a perturbation §(z) such that ||0(z)||o = 1 and f(x + §(x)) # f(x). For
targeted mode, additionally, let "target" be the desired label. Then, we can define both
scenarios as optimization problems:
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1. Targeted Attack

?(13)}*( ftarget (x + 5($))

st [[o(x)|lo <1

2. Untargeted Attack

(151(11)1} forue(T + 0(x))

st [[o(@)|lo <1

with fiarget and fiue being the probability assigned by the model to the original label and
the target label, respectively, and §(z)* being the optimal perturbation.

3.2.2 Differential Evolution Algorithm

Finding the optimal pixel to modify is a highly non-differentiable search problem due to the
discrete and combinatorial nature of selecting a pixel and altering its RGB values. This,
combined with the black-box setting where gradients are inaccessible, makes traditional
gradient-based methods unsuitable. As a means of tackling this issue, OPA employs Dif-
ferential Evolution (Storn and Price |1997)), a population-based, gradient-free optimizer.
DE maintains a population of candidate perturbations, where each candidate encodes a pixel
location and its new RGB values: [z,y,7, g, 0] ﬂ In the mutation step, child candidates are
created by perturbing three parents:

ri(g +1) = 2, (9) + F(2,(9) = 05(9)), 1 # 12773 (3.1)

where F' € [0,2] is the mutation scale (a parameter set to 0.5 in the OPA paper), which
controls the magnitude of the differential variation z,, — z,,. The indices 71,79, 73 represent
randomly selected candidates of the population, thus r; ~ U(1,400) Vi € {1,2,3}, with 400
being the population size. This specific variant is known as rand1bin: 'rand’ indicates that
the base vector is selected randomly from the population, 1’ means a single difference vector
is used for mutation, and ’bin’ refers to the binary crossover method [

After mutation, greedy selection is performed, where a new candidate replaces its parent
if it achieves higher attack fitness. Depending on whether the attack is targeted or untargeted,

2In order to optimize the search, positions and RGB values are normalized to the range [0,1] with per-
turbations then being cast to the correct range ([0, 31] for position and [0, 255] for pixel values).

31t must be noted, though, that (Su, Vargas, and Sakurai 2019) omit the Crossover operation, in order to
simplify the algorithm. Therefore, we also omit the procedure, following their method.
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this fitness function differs: In the former case it takes the form of the probability assigned
by the model to the target label while, in the latter, it’s the negative (applying objective
negation) of the probability assigned to the original label.

Although we initially planned to use a custom implementation of Differential Evolution,
we ultimately opted for Python’s Torchattacks (TA) library (Kim [2020)), which provides
a dedicated class for the One-Pixel Attack. This decision was driven primarily by compu-
tational efficiency: Our custom implementation (Rios 2025), required approximately 30-40
seconds to generate a single adversarial example, whereas the TA-based implementation con-
sistently produced results in roughly 15 seconds per sample. This trade-off allowed us to
process larger batches of images under strict time and computational constraints without
compromising the attack’s core methodology.

Reproducibility Note: Due to the nature of the attack implementation and its reliance
on a stochastic, population-based optimized without explicit seed control, strict reproducibil-
ity of exact perturbations is not feasible. Nevertheless, the algorithm’s overall behavior is
consistent across runs.

3.2.3 Constraints and Evaluation Metrics
To ensure fair comparisons, we preserved key constraints from the original study:

e Pixel limit: Only one pixel may be modified (||do|] = 1), with RGB values matching
the wint8 format of CIFAR-10 ([0, 255]).

e Population: Initial population size is set to 400 and, after each iteration, 400 new
candidates are chosen.

e Early stopping criteria: The maximum number of iterations is set to 100. This
process can be terminated early if success metrics are met (e.g., the output for the best
current candidate matches our objective).

We evaluate success using the following metrics, consistent with Su et al:

1. Targeted Attack Success Rate: Ratio of successful perturbations to total attempts.
A successful perturbation, in this context, is thus defined as a modified natural image
which is predicted as target label by the model.

2. Untargeted Attack Success Rate: Instead of evaluating untargeted attacks on a
separate setting, we extrapolate the previous to these results. This is, if a natural image
can be perturbed to, at least, one other class (different, of course, to the original one),
its untargeted attack is successful.

3. Original Label Success Rate: For each model, we include the breakdown of successes
depending on the original label.

4. Target Label Success Rate: For each model, we also obtain the proportion of fruitful
attacks depending on the target label.
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3.3 Experiment Pipeline and Implementation

With the aim of clarifying what the results we provide in the following sections imply, we
will dedicate the following paragraphs to explaining the basis for our experiments. These can
be divided between the different pipelines used in the two scenarios we studied: Replication
of the original results and analysis of accuracy and TRF with respect to their impact on
models’ robustness to adversarial attacks

3.3.1 Replication of Original Results

To construct a suitable test set, we select 300 correctly classified imaged per model from
the CIFAR-10 Test Dataset. Even though the original authors used a sample size of 500,
we restricted this due to computational limitations. Additionally, we enforce class balance
(thus, choosing 30 different images out of each class) in order to avoid bias towards certain
classes.

3.3.2 Analysis of Accuracy and Theoretical Receptive Field

In this case, we can further divide the methods used in the two cases:

e Accuracy analysis: In order to assess whether there’s any correlation between ac-
curacy and robustness to attacks (i.e., whether more accurate models are more/less
vulnerable to them), we train two of the three models (AllConv and VGG16) until
convergence, obtaining an improvement in accuracy of 4.36% and 6.36%, respectively.
While not enormous in absolute terms, we believe it’s a significant improvement in
order to assess any difference.

e TRF analysis: Starting from the original AllConv architecture, we define two struc-
tural variants by modifying the kernel size in the first convolutional block (the one
in direct contact with the image fed as input). In specific, we replace the original size
(k = 3) with £k = 5 and k = 7, thus increasing the theoretical receptive field of early lay-
ers. This, as was already discussed previously, could theoretically either propagate the
signal further, diminish the perturbed pixel’s weight or, if the change in TRF doesn’t
translate to a change in ERF, not have any significant impact

In both cases, we use a subset of the images used for the base models’ attacks. This is,
we restrict the original set of 300 images to those that are, additionally, correctly classified
by the variants. At the same time, we maintain the class balance enforcement. The result
is two subsets of 200 correctly classified, class-balanced images. The first is used to evaluate
the high-accuracy version of VGG16, while the second serves both the high-accuracy and
TRF-modified versions of AllConv. In the graphic below, we provide a visualization of this
process for AllConv.

4In section we explain why this is crucial
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Full Set (300 images)

Figure 3: Venn diagram showing correctly classified image overlap across 3 model variants.
The rectangle area corresponds to the original set of 300 images. Conv corresponds the
higher-accuracy version of AllConv, and K =5, K = 7 the TRF Variants. The darkest

region (overlap between all sets) is the subset of 200 images used for all comparisons.

Preliminary Limitations: While our methodology aims to replicate and extend the
OPA, several practical constraints apply. We omit visualization of decision boundaries due
to time constraints and defer broader visualizations (for example, transferability or cross-
architecture generalization) to future work. These considerations are discussed further in
Section [7

4 Critical Comparison with Su, Vargas, and Sakurai (2019)

At this point, we must highlight several differences between the methodology stated by the
original authors and the one we use, as well as certain decisions that may inadvertently bias
the results.

4.1 Dataset Differences

The former authors’ attack was performed on two versions of CIFAR-10: the original one
(that which we described previously) and Kaggle’s dataset. The latter retains the general
class structure and image resolution, but contains 300,000 images which have been augmented,




UNIVERSIDAD PONTIFICIA COMILLAS
Escuela Técnica Superior de Ingenieria (ICAI)

COMILLAS
Grado en Ingenieria Matematica e Inteligencia Artificial

this is, modified in several ways (duplication, rotation, clipping, blurring...). Therefore, they
argue, the former dataset implies an scenario that is "more limited since the images contain
much less practical noise" ] Therefore, the target CNNs can have higher classification and
confidence which definitely makes the attack harder" (Su, Vargas, and Sakurai 2019). In the
following paragraphs, we will discuss what this implies and its importance, as well as why
it’s our opinion that this may not actually be the cause for the difference in performance.

4.2 Model Accuracy and Filtering Criteria

In order to compare both scenarios in similar conditions, the authors trained the three models
explained previously (AllConv, NiN and VGG16) under both datasets, independently, to have
similar accuracies. Then, Differential Evolution was applied on all of them, in order to obtain
the adversarial samples. The only difference in methodology between the two settings was
that, in the one using Kaggle’s dataset, they allowed misclassified images to be included as
inputs to the attack, while they didn’t in the original. In the table below, we include a copy
of their results.

AllConv NiN VGG16 AllConv NiN VGG16
Targeted 3.41% 4.78% 5.63% Targeted 19.82% | 23.15% | 16.48%
Untargeted | 22.67% | 32.00% | 30.33% Untargeted | 68.71% | 71.66% | 63.53%
Confidence 54.58% | 55.18% | 51.19% Confidence 79.40% | 75.02% | 67.67%

Figure 4: Comparison of (Left) Original and (Right) Kaggle CIFAR-10 OPA Results (Su,
Vargas, and Sakurai |2019))

4.3 Implications for Attack Difficulty

Figure [] illustrates the stark difference in One-Pixel Attack success rates between models
evaluated on the two datasets. The authors attributed this gap to "higher classification
confidence" caused by "less practical noise" in the original images (Su, Vargas, and Sakurai
2019), even though the models were trained to identical accuracies across both datasets.
However this explanation fails to account for a far more simple explanation: the inclusion of
already misclassified samples in the generation of attacks.

Specifically, since the original paper did not filter for correctly classified inputs when
attacking the Kaggle-based models, the a attack may succeed more easily simply because some
inputs were already on the wrong side of decision boundaries. The literature corroborates that
robustness assessments may not be dependable when evaluations include such misclassified
cases, which are inherently closer to adversarial decision thresholds. For example, (Wang et
al. 2019) showed that misclassified examples significantly inflate adversarial success during
evaluation, and that distinguishing between correct and incorrect base classifications is critical
for accurate robustness measurement.

5This "practical noise" refers to perturbations that might occur in realistic image capture, such as com-
pression artifacts, noise or sensor defects

10
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Thus, the increased attack effectiveness observed in the Kaggle experiments is more plau-
sibly driven by dataset filtering, not noise characteristics. This insight reinforces our method-
ology of consistently evaluating attacks using only correctly classified samples, underpinning
the validity of our subsequent robustness comparisons.

5 Experimental Results

5.1 Baseline Model Comparison

Given what we discussed in the previous section , in order to compare our results with
the original paper’s, we will only use the metrics provided with respect to the original version
of the CIFAR-10 dataset. In the following paragraphs, we provide this comparison in which
models’ accuracies match those stated in Su et al.

5.1.1 Success Rates across NiN, AllConv and VGG16

The table below presents the success rates of adversarial attacks on the three baseline mod-
els. As stated previously, we conduct only targeted attacks explicitly. Metrics for untargeted
attacks are obtained implicitly: if, for a given natural image, at least one of the nine tar-
geted perturbations leads to a misclassification (i.e., a label different from the original), the
untargeted attack is considered successful for that image. The evaluation is performed over
the set of 300 images we presented in Section [3.3.1] Since each image is attacked to all nine
possible target labels (excluding the true label), a total of 2,700 perturbation attempts are
carried out per model.

Model Su et al. (2019) Ours
Targeted Untargeted | Targeted Untargeted £ Successes
AllConv | 341 % 22.67 % 4.44 % 28.00 % 120
NiN 4.78 % 32.00 % 6.56 % 38.67 % 177
VGG16 5.63 % 30.33 % 7.48 % 41.00 % 202

Table 3: Comparison of OPA Results on the 3 Baseline Networks:
Original Paper vs. Our Implementation

From these results, we observe that our implementation achieves higher success rates
across all models compared to the original paper, both in targeted and untargeted settings.
The improvement ranges from approximately 1-2 percentage points in targeted attacks, and
even more substantially (5-10 percentage points) in untargeted success.

Although the original authors didn’t explicitly state the exact algorithm used to perform
the adversarial attacks, several factors may explain the observed discrepancies: First, while
our methodology replicates theirs closely, we rely on the Torchattacks library, which may
include subtle optimizations in DE parameter handling. Second, the original paper does not

11
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mention enforcing class balance in the evaluation subset. If class imbalance were present,
it could introduce bias toward more vulnerable or more robust classes, thus skewing the
results. Finally, hardware and library updates could contribute to slightly different behaviors
in floating-point computations or convergence dynamics - especially considering the six-year
gap between implementations.

Despite these potential sources of divergence, the relative differences between models (e.g.,
VGG16 consistently being the most vulnerable) are preserved, reinforcing the robustness of
the attack strategy itself.

5.1.2 Success Rate Breakdown by Original /Target Label

Below we summarize the most and least vulnerable classes for each model, considering both
the original-label and target-label perspectives. These extremes help us infer qualitative
properties of the decision boundaries. The full per-class success-rate tables are provided in
Appendix [B]

Model | Role | Most Vulnerable (%) | Most Robust (%)
AllCony Original deer 10.00 automobile 1.11
Target dog 12.22 horse 1.85

NiN Original cat 13.70 horse 2.22
Target airplane 16.67 horse 2.59

Original deer 18.89 dog 2.22

VGGIG Target dog 20.37 deer 1.85

Table 4: Most and Least Vulnerable Classes per Model
(as Original and Target Labels)

These class-wise breakdowns reveal several consistent patterns. First, the class dog stands
out as the most common successful target across models (in the case of NiN; it is the second).
This may suggest that all models attribute certain features to "dogs" that may be shared by
a broad range of classes. Prior work shows that some classes define disproportionately large
or smoothly curved surfaces in feature space, making them easier destinations for perturbed
inputs (He, Li, and Song 2018))

In contrast, the class horse is robust, generally, both as a target and as an original
label, possibly due to distinctive visual features or well-separated representation boundaries.
Interestingly, deer shows high vulnerability as an original class but low vulnerability as a
target, particularly in VGG16. This counter-intuitive asymmetry suggests that while the
model has difficulty defending its original classification of "deer", it rarely confuses other
classes into it.

These results can be interpreted in several ways, of which we would like to highlight two:

1. Geometric Interpretation: In terms of decision boundary geometry, a class that is
highly vulnerable as a target - e.g., dog - likely occupies a broad or easily accesible

12
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region of the output space, so many perturbed inputs are close to its classification
boundary. On the other hand, a class that is highly robust as a target - e.g., horse -
may lie deep inside its own decision region, far from the boundary separating it from
others. Consequently, perturbations must cross large distances in feature space to be
mapped to it, making such transitions less likely under deeply constrained attacks (e.g.,
OPA).

2. Relation to Type I/II Errors: In terms of hypothesis testing, this symmetry aligns
with certain concepts. Misclassifying a sample from another class into a given target
class is analogous to a Type I error (false positive) while failing to correctly classify an
input of a class into its true label is akin to a Type II error (false negative). In our
scenario, classes like deer tend to suffer from frequent Type II errors - i.e., failing to
retain the original prediction under small perturbations - while rarely being a Type I
error (few samples are misclassified into deer). This reflects a common bias in classifier
behaviors: in practice, training loss functions - e.g., cross-entropy - often penalize Type
IT errors more heavily, emphasizing correct classification of true labels, but may allow
regions of the output space to be more permissive as attractors for perturbed inputs.

These insights suggest that some classes act as gravitational wells in prediction space,
pulling in perturbed inputs, while others are inherently better defended or isolated - a prop-
erty that may not be easily detected by accuracy metrics alone.

5.2 Accuracy vs. Robustness Analysis

Let’s briefly revisit, first, the scenario under which we intend to study the accuracy vs.
robustness trade-off. In order to keep all other variables constant, we use two subsets of 200
images, one for the AllConv variant and one for VGG16's[]

5.2.1 Setup: Low-Accuracy vs. high-Accuracy Variants

The original authors don’t mention their criteria for choosing the accuracy objectives. There-
fore, we don’t have any original assumptions as to the level of over-fitting the models may
inadvertently fall upon. Thus, we let the models train to convergence, obtaining the following
improvements:

1. AllConv: We improve the accuracy from 85.6% to 89.96%, thus obtaining an absolute
improvement of 4.36 percentage points

2. VGG16: We improve the accuracy from 83.3% to 89.66%, thus obtaining an absolute
improvement of 6.36 percentage points.

STherefore, in the coming results, the success rates for the baseline models are restricted to the respective
subset of 200 images

13
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5.2.2 Statistical Results and Interpretation

Model Variant Targeted (%) Untargeted (%) +# Successes

AllConv | baseline (85.6 % acc.) 3.06 22.00 55
high-acc. (89.96 % acc.) 2.83 20.00 51

VGG16 | baseline (83.3% acc.) 7.33 39.50 132
high-acc. (89.66 % acc.) 6.22 33.50 112

Table 5: OPA success rates on low and high-accuracy variants

Both AllConv and VGG16 exhibit reduced success rates for targeted and untargeted OPA
after additionaly training. While the absolute differences appear modest, the relative im-
provement in targeted attack success is notable: AllConv demonstrates an 8% decrease
(3.06 — 2.83) while VGG16 shows a 15% reduction (7.33 — 6.22). These strengthenings are
particularly significant given the baseline challenge of targeted OPA, where even marginal
improvements can require substantial perturbation optimization.

5.2.3 Revisiting the Trade-Off Debate

As introduced in Section [2.3] there is a certain tension between accuracy and adversarial
robustness. Increasing standard accuracy often comes at the cost of reduced adversarial
robustness (Tsipras et al. 2019). However, this relationship comes with a caveat, which
our findings show: Both AllConv and VGG16 improved in clean accuracy while exhibiting
modest - but consistent - decreases in OPA success rates. The divergence from the theoretical
trade-off proposed by Tsipras et al. could be due to several key differences in assumptions:

e Attack model limitations: The One Pixel Attack is a highly constrained Ly-bounded
method, and may not fully capture the robustness metrics used in L.,-norm analyses
typically assumed in theoretical studies.

e Dataset size and subset stability: Our experiments were performed on balanced
subsets of only 200 images per model variant. While carefully controlled, the results
may not generalize across the full distribution.

e Accuracy vs. Overfitting: While both models increased their test accuracy, there
is no immediate indication of overfitting. This distinction is important: overfitting
often leads to memorization rather than generalization, which in turn reduces robust-
ness. Our improvements, being consistent across test subsets, suggest genuine gains in
generalization rather than mere fitting of the training data.

In light of the above, we interpret the results as indicating that accuracy and robust-
ness are not strictly in opposition, especially when models are still operating below their
capacity threshold and not yet overfitting, as indicated by Rice, Wong, and Kolter (2020))

14
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5.3 Receptive Field and Attack Propagation
5.3.1 Model Variants

In order to compare the effects of increasing the TRF on attack robustness, we develop
variants for the AllConv model. Specifically, we increase the first convolutional block’s
kernel sizes, increasing padding to ensure spatial structure is kept constant [Z]

5.3.2 Results and Implications
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Figure 5: OPA success rates for AllConv with different kernel sizes

Our AllConv experiments show that increasing the kernel size from 3 x 3 (baseline) to 5 x 5
and 7 x 7 raises both targeted and untargeted OPA success rates, indicating diminished
adversarial robustness at larger receptive fields.

5.3.3 Connection to ERF Literature

The results provided previously align with the evidence provided by Luo et al. (2017). Even
though we increased the TRF, we can conclude these changes didn’t translate to an increase

"The specific parameters and modified layers can be found in Appendix
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in ERF. The decline of our model’s robustness may be explained by several factors, but our
hypothesis is that increasing the kernel size encouraged the model to rely on less robust
features. Thus, we weren’t able to reach the required kernel sizes needed to harvest the
improvements argued by Ding et al. (2022) f| Therefore, our results may not be directly
transferrable to even higher kernel sizes.

6 Discussion

6.1 Summary of Findings

Our study replicates the original results of the One-Pixel Attack (OPA) on three convolu-
tional architectures — AllConv, NiN, and VGG16 — confirming that all exhibit measurable
vulnerability to single-pixel perturbations in a black-box setting. Beyond replication, we
explore two key extensions: the relationship between classification accuracy and adversarial
robustness, and the impact of increasing the TRF in early convolutional layers. In the first
case, we observe that both AllConv and VGG16 maintain or even improve their robustness to
OPA as test accuracy increases, suggesting that improved generalization does not necessarily
come at the expense of adversarial resilience. In the second, we find that increasing kernel
size (and thereby TRF) leads to higher, not lower, attack success rates—highlighting the
crucial distinction between TRF and the effective receptive field (ERF), which governs the
actual region influencing classification decisions.

These findings contribute to the broader understanding of robustness in deep neural net-
works by reinforcing the limitations of overly architectural interpretations of adversarial vul-
nerability. Our results support the idea that robustness improvements are not guaranteed by
increasing model complexity or spatial field of view alone, and that specific design strategies
— such as those targeting ERF expansion or feature-type shifts — may be more effective in
practice. Additionally, by carefully isolating and controlling variables (e.g., test set filtering,
kernel size adjustments, model accuracy), we provide a clearer empirical framework for future
investigations into CNN interpretability and attack resistance.

6.2 Limitations of the Current Work

While the experimental design of this work was constructed to control for confounding fac-
tors, several limitations must be acknowledged. First, our experiments are constrained to a
relatively small subset of the CIFAR-10 test set — only 300 images per model, and 200 for
the variant comparisons. Although these subsets were balanced and filtered for correctness,
the limited scope may restrict the generalizability of our conclusions across the full data dis-
tribution or to more complex datasets. Second, the attack considered is extremely specific:
OPA restricts perturbations to a single pixel. While its simplicity provides valuable insight

81t must be noted that, in Ding et al., kernel sizes of up to 31 x 31 were used
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into localized vulnerability, it may not fully capture the broader threat landscape posed by
stronger or higher-dimensional attacks.

Another constraint arises from the architectural modifications explored. While we ad-
just kernel sizes to alter TRF in early layers, we do not experiment with more sophisticated
mechanisms such as dilated convolutions or ERF visualization techniques. Consequently, we
can only hypothesize—rather than directly measure—whether the ERF remained narrow,
which would require gradient-based saliency maps or input attribution methods. Finally,
although we strive for reproducibility, the use of stochastic optimizers like Differential Evolu-
tion (without seed control in Torchattacks) introduces slight randomness in outcomes, which
may influence exact success rates across runs.

6.3 Revisiting the Trustworthiness of CNIN Predictions

Our results call into question the often-assumed reliability of CNN predictions, particularly
under adversarial settings. That a single pixel, chosen through a black-box optimization pro-
cess, can cause consistent misclassification across multiple architectures is a striking reminder
of the fragile boundary geometry learned by CNNs. The fact that deeper or more accurate
models do not necessarily resolve this vulnerability — sometimes even being more vulnerable
— further complicates the narrative that better performance equates to greater reliability.
While our high-accuracy variants showed slight improvements in robustness, the effect was
modest and may not generalize across all model types or perturbation settings.

This unpredictability has serious implications for the deployment of CNNs in safety-
critical applications. If a model can be fooled through such minimal interventions, and if
architectural choices like kernel size have inconsistent effects on vulnerability, it becomes
imperative to reconsider the notion that high test accuracy alone is sufficient to guarantee
trustworthy outputs. As our analysis suggests, and recent evidence backs (Singh et al.|[2021]),
evaluation of a model quality must extend beyond predictive accuracy to include factors such
as interpretability and adversarial robustness. The ERF framework provides a promising lens
for developing architectures that prioritize meaningful feature reliance—potentially paving
the way for models that are not only accurate, but also more reliably aligned with human-
intuitive reasoning.

7 Future Work

7.1 Visualization and Interpretability

The constraints our current work relies on forbid us from experimenting, further, with inter-
pretability methods. By integrating these visualization-based techniques - such as saliency
maps, guided backpropagation or feature activation visualizations - the classifiers’ decision
processes could be understood with greater clarity. Thus, applying these tools may aid not
only in debugging but also in improving adversarial robustness, highlighting unstable regions
of feature space. Moreover, combining interpretability methods and adversarial analysis - an

17



UNIVERSIDAD PoONTIFICIA COMILLAS

COMILLAS Escuela Técnica Superior de Ingenieria (ICAT)
i Grado en Ingenieria Matematica e Inteligencia Artificial

emerging area of interest in Al safety - may allow us to identify the most vulnerable compo-
nents of our models, which would enable a more fine-grained adaptation of architectures.

7.2 Broader Metrics

In order to assess the results of our work, we have relied on rather straight-forward success-
rate metrics - namely, the proportion of images successfully perturbed under targeted and
untargeted attack settings. While these provide an immediate quantitative view of model
vulnerability, they do not capture the full spectrum of robustness properties.

Future work should consider incorporating more expressive and informative metrics. FOr
instance, robustness curves that track success rates as a function of allowed perturbation
(e.g., restricting the magnitude of the perturbation or allowing for a higher number of pixels
to be perturbed) could offer a more nuanced understanding of boundary geometry. Similarly,
metrics such as adversarial confidence margins would allow us to quantify the strength of
perturbations, beyond binary success/failure. These complimentary methods would enrich
the evaluation of adversarial roubstness and offer more meaningful criteria for model selection
in real-world deployments

8 Conclusions

This thesis validates and extends the findings of the One-Pixel Attack literature across multi-
ple CNN architectures and improves the clarity on the methodology used. In replication, we
confirm that minimal pixel-level perturbations can mislead even deep models such as VGG16
and NiN. In our extended studies, we demonstrate that while improving test accuracy can
slightly improve robustness — suggesting better generalization — it does not fully eliminate
adversarial vulnerability and does not necessarily correlate with broader adversarial resilience.
Moreover, modifications intended to expand early-layer receptive fields (i.e., increasing TRF
via larger kernels) led to greater, not less, vulnerability to OPA. This result underscores
the vital distinction between theoretical receptive fields and effective receptive fields,
reinforcing the importance of focusing on truly impactful feature representations rather than
purely architectural expansions.
Our work highlights several practical insights:

e Boosting accuracy alone is insufficient as a surrogate for model reliability

e Receptive field modifications must be examined in terms of actual feature influence
(ERF), not just theoretical reach

e Future evaluation frameworks should encompass interpretability-focused diagnostics
and diverse performance metrics

Together, these findings contribute to the growing consensus that robust, trustworthy
ATl must be built and assessed on multi-faceted grounds — so that models that perform
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well under clean data also are resistant to adversarial pressure and exhibit understandable
behavior.
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A  Models’ Structure

This appendix details the specific layer-wise architecture of the three models used throughout
our experiments: AllConv, NiN (Network in Network), and VGG16 (CIFAR-10 variant).
Each table outlines the sequence of operations and parameter settings used. Output sizes are
given in the notation [W, H, C|, with W and H being the height and width of the resulting
feature maps and C' the number of feature maps (number of filters applied in the layer).

AllConv

Layer Output Size Configuration
Convl 32x32x96 3x3 conv (P=1), ReLU
Conv?2 32x32x96 3x3 conv (P=1), ReLU
Conv3 32x32x96 3x3 conv (P=1), stride=2, ReLU

Dropoutl 32x32x96 Dropout (p=0.5)
Conv4 16x16x192 3x3 conv, ReLU
Convb 16x16x192 3x3 conv, ReLLU
Conv6 16x16x192 3x3 conv, stride=2, ReLLU

Dropout2 16x16x192 Dropout (p=0.5)
Conv7 8x8x192 3x3 conv, ReLU
Conv8 8x8x192 1x1 conv, ReLU
Conv9 8x8x10 1x1 conv, ReLU

GlobalAvgPool 1x1x10 Global average pooling

Softmax 10-dim Classification layer

Table 6: AllConv model architecture. The three highlighted layers correspond to the ones
we change for Section

With respect to the model variants we use to test our hypothesis on the TRF vs. ERF
scenario, we modify the kernel size of the three first convolutional layers from £ = 3 to
k =5 and k = 7. In order to maintain the spatial size constant throughout the network (in
comparison with the baseline model), we take into account the following formula:

Hy, +2P - K Win +2P — K
+ J + 17 Wout = \‘ ki J +1 (Al)

H pr—
out \‘ S S

for [Wous, Hout|, [Win, Hin] the width and height of the output/input, and where K is the
kernel size (assumed square for simplicity), S the stride, P the padding used and |-| the floor
operation (round down to the nearest integer).

Therefore, if we increase K by 2 units, we must increase padding by 1 unit to keep the
spatial dimensions of the layer’s output constant. Thus, in the first variant - AllConv with
k =5 - the corresponding layers’ padding is increased to P = 2 and in the second - AllConv
with k£ = 7 - padding is increased to P = 3
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Network in Network (NilN)

Layer Output Size Configuration
Convl 32x32x192 5xb conv, ReLU
MLPConvl1 32x32x160 1x1 conv, ReLU
MLPConv2 32x32x96 1x1 conv, ReLU
MaxPooll 16x16x96 3x3 max pool, stride=2
Dropoutl 16x16x96 Dropout (p=0.3)
Conv2 16x16x192 5x5 conv, ReLLU
MLPConv3 16x16x192 1x1 conv, ReLU
MLPConv4 16x16x192 1x1 conv, ReLU
AvgPool2 8x8x192 3x3 avg pool, stride=2
Dropout2 8x8x192 Dropout (p=0.3)
Conv3 8x8x192 3x3 conv, ReLLU
MLPConvb 8x8x192 1x1 conv, ReLU
MLPConv6 8x8x10 1x1 conv, ReLU
GlobalAvgPool 1x1x10 Global average pooling
Softmax 10-dim Classification layer

Table 7: Network in Network (NiN) model architecture.
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VGG16 (CIFAR-10 Variant)

Layer Output Size Configuration
Convl 1 32x32x64 3x3 conv, ReLU
Convl 2 32x32x64 3x3 conv, ReLLU
MaxPooll 16x16x64 2x2 max pool
Conv2 1 16x16x128 3x3 conv, ReLU
Conv2 2 16x16x128 3x3 conv, ReLU
MaxPool2 8x8x128 2x2 max pool
Conv3 1 8x8x256 3x3 conv, ReLU
Conv3 2 8x8x256 3x3 conv, ReLLU
Conv3 3 8x8x256 3x3 conv, ReLU
MaxPool3 4x4x256 2x2 max pool
Conv4d 1 4x4x512 3x3 conv, ReLU
Conv4 2 4x4x5H12 3x3 conv, ReLU
Conv4 3 Ax4x512 3x3 conv, ReLLU
MaxPool4 2x2x512 2x2 max pool
Convh 1 2x2x512 3x3 conv, ReLU
Convh_ 2 2x2x512 3x3 conv, ReLU
Convh_3 2x2x512 3x3 conv, ReLU

GlobalAvgPool 1x1x512 Global average pooling
FC 10-dim Fully connected layer (10 classes)
Softmax 10-dim Classification output

Table 8: VGG16 (CIFAR-10 variant) model architecture.

23



UNIVERSIDAD PONTIFICIA COMILLAS
COMILLAS Escuela Técnica Superior de Ingenieria (ICAT)
i Grado en Ingenieria Matematica e Inteligencia Artificial

B Attack Sucess Rates by Original /Target Labels

B.1 Baseline Models

Class AllConv NiN VGG16
Original Target | Original Target | Original Target
Airplane 2.59 4.44 3.33 16.67 4.81 12.22
Automobile 1.11 4.81 3.33 3.70 4.07 3.70
Bird 5.93 4.44 8.15 10.00 7.41 12.59
Cat 9.63 4.07 13.70 7.04 14.81 8.15
Deer 10.00 2.59 8.52 4.07 18.89 1.85
Dog 2.59 12.22 6.67 10.37 2.22 20.37
Frog 2.96 3.70 5.19 2.96 7.78 4.07
Horse 3.33 1.85 2.22 2.59 6.67 2.22
Ship 2.96 3.70 11.48 2.96 5.19 4.44
Truck 3.33 2.59 2.96 5.19 2.96 5.19

Table 9: Class-wise Targeted Attack Success Rates (%) per Original and Target label

B.2 Accuracy Variants

Class Original AllConv Convergent AllConv

Original (%) Target (%) | Original (%) Target (%)
Airplane 2.59 4.44 2.22 3.89
Automobile 1.11 4.81 1.11 3.33
Bird 5.93 4.44 4.44 2.78
Cat 9.63 4.07 6.11 1.11
Deer 10.00 2.59 5.56 1.67
Dog 2.59 12.22 1.67 8.89
Frog 2.96 3.70 0.56 2.22
Horse 3.33 1.85 3.33 1.11
Ship 2.96 3.70 2.78 3.89
Truck 3.33 2.59 2.78 1.67

Table 10: Class-wise Targeted Attack Success Rates Across AllConv Variants
(Original vs. High-Accuracy)
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Class Original VGG16 Convergent VGG16
Original (%) Target (%) | Original (%) Target (%)
Airplane 5.00 11.11 7.78 8.89
Automobile 5.00 3.33 3.33 2.22
Bird 7.78 14.44 9.44 9.44
Cat 15.56 6.67 13.33 8.33
Deer 19.44 1.11 9.44 2.22
Dog 2.22 21.67 2.78 16.67
Frog 7.78 4.44 6.11 5.56
Horse 5.56 2.22 2.22 1.67
Ship 3.89 3.89 6.11 2.22
Truck 1.11 4.44 1.67 5.00

Table 11: Class-wise Targeted Attack Success Rates Across VGG16 Variants
(Original vs. High-Accuracy)

B.3 TRF Variants

Class AllConv (k=3) | AllConv (k=5) | AllConv (k=T7)
Original Target | Original Target | Original Target
Airplane 2.22 3.89 0.56 5.56 7.22 2.78
Automobile 1.11 3.33 2.78 2.78 1.11 1.67
Bird 4.44 2.78 2.22 6.67 6.11 7.78
Cat 6.11 1.11 1.11 10.56 7.78 5.00
Deer 5.56 1.67 8.33 0.56 5.00 6.11
Dog 1.67 8.89 7.78 4.44 9.44 11.67
Frog 0.56 2.22 2.22 2.22 1.67 3.89
Horse 3.33 1.11 5.00 0.00 6.11 3.89
Ship 2.78 3.89 6.11 1.67 4.44 1.67
Truck 2.78 1.67 1.67 3.33 1.11 5.56

Table 12: Class-wise Targeted Attack Success Rates (%)
for AllConv Variants with Kernel Sizes k = 3,5,7
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