Toward a Quantum Advantage in
Deep Learning Architectures
Sergio Rodriguez Vidal

Mathematical Engineering and Atrtificial Intelligence
Comillas Pontifical University ICAI
Madrid, Spain

June 17, 2025



Contents

I_Prefacel

ll"_Quantum Mechanics|

1__Introductionl

2 The Wave Function

[2.1 Probabilistic Interpretation| . . . . . . . .. .. ... ... . ... ...,
[2.2 Measurement and Wave Function Collapse| . . . . . . . . .. ... .. ...
[2.3 Continuous and Finite-Level Systems| . . . . . . .. ... ... .. .....

3 Time-Independent Schrodinger Equation|

[3.1 Stationary States and the Energy Eigenproblem| . . . . . ... .. ... ..
[3.2 Superposition and Interference|. . . . . . . .. ... oL,
4__Formalism|

[4.1 Hilbertspace| . . . . . . . . . . e e e e
4.2 Dirac (bra—ket) notation|. . . . . . .. ... ... . L

4.5 Projective measurements|. . . . . . . . ... ... oo
4.6 Composite Systems| . . . . . . .. ...

Ml Quantum Computing|

|5 Installlng CUDK-GuantumI

[6__Quantum Circuits|

6.1 TheQubitl . . ... .. .. . . . e
6.2 Bloch Sphere|l . . . . . . . . .
[6.3 Single-QubitGates| . . . . . ... . ... ...
6.4 Multi-Qubit States| . . . . . . . ...
6.5 ControlledGates| . . . ... ... .. ... ...
6.6 Parametrized Quantum Circuits| . . . . . . . . . .. .. . ... ... ..
[6.7 Executing Quantum Circuits| . . . . . . .. .. . ... ... ... ... ..

[7 Quantum Processing Units|
/7.1 lon-Trap S| . e
[/.2 Superconducting QPUs|. . . . . . .. ... o oo

o o a1 W



[7.3 _Neutral-Atom QPUs|. . . . . . . . . . . e 35

7.4 otonic Sl e 35
[£.5 Simulation Backendsl . . . . . ... ... L oo 36
IV_Quantum Neural Networks| 39
8 Installing Torch-Quantum| 39
9 __Architecture and Forward Passl| 40
9.1 Feature Maps| . . . . . . . . . e 41

45

48

51

52

52

54
(11 Complete Model| 58
[11.1 Quantumkunction|. . . . . . . . . .. L 58
[11.2 QuantumLayer| . . . . . . . . . . . e 59
1.3 QNN . . . . e 60
1.4 HybridQNN| . . . . . . . . . . 62
(11.5 Important Notes|. . . . . . . . . . . . . . . . ... 64
(12 Information Geometry of Model Capacity| 65
(12.1 The Fisher Informationl . . . . . . . . . . . .. ... ... ... .. ... .. 66
12.2 The Effective Dimension| . . . . . . . . . . . . . . . . ... ... 69
[12.3 Results and Capacity Analysis| . . . . . .. ... .. ... .. ... ..... 71
[13 Trainability] 74
[13.1 Benchmarks|. . . . . . . . . . . . e 74
[13.2 Barren Plateaus|. . . . . . . ... .. ... ... 76
[13.3 Optimization Strategies|. . . . . . . . . . . . . . . .. 78
IV__Conclusion| 80



T eReece |

Unlike classical deep learning [1, 2], which emerged from decades of gradual re-
finement and broad consensus around its foundational ideas, quantum neural net-
works (QNNSs) are currently in a thrilling yet nascent stage. Quantum computing
(QC) presents itself as an essential next step to overcome critical limitations of current
deep learning methodologies; particularly the escalating energy consumption and com-
putational demands associated with increasingly large-scale models. To illustrate the
magnitude of this challenge, projections [3] indicate that the United States alone could
reach approximately 325 TWh of annual electricity usage from Al activities by 2028
(comparable to the total power consumption of Spain), highlighting the urgent need for
more sustainable computational solutions.

Despite significant theoretical advances suggesting that quantum neural networks
could outperform classical models in expressivity and efficiency [4], there is lack of
a well-packaged, end-to-end framework. Today, newcomers must piece together
scattered papers, code repositories, and tutorials, each using slightly different notation,
training tricks, and tooling. A clearly organized “starter kit” that unifies core concepts,
software, and best practices has yet to emerge.

The objective of this book is precisely to bridge these gaps. Our approach combines
theory, practical tools, and hands-on guidance explicitly aimed at Al practitioners,
mathematicians, computer scientists, and engineers who may not yet be familiar
with quantum computing. We begin by introducing the core concepts of quantum me-
chanics; not in exhaustive detail, but sufficiently to grasp its unique properties, such
as superposition and entanglement, and their potential for enhancing neural network
architectures. Clearly outlining the sustainability and scalability problems faced by clas-
sical deep learning, we demonstrate how quantum neural networks could offer viable
solutions by leveraging these quantum phenomena, potentially reducing energy usage
and enabling the scaling of more complex models within practical computational and
environmental constraints.

To facilitate practical engagement and experimentation, this book also serves as a
guide to a complementary resource: an accessible Python library. The text provides
readers with a clear, rigorous, and practical guide to the theoretical foundations, stan-
dardized frameworks, ongoing challenges, and the practical implementation of QNNs
using this library. While familiarity with quantum physics and advanced mathematics
is helpful—providing deeper insights into quantum mechanics and quantum gates—it
is not strictly necessary to begin meaningful work with quantum neural networks. The
text carefully introduces essential mathematical concepts and quantum phenomena,
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emphasizing their key differences from classical neural network models and explaining
how these differences translate into computational advantages.

The Python library developed alongside this book is explicitly designed to enable
PyTorch users to experiment and seamlessly integrate quantum neural networks into
their existing workflows without facing steep learning curves associated with quantum
computing. Our library adheres closely to two core design principles inspired by Py-
Torch [9] itself:

B Usability over Performance: Prioritizing ease of experimentation and integra-
tion to encourage widespread adoption, even if at times sacrificing raw computa-
tional efficiency.

B Simple Over Easy: Ensuring explicitness and clarity over convenience, thus sim-
plifying debugging, customization, and deeper understanding of QNN architec-
tures.

Leveraging both PyTorch and CUDA Quantum (CUDA-Q), our library provides
a modular, transparent, and extendable framework, welcoming both newcomers who
prefer predefined models and experts who desire extensive customization.

Ultimately, this project aims not merely to educate but also to engage. By clearly
defining the critical challenges classical Al currently faces, detailing how QNNs address
these issues, and providing practical tools to facilitate experimentation; we encourage
collaboration, innovation, and meaningful interdisciplinary advancements. The pathway
ahead is challenging yet immensely promising. Welcome to quantum enhanced deep
learning, let’s advance the frontier together.



| QUANTUM MECHANICS |

Quantum mechanics represents a radical departure from classical physics, reveal-
ing a realm governed by probabilities, wave-like behaviors, and the subtle interplay of
measurement. Where classical physics outlines a deterministic view of reality, quan-
tum mechanics instead posits that systems can exist in a blend of all possible states,
described by a complex wave function. This wave function encodes every potential
outcome of a measurement—an act that collapses these possibilities into a single,
observed result.

These counterintuitive features (superposition, interference and collapse) have
been harnessed in quantum computing, where information is encoded in qubits that
can exist in superpositions of basis states and become entangled. In this chapter we’ll
introduce the wave function and its evolution under the Schrédinger equation, ex-
amine how measurements govern quantum behavior, and present the linear-algebraic
framework and Dirac bra—ket notation that underlies it all. Equipped with these tools,
you’ll be ready to appreciate the power of Quantum Neural Networks.

1 Introduction

Quantum mechanics is not just about subatomic particles. It is our best funda-
mental description of nature to date, with successful predictions from the microscopic
realm up to mesoscopic systems. Classical physics appears accurate when quantum
effects become too subtle to notice, typically at larger masses or higher energies, allow-
ing us to perceive a seemingly "classical" world. However, at microscopic or carefully
engineered mesoscopic scales, intriguing quantum phenomena become prominent.

2 The Wave Function

Consider a particle of mass m constrained to move along the x axis, under the
influence of some specified force F'. Classically, we predict the particle’s position x(t)
by applying Newton’s second law,

d?x
F= mdt2 ,
together with appropriate initial conditions (e.g., position and velocity at ¢ = 0). From
x(t) this classical solution, we can determine momentum p(t), kinetic energy K (t), or
any other physical variable of interest.



. 2.1 PROBABILISTIC INTERPRETATION

Quantum mechanics approaches the same problem rather differently. We look for
the particle’s wave function, ¥(z, t), by solving the Schrédinger equation:

Lov(z,t) -
h = HVY(x,t 1
ih=— (2.1), (1)
where the Hamiltonian operator H
~ n* 9
H=—— . 2
2m Ox? + Vi) 2)

encodes kinetic and potential energy. Here i = /—1, i is Planck’s constant & divided
by 27 and V' (x) represents the potential energy. This equation is logically analogous
to Newton’s law, in the sense that once you specify W (z,0) ("initial conditions"), the
Schrédinger equation determines V(z,t) for all future times t. The derivative of the
potential energy function %—‘; yields the classical force F'.

2.1 Probabilistic Interpretation

The wave function itself, however, does not directly correspond to a classical ob-
servable like position or momentum [6]. After all, a particle is localized at a point,
whereas the wave function is spread out over space. Max Born’s statistical interpre-
tation resolves this:

Pr{xe[a,b]}:/ 0 (2, 1) 3)

is the probability density of finding the particle between a and b at time ¢. Graphically,
the probability of discovery between a and b is the area under |¥(x, t)|* from a to b.

A lP]2
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Figure 1: Max Born’s Statistical Interpretation



. 2.2 MEASUREMENT AND WAVE FUNCTION COLLAPSE

Because of Born’s rule, the wave function must be normalized so that all possibili-
ties add up to probability 1. Mathematically, this means

/ " (e, t)da = / W, t)Pde = 1, @)

for a single particle in one dimension. Any candidate ¥ must be normalized (or nor-
malizable) to represent a valid physical state.

This probabilistic interpretation introduces fundamental indeterminacy: even with
complete knowledge of ¥, quantum mechanics can only predict statistical outcomes of
position measurements. Upon measuring and finding the particle at a fixed arbitrary
position x, two philosophical attitudes address “Where was it just before the click?”

1. Realist. The particle was at x all along; quantum mechanics is simply incomplete,
lacking hidden variables that fix its true location.

2. Copenhagen. Prior to measurement the particle wasn’t anywhere definite; the
act of measurement forces it into a definite x. Observations “produce” properties,
rather than merely revealing them.

Decades later, Bell’s theorem showed this was experimentally testable, and ex-
periments have sided with the Copenhagen picture: Quantum system{] do not have
definite values for physical observables such as position or momentum until mea-
sured. Measurement outcomes are inherently probabilistic, determined by the ampli-
tude squared of the wave function.

2.2 Measurement and Wave Function Collapse

Performing a measurement on a quantum system fundamentally alters its state,
an event known as wave function collapse. Before measurement, the wave function
evolves smoothly according to the Schrédinger equation, describing multiple possibili-
ties simultaneously. Upon measurement, however, this smooth evolution abruptly and
discontinuously changes (an instantaneous "collapse") into a single eigenstate con-
sistent with the measurement outcome.

Intuitively, measurement in quantum mechanics is fundamentally different from clas-
sical observation. In classical physics, measuring a property of a system merely reveals
a pre-existing state. In quantum mechanics, prior to measurement, properties like

A quantum system is any physical entity or collection of entities whose behavior must be described
by quantum mechanics rather than classical laws. Examples include single particles (electrons, pho-
tons), composite objects (atoms, molecules) or engineered qubit devices in quantum computing.
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. 2.2 MEASUREMENT AND WAVE FUNCTION COLLAPSE

position or momentum do not have definite values; instead, the particle exists in a su-
perposition of possibilities. The measurement itself forces the system to "choose" one
possibility out of the superposition, collapsing the wave function into a single outcome.

The collapse is random yet statistically predictable: the probability of each outcome
is determined by the squared magnitude of the corresponding amplitude.

The Double-slit Experiment

A practical illustration of wave function collapse is provided by the famous
double-slit experiment. In this experiment, electrons are fired individually to-
ward a barrier with two narrow slits. Classically, we expect electrons, treated as
particles, to travel through one slit or the other, producing two bright bands di-
rectly behind the slits. However, quantum mechanically, each electron behaves
as a wave that passes through both slits simultaneously, creating an interference
pattern of multiple bright and dark fringes on a detection screen behind the bar-
rier.

Remarkably, even when electrons are fired one at a time (ensuring only one
electron is present in the apparatus at any given moment) the cumulative effect
over many electrons still forms an interference pattern. Each electron leaves
a single discrete spot on the detector, yet collectively, these spots build up the
characteristic wave-like pattern. This demonstrates that each electron interferes
with itself, traversing both slits simultaneously as described by its wave function.

However, if we attempt to measure which slit the electron passes through,
the situation dramatically changes. Any attempt to detect the electron’s path
immediately destroys the interference pattern, leaving only two distinct bands
aligned with each slit. This occurs because measuring the electron’s position
forces the wave function to collapse to a definite path; either through one slit
or the other, but not both. The superposition necessary for interference is thus
eliminated by the measurement.

It is worth noting that in most practical scenarios the true wave function of a quantum
system is unknown; however, by repeatedly sampling measurement outcomes accord-
ing to the system’s probability distribution, one can employ continuous (Monte Carlo)
sampling techniques to reconstruct or estimate the underlying wave function.

In quantum computing and quantum machine learning, wave function collapse
has profound implications. Effective quantum algorithms carefully manage these prob-
abilities, ensuring desirable outcomes have high probabilities and minimizing undesired
ones.



. 2.3 CONTINUOUS AND FINITE-LEVEL SYSTEMS

double -slit screen

electrons
_ ececcccsce H — Interference
pattern
. \ \
Figure 2: Double-slit Experiment without measurement
observer \ \
(-......... — Two distinct
bands

light source \

Figure 3: Double-slit Experiment with measurement

2.3 Continuous and Finite-Level Systems

Thus far we have treated quantum states by choosing the continuous position-
space basis {|z)}. Each basis vector |z) corresponds to a state perfectly localized at
the point x and is represented by a column vector whose entries form the Dirac delta
function 6(2’ — x): zero everywhere except at 2 = x, where it exhibits an infinitely
sharp, unit-area spike. We then describe the state via the wave function

oo

W, t) = (2D (1), / Wi, t) e = 1,

o0

which evolves as

.0 2 o
zhaﬁf(as,t) = [~ LV 4+ V(2)] U(z,t).

Measuring x € R yields outcomes with probability density [¥(z,¢)|?, and similarly
for momentum using the momentum basis {|p)}.

Some systems admit only a finite set of distinguishable outcomes; think of an elec-
tron’s spin or an atom with NV low-lying levels. In these cases we pick a discrete or-

9



. 2.3 CONTINUOUS AND FINITE-LEVEL SYSTEMS

thonormal basis e.g. {|n)})_, = {(1,0,...,0)%,(0,1,...,0)7,...,(0,0,...,1)"}, ex-
tract the amplitude of |¥(¢)) along the n-th direction by projecting with (n/|, giving

UL (1)

U, N )
E(t) DY AGIEE
e

W, (t) = (n|¥(t)) = (0,...,0,1,0,...,0)

n—1 N—n

Here |¥,,(¢)|? gives the probability of outcome n, and for any observable ) with eigen-
values g, in this basis,

(@) =) an|[Wn().

In their abstract operator form, both continuous-variable and finite-level quantum
systems satisfy exactly the same Schrddinger equation,

L d 3
th— [U(t)) = H [T(t)), (5)

which in a chosen basis becomes either a partial differential equation (continuous) or
a system of ordinary differential equations (finite-level). In the discrete basis the matrix
elements

Hj. = (j|H|k) = (0,...,0,1,0,...,0) H(0,...,0,1,0,...,0)7T
~—— —— ——
j—1 N—j k—1 N—k
give

ih;(t) =Y Hy, Uy(t).
k=1

When the configuration space itself is discrete (e.g. an electron hopping on lattice
sites labeled nf), we use the site basis {|n)}. A tight-binding Hamiltonian with hopping
amplitude ¢ and on-site energies V,, has nonzero couplings H,,,+1 = —t and H,,, =
V.., yielding .

iR, (1) = — t[Unia (1) + Upa (8)] 4+ V5 U (2).

2A model in which the electron’s position is restricted to discrete, equally spaced points in a regular
array, each uniquely identified by the integer index n.
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. 2.3 CONTINUOUS AND FINITE-LEVEL SYSTEMS

Example: Electron Spin in a Magnetic Field

An electron carries an internal binary property known as spin. If we measure
the component of that spin along a fixed axis (say the z-axis), the result is always
one of just two values: “up" and “down".

Therefore an electron’s spin along the z-axis lives in a two-dimensional space
with basis {|1),|})}. We write

Up(t) = (T[T0),  Wy(t) = {L12E), [P+ |0 =1

In a uniform magnetic field B along z, the Hamiltonian is

N ho {1 O
H=-~BS, = . w=AB.
VB S =5 (o —1> it

The Schrddinger equation
ih i vy — %w 0 by
dt \v, 0 -2\

W(t) = Uy (0)e ™2 W (t) = W (0)e™!/2,

gives the solutions

so that the populations |¥'+|?, |V, |? stay fixed while their relative phase oscillates
at frequency w.

With this unified, single-section treatment, the only real difference between contin-
uous and finite-level quantum systems is the nature of the index set (R versus a
finite list); yet in both cases they obey the same Schrddinger equation, normalization
condition, and probability postulates.
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. 3 TIME-INDEPENDENT SCHRODINGER EQUATION

3 Time-Independent Schrodinger Equation

In most quantum-computing and quantum-neural-network applications the Hamilto-
nian H is taken to be time-independent, so that all nontrivial dynamics reduce to a
global phase. One is then led directly to the energy eigenproblem, whose eigenvec-
tors furnish a stationary basis ideal for encoding and processing quantum information.

3.1 Stationary States and the Energy Eigenproblem

When the Hamiltonian H is time-independent, the general Schrédinger equation al-
lows the physicist’s favorite trick, separation of variables, to turn the Schrédinger equa-

tion
L d 2
ih 2 |9(0) = H |9(1))
into two ordinary differential equations. Because the left-hand side depends only on ¢

and the action of H on ¥(¢) depends only on the state-space structure, linearity of H
guarantees we can write

_ n plde 1o
W(O) = ) olt) = iR ) G = H ) = b TE = o H ) = B,

where F is a constant (the separation constant). Integrating the t—equation gives the
ubiquitous “wiggle” factor, '
(p(t) _ eszt/h’

while the remaining condition becomes the time-independent Schrédinger equation
(or energy eigenproblem)

H|p) = E[y). (6)
In general the Hamiltonian H admits a whole spectrum of solutions. Each stationary
solution is

U (t)) = [tbn) =m0,
with !¢n> an eigenstate of H. These stationary states have two key properties:

1. Time-independent probabilities. Although |¥,,(t)) carries that phase e~*%»/",
the probability density ||W,,(1))|” = ||¢n)|” is constant in time.

2. Definite energy. One finds

(H)w = (Wl Hlen),  (AH)?), = (Wul(H — Ey)*ltn) =0,

so every measurement of the total energy in state v,, returns E,, with certainty.

12



. 3.2 SUPERPOSITION AND INTERFERENCE

3.2 Superposition and Interference

Because the eigenstates {v,} form a complete basis (discrete or continuous), any
initial wave function can be expanded as

W) =3 e [) (or [9(0)) = / «(E) [vn) dE),

n

where the coefficients ¢,, are complex probability amplitudes, whose magnitudes re-
late to the likelihood of finding the system in one state or the other. Linearity of the full
Schrédinger equation then guarantees the general time evolution

W) = W) = e B v (or [ o(B) [v) e aE).

n

Each term carries its own phase, and their weighted sum is precisely the quantum
superposition.

A useful way to visualize superposition is to think of a quantum state as a “blend”
of several classical possibilities, each weighted by a complex amplitude. Because the
Schrédinger equation is a linear differential equation, whenever |¢,) and |¢) are en-
ergy eigenstates of H (i.e. solutions of Eq@), their linear combination

[V) = c1 [¥h1) + ca [tho)

is also a valid quantum state.

It should be noted that quantum amplitudes c,, can interfere constructively or de-
structively, leading to observable interference patterns when measurements are per-
formed [7]. This interference of probability amplitudes has no classical analog and is
one of the hallmarks of quantum behavior.

In the realm of quantum computing, superposition provides a powerful advantage.
Quantum computers leverage superposition to represent and process a vast number
of computational states simultaneously. Unlike a classical bit that exists in a definite
state (0 or 1), a qubit can exist in a superposition of both states, enabling a form of
parallelism that can greatly enhance computational speed for certain tasks.
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[l 4 FORMALISM

4 Formalism

In the previous sections we have encountered wave functions, operators, and the
Schrédinger equation in both continuous and discrete settings. To unify these ideas
and prove the general theorems that underlie quantum behavior, we must cast the
theory into the language of abstract vector spaces and linear operators. This abstract
framework (built on Hilbert spaces and the Dirac (bra—ket) notation) provides the
natural habitat for quantum states and observables, streamlines computations, and
makes manifest the deep connection between quantum mechanics and linear algebra.
In this section we introduce the key constructs and notation of this formalism.

4.1 Hilbert space

A Hilbert space is a real or complex vector space H equipped with an inner prod-
uct, and complete in the norm induced by that inner product.

(«,-):HxH — K, K=RorC,
In quantum mechanics, a “state” can be viewed as a complex vector in such a space:

B Continuous systems: The space of square-integrable functions on the real line,

L2®)={ v R—>C’/ 7)Pde < oo},

with the inner product

(P, W) = /00 O* () ¥(x) dx.

o

where ®*(x) denotes the complex conjugate of ¢(z).

B Finite-level systems: The space CV of N-component column vectors i) =
(¢1,...,¥n)T, with the standard inner product

Normalization of a state 1 requires (1), zZ) = 1, ensuring total probability unity. Two
state vectors ¢ and v are orthogonal if (¢,7)) = 0, and an orthonormal set {e,}
satisfies

<6m, en> - 5mn
A basis is complete when any state in the Hilbert space can be expanded uniquely in
that basis.

14



. 4.2 DIRAC (BRA-KET) NOTATION

4.2 Dirac (bra—ket) notation

Although we have silently introduced Dirac notation in sections and 3, it is
worth pausing now to state its syntax and conventions clearly. In Dirac language a
quantum state ¢ € # is written as a ket |¢). In an N-dimensional orthonormal basis
{len) }_, its components are the projections

Un = (en|t),
so the ket is represented by the column vector
U
wy=|*
Uy

Taking the Hermitian adjoint (conjugate transpose) of a ket |¢) yields an element of
the dual space H*, the bra

W= (o) = (5 w5 - YR),

and the inner product with another state |¢) becomes

(@lv) = (8] [¥) =D &7,

linear in the ket and conjugate-linear in the bra.

A convenient shorthand we shall use frequently is the completeness relation.
Given any orthonormal basis {|e,)}2_; we have

I=2lea) (el

so that every state may be unpacked as
[0) =D lea)(enl ) = > (ealt)) len)

Each operator |e,, ) (e, | acts as a projector onto the one-dimensional subspace spanned
by |en), and the completeness relation simply states that these projectors together span
the whole space.

15



[l 4.3 OBSERVABLES

Nothing changes in the passage from discrete indices to a continuous label. In the
position basis {|z) | € R} we replace sums by integrals, write ¥(z) = (z|¢), and
trade the discrete completeness relation for

/_OO ) e| dz =T

o0

All manipulations that work for finite vectors therefore carry over verbatim to continuous
systems.

As discussed in previous sections, the state of a system is not known to be a single
ket but rather a superposition of several eigenstates {|v,)}2_, with classical probabili-
ties {c,}. The correct quantum description is then the density operator

N
p:ZCn V) (Unl e 2 0, chzla (7)

a Hermitian, positive-semidefinite matrix with unit trace. Pure state{j’] appear as pro-
jectors, p? = p, while genuine mixtures satisfy p* # p.

Armed with kets, bras, the completeness relation and the density operator, we now
possess a flexible vector-and-matrix toolkit that will underlie every formulation in the
remainder of this book; from simple quantum computing algorithms to the construction
and analysis of quantum neural network architectures.

4.3 Observables

_ Inquantum theory a physical observable’|is represented by a Hermitian operator
H = H' on the system’s Hilbert space #[8]. Hermiticity guarantees two things we
demand of measurements:

(i) all eigenvalues are real numbers, so they can be recorded by an instrument, and

(ii) eigenvectors belonging to distinct eigenvalues are orthogonal, so they can be dis-
tinguished with certainty.

Thanks to the spectral theorem of functional analysis, any Hermitian observable ad-
mits the unique expansion

[:[:ZOnPn, P, = len) (enl, an:]L

%

3Pure states project onto a single eigenstate of p with eigenvalue 1, while mixed states decompose
into multiple orthogonal eigenstates.
“Measurable quantities e.g. position &, momentum p, energy H, spin S..

16



. 4.4 UNITARIES AND TIME EVOLUTION

where {|e,)} is an orthonormal eigenbasis and the P, are mutually orthogonal pro-
jectors. The set {]5”} is sometimes called a projective measurement because it both
enumerates the possible outcomes {o0,,} and prescribes how the state updates once
an outcome is registered.

Given a quantum system prepared in a (possibly mixed) state p, the expectation
value and the corresponding variance of the observable H are

A ~

(H) = tr(pH),  (AO) = tp(H - (H))?].

When two observables do not commute, [fl, E] # 0, their variances obey the Robert-
son—-Schrédinger uncertainty relation

AAAB;;%}@&BD

b

a compact way to state, for instance, the familiar Az Ap > h/2, known as the Heisen-
berg uncertainty principle, where x denotes position and p momentum (not to be
confused with the probability p used elsewhere).

4.4 Unitaries and time evolution

Exponentiating any Hermitian operator yields a unitary U (\) = e¢*# with UTU = 1.
Choosing A = —t/h turns this into the time-evolution operator introduced in (5):

A~

O(t) = e M0 Jw(t) =T [0(O),  p(t) = UE)p(0)T ().

Because unitaries preserve inner products, they preserve all probabilities. For later
use in quantum computing it is helpful to remember that a finite product of elementary
unitaries (generated, say, by local Hamiltonians) can approximate any desired global
unitary to arbitrary precision.

The presentation so far has been cast entirely in the Schrédinger picture, where
states carry the time dependence. Mathematically one may shift the time evolution
onto the operators instead, defining the Heisenberg picture via

Hy(t) = U () HU(t)

while p is kept fixed. Both pictures are equivalent; choosing one or the other is a matter
of convenience.

17



. 4.5 PROJECTIVE MEASUREMENTS

4.5 Projective measurements

For the ideal (“von Neumann”) measurement associated with the projector set { P, }
the probability of recording the specific outcome o,, is

pn = tr(pP,).
If that outcome is obtained the post-measurement state is

Pn,OPn

Pm

A concrete illustration is the spin-% example of Sec. Measuring the Pauli operator
o, corresponds to the pair of projectors

Pr= L B=10dl,

and the corresponding outcome probabilities for a state p = | V) (V| are
pr=10% p=1wl
where ¢y = (1 [¢) and ¢, = (] |[¢).

Real laboratories, however, rarely achieve perfectly sharp projective measurements.
The most general repeatable measurement is described instead by a collection of posi-
tive operators { £,,,} obeying the completeness relation which together form a positive-
operator-valued measure (POVM). Each effect operator can be expressed in terms of
a Kraus operator A,,,

E, = Al A,
a factorization that conveniently captures loss, detector inefficiency and other noise

sources. When the pre-measurement state is p, the probability of obtaining outcome m
is

Pm = tl"(P Em)7
and, conditioned on that outcome, the state updates according to
AnpAl,

p — :
Pm

Projective measurements are recovered as the special case in which every E,, is
itself a projector and the corresponding Kraus operators satisfy A,, = Al = E,,,.

18



Il 4.6 COMPOSITE SYSTEMS

4.6 Composite Systems

Most practical settings involve several subsystems. If subsystem 3, is described by
Hi and X5 by H,, the joint system X = X + Y5 inhabits the tensor-product space

H=H1 ® Ha, dimH = dim H; - dim Hs.

An orthonormal basis for the composite space is conveniently generated by taking all
possible tensor products of the single-system basis kets, {’e§1)>® ‘e,(f)>}j7k.

A pure state is called separable (or a product state) when it can be expressed as
an explicit tensor product of individual subsystem states,

¥) = [pM)e[v®),

and entangled when no such decomposition exists. The distinction extends to mixed
states: if p = p1 ® py the subsystems are uncorrelated, whereas any departure from
that form signals correlations; classical, quantum, or both.

Operators inherit this structure. Given H; on #; and H, on H,, the composite
operator is H = H,® H,. When the global state factorizes, expectation values factorize
as well, R X X R X

(H) = tr((H, ® Hy) p1 ® p2) = tr(Hypy) tr(Haps).

Frequently, however, one wishes to speak only about >:;; tracing over . gives the
reduced state

P1 = tr?(p)7

so that (H, ® I,) = tr(H,p,). This procedure, partial trace, is the quantum analogue
of marginalizing a joint probability distribution.

A canonical example of a composite system, widely used in quantum computing,
is a register of n qubits: n identical two-level systems whose joint Hilbert space is
(C*)®m =~ C?". How qubits exploit this tensor structure will become clear in the parts
that follow.
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Quantum computing transfers the core principles of quantum mechanics into a com-
putational paradigm. In this chapter, we develop the model of quantum circuits as the
primary framework for quantum computers, directly analogous to how Boolean logic
circuits serve classical machines. We begin by representing single qubit states on the
Bloch sphere, then introduce single-qubit gates for state rotations and controlled
gates to generate entanglement across multiple qubits. After covering the mechanics
of measurement, we survey leading quantum hardware platforms—ion-trap, super-
conducting, neutral-atom, and photonic architectures—and show how to deploy and
execute quantum circuits on them using NVIDIA’s CUDA-Q toolkit [9]. Throughout the
chapter, illustrative code snippets are shown to ground abstract concepts in hands-on
practice.

5 Installing CUDA-Quantum

Before diving into quantum circuit construction, we first need to prepare our devel-
opment environment. CUDA-Q is NVIDIA’s hybrid C++/Python framework for crafting
and executing hybrid quantum—classical algorithms via a concise, high-level API. In
this book we adopt CUDA-Q because its CUDA-powered simulators let us tune preci-
sion, method, and scale on the fly, exploit NVIDIA GPUs for speed, and send the exact
same code to a broad range of cloud quantum hardware devices (using Amazon
Braket).

Step 1 — System Requirements. Because CUDA-Q binds to low-level libraries and
(optionally) leverages GPU acceleration, it’s important to start on a supported platform:

B Linux: Ubuntu 20.04 or 22.04 LTS (Debian-based distributions are best tested)
or RHEL/CentOS 8 or 9. Ensure you have build-essential, python3-dev, and
git installed.

B macOS: Version 12 Monterey or later, on either Apple Silicon or Intel hardware.
On Apple Silicon, confirm Rosetta 2 is installed for x86 compatibility if needed.

B Windows 11: Use Windows Subsystem for Linux 2 (WSL2) with an Ubuntu 20.04
or 22.04 image. Install the ws1 feature and set WSL2 as default: wsl -install.

A modern NVIDIA GPU (Ampére-class or newer) is recommended for high-performance
simulation, but the CPU-only backend works perfectly well for early development and
testing.
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Step 2 — Create a Python Virtual Environment. To avoid conflicts between project
dependencies and lock in compatible versions, we’ll use a virtual environment.

[@python3 -m venv genv

Bsource qenv/bin/activate
Once activated, your prompt will prepend (genv), indicating that all subsequent Python
and pip commands will target this isolated environment.

Step 3 — Install CUDA Quantum. With genv active, upgrade pip and install the
SerovilCAl CUDA-Quantum fork:

python -m pip install --upgrade pip

pip install cudaq

git clone https://github.com/SeroviICAI/cuda-quantum.git
python - <<’PY’

import importlib.util, pathlib, os, shutil

src = pathlib.Path("cuda-quantum/python/cudaq/kernel/

o o A~ W N =

quake_value.py") .resolve ()

dst = pathlib.Path(importlib.util.find_spec("cudaq.kernel.
quake_value") .origin)

(ldst.unlink ()

tlos . symlink (src, dst)

~

Blpip install torch-qu

This ensures you have both the standard CUDA-Q functionality and the extra hooks
needed by the upcoming quantum neural network library.

Step 4 - Verify Installation. Let’s run a minimal quantum program example:

import cudaq, math
kernel = cudaq.make_kernel ()
q = kermnel.galloc (1)

kernel .rx(math.pi/4, q)
print (cudaq.sample (kernel, shots=64))

1 I N

Run it with:

@python kermnel.py

You should see output similar to: { 0:53, 1:11 }. The exact counts will vary each
run, but the printed dictionary confirms that CUDA-Q is correctly installed and sampling
from your quantum circuit is working as intended.
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6 Quantum Circuits

Classical digital circuits process information via bits (0 or 1) and Boolean logic
gates (AND, OR, NOT, etc.), typically realized by irreversible operations on voltage lev-
els. In contrast, quantum circuits manipulate qubits using quantum gates. In analogy
to classical gates building boolean circuits, quantum gates are the elementary build-
ing blocks of quantum circuits. However, unlike a classical AND gate which maps two
bits to one (losing information), all quantum gates preserve information: mathematically
they are described by unitary matrices and hence are invertible.

Quantum circuits are often drawn with wires (horizontal lines) for each qubit and
gates as symbols on those lines.

7] M~ M~
Go—{ H] [ — X] [ X]
7 [X] R.(—1.571) R.(1.571) (1

Figure 4: An example quantum circuit

Furthermore, qubits can exist in coherent superpositions of |0) and |1), and multi-
ple qubits can be entangled, giving an exponentially larger state space than classical
bits of the same size. This allows quantum circuits to exploit interference of amplitude
phases, a feature absent in classical circuits.

To make the discussion concrete we will adopt CUDA-Q as our working SDKP| A
CUDA-Q quantum circuit is called a kernel; created using cudaq.make_kernel.

cudaq, math

= cudaq.make_kernel ()
kernel .qalloc (3)

.h(qvec[0])
.cx(qvec[0], qvec[1])
.cx(qvec[0], qvec[2])

® N o o B W N o=

5SDK stands for Software Development Kit. It's a collection of tools, libraries, documentation,
code samples, and sometimes APIs that developers use to build applications for a specific platform or
framework.
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.swap (qvec [0], qvec[2])
.h(qvec [0])
.rz(-math.pi/2, qvec[1])

.cx(qvec[1], qvec[0])
.rz(math.pi/2, qvec[1])
.cx(qvec[1], qvec[0])
.h(qvec[1])

Listing 1: A CUDA-Q kernel that constructs the quantum circuit illustrated in Figure

6.1 The Qubit

A qubit is a quantum system with two basis states, conventionally denoted |0) and
|1). A general pure state of a qubit is a normalized linear combination

) =a0)+ 5 (1),

where o, 5 € C and |a]? + |5|> = 1. In the computational basis,

o) =] =3

and |a|? (resp. |]?) is the probability of measuring |0) (resp. |1)).

To build geometric intuition, we reparametrize the two complex amplitudes by three
real parameters (6, ) plus an unobservable global phase. First, enforce normalization
by writing

la] = cos(), |B]=sin(g), 0<6<
so that cosQ(g) + sin2(g) = 1. Next, note that any overall (global) phase ¢ multi-
plying the entire state leaves physical predictions unchanged, so we absorb it into the
definition of |I). We are therefore left with a single relative phase ¢ between « and :
o= Cos(g), B =e¥ sin(g), 0<p<2m.
Substituting back into the superposition gives the Bloch-sphere parametrization:

(0, 0)) = cos(£)[0) + esin(4)[1), (0<O<m, 0<p<2m).

This form may at first glance appear more elaborate than the simple linear combi-
nation of |0) and |1), it offers a powerful geometric intuition: the two angles (6, ) map
the state directly onto the surface of a unit sphere.
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6.2 Bloch Sphere

The Bloch sphere representation (Figure [5) turns complex amplitudes o and
into concrete points in R?, making many single-qubit operations and visualizations far
more transparent. Every point on the sphere’s surface represents a distinct pure state,
whereas interior points (not shown) represent mixed states.

By convention, the north pole of the Bloch sphere corresponds to |0) and the south
pole to |1).

Figure 5: Bloch sphere

The mapping between the spherical angles (6, ¢) and the Bloch-sphere vector can
be written in explicit Cartesian form, directly yielding the coordinates of the unit vector
in R3:

(x,y,2) = (sin 6 cos ¢, sinfsin @, cos 9) )

It's important to note the Bloch sphere is an intuition tool for one qubit only. There
is no straightforward way to extend it to multi-qubit states, especially once entangle-
ment comes into play. For one qubit, however, it gives a complete, visually appeal-
ing representation of the state, as every single-qubit unitary operation corresponds
to rotations of this sphere-providing an intuitive picture for how gates transform qubit
states.

6.3 Single-Qubit Gates

As noted earlier, a quantum circuit transforms the joint state of qubits via unitary
gates culminating in measurements that yield classical outcomes (0s and 1s). We clas-
sify quantum gates into single-qubit gates and controlled gates. Single-qubit gates
operate on a single qubit at a time. Mathematically, any single-qubit gate can be rep-
resented by a 2 x 2 unitary matrix acting on the qubit’s two-dimensional state vector
[10]. Important examples include the Pauli and the Hadamard gates.
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Pauli Gates. The Pauli gates are the simplest non-trivial single-qubit operations and
form the basis for all single-qubit unitaries. They are defined by the following matrices,
which correspond to 7 rotations about the Bloch-sphere axes:

=) () =6l

In circuit diagrams, they are depicted as:

Each has a clear geometric and computational interpretation:

B Bit-flip (X): A rotation by 7 around the x—axis. In the computational basis it
swaps |0) — |1) and |1) — |0), acting exactly like the classical NOT gate. On the
Bloch sphere, it takes the north pole to the south pole.

B Phase-flip (7): A 7 rotation around the z—axis. It preserves the populations of
|0) and |1) but imparts a minus sign on [1), i.e. Z|1) = — |1). Geometrically, Z
flips the phase of any superposition in the equatorial plane.

B Combined flip (Y): A 7 rotation around the y—axis. Equivalently, Y =i X Z (up
to a global phase), so it implements both a bit-flip and a phase-flip simultaneously.
Concretely, Y |0) =i|1) and Y |1) = — ¢ |0).

These gates satisfy the Pauli algebra
X2=Y?*=2*=1, XY =iZ YZ=iX, ZX =1iY,

and anticommute pairwise (XY = —Y X, etc.), making them a representation of the
Pauli algebra.

In the CUDA-Q API, you apply them as follows:

kernel = cudaq.make_kernel ()
qubit = kermel.qgalloc (1)

kernel.x(qubit)
kernel.y(qubit)
B kernel .z (qubit)

E N
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Hadamard (H) Gate. One of the most important single-qubit gates is the Hadamard
gate, often denoted H. The Hadamard gate places a qubit into an equal superposition
of |0) and |1) (up to relative phase), making it an essential tool for creating superposition

states. In matrix form,
1 /1 1
=551 h),

which transforms the computational basis as H |0) = '0}“ and H|1) = >f|1> This
means that if a qubit is initially in state |0), applying H WI|| yield the superposition
[0+ (often written as |+)), and similarly |1) is mapped to f“ (the |—) state). The
Hadamard thus creates a balanced superposition of basis states, a critical step in many

quantum algorithms.

In circuit diagrams, the Hadamard gate is usually depicted as:

w {1}

Below is a code snippet illustrating how to apply an H gate using CUDA-Q:

llernel = cudaq.make_kernel ()
Bqubit = kernel.galloc (1)
M kernel .h(qubit)

Rotation Gates (7,, R,, [2.). More generally, any single-qubit unitary can be ex-
pressed as rotations about the Bloch-sphere axes. They are denoted R,(6), R,(6),
and R,(¢) for rotations about the z-, y-, and z-axes by an angle 0, respectively. These
gates allow continuous transformations of qubit states and are parameterized by the
rotation angle. In general, one can express these rotations as exponentials of Pauli

matrices: isin(®) cos(2) —sin(2) e~ /2
U mo= [ )| me= [0 o

G — R, (0)}— e —R,(0)— o —R.(¢) —

kernel = cudaq.make_kernel ()
kernel.qgalloc (1)
, phi, lam = 1.5708, 0.7854, 2.094

.rx(theta, qubit)
.ry (phi, qubit)
.rz(lam, qubit)

o o A W N =
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In summary, single-qubit gates allow us to prepare arbitrary superpositions and
apply phase rotations to individual qubits. In practice, however, quantum algorithms
(and specially quantum neural networks) operate on multi-qubit systems, and single-
qubit operations alone cannot generate the entanglement that lies at the heart of their
power. Instead, we make use of controlled (multi-qubit) gates to weave qubits to-
gether. Before diving into those entangling operations, we’ll first pause to introduce the
notation and structure of multi-qubit states.

6.4 Multi-Qubit States

A system of n-qubits lives in a 2"-dimensional Hilbert space. The joint state of
multiple qubits is given by the tensor (Kronecker) product of individual states. For two
qubits, one can write the state as

‘77D> = Voo |00> + vo1 |O].> + V19 ’]_0> + V11 |11> s

. . T
whose vector representation is [vgo, vo1, v10, V11 -

In general the computational basis for n qubits consists of |b,_1...by) with each
b; € {0,1}. Remember a multi-qubit state is separable (product) if it can be written as
the tensor product of single-qubit states (e.g. |1/) ® |¢)), and entangled otherwise.

6.5 Controlled Gates

Controlled gates act on multiple qubits by applying a unitary to target qubits only if
control qubits are in state |1). In general, a controlled-U (denoted C'(U)) acting on two
qubits has the block-diagonal:

cw =y 7]

where the upper-left block (action on |0)
on |1)

<) IS identity and the lower-right block (action
o) 18 U. Two commonly used controlled gates are the CNOT and CZ gates.
Controlled-NOT (CNOT) Gate. The CNOT gate (also called the controlled-X gate)
flips the state of the target qubit if and only if the control qubit is |1). In the computational
basis {|00) ,|01), |10),|11)} its matrix and circuit are:

1000

0100 9o ——
CNOT = 0001 91 —D—

0010
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Under its action, the CNOT gate effects the following transformations:
|00) — |00), |01) — |01), |10) — |11), |11) — |10).
If the control is in |+) and the target |0), then one of the Bell states is produced.

Example: Bell States

Two qubits both initialized to |0) form the product state |00). The following
circuit (a Hadamard on the first qubit followed by a CNOT) produces a maximally

entangled Bell state:
0) —{H F——

0) —————

After this circuit, the qubits are in the state 09+ \which cannot be factored

into a tensor product of single-qubit states. Besides the "standard bell" state, the
complete set of four orthonormal Bell states is:

~100) + |11) ) = |00) — [11) _|01) +|10) o) = |01) — |10)
T TR . A I

Such entangled states lie at the heart of quantum algorithms.

[¥) [27)

In code, one implements the CNOT gate via cx(control,target).

kernel = cudaq.make_kernel ()
Blqvec = kernel.qgalloc(2)
lkernel.cx(qvec [0], qvec[1])

Controlled-Z (CZ) Gate. The controlled-Z gate applies a Pauli-Z phase flip to the
target iff the control is |1). Its matrix is diagonal:

1 00 O
. 010 0
CZ = diag(1,1,1,—-1) = 001 0
0 00 -1
adding a (—1) phase to |11). When applied to w it produces an entangled

phase state.
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A circuit for CZ (control on g, target on ¢,) is:

do
.

In CUDA-Q, one can implement CZ by cz(control,target).

llkernel = cudaq.make_kernel ()
Blgvec = kernel.galloc(2)
(Mkernel .cz(qvec [0], qvec[1])

Controlled gates are central to building complex multi-qubit operations. By combin-
ing single-qubit rotations and multi-qubit controlled gates like CNOT and CZ, we can
construct arbitrary quantum circuits. In the context of quantum neural networks, these
gates enable entangling layers and two-qubit interactions that are essential for the
expressive power of the model by enabling feature mixing across qubits.

Before diving into more advanced topics, completing the exercises in the TQADL
Exercise Sheet is recommended. These exercises reinforce the fundamentals of cir-
cuit construction and will prove useful when designing and testing your own quantum
neural networks.

6.6 Parametrized Quantum Circuits

Most near-term quantum algorithms, including quantum neural networks (which
we will meet in Part[IV), rely on parametrized quantum circuits (PQCs). A PQC is a

unitaryf|

UO) = Un(Os) Unr—1(0pr-1) - - - Ur(6h),

where each gate U,,(6,,) is typically a parametrized rotation (6.3) whose angle 6,, is
a trainable real number and M = |0] is the total parameter count.

In CUDA-Q a circuit becomes parametrized as soon as you declare one or multiple
arguments in the kernel’s signature cudaq.make_kernel (xargs). The following code
snippet illustrates this idea for three qubits.

8A quantum circuit, parametrized (e.g. QNNs) or not, acts on the register as a single global unitary.
The reason is elementary: each gate is unitary and the set of unitaries is closed under multiplication.
Indeed, if U and V are unitary (UTU = VVT = 1), then (UV)T(UV) = VIUTUV = VIV =T; hence the
product UV is itself unitary. This mirrors the classical picture in which a multi-layer feed-forward neural
network can be treated mathematically as a single function.
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kernel, thetas = cudaq.make_kernel (list[float])
gvec = kernel.qgalloc(3)

Bfor i in range (3):
kernel .ry(thetas[i], qvec[il)

kernel.cx(qvec [0], qvec[1])
kernel.cx(qvec[1], qvec[2])
kernel.cx(qvec[2], qvec[0])

Listing 2: Three-qubit parametrised kernel U (8)

CUDA-Q also lets you define a parametrized kernel as a regular Python function
decorated with @cudaq.kernel. The parameters are passed in as plain Python val-
ues, so they can flow straight into any ordinary function and native arithmetic without
wrestling with symbolic placeholder{] (unlike with cudaq.make_kernel). The main
downside this method has is reduced modularity, which clashes with the object-
oriented coding style common in libraries such as PyTorch. The kernel body cannot
touch non-local variables (e.g. self attributes) and it is harder to embed sub-kernels.

@cudaq.kernel
def kernel (thetas: list[float]):
gvec = cudaq.qvector (3)

for i in range(3):
ry (thetas[i], qvec[il)

x.ctrl(qvec[0], qvec[1])
x.ctrl(qvec[1], qvec[2])
x.ctrl(qvec[2], qvec[0])

Listing 3: Alternative definition for the same three-qubit kernel of Listing

© ® N o a A~ W N o=

o

Throughout the book we will adopt the cudaq.make_kernel style, as its class-
friendly scope rules outweigh the extra boilerplate when building large, modular QNNs.

"CUDA-Q lowers kernel bodies to the MLIR Quake dialect, where every argument/parameter or op-
eration result is a QuakeValue. A QuakeValue is a symbolic placeholder; an SSA (Static Single As-
signment) handle that represents one definition in the compiler’s intermediate representation (IR). It can
stand for scalars (int, float), containers (1ist, qvector), or quantum objects (qubit) and overloads
basic arithmetic and indexing so the compiler can trace data-flow for optimization.
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6.7 Executing Quantum Circuits

Up to this point we have treated circuits as abstract sequences of unitary gates
that map an initial product state |0)*" into a final many-qubit wave function |¥,). The
moment we want numbers (e.g. probabilities, expectation values, gradients) we must
invoke the measurement and observable postulates introduced in Section

CUDA-Q exposes three complementary entry-points that correspond almost one-
to-one with the three most common laboratory tasks:

B sample: performs projective measurements in the computational (Z) basis for
a user-specified number of shots, returning the raw bit-string histogram. This is
the routine we will rely on throughout the Quantum Neural Network chapter.

B observe: evaluates the expectation value (H) = tr(p H) of a Hermitian opera-
tor H by automatically rotating to appropriate Pauli bases and re-assembling the
weighted sum.

B get_state: returns the full state vector (simulation backend only).

1. Sampling: projective read-out statistics The sample routine executes the texi-
book projective measurement of Sec. For each shot CUDA-Q

(i) projects |¢uut) Onto the computational (Z) basis,
(i) collapses the entire n-qubit register to a single basis state |b,,_; .. . bo),
(iii) returns the corresponding classical bit-string b,,_1 . . . bg.

By repeating this process for a user-defined number of shots, sample builds up a his-
togram of outcomes whose relative frequencies converge to the circuit’s Born probabil-
ities.

Using the same parametrized circuit from Listing 2

[l import cudaq
from math import pi

counts = cudaq.sample (

o> o o~ W N

kernel, [pi, pi/2, pi/3], shots_count=1024

7 N

tMprint (counts)
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[l 6.7 EXECUTING QUANTUM CIRCUITS

Expected output (device- and noise-dependent):

{ 001:111 011:389 100:386 110:138 %

Because a simulator retains the full wave function in memory, it can draw all 1000 bit-
strings from one state-vector. A real device, in contrast, must re-prepare its state for
every shot; a direct, experimental manifestation of wave-function collapse.

2. Observing: expectation values of Hamiltonians Many quantum algorithms
hinge on the average energy (H) of some Hermitian operator H (Sec. . CUDA-Q’s
observe call internally

(i) decomposes H into tensor products of Pauli operators,
(i) measures each term in the appropriate rotated basis, and
(iii) re-assembles the weighted sum.

By default observe performs analytical expectation-value evaluation on a simulator
(one circuit run suffices), but you can switch to a shot-based estimate (identical in spirit
to sample) by providing a shots_count parameter. This is the setting one would use
on real hardware or when wanting to benchmark finite-sampling noise in a simulation.
Consider the following two-qubit GHZ-state kernelf]

from cudaq import spin

Ocudaq . kernel
def ghz_kernel (num_qubits: int):
gvec = cudaq.qvector (num_qubits)
h(qvec [0])
for i in range(l, num_qubits):
x.ctrl(qvec[0], qvec[il)

© ® N o O &~ W N o=

S@H = spin.z(0) + spin.y (1) + spin.x(0) * spin.z (1)

flcxpect = cudaq.observe (ghz_kernel, H, 2, shots_count = 1024).
expectation ()
[Blprint (rf"<H> = {expect:.3f}")

For the ideal two-qubit GHZ state (|00) -+ |11))/+/2 this Hamiltonian yields (H) = 0, in
perfect agreement with the ab-initio calculation tr(p H) = 0.

8The Greenberger-Horne-Zeilinger (GHZ) state (|0)®" + [1)®")/+/2 is a maximally entangled
n-qubit state. The maximally entangled Bell state is the simplest, 2-qubit, instance of a GHZ state
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3. Accessing the full wave function (simulation only) Finally, get_state exposes
the entire state-vector in big-endian ordering |b,_1 ... by) «—2""1b,_1+---+2%;. This
is a diagnostic tool, nothing in genuine quantum hardware can reveal global amplitudes
without exponential effort; but it comes in handy for debugging and experimenting.

(Chap.[IV).

import numpy as np

state = cudaq.get_state(ghz_kernel, 3)
print (np.array(state))

o o A W N =

The two non-zero components correspond to [000) and |111), exactly the branches
predicted using the equations in Sec.

Even though our Quantum Neural Network workflows rely exclusively on sample
and learn directly from shot statistics, it is still worth keeping observe and get_state
in view. In some of the recent literature QNN outputs are defined as expectation val-
ues of a read-out observable, and many simulation studies benchmark new ansatze
by comparing the full state vector against a target. Knowing how these two API calls
realise the measurement postulates and unitary dynamics reviewed in Part [l will there-
fore prove useful whenever you compare our sampling-based approach with alternative
formulations.
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7 Quantum Processing Units

Thus far, we’ve described quantum computing in an abstract circuit model. In re-
ality, executing quantum circuits requires specialized quantum hardware (Quantum
Processing Units or QPUs). There are several leading physical implementations of
qubits, each with pros and cons. CUDA-Q is designed to be hardware-agnostic and
connects to multiple types of QPUs via cloud providers. Here we overview four major
quantum hardware paradigms and discuss how to run circuits on actual devices.

7.1 lon-Trap QPUs

Trapped-ion computers confine a linear string of identical ions (Yb*, Ba*,...) in
an electromagnetic potential. The qubit states sit in two long-lived electronic levels,
manipulated by coherent laser pulses; shared vibrational modes in the chain medi-
ate entangling operations, giving a naturally all-to-all connectivity. Because these ions
are genuine atomic clones, gate fidelities exceed 99.9 % and coherence times run
into seconds, making trapped ions the accuracy champions of today’s hardware. The
price is speed: single-qubit rotations last microseconds and two-qubit gates tens of
microseconds, so wall-clock runtime becomes the limiting resource for deep circuits.
Current commercial systems top out near one hundred ions in a single trap; larger pro-
cessors are expected to network multiple traps with photonic links. Notable platforms
include lonQ’s Aria and Quantinuum’s H-series. CUDA-Q connects to both through
the same call:

Blcudaq.set_target ("ionq", qpu="qpu.aria-1")

lMcudaq.set_target ("quantinuum", machine="H1-2")

7.2 Superconducting QPUs

Superconducting processors pattern aluminium—on—silicon transmons, artificial atoms
whose two lowest microwave levels form a qubit. Chips are cooled to a frigid ~10 mK
so that thermal noise is frozen out, and nanosecond-scale microwave pulses effect ro-
tations, while dedicated couplers supply two-qubit gates on neighbouring sites. Here
the virtues are speed (tens of nanoseconds per gate) and foundry manufacturability;
the drawbacks are modest coherence (tens—hundreds of microseconds) and planar-
lattice topology that forces extra SWAP operations. CUDA-Q already ships drivers for
Anyon Technologies, IQM, and Oxford Quantum Circuits (OQC):
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BAlcudaq.set_target ("anyon", machine="telegraph-8q")

Scudaq.set_target ("iqm", url="https://<server>/cocos",
4 *x{"qpu-architecture":"Adonis"})

Blcudaq.set_target ("oqc", machine="lucy")

7.3 Neutral-Atom QPUs

Neutral-atom machines trap individual Rb or Cs atoms in reconfigurable arrays of
optical tweezers. A brief promotion to a highly excited Rydberg state switches on
a strong dipole—dipole interaction, so pairs of tweezers act as controllable two-qubit
gates. These platforms combine programmable geometry with sub-microsecond gate
times and can already reach a few hundred qubits, albeit with coherence limited by
the Rydberg lifetime. CUDA-Q speaks natively to Inflegtion’s gate-based hardware,
Pasqal’s analog “Fresnel” device, and QuEra’s 256-qubit Aquila via Amazon Braket:

Blcudaq.set_target("infleqtion", machine="cq_sqale_qpu")

GlMcudaq.set_target ("pasqal", machine="FRESNEL")
Mcudaq.set_target ("quera")

7.4 Photonic QPUs

In photonic processors the information carrier is the photon itself, encoded for in-
stance in dual rails, polarization, or time bins. Photons travel essentially decoherence-
free at room temperature, so the chief engineering challenges are on-demand single-
photon sources, low-loss interference, and high-efficiency detectors. ORCA Com-
puting’s PT-series adopts a time-bin interferometer that naturally fits boson-sampling
workloads and continuous-variable algorithms. A single environment variable is all
CUDA-Q needs:

[l import os, cudaq
Borca_url = os.getenv("ORCA_ACCESS_URL", "https://ptl.orca.com

(Mcudaq.set_target("orca", url=orca_url)

With these four paradigms in hand you can select the fabric that best suits a given
algorithm, all without changing a single line of quantum-kernel code.

35



. 7.5 SIMULATION BACKENDS

7.5 Simulation Backends

At the time of writing, public quantum processors rarely exceed one hundred phys-
ical qubits and are still limited by coherence times and gate fidelity. For that reason a
serious workflow in quantum-enhanced deep learning always begins on classical hard-
ware, where kernels can be tested, tuned, and even fully trained long before the first
token of cloud credit is spent on a QPU. CUDA-Q answers that practical need with a
family of simulators that preserve one guiding promise: whatever you intend to run on
hardware is exactly what you run in-silico. Whether the wave function lives in CPU
memory, on a single GPU, is sharded across a cluster, or is hidden inside a tensor
network, a single target string controls the migration and nothing else in your code has
to change.

Runs small CPU simulations with a handful of qubits

Accelerates simulation with single GPU using 'fp64' or 'fp32' (default)

>
‘nvidia', option ='mgpu’ Simulates large state vectors with multi-GPU multi-node support
fe"5°m9t Runs multi-GPU multi-Node simulations of circuits using tensor networks
‘tensornet-mps' Runs GPU accelerated matrix product state simulations
- fermlomq Runs approximate tensor network simulations
'nvidia', option='mqpu’ Runs applications in parallel on multiple QPUs, each simulated by a GPU
-
Runs other simulators (tensornet, mgpu, etc.) using MQPU platform
_,_——b ‘nvidia' Runs GPU Accelerated SV simulations with noise trajectories
——>| 'tensornet’ Runs GPU Accelerated tensor network simulations with noise trajectories
— 'tensornet-mps’ Runs GPU Accelerated MPS simulations with noise trajectories
_. Runs Clifford simulations for quantum error correction
——p 'density-matrix-cpu’ Runs noisy simulations to understand the impact on your applications
_,-—. Runs state vector simulations of photonic circuits

Figure 6: CUDA-Q’s circuit simulation landscape. Purple labels are valid
arguments to cudaq.set_target. Green branches are the paths most rele-
vant to quantum neural networks.

We start with the state vector engines because they behave like a perfect Schrédinger

laboratory: the global amplitude of every basis state is available and the only limitation
is memory. On a laptop without CUDA the gpp-cpu target is the default; it is OpenMPﬂ
threaded, double precision, and remains comfortable until roughly twenty eight qubits.

%0OpenMP (Open Multi-Processing) is a portable, directive-based API that lets C, C++, and Fortran
programs exploit shared-memory parallelism on multicore CPUs.
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llcudaq.set_target ("gpp-cpu")
Bhist = cudaq.sample(kernel, shots_count=1024)
SMprint (hist)

When a single NVIDIA GPU is present, the target named nvidia silently switches
over to cuStateVec: the entire wave function is placed in device memory, gates are
fused on the fly, and CUDA cores power through millions of amplitudes per clock tick.
On a 64 GB H100 the single precision flavour fits thirty three qubits; choosing double
precision (fp64) sacrifices a few qubits for numerical stability, something you may need
if your loss landscape is particularly steep or your QNN uses large amplitude rotations.

llcudaq.set_target ("nvidia", option="fp32")

Blloss = cudaq.observe(kernel, H).expectation ()

Large data batches, hyperparameter grids, or simply bigger models eventually over-
run the RAM of a single card. Appending the option mgpu distributes the state vector
across all visible GPUs and, under MPI, across nodes as well.

cudaq.set_target("nvidia", option="mgpu,fp64")

Where state vector methods run out of steam, tensor networks take over. The
target tensornet rewrites the entire circuit as an exact tensor graph and contracts it
with cuTensorNet. Because contraction order is chosen automatically, wide but shal-
low circuits (some quantum neural network architectures) scale to thousands of qubits
before memory becomes an issue.

llcudaq.set_target ("tensornet")
Bhist = cudaq.sample(kernel, shots_count=1024)

If depth grows while entanglement stays local, an approximate matrix product state
picture is often faster. Switching to tensornet-mps keeps only the largest singular
values. Hundreds of qubits on a single GPU become routine.

[l import os
Blcudaq.set_target (’tensornet -mps", option=’fp32°)
Blsamples = cudaq.sample (kernel, shots_count=4096)

37



. 7.5 SIMULATION BACKENDS

Not every workload is a single, monolithic circuit. Optimizing a QNN often means
evaluating dozens of parameter sets in parallel. Adding the Multi-QPU simulation
option, mgpu, instantiates one virtual QPU per GPU and lets you launch asynchronous
jobs with sample_async or observe_async. CUDA-Q hides the thread pool or MPI
ranks; you simply collect futures when you need the numbers back.

cudaq.set_target("nvidia", option="mgpu")
futs = [
cudaq.sample_async(gqnn, p) for p in parameter_grid

]
grads = [f.get() for f in futs]

g A W N =

Real devices suffer noise, and so should our simulations. Any GPU backend-state
vector or tensor network enters the Monte Carlo trajectory regime as soon as a Noise
model is supplied. Each gate is wrapped in Kraus operators (4.5), trajectories are
sampled shot-by-shot, and statistical error shrinks like 1/,/Ny,. The call signature is
unchanged.

cudaq.BitFlipChannel (0.01)
cudaq.NoiseModel ()
.add_all_qubit_channel ("x", bit_£flip)

.set_target ("tensornet")
cudaq.observe (
kernel, H, noise_model=noise, num_trajectories=4096
) .expectation ()

N o o &~ W N o=

In practice you will jump between these backends oftenly: gpp-cpu for quick as-
sertions, nvidia fp32 for fast gradient loops, mgpu when the model grows, tensornet
for thousand qubit experiments, and mgpu whenever a parameter grid appears. The
kernels never notice the change, you merely point them at a new backend and execute
them.
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Artificial Intelligence seeks to empower computers to perform tasks that defy
straightforward human explanation. These could be processes whose detailed mecha-
nisms remain unknown or tasks we understand intuitively but struggle to define clearly
at the low-level detail a computer requires. For instance, consider recognizing a dog
in an image: humans effortlessly identify characteristic features—fur, tail, paws—that
constitute "dogness". Yet, for a computer, an image is merely a numerical array of pixel
values devoid of intrinsic meaning. No direct computational rule encodes concepts
like fur or paws within these numbers, highlighting a fundamental gap between human
intuition and machine interpretation.

Classical Al addresses this challenge through learning-based models, particularly
Artificial Neural Networks (ANNs). Rather than relying on explicit instructions, these
models autonomously identify patterns by adjusting parameters based on extensive
labeled datasets. Consequently, ANNs uncover subtle and distributed features in data
that would be impractical or impossible to explicitly program.

Despite the empirical success of deep learning, classical methods are reaching sig-
nificant limitations due to their rising computational and energy demands. Quantum
computing, though still in its exploratory youth, offers a radically different computational
paradigm by leveraging the principles of quantum mechanics. Unlike classical com-
puting, quantum computing exploits these phenomena to process information in par-
allel and with potentially exponential speedups for certain types of problems. Specif-
ically, parametrized quantum circuits (Sec. present themselves as promising
contenders to classical ANNs, potentially addressing current computational constraints.

8 Installing Torch-Quantum

Torch-Q is a quantum-native deep-learning library developed alongside this book.
We'll use it in this chapter to build and test custom quantum neural networks within the
familiar PyTorch ecosystem. Torch-Q provides drop-in nn.Module layers, autograd-
compatible parameter-shift gradients and other research-friendly utilities [11].

Before installing Torch-Q, ensure you have already completed the steps in Section[5]
to install CUDA-Q and the required extra hooks.

pip install torch-qu

You're now equipped to follow the examples in the following sections and integrate
Torch-Q into your quantum machine-learning experiments and research workflows.
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9 Architecture and Forward Pass

It has already been spoiled that a quantum neural network (QNN) is, in essence,
just a parametrized quantum circuit (PQC); not a neural network in the classical sense
[12]. We adopt the familiar terminology to help newcomers recognize the analogy, but
in the literature you may also encounter names such as variational quantum classifiers.
Regardless of name, the structure is the same.

/ ” A vl/.
Vo «f»
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Figure 7: Classical Neural Network

Just as a classical neural network decomposes into an input layer, one or more
hidden layers, and an output layer (Fig.[7), a QNN naturally splits into three building
blocks:

Feature map. Encodes the classical input data into a quantum state.

Variational form. Applies a trainable sequence of gates, whose parameters will
be optimized.

Output measurement. Maps the final quantum state back to a set of classical
values (probabilities, expectation values, bit-string counts).
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In code, and following our modular design, we implement each of these blocks as a
subkernel and then “stitch” them together. For example:

1 thetas = cudaq.make_kernel (List[float], List[float])
kernel.qalloc(in_features)

n

kernel.apply_call (feature_map.kernel, qvec, x)

® N o o A W

kernel.apply_call (var_form.kernel, qvec, thetas)

Listing 4: A Quantum Neural Network abstract kernel example

Here, kernel .apply_call invokes another kernel (our feature map or variational
form) on the same quantum register qvec, forwarding the appropriate arguments. This
approach keeps each block encapsulated, mirroring the block structure familiar from
standard deep-learning tooling (e.g. PyTorch) and makes it easy to swap in new feature
maps or variational forms without rewriting the QNN’s outer loop.

The final piece, output measurement, is performed at execution time; once you
invoke cudaq.sample. In the sections that follow we will unpack each of these compo-
nents in depth: Feature maps, Variational forms and Output measurements.

9.1 Feature Maps

A classical feed—forward network accepts its input x € R™ by directly evaluating a
trainable function fg: x — y. Quantum circuits do not enjoy this luxury: the register
begins in a fixed reference state, usually [0)*", and only unitary gates may act on
it. Consequently the classical data must first be encoded into a quantum state by a
feature-map unitary

Us(x) = |0V = |1,) = Us(x) |0)*™,

whose image {\%)}xeRm C ‘H plays the role of a high-dimensional quantum feature
space. Only after this embedding layer does the variational circuit Gy act and learning
proper begins (Fig.[8). Because each qubit can carry at most one real degree of free-
dorrF_G], it is customary to choose the number of qubits equal to the input dimension, m,
so every entry x; has its "own" qubit.

0The global phase is physically irrelevant.
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0) — [~ =
0) — [~ 2

N Up(x) [0)%™ = Jtby) Go |12) = |go(7)) EI ;
0 — =

Feature map Variational form Measurement

Us () Gy f(z)=y

Figure 8: Quantum neural network viewed as a three-stage pipeline. A clas-
sical datum z is first embedded by the feature-map unitary Us(z) (left block),
producing the state [¢,). A trainable variational circuit Go then maps |¢,) to
lge(x)) (centre block). Finally, projective measurements in the computational
basis yield a bit-string z = (z1,...,2x,), which is fed into a classical post-
processing function f(z) = y.

The simplest possible embedding is to write each real feature value into the phase
of its qubit by a single Z-rotation,

Uz(x) = ®Rz(xi), R.(p) = exp(—%goZ) = cos(£) I —isin(£) Z.

On the computational vacuum, each qubit becomes |0) — cos(%) [0) —isin(%) |0) =

2
e~*i/210) | so the global state acquires a phase |®;(x)) = =3 T 0)*™ . Although
this phase is global and may appear trivial, its importance is revealed once the varia-
tional circuit entangles the qubits: interference converts the phase factors into measur-
able bilinear trigonometric functions of the inputs. Indeed, expanding each R,(z;) in
the Pauli basis,

R.(z;) = %[(1+cosa:i)l—isina:iZ],

and taking tensor products, one finds that the expectation value of any Pauli worcE]
P e {I,Z}®™is a product of either cos z; or sin x; factors; hence a bilinear form in the
features after the trigonometric identity sinz cosy = 1 [sin(z + y) + sin(z — y)]. This
proves that the Z-rotation embedding already lifts the data into a non-linear feature
space.

""A Pauli word is any tensor product P = P; ® P, ® -+ ® P, of single-qubit Pauli operators P; €
{I,X,Y,Z}. For the R.-only feature map we need only the commuting subset {I, Z}®™, which is
diagonal in the computational basis.
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Within the Torch-Q framework, one can implement a minimal, reusable feature map

layer that realises U (x) which may be expressed in code as follows:

© ©® N o o A~ W N o=

cudaq, torchqg.quantum as qu

MyFeatureMapLayer (qu. Ansatz) :
__init__(self, num_qubits:

().__init__(num_qubits)

build_kernel (self) -> cudaq.Kernel:

kernel, qvec, x = cudaq.make_kernel (cudaq.qvector,

ip)
i (self .num_qubits):
kernel .rz(x[i], qvec[i])
kernel

get_parameter_count (self) ->

self .num_qubits

Stacking L such layers yields the full feature map

N

© ©® N o O

torchq.quantum. feature_maps as qfm

MyFeatureMap (qfm.FeatureMap) :
__init__(self, in_features: , num_layers:

().__init__(in_features, num_layers)

build_kernel (self) -> cudaq.Kernel:
kernel, qvec, x = cudaq.make_kernel (cudaq.qvector,

D
1 (self .num_layers):
layer = MyFeatureMaplLayer (self.num_qubits)
self.layers[f"layer_{1}"] = layer
kernel.apply_call (layer.kernel, qvec, Xx)
kernel

This single-qubit i, embedding is, in fact, the simplest member of the broader Pauli

(Havlicek) feature-map family introduced in [13]. More expressive models enlarge
the Pauli set P beyond the one-body Z operators to include (Pauli) words such as Z 7,
XY Z, etc., thereby injecting higher-order products of the input features into the phase
factors. Givenaset P C {X,Y, Z, I}®™ of Pauli strings that exclude the identity, define

Up(x) = Hexp(iap H T, P),

PeP jé€supp(P)
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where ap € R is a tunable scale and supp(P) denotes the qubit indices on which P is
not the identity.

Circuit-wise Eq. (9.1) is diagonal in the computational basis, and each exponential
can be realised by

(i) single-qubit basis changes (H or R, (7/2) for X/Y);

(i) a CNOT ladder that successively XORs the parity of those qubits onto the last one
(this step entangles the specified qubits whenever | supp(P)| > 1);

(iii) a single, data-dependent rotation R.(cp [, cqpp(p) (T — 25)) On that last qubit;

(iv) the reverse CNOT ladder followed by the inverse basis changes, which disen-
tangles the register and restores the original computational basis.

Because Eq. multiplies products of features into the exponent, the kernel con-
tains polynomial terms of arbitrarily high degree. In fact, Havlicek et al. showed that,
for suitable P, estimating K up to additive error is #P-hard, making the correspond-
ing SVM kernel classically intractable. This is precisely the regime where a quantum
computer can enjoy an advantage.

Torch-Q’s quantum module exposes a PauliFeatureMap class whose constructor
takes nothing more exotic than

MPauliFeatureMap (in_features, num_layers, paulis, entanglement
="full", alpha=2.0)

where paulis is a list of Pauli strings such as {"Z","ZZ","XYZ"}. Under the hood
the call chain PauliFeatureMap -+ PauliFeatureMapLayer - PauliBlock expands
Eq. into basis-change gates, CNOT ladders, and a single data-driven R, per Pauli
word, then stacks everything for as many layers as you asked for.

A quick way to see what any choice of P does is simply to draw the circuit:

import cudaq, torchq.quantum.feature_maps as qfm

cjm = 3
paulis = [IIZH’ |lYYll’ ”ZXZ”]
fm = gfm.PauliFeatureMap (

in_features=m,
num_layers=1,
paulis=paulis
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kernel, x = cudaq.make_kernel (list[float])
gvec = kernel.qgalloc (m)

cMkernel .apply_call (fm.kernel, qvec, x)
print (cudaq.draw(kernel, [0.1, 0.2, 0.3]))

Tweak the paulis list, run the code, and you will immediately recognise how higher-
weight words increase entanglement depth and parameter coupling.

Because the two Pauli sets Py = {Z;}", Pzz = {Z1,..., Z4, Z1Z5, ..., Zm-1Z4}
appear in almost every QML paper, Torch-Q provides them as convenience wrappers:

7 map = qfm.ZFeatureMap (in_features=2, num_layers=1)
77 _map = qfm.ZZFeatureMap (in_features=2, num_layers=1)

Q% R.(0.2) — % R.(0.2)
A R.(0.4) — N R.(0.4) R.(17.89)
(a

) (b)
Figure 9: One-layer (a) Z and (b) ZZ feature maps.

Either can be dropped into a QNN exactly like the generic PauliFeatureMap, they are
simply pre-configured instances with defaults entanglement="full" and o = 2.

9.2 Variational Forms

In feed—forward networks the trainable weights appear before the non—linearity, so
every neuron can mix the full input vector via the simple, but enormously powerful,

linear combination © © D o

¢ ¢ {—1 4

)=o) wi bV +0)).

By contrast, a quantum circuit evolves by unitaries, and the only mechanism able
to fuse information carried by different qubits is entanglement. A variational form
(sometimes called “ansatz”) therefore interleaves local parameterised rotations with
an entangling pattern of multi—qubit gates, exactly mimicking the linear to non-linear
alternation that drives classical deep learning.
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Similar to the simple Pauli-Z feature map we studied in Sec.[9.1], the absolute sim-
plest choice places a single R, (6;) rotation on every qubit,

ggaive _ ®RZ<6@), RZ(G) _ 67%0Z.
=1

While perfectly legitimate, this ansatz is ill-posed: because every qubit is acted on in-
dependently, no entangling mechanism exists to fuse information across qubits. Each
wire merely stores a unary feature, the joint bit-string read-out factorises into indepen-
dent marginals, and the model offers no way to capture correlations; reducing it to little
more than a per-qubit lookup table.

The obvious cure is to insert two—qubit gates that propagate phase information
across the register. The lightest variant is a “linear chain” (nearest—neighbour) of
CNOTs:

G = [Cg™ ) @R
i=1

where O)((i’i“) flips qubit i+1 conditioned on qubit <. The single layer above already suf-
fices to couple all 6;’s via many—body Pauli words generated by conjugation, Cx Z; Cx =

ZiZiy1-

The following code demonstrates how this lean variational layer is implemented
within the Torch-Q framework:

import cudaq, torchq.quantum as qu

class MyVariationalFormLayer (qu.Ansatz):
def __init__ (self, num_qubits: int) -> None:

super () .__init__ (num_qubits)

def build_kernel (self) -> cudaq.Kernel:
kernel, qvec, thetas = cudaq.make_kernel (cudaq.

© ® N o g A~ W N o=

gqvector, list[float])
10 for i inmn range(self.num_qubits):
11 kernel .rz(thetas[i], qvec[i])
12 for i in range(self.num_qubits - 1):
13 kernel.cx(qvec[i], qvec[i + 1])
14 return kermnel

16 def get_parameter_count (self) -> int:
17 return self.num_qubits
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Stacking L identical layers yields the full variational form:

[ import torchq.quantum.variational_forms as qvf

lclass MyVariationalForm(qvf.VariationalForm):

4 def __init__(self, num_qubits: int, num_layers: int) ->
None:

5

6 super () . __init__ (num_qubits, num_layers)

7

8 def build_kernel (self) -> cudaq.Kernel:

9 kernel, qvec, thetas = cudaq.make_kernel (cudaq.
gvector, List[float])

10 ptr = O

11 for layer in range(self.num_layers):

12 layer = MyVariationalFormLayer (self.num_qubits)

13 self.layers[f"layer_{1}"] = layer

14 cnt = layer.get_parameter_count ()

15 kernel .apply_call (layer.kernel, qvec, thetas[ptr

ptr + cntl)
16 ptr += cnt

17 return kernel

19 def get_parameter_count (self) -> int:
20 return self.num_layers * self.num_qubits

The pattern rotation — entanglement is so ubiquitous in the QNN literature that it is
commonly formalized under the umbrella term NLocal [14]. An NLocal ansatz repeats

[rotation block] — [entanglement block]

for a user-chosen number of layers, optionally closing with an extra rotation stage.
Rotation blocks accept an ordered list of single-qubit gates (e.g. "ry", "rz"), while
the entanglement block specifies (a) the multi—-qubit gate ("cx", "cz",...) and (b) the
coupling graph: "full", "linear", "reverse_linear", or an explicit list of pairs.

Three celebrated instances, widely used in QML benchmarks, fit seamlessly into
this scheme.

B RealAmplitudes: Rotation= RY, Entanglement= CX (all layers identical). Suit-
able for real-valued wave-functions and the go-to baseline in variational classi-
fiers.

B EfficientSU2: Alternating RY—RZ local gates wrapped by CNOTs. Provides a
universal gate set per layer and approximates arbitrary unitaries with O(nL) pa-
rameters.
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B PauliTwoDesign: Randomly samples one Pauli rotation per qubit and entangles
with a pair-patterned CZ network, approaching a unitary 2-design in depth ~
logn [15]. Excellent for “hardware-efficient” explorations.

Each of these classes is nothing more than a pre-configured NLocal with a specific
choice of rotation list, entanglement gate, and connectivity graph:

llansatzl = qvf.RealAmplitudes (num_qubits=4, num_layers=1,
entanglement="full")

flansatz2 = qvf.EfficientSU2(num_qubits=4, num_layers=1,
su2_gates=["ry", "rz"])

Mansatz3 = quvf.PauliTwoDesign (num_qubits=4, num_layers=1, seed

g0 — Ry (6:) Ry (65)

0 — Ry(62) X R, (06)

4z —| R, (0s) x| x| Ry (67) —
g5 — Ry (60) [X] (X x}—{R,65) |—

Figure 10: Real Amplitudes Ansatz.

Combined with the feature maps seen in Sec. the variational form just described
already closes the unitary part of a QNN; everything that follows lives outside the
circuit and consists solely of the final computational-basis measurement and classical
post-processing that turns amplitudes into classical data.

9.3 Output Measurements

Among the many problems tackled by modern Al, classification is the work-horse
task that powers computer-vision pipelines, large-language models, speech recogni-
tion, fraud detection, medical triage, and countless other deep-learning applications. It
will therefore be our overriding objective in the remainder of this part: convert quantum
amplitudes into class scores.
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After the variational form has acted, we project the register onto the computational
basig’? A single shot returns a bit-string

z=(z1,...,2m) € {0,1}™.

Repeating the circuit S times produces a multiset 2 = {2 ... 2} whose em-
pirical frequencies converge, in the S — oo limit, to the Born probabilities P(z) =

Iz U (2, 0) [a) 1.

Because our objective is classification, we can map every shot to one of C classes. Let
g:{0,1}"—{0,...,C -1}

denote a hash that assigns each string to a class index. The simplest and most
hardware-friendly choice interprets the bit-string as an unsigned integer and then re-
duces modulo C:

m

c = g(z) = [ ZQm’izz} mod C. (8)

=1
et
binary-to-int
Accumulating hash outcomes over all shots yields the count vector n = (ny,...,nc_1)",
n. = #{z € Z | g(z) = ¢}, and the empirical class probabilities

. e A n c-1
= — = eA
pc S7 p ||I].||1 )

(9)

where A“~1 is the (C—1)-simplex. In mini-batch training we repeat this procedure for
every sample in the batch, producing the tensor results shown in Listing 5| Those
probabilities can be later fed directly to a classical loss (e.g. cross-entropy).

batch_size: int = x.shape[0]

num_classes: int = self.out_features

device = theta_vals.device

results = torch.zeros(batch_size, num_classes, device=device)
theta_list = theta_vals.detach().tolist ()

for i in range(batch_size):
feature_list = x[i].detach().tolist ()
shots = cudaq.sample (self.kernel,

10 feature_list,

1 theta_list,

© ® N o O &~ W N o=

2Measurements in rotated bases or using POVMs are possible, but the Z basis keeps hardware
demands and exposition minimal.
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shots_count=self.shots)

class_ids = torch.tensor (
list(
map (
lambda bs: int(bs, 2) % num_classes,
sample_results.get_sequential_data (),

)
),
dtype=torch.long,
device=device,
)
counts = torch.bincount(class_ids, minlength=num_classes)
results[i] = counts / counts.sum()

Listing 5: Forward pass

Although the hash-and-count rule is appealingly simple, its expressive power is
limited by the combinatorics of Eq. (8). A more flexible (and hybrid) alternative first
extracts the raw marginal statistics p € A?"~! of all observed bit-stringg™| and then
applies a classical linear head

y = softmax(Wp +b), W e RE?" b e RC. (10)

Because W and b live entirely on the CPU/GPU, they can be trained together with the
quantum parameters or fine-tuned afterwards, turning the QNN into a feature extractor
and delegating the final decision boundary to a lightweight neural layer.

Although the hybrid head in Eq.,(T0) offers greater expressivity, it also introduces
significant practical challenges:

(i) The addition of a full 2™-dimensional weight matrix drastically increases the num-
ber of trainable parameters, which in turn magnifies the stochastic noise from
finite-shot sampling.

(ii) Coupling this large classical layer with the quantum circuit creates an especially
rugged, non-convex optimization landscape, making training more difficult.

As a consequence, the much simpler modulo hash approach frequently achieves com-
parable accuracy using fewer training epochs and far lower shot counts.

With the forward pass now complete (feature map, variational form, measurement
and post-processing) all that remains is to differentiate the circuit outputs with respect
to the parameters 6. The following section develops the parameter-shift rule and other
backward methods.

13In practice we restrict to the strings that actually appear in the shot record, padding with zeros so
the vector length is constant.
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10 Backward Pass

In classical deep learning, efficient training hinges on backpropagation, which
computes all gradients in a single reverse pass through the network. Backpropaga-
tion relies on two key ideas:

(i) Storing intermediate activations. During the forward pass, every hidden-layer
output is saved.

(i) Reusing those activations via the chain rule. In the backward pass, we reuse
the saved values to propagate gradients without re-running each layer from scratch.

As a result, computing the full gradient of a network with d parameters costs only about
the same (up to log factors) as a single forward evaluation. This “backpropagation
scaling” makes it possible to train very large models efficiently.

A quantum neural network (QNN), however, follows a very different paradigm. Once
the forward circuit has run, the hardware holds one copy of the final m-qubit state
lge(z)). Any projective measurement collapses that state, erasing its amplitude infor-
mation. Because of the No-Cloning theorem, we cannot create additional perfect
copies of |gs(z)) to reuse in a backward pass. Consequently, we cannot “save” inter-
mediate quantum states and later “rewind” through them.

No-Cloning Theorem (review of Secs. 3 and 4.6)

There is no physical operation (unitary) that, given an unknown quantum state
|1}, produces two identical copies |¢) ® |¢). Formally, no unitary U on H @ H
can satisfy

U(l)®10)) = [v) @) forall[1).

Simple proof sketch. Suppose, for contradiction, there were a unitary U and a
fixed “blank” state |0) such that

U(|v) @10)) = [¢) @ |¢)  for every unknown [¢)).

Pick two distinct, non-orthogonal states |¢) and |x). Their inner product is (¢ |
X) = s # 0, 1. After cloning, the inner product of the outputs would be (¢ ® ¢ |
X ® x) = s?. But a unitary must preserve inner products. We would require
s = s2, which holds only if s = 0 or s = 1. That contradiction shows cloning is

impossible.
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. 10.1 FINITE-DIFFERENCE GRADIENTS

Because of No-Cloning, any “quantum backpropagation” must reprepare the state
lge(z)) from scratch at each needed parameter configuration. In practice, to estimate
partial derivative of the loss with respect to the k-th parameter, dy, L, we run two new
circuits with parameters 6, = A. Below we examine two such methods.

10.1 Finite-Difference Gradients

A naive and straightforward way to approximate the derivative dyL(6), without rely-
ing on any specialized quantum gradient techniques, is to employ the centered finite-
differences:

OL _ L(O+s) — L(0—s)

o6~ 2s ’
Here L(0) is obtained by running the circuit at # and measuring an observable multiple
times. To estimate L(f + s), we must run two independent forward circuits. In a QNN
with d parameters, each small step s costs two full circuit executions. Moreover:

error = O(s?).

B If sis too small, shot noise (from finite sampling) dominates the numerator L(6 +
s)— L(0 — s).

B If sis too large, the O(s?) error becomes significant.

Thus one must carefully choose s, and still pay 2M circuit calls per data point. For even
moderate d, this quickly becomes infeasible on noisy, near-term hardware.

10.2 Parameter-Shift Rule

The parameter-shift rule can be viewed as a special case of the centered finite-
difference formula with step s = 7. In a generic finite-difference approximation, one
incurring an O(s?) truncation error. However, choosing s = 5 makes that truncation
error vanish identically. This choice is not merely convenient, 7/2 is the unique step

size that yields an exact derivative for the loss function derivative.

A key feature of the variational forms introduced in Secs. [6.6] and [9.2] is that each
trainable gate acts as a rotation about a Pauli operator (or Pauli string) P with P? = 1.
Concretely, any single-parameter gate in our QNN can be written as

Rp(0) = exp(—% 9P> =cos($) I —isin(%) P, P*=1.

Since every other gate in the network is independent of 6, any scalar loss function
L(#) produced by the circuit (for example, a measured probability, an expectation value,
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. 10.2 PARAMETER-SHIFT RULE

or a loss) must be a linear combination of cos(¢/2) and sin(6/2). In other words, there

exist real constants A and B such that
L) =A cos(g) + B sin(g), (jl—g = —% A sin(g) + % B cos(g).

On the other hand, notice that shifting the argument ¢ by 7 effectively rotates the
half-angle & by Z. In particular, one has

cos(9+72) =cos(4+7) = NG [cos(g) — sin(g)},

0+ . :
sin(252) = sin(§ + %) = L5 [sin(4) + cox(3) .
and similar goes for ¢ — 7. A short trigonometric check then shows

dL
do-

LO+3) - L0-3)
2

= —%A sin(g) + %B cos(g) =

Hence, for any gate of the form Rp(f) with P? = [ and V6, the derivative of the
circuit output with respect to 6 is given exactly by

L) _ L(6+3) - L(0-3)

w0 5 , error = 0.

Below is a PyTorch sketch of how one might implement parameter-shift where
quantum_circuit.run is the forward pass of Listing

@theta, X, _ = ctx.saved_tensors
Blcradients: torch.Tensor = torch.zeros_like(theta)
GMfor i in range(theta.numel ()):

4 theta_plus: torch.Tensor = theta.clone ()

5 theta_plus[i] += ctx.shift

6 y_plus: torch.Tensor = ctx.quantum_circuit.run(theta_plus
, %)

7

8 theta_minus: torch.Tensor = theta.clone ()

9 theta_minus[i] -= ctx.shift

10 y_minus: torch.Tensor = ctx.quantum_circuit.run(
theta_minus, x)

12 diff: torch.Tensor = (y_plus - y_minus) / (2 * ctx.shift)
13 gradients[i] = torch.sum(grad_output * diff)

Listing 6: Backward pass (with parameter-shift rule)
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. 10.3 OTHER BACKWARD METHODS

Because there are d parameters, each requiring two circuit executions, and each ex-
ecution typically involves S measurement shots, the total cost per data pointis 2M x S
executions. Even for tens of parameters, this becomes prohibiting on current hardware.
In the following sections, we will therefore explore alternative “quantum backpropaga-
tion” strategies that can mitigate this overhead and make gradient estimation more
efficient.

10.3 Other Backward Methods

Recent work has introduced two distinct paradigms as potential routes to recover
true backpropagation scaling (i.e. a gradient-to-cost overhead logarithmic in the num-
ber of parameters) [16]. In what follows, we sketch the main ideas of these methods.
We first recall that our QNN is a unitary circuit

Ux, 0) = |0)%" = |ig) = Ulx, 0) [0)%™,
and every qubit is measured in the Z basis at the end of the forward pass. The classical
loss function
L(X7 9) = E({Z S {07 1}m}shots)

is computed from the bit-string frequencies p(z); in particular, for analytic gradient for-
mulas we often think of L as the expectation value of some Pauli-string operator on
the final state |1 »). Our goal is to estimate all d partial derivatives 9L /00, with only
O(log d) extra “depth” rather than O(d).

1. Shadow-tomography approach. At each parameter index k, one can rewrite the
kth gradient component in the form

oL

o= 23( 05" | Ulx, ) (=i B) Ulx, 6) | 0°),

where Py is the Pauli (or Pauli-string) generator on the kth parameter [16]. Equivalently,
one may define two “half-circuit” states

) = (OB Teon) 0, ey = A ([ ) 1w,
i<k ji>k

so that 0L/06, is proportional to the overlap (P | ¥,). To access that overlap on
hardware, one introduces a single auxiliary qubi in the |+), state and coherently

“Throughout this book we reserve “auxiliary qubit” (rather than “ancilla”) for any qubit used solely to
mediate interference or perform temporary operations.

54



. 10.3 OTHER BACKWARD METHODS

controls between |¥;) (when the auxiliary is |0),) and |®;) (when the auxiliary is |1),).
The joint state becomes

1
[x) = 7

Measuring the auxiliary qubit in the X basis is equivalent to applying a Hadamard on
the auxiliary and then measuring in Z. One finds

1oL
2 90’

(10}, 12 + 1), |20)).

so that extracting 9L /06, to accuracy e by direct sampling costs O(1/¢?) shots of |i).
If we do this independently for each k£ = 1, ..., d, the total cost is O(d/e?), which offers
no improvement over the parameter-shift rule.

The shadow-tomography idea is to recycle as many of those |¢y) preparations
as possible by maintaining a classical hypothesis density matrix wy that predicts the
overlap (x| X.|Yx). Concretely, at step k:

First, the learner computes the predicted value
ap = tr [X* wk}

as an estimate of (¢ |X.|1). Next, one takes a small batch of freshly prepared |)
copies and performs a gentle threshold check: one verifies whether

‘ak— Wk‘X*Wk)‘ < e

If the check succeeds, we accept a; as our gradient estimate and, crucially, do not
collapse all remaining |¢;) copies, so we preserve quantum information for the next
step. In that case, we set wy.1 = w; and move on.

If the threshold check fails, we know our hypothesis was off by more than €. In that
event we perform a fresh, higher-accuracy measurement of X, on another batch of
|1x) to obtain by ~ (¢x| X.|¢r) within e. We then update w1 (via an online-learning
rule) to incorporate the datum X, = by, discard the used copies of |¢), and prepare a
new batch of |1, 1) for the next index.

By partitioning the total O(log® d/¢?) copies of |4 (x, 6)) into O(m/e?) sequential
“patches,” one can guarantee that only

m log? d)

4

a = of

€
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. 10.3 OTHER BACKWARD METHODS

copies are consumed in all d steps combined. Moreover, each time we advance from
|Yk) to |¢r+1), we need only apply O(1) controlled-Pauli rotations (namely Uy j1 U},V,C

or Up k41 U;k) to produce | 1) from the remaining |;) copies. Hence the total num-
ber of controlled-unitary calls across all £ grows quasi-linearly in d, rather than lin-
early in d. In other words, the quantum-depth overhead per gradient component is
only O(log d), instead of O(1) full forward runs. The trade-off is that each update to wy,
requires storing an (m + 1)-qubit density matrix classically, at cost O(2%") per update.
Unless w;, admits an efficient compression (e.g. via tensor networks), that classical
overhead is prohibitive for large m. Nevertheless, this shadow-tomography proto-
col shows how, in principle, one can achieve backpropagation-like scaling in quantum
resources if one is willing to pay an exponential classical memory cost.

2. Quantum-memory approach. A second paradigm sidesteps the classical-memory
burden by granting a stronger and (as of today) hypothetical quantum RAM: assume
we can coherently store » = O(log d) identical copies of the full variational state

[¥(x, 0)) = Ulx, 0) |0)*"
simultaneously. Label those registers R4,...,R,, each hosting | (x, #)), plus one
auxiliary qubit in |+),. To estimate 0L /00, we perform:

First, in parallel on all » copies, apply

(control- |0),) : et (0+3) P ang (control- [1),) : I

on each register. Because each controlled rotation acts on a distinct copy of |¢(x, 6)),
the global circuit depth increases by only O(log d), rather than O(d).

Finally, apply a Hadamard on the auxiliary and measure it (together with all data qubits)
in the Z basis. One finds that

1 0L
(Z) = (+ 1 X1 +) = 5550

so a single batch of r coherent copies suffices to estimate 9L /00,.. Repeating the entire
procedure O(log d/€?) times yields all d gradients within . Hence the quantum-depth
overhead for each gradient is O(log d), and the total cost to get all d gradients is

O(depth[U(x, 0)] + log d)

up to polylogarithmic factors. In other words, one exactly matches classical backprop-
agation scaling in quantum resources if one can store O(logd) copies of an m-qubit
state without collapse. Of course, today’s hardware cannot maintain that many identical
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. 10.3 OTHER BACKWARD METHODS

coherent copies, so this remains a theoretical construction until fault-tolerant quantum
RAM appears.

In both approaches the same tension emerges: you either incur an exponential
classical memory cost (through a large classical hypothesis wy) to save quantum
depth, or else demand large quantum memory (logarithmic in d) to avoid classical
overhead. Neither variant is practical for large m and d on near-term devices; absent
those resources we revert to the parameter-shift rule in Torch-Q, whose O(d) circuit
calls remain the simplest and most robust means to compute gradients.
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11 Complete Model

Thus far we have introduced how to embed classical data into quantum states via
feature maps and how to process those states with a trainable variational form. We
also saw that, because every parametrized gate is of the form Rp(0) = exp(—% 0 P)
with P? = I, one can compute exact gradients via the parameter-shift rule by run-
ning two shifted circuits per parameter. In practice, we combine the feature map and
variational form into a single quantum circuit (a cudaq.Kernel), measure in the Z-
basis, and hash each bit-string into class labels or collect all 2" basis probabilities for
a classical head. Torch-Q exposes all this functionality through four high-level classes
(QuantumFunction, QuantumLayer, QNN, and HybridQNN) so that building and
training a QNN feels almost identical to any other PyTorch model. In what follows,
we describe each class in turn and give a small code snippet illustrating its usage.

11.1 QuantumFunction

QuantumFunction is a custom torch.autograd.Function that wraps the entire
quantum circuit evaluation and its gradients. In its constructor we specify

in_features, out_features, feature_map, var_form, shots, reupload, shift.

Upon initialization, it builds a single cudaq.Kernel which, depending on the reupload
flag, either applies the feature map once or interleaves it between each variational
layer. In the forward pass, QuantumFunction takes a tensor of parameters § ¢ R¢
and a batch of inputs € RB*™ runs cudaq.sample for each sample, hashes each
bit-string via int (bitstring,2)%C, and returns an empirical R®*¢ probability tensor.
In the backward pass, it loops over the d parameters and re-runs each circuit with
0r = 5 to evaluate

OL  L(Ox+75)— L(0x — 3)

M 2 ’
accumulating grad_output x (L(6)) — L(67)))/2 into V,. This way, PyTorch will
automatically build the backward graph and compute exact gradients by parameter-shift
when calling QuantumFunction.apply.

The following snippet demonstrates how to build a QuantumFunction for a 4-qubit cir-
cuit that classifies into 3 labels. We show only a forward-pass call; if you wrap this inside
a training loop and call 1oss.backward (), PyTorch will invoke the parameter-shift logic
automatically.
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[l 11.2 QUANTUMLAYER

torch

torch.nn as nn

cudaq

torchq.quantum.feature_maps as qfm

torchq.quantum.variational_forms as qvf
torchq.nn.functional QuantumFunction

in_features = 4
out_features = 3
shots = 512

qfm.ZFeatureMap (in_features=in_features, num_layers=1)
qvf .EfficientSU2 (num_qubits=in_features, num_layers=2)

quantum_fn = QuantumFunction (
in_features=in_features,
out_features=out_features,
feature_map=fm,
var_form=vf,
shots=shots,
reupload=False,
shift=torch.pi/2

= torch.rand (2, in_features)
nn.Parameter (torch.rand (vf.get_parameter_count ()))

probs = quantum_fn (theta, x_batch, quantum_fn)
("Probs shape:", probs.shape)

11.2 QuantumLayer

QuantumLayer is an nn.Module that wraps QuantumFunction and declares its
own trainable parameter tensor. Its constructor takes

in_features,out_features,num_layers, shots, feature_map, var_form, reupload.

If feature_map or var_form is given as a string (e.g. “'z", "zz", “realamplitudes™,
“efficientSU2™, or "paulitwodesign™), QuantumLayer internally instantiates the cor-
responding Torch-Q objects. Alternatively, users can also supply their own custom
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FeatureMap and VariationalForminstances directly. It then creates a QuantumFunction
instance that holds the combined circuit, and declares a single nn.Parameter () € R
Its forward (x) method simply does

QuantumFunction.apply(self._theta, x, self.quantum_circuit),

which yields a batch of length-C' probability vectors. In effect, all quantum logic is hid-
den inside QuantumFunction, and QuantumLayer behaves like any other nn.Module.

Below we show how to instantiate a QuantumLayer that maps 4 inputs to 3 classes,
using two layers of Z-embeddings and an EfficientSU2 Ansatz with reuploading.

torch
torchq.nn.layers QuantumLayer

E N

Bllglayer = QuantumLayer (
6 in_features=3,

7 out_features=4,

8 num_layers=2,

9 shots=1024,

10 feature_map="2z",

11 var_form="efficientSU2",
12 reupload=True

16 torch.rand (5, 3)

Elprobabilities = qlayer (x)
20 ("QuantumLayer output:", probabilities)

Because QuantumLayer declares its own 6 as nn.Parameter, you can immediately
plug it into a PyTorch optimization routine and call probabilities.backward() inside
a loss loop; PyTorch will call into QuantumFunction.backward under the hood.

11.3 QNN

QNN is simply a thin wrapper around QuantumLayer. Its constructor is identical to
QuantumLayer’s, and its entire forward (x) function just invokes the embedded quan-
tum layer. Use QNN whenever you want a purely quantum model whose number of
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output classes is at most 2. Training QNN is exactly like training any other PyTorch
model, except that each backward step incurs the parameter-shift cost.

Here is a complete training loop for a QNN that classifies random 4-dimensional inputs
into 3 classes. We use mini-batches of size 8 and the Adam optimizer.

torch

torch.nn as nn

torch.optim as optim
torch.utils.data TensorDataset , Dataloader
sklearn.datasets make_classification
torchqg.nn.layers QNN

X_np, Y_np = make_classification(
n_samples=240,
n_features=4,
n_informative=4,
n_redundant=0,
n_classes=3,
n_clusters_per_class=1,
class_sep=1.0,
random_state=0
)
X_data torch. from_numpy (X_np) . O
Y_data torch.from_numpy (Y_np) . O

dataset = TensorDataset(X_data, Y_data)

batch_size = 20

loader = Dataloader (dataset, batch_size=batch_size, shuffle=
True)

model = QNN (
in_features=4,
out_features=3,
num_layers=2,
shots=1024,
feature_map="z",
var_form="efficientSU2",
reupload=False

optimizer optim.Adam(model .parameters (), 1lr=0.1)
criterion nn.CrossEntropyLoss ()
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epoch (10) :
epoch_loss = 0.0
x_batch, y_batch loader:

logits = model (x_batch)
loss = criterion(logits, y_batch)

optimizer.zero_grad ()
loss.backward ()
optimizer.step ()

epoch_loss += loss.item()

(f"Epoch {epoch+1}, Loss = {epoch_loss:.4f}")

11.4 HybridQNN

When the number of classes exceeds 2™, or when additional classical flexibility is
desired, we use HybridQNN. It instantiates its own QuantumLayer with out_features
set to 2™, so the quantum layer returns the probability distribution over all 2™ quan-
tum states. It then attaches a small classical nn.Linear (2™, out_features) on top,
allowing any desired number of final classes. During training, gradient flow goes
through both the quantum parameters (via parameter-shift) and the classical linear
head (via standard autodiff).

Below we train a HybridQNN on random 3-dimensional inputs, but classify into 5 classes.

torch

torch.nn as nn

torch.optim as optim
torch.utils.data TensorDataset , DatalLoader
sklearn.datasets make_classification
torchq.nn.layers HybridQNN

® N o A W N =

X _np, Y_np = make_classification (
10 n_samples=200,

11 n_features=3,

12 n_informative=3,

13 n_redundant=0,
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n_classes=5,
n_clusters_per_class=1,
class_sep=1.2,
random_state=7

torch.from_numpy (X_np) . O
torch.from_numpy (Y_np) . O

dataset = TensorDataset(X_data, Y_data)

batch_size = 25

loader = Dataloader (dataset, batch_size=batch_size, shuffle=
True)

hybrid_model = HybridQNN (
in_features=3,
out_features=5,
num_layers=2,
shots=1024,
feature_map="2z",
var_form="realamplitudes",
reupload=False

optimizer = optim.Adam(hybrid_model.parameters (), 1lr=0.1)
criterion nn.CrossEntropyLoss ()

epoch (12) :
total_loss 0.0
x_batch, y_batch loader:

logits = hybrid_model (x_batch)

loss = criterion(logits, y_batch)

optimizer.zero_grad ()
loss.backward ()
optimizer.step ()

total_loss += loss.item()

(f"Epoch {epoch+1}, Loss = {total_loss:.4f}")
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11.5 Important Notes

Parameter-Shift Overhead. Whenever you call loss.backward(), if d is large, this
can become expensive. In practice, choose d wisely and batch sizes modest to limit
overall quantum calls.

Reuploading. Setting reupload=True causes the feature map to be applied before
each variational layer. This can improve training by repeatedly re-encoding x at different
depths [17], but it doubles the number of feature-map calls and may increase circuit
depth.

Output Dimension Constraint. In QuantumLayer (and thus in QNN) you must ensure
1 < C < 2™,

If you need more classes than 2™, use HybridQNN, which allows a classical linear layer
on top of the 2™ probability vector.

HybridQNN Parameter Overhead. Although HybridQNN removes the 2™ class-limit,
its classical head carries C' x 2™ trainable weights. This exponential parameter growth
not only demands more memory and compute, but also amplifies finite-shot gradient
noise and creates a more rugged, non-convex optimisation landscape; often making
training slower and less stable than the simple hash-and-count variant.

Shot Noise. Finite shots implies statistical noise in your loss and gradient estimates.
Increase shots or average over several forward passes to reduce variance.

Hardware Targets. By default, QuantumFunction uses whatever cudaq.set_target
is active (e.g. "gpp-cpu" for CPU simulation or "nvidia" for GPU state-vector). To
execute on actual hardware, simply call

cudaq.set_target("ionq", gpu="qpu.aria-1") or similar,
and all subsequent cudaq.sample(...) calls will run on that device.

In conclusion, Torch-Q’s abstractions make it straightforward to build, train and
evaluate both pure quantum and hybrid quantum—classical neural networks within the
familiar PyTorch ecosystem. The only quantum-specific wrinkle is that each backward
pass re-evaluates circuits via parameter-shift; beyond that, everything else behaves
just like standard deep-learning code.
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12 Information Geometry of Model Capacity

In the previous chapters we have introduced quantum neural networks (QNNs) and
classical neural networks (NNs) as parametric families of functions. However, the prac-
tical benefits of quantum machine learning remain unclear. In particular, it is not
sufficient merely to count the number of trainable parameters d to evaluate a model’'s
potential, since many of those parameters may have only a negligible effect on the
outputs when trained on finite data. Instead, we would like a capacity measure that
reflects, for a given sample size n, how large a “volume” in function space the model
can actually realize. Intuitively, a highly expressive model can fit a wide repertoire of
complex functions (e.g., images or linguistic patterns). To understand why some mod-
els generalize well while others do not, we examine how sensitive the model’s outputs
are to perturbations in each parameter direction.

Parameter Directions: Informative versus Flat

Suppose our network has parameters 0 = (61,0,,...,0,) € ©. A parame-
ter direction is simply a tangent vector in the d-dimensional parameter space
© c R? Moving along one of these directions corresponds to infinitesimally
adjusting one (or a linear combination) of the network’s weights, thereby perturb-
ing its output function. For instance, one simple parameter direction is “increase
0, and 0, together,” i.e. move along the vector v = (1,1,0,...,0) in parameter
space. In general, any choice of a vector v € R?\ {0} specifies a parameter
direction.

If varying along a given direction causes a substantial change in the model’s
predictions for typical inputs, we call it an informative direction. Conversely, if
that variation has almost no effect on the outputs (regardless of the data distri-
bution), then the direction is effectively flat under the resolution permitted by n
samples. When many parameter directions are essentially flat, the model be-
haves as though it has far fewer than d effective degrees of freedom, making it
effectively lower-dimensional at that scale of data.

To calculate the "real” dimension of the entire parameter manifold™} we turn to
tools from information geometry. Information geometry is the study of the differential-
geometric structure of families of statistical models (e.g. neural networks), where the

5The parameter manifold can be viewed as a Riemannian manifold. A Riemannian manifold is a
smooth manifold M equipped with a metric g, which assigns to each tangent space 7,/ a smoothly
varying positive-definite inner product (-,-),. This metric allows one to measure distances, angles,
lengths, volumes and curvatures on the manifold.
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Fisher information defines a metric on the parameter space [18]. In this section we will
show how the Fisher information equips the parameter manifold with the Fisher—Rao
metric, and how one can derive a scale-dependent notion of “effective dimension”
from that function; that captures the number of parameters a model truly leverages on
a dataset of size n.

Before delving into details, let us briefly recall why an information-geometric per-
spective is warranted. Traditional complexity measures (such as VC dimension) are
asymptotic in n and often grow trivially with the raw parameter count d, making them
ineffective for overparameterized models such as deep NNs or QNNs. In contrast, the
effective dimension is data-dependent and scale-dependent: it measures how many
“distinguishable” parameter directions remain at the statistical resolution set by n
samples. In other words, when n is finite, flat directions (or, equivalently, small Fisher
eigenvalues) cannot be resolved and effectively reduce the dimension of the hypothe-
sis space. This is precisely the phenomenon we wish to quantify in order to compare
QNNs and classical NNs on equal footing.

12.1 The Fisher Information

A (classical or quantum) neural network with d parameters defines a conditional
distribution

poly | 2) = ply|230), z€X CR™ ye{l,...,C},

by feeding x through the network and normalizing its outputs to a probability vector.
Training on n i.i.d. samples (z;, y;) ~ Pgaa() pe+(y | ) thus reduces to choosing 6 to
maximize the conditional log-likelihood

ln(0) = Zlnpe(yi | ;).

Each summand Inpy(y; | ;) has a finite variance Var(s )y, 1000 (y | 2)] = 02(6).
By the central-limit theorem the deviation of 7,,(¢) from its mean scales as \/n o ().
Because of this noise, the maximizer of ¢, jitters by O(y/n). We denote this intrinsic
uncertainty by ¢, and call it the resolution scale. As n — oo and under standard
regularity conditions (smoothness of py, identifiability, Eq [V{¢;] = 0, dominated conver-
gence), €, shrinks to zero and the estimator 6,, converges to the true parameter 6*.

Our objective remains to examine how sensitive the model’s outputs are to pertur-
bations in each parameter direction (i.e. "how sharply the likelihood bends around 6").
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To quantify local sensitivity of the model to infinitesimal changes in 8, define the score
function for a single data pair (z,y) by

s(r0) = - mpley0), i=1.d

%

The Fisher information matrix " = (F};)¢,_, € R**¢is then defined by

2
E(9> = E(m,y)wp(m,y;G) SZ'(.I', Y; 9) Sj (.’L’, Y3 9) = _E(:ﬂ,y)wp(m,y;Q) %@9] hlp('ru Y; 9) )

where the expectation is taken over the joint distribution p(z, y; 0) = pgata(x) pe(y | x).
In words, F;;(f) measures the average covariance of the partial derivatives of the
log-likelihood with respect to 6; and 6;.

Equivalently, one may view the parameter manifold © as a Riemannian manifold
equipped with the Fisher—Rao metric [19]:
9i(0) = Fy(0), 1<i,j<d
so that the squared infinitesimal distance between 6 and 6 + df is
ds* = d0" F(0)d6.

Under this metric, the volume element at 0 is \/det F'(0) df, and the total “Jeffreys
volume” of the parameter manifold © is

/ Vet F(8) db.
S}

This volume form quantifies how many effectively “distinguishable” parameter points
lie in © given n samples.

To see how the curvature of the likelihood limits what the data can really distinguish,
note first that the Fisher determinant factorizes through its eigenvalues,

d d

det F(0) = [ [ Ai(9), det F(0) = [ v Mi(0).

=1 i=1

A large eigenvalue \;(¢) means that a perturbation d¢ = ¢ v, along the corresponding
eigenvector (i.e. parameter direction) v, produces a sizable shift in the conditional
distribution, so that direction is informative; when \;(6) ~ 0, the same perturbation
hardly alters py(y | x), making the direction flat. Quantitatively, the expected second-
order log-likelihood change is
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. 12.1 THE FISHER INFORMATION

Because the noise floor of ¢, is O(1), A\, must itself be O(1) to be detectable; a point
stressed by Rissanen’s stochastic-complexity argument [20]. Re-expressing the same
idea through the Cramér—Rao boun Afy, ~ (n\,)~Y/2, and comparing with ¢,, gives
the handy rule

AM>nt = Af, <, (informative),
A K nl = Ab, > e, (flat)

Hence only eigenvalues above 1/n contribute appreciably to \/det F'(6); if merely d<

d clear that threshold, the product HZ=1 V/Ax(0) is suppressed, shrinking the local
Jeffreys volume and effectively lowering the model’s dimension at finite n.

In the context of deep learning, {\;(9)} depends on both the network architec-
ture and the data distribution; computing F'(9) exactly is often intractable, but many
approximations exist (e.g. block-diagonal, Kronecker-factored, or empirical Fisher ap-
proximations). The empirical Fisher information matrix, defined by replacing the true
expectation over (z,y) with an average over a finite data set, is

F’n(Q) = %Z[% lnp(x,y;e)] [% Inp(z,y; 9)]T

Although this ignores variance due to resampling the labels, it is efficient to compute

via back-propagation and captures useful curvature information in neural networks. In
Torch-Q, precisely in torchq. func, the empirical Fisher is returned by fisher.

[ from torchq.func import fisher

model_q = QNN (
in_features=4,
out_features=3,
num_layers=9,
shots=1024,

feature_map="z

n
>

© ® N o o A W N

var_form="realamplitudes",
10 reupload=False,

ﬂ

kX _rand = torch.randn (100, 4)
Ilf = fisher (model_q, X_rand)

8For any unbiased estimator g of the true parameter 6*, the Cramér—-Rao inequality states that its
covariance obeys Cov(d) = 1F(6*)~'. Along an eigen-direction v, of F(6*) this gives Var(vjf) >
(nA)~'; the corresponding 1o error bar is therefore Af;, ~ (n\;) /2.
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. 12.2 THE EFFECTIVE DIMENSION

Note: By default, fisher averages over the model-predicted class probabilities (i.e.
it sums over p;) instead of using the observed labels. In our experiments this choice
made no difference to the comparative results in Sec.

Despite approximations, the conceptual link remains: the geometry induced by
F(0) characterizes which parameter directions the model can “usefully” distinguish
given n samples.

12.2 The Effective Dimension

The Fisher analysis tells us which directions are informative when we probe an
£, = O(n~'/?) neighbourhood of #*, but not yet how many such directions are visible
at that resolution. Because ¢,, shrinks with n, the very notion of “how many” must itself
be scale dependent. The construction below follows [21, 22].

First, fix the Fisher—Rao metric F'(¢) built from the joint distribution p(x,y; #). With
n samples the smallest detectable displacement has squared length 2 = 1/n, so a
natural way to measure model size is to count how many Fisher cubes of side ¢,, are
required to cover O. Instead of manipulating tiny cubes, one can dilate the metric by

the factor
n

Ky = :
2mlogn

Multiplying F'(0) by x, magnifies all curvatures until a step of size ¢, in the original
metric becomes a unit step in the dilated one. Directions whose eigenvalues satisfy
Ar > 27/n are blown up to order-one curvature; those with A\, < 27 /n remain al-
most flat and contribute negligibly. In this way the metric rescaling turns the qualitative
visibility rule \;, > n~! into a sharp geometric cutoff.

The number of distinguishable parameter points is now approximated by the «,,-
Jeffreys volume

Vol,,, (©) = /@ v/ det(k, F(0)) df = r/* /@ V/det F(6) df.

Taking the logarithm of the volume log Vol,,, breaks the product of eigenvalues inside
the determinant into a sum, so that each direction contributes additively once it passes
the visibility threshold.

A raw volume still depends on the overall scale of F'. To remove that trivial freedom
we normalise F' by its average trace,

. d F(6) 1 .
POy =220 [ Re)do=d
(6) Lo F@)dd Ve Jo (©) ’
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. 12.2 THE EFFECTIVE DIMENSION

and define the global effective dimension

log(Vgl/@ \/det (I + mnﬁ’(e)) d@).

Because det(I;+r,F) =[], (1+k,\:), each eigenvalue contributes log(1++,);)/ log k..
This quantity is close to 1 when \; > 27 /n and is strongly suppressed when \; <

27 /n; deg(n) therefore counts, to excellent accuracy, the number of Fisher directions
whose curvature exceeds 2w /n [21]. As n— oo the threshold falls to zero and deg(n) —

d; for finite n it can be dramatically smaller whenever the Fisher spectrum contains
many small eigenvalues.

2
deﬁ(n) = 1

0g Kn,

During training the optimiser explores only a small region of parameter space. To
probe the dimensionality seen by the trained model, restrict the integral to the e-ball
B.(6*) around the learned parameter 6*, with ¢ = 1/4/n, and renormalise the trace
inside that ball[22]. The resulting local effective dimension

2 -

d}g(;fcal(ﬁ,; 9*) = log(‘/;*l / \/det (Id + /‘inF(9>) d@)
log K, B (6%)

drops whenever optimisation collapses flat valleys and has been observed to track

generalisation error across a wide range of classical and quantum architectures [4].

As n increases, Fisher eigenvalues cross the 27 /n visibility line one by one. Each
crossing raises d.g by nearly a unit, producing a staircase-like growth that records
how additional data unveil new parameter directions. In practice, even though ap-
proximations are required, the ordering of d.¢ is preserved and suffice for the capacity
comparisons reported in Sec.[12.3]

Just as Torch-Q offers a function to calculate the empirical Fisher matrix (i.e. fisher),
there is also the eff_dim function to calculate the global effective dimension given a
grid of dataset sizes.

from torchq.func import fisher, fisher_norm, eff_dim

n_values = np.array(
[1000, 2000, 8000, 10000, 40000, 60000, 100000, 150000,
200000, 500000, 1000000]

N

)

X_batch = torch.randn (100, 4)

fishers fisher (model, X_batch, num_thetas=100)
fhat, _ fisher_norm(fishers)

lcffdims eff_dim(fhat, n_values)
Blcffdims_normalised = effdims / model_dim
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. 12.3 RESULTS AND CAPACITY ANALYSIS

The call sequence mirrors the theory: first estimate the empirical Fisher, then nor-
malise its trace to d using fisher_norm, and finally feed the batch of normalised Fish-
ers to eff_dim, which returns d.g(n) for every sample size on the grid. Dividing by the
parameter count places the result in (0, 1]

12.3 Results and Capacity Analysis

Having established how to compute the empirical Fisher matrix and the scale-
dependent effective dimension, we now compare two width-matched models (d =28)
on randomly generated data:

B Classical network (FFN) — a feed-forward ReLU neural network with (4 input, 4
hidden, 3 output) units.

B Quantum network (QNN) — a four-qubit variational circuit that encodes = € R*
with a standard ZFeatureMap and applies six layers of single-qubit rotations in-
terleaved with CNOTs (i.e. RealAmplitudes variational form).

For both architectures we draw 7" = 100 random parameter initialisations, evalu-
ate at each of them the empirical Fisher on a batch of B = 100i.i.d. inputs = ~ AN (0, 1),
rescale the resulting matrix to trace d, diagonalise it, and pool the T" x d eigenvalues
into a single spectrum.

Lo classical neural network Lo quantum neural network

first bin first bin

9 08 0.8 1

o
©
A
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o
o
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eig. size

0.0 0.2 0.4 06 0.8
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1

0.4

normalised counts
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4 6 8 10 12 0 1 2 3 4 5
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Figure 11: Normalised empirical Fisher spectra of the FFN (red) and QNN

(blue), each binned into six equal-width intervals. Insets magnify the smallest-
eigenvalue bin.
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. 12.3 RESULTS AND CAPACITY ANALYSIS

Figure |11]| displays histograms of the normalised spectra. In accordance with the
qualitative discussion of Sec. 3.1, the FFN spectrum (red) is sharply peaked near
zero, implying many flat directions, whereas the QNN spectrum (blue) is far more uni-
form, indicating that a larger fraction of directions are already informative at random
initialisation.

To translate these spectral differences into a single capacity number we evaluate
the global effective dimension

" Ink, :27r10gn7

T
du(n) = — (TS /et (1 + o Faom(60)) ). = o
t=1

for sample sizes n € {103,2x 10%,8x 103, 10%,4x 10*, 6 x 104, 10°, 1.5 x 10°, 2 x 10, 5 x
10°,10°}, and normalise by d.
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Figure 12: Normalised effective dimension d.¢/d as a function of sample size
n (log scale) for the FFN (red) and the QNN (blue).

The curves in Fig.[12 show that the QNN exploits almost 90% of its parameters
with only 10° data points and climbs to ~ 95% by 10°, whereas the FFN starts around
65% and stagnates below 70%. Since d.g increases whenever an eigenvalue crosses
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. 12.3 RESULTS AND CAPACITY ANALYSIS

the visibility line 27 /n, this staircase behaviour directly visualises how additional data
reveal new parameter directions in the QNN but leave most FFN directions unresolved.

At any fixed n we therefore find
dei" (n) > degi" (n),

so that, for the same parameter budget, the QNN can realise a strictly larger repertoire
of distinguishable functions. Geometrically, the QNN spreads its Fisher curvature far
more evenly, activating nearly the whole of its d-dimensional manifold, whereas the FFN
leaves many directions trapped in data-invisible valleys. This yields a clear capacity
advantage. Matching raw parameter counts hides substantial geometric differences,
and the QNN makes almost the entire parameter space available to the data. Conse-
quently, because generalisation bounds depending on d.g(n) tighten only when new
directions become informative, the QNN should achieve a target error with markedly
fewer training examples than the FFN (i.e. faster learning) [4].
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[l 13 TRAINABILITY

13 Trainability

As shown in Section QNNs hold an expressive power unmatched by size-
matched classical networks. To test whether this advantage carries over to practice,
we benchmark quantum neural networks directly against parameter-matched classi-
cal models on standard learning tasks. This head-to-head comparison reveals whether
QNNSs’ theoretical gains yield tangible performance improvements.

13.1 Benchmarks

We begin with Fisher’s iris flowers dataset [23]. Each bloom provides four real-
valued measurements and must be assigned to one of three species. The quantum
model encodes those four inputs with a single-layered ZFeatureMap and then applies
nine variational layers of EfficientSU2. The companion classical model is a single-
hidden-layer neural network whose width is chosen so that it carries practically the
same number of trainable parameters. Apart from that everything is shared: mini-
batches of eight, Adam with learning rate 0.1, twenty epochs over 150 samples, and
weight decay 1072. The complete script lives in the examples folder of the official
Torch-Q repository, so every experiment (including Sec. can be reproduced.

Training Accuracy Training Loss
0.950 A 0.9 1
09251 081 \/\’W_M
0.900 A
0.7 1
> 0.875
£ ? 0.6
S 0.850 1 3
<
0.825 A 03
0.800 A 0.4 1
—— Quantum Neural Network —— Quantum Neural Network
0.775 A —— Classical Neural Network 0.3 A —— Classical Neural Network
5 10 15 20 5 10 15 20
Step Step

Figure 13: Iris training curves. Accuracy on the left, cross-entropy loss on the
right. Quantum neural network in blue, classical neural network in red.

Figure shows that the quantum classifier jumps above 90 % accuracy after
only five optimization steps, sails through to a final training accuracy of 0.95, and, on
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the held-out test split, predicts every single iris correctly. The classical network ends
up with 0.84 training accuracy, yet still achieves a respectable 0.90 on the test set. The
smoother blue trajectory hints at a gentler, plateau-like loss landscape for the quantum
circuit; an observation we shall revisit.

Encouraged by that outcome we next raise the stakes without touching any hyper-
parameter except circuit depth. First comes the Wine chemistry dataset [24], whose
178 rows each contain thirteen continuous features which must be mapped to one of
three cultivars. The circuit now has twelve layers of EfficientSU2, and, after the usual
twenty epochs, settles on a test accuracy of 0.88. Finally we turn to computer vision.
The original 8 x8 hand-written digit images [25] are down-sampled and flattened to
nine inputs. To keep the training duration reasonable, we subsample N = 500 in-
stances and restrict the task to digits 0—4. Even with twelve variational layers the QNN
now reaches a more modest (.74 test accuracy.

Table 1: Quantum neural network — final accuracies (20 epochs).

Data set Samples Inputs Classes Layers Trainacc. Test acc.

Iris 150 4 3 9 0.95 1.00
Wine 178 13 3 12 0.91 0.88
Digits' 500 9 5 12 0.80 0.74

fCentre-crop to 6x6, 2x2 average pool, digits 0—4 only.

Quantum NN Training Accuracy Quantum NN Training Loss
1.6 4
0.9 4
0.8 1.41
> 0.7
® @ 1.2 1
§ 0.6 3
go.
1.0 -
0.5
— lIris — lIris
0.4 1 —— Wine 0.8 1 —— Wine
Digits Digits
0.3 - T . . . . : . .
5 10 15 20 5 10 15 20
Step Step

Figure 14: Quantum classifier trained on three data sets. Left: accuracy; right:
loss. Nine layers for Iris, twelve for Wine and Digits.
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. 13.2 BARREN PLATEAUS

Table [f] summarizes the journey. The quantum model sails smoothly through lris,
copes well with Wine, but begins to struggle once the Dimensionality-and-Class counter
ticks up on Digits. Larger circuits could in principle claw back performance, yet deeper
layers also amplify gradient decay, and in quantum networks that decay is exacerbated.
In other words, training is not merely getting harder for the usual statistical reasons; it
is running into genuinely quantum obstacles, the subject of the next subsection.

It is also important to note that, beyond the statistical and quantum-physical chal-
lenges, QNNs incur a substantial computational overhead in training. Recall that
gradient evaluation via the parameter—shift rule requires two full circuit executions per
trainable parameter for each optimization step. Instead, a classical network’s backprop-
agation typically costs roughly one forward pass plus one backward pass (i.e. about
twice a single inference). In practice this means that, even when matching parame-
ter counts, the wall-clock time to train a QNN is currently orders of magnitude longer
than its classical counterpart, although emerging quantum-compatible backward-pass
methods (cf. Section may in future help mitigate this overhead.

13.2 Barren Plateaus

Despite the remarkable expressivity highlighted in Sec. [12.3] numerical experi-
ments in Sec. [13.1] consistently show that training quantum neural networks becomes
substantially harder as the number of qubits and variational layers increases. Models
that exhibit high effective dimension can still perform no better than random guessing,
especially on problems that demand deeper or more entangled circuits. This perfor-
mance decay, while superficially similar to classical overfitting or vanishing gradients,
stems from a uniquely quantum pathology: the barren plateau (Fig.[15).

Barren plateaus are regions of the loss landscape where the gradient vanishes
exponentially with qubit count. More precisely, for a parameterized quantum model
0 — C(0), a probabilistic barren plateau arises when

Var [9,C(0)] = O(b™™) forall u, withb> 1,

so that the gradient becomes indistinguishable from noise beyond a modest number of
qubits. When the gradient itself decays pointwise, i.e. |0,C(0)| = O(b™™), one speaks
of a deterministic barren plateau. Both effects render first-order optimization essen-
tially inoperative. Crucially, this exponential decay reflects a fundamental geometric
suppression of signal.
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Problem Size
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Figure 15: In the presence of local noise, gradients vanish exponen-
tially in depth of the variational form, leading to barren plateaus [26]

The work in [27] identifies the following main mechanisms as contributing factors:

B In high-depth circuits with randomly chosen parameters, the distribution over
unitaries approaches a 2-design. This leads to strong concentration of mea-
sure: expectation values and gradients converge to the ensemble mean, which
for traceless observables vanishes. More precisely, the adjoint orbit of the ob-
servable O under such unitaries fills operator space so evenly that almost every
parameter direction becomes equally (un)informative. In this case, Var[0,C] ~
1/2™, and gradients effectively disappear.

B Entangling feature maps, especially those involving data reuploading, also con-
tribute. When the encoding circuit spreads classical inputs across highly entan-
gled states, many marginal subsystems become maximally mixed. Subsequent
variational layers cannot easily recover global distinguishability. In such regimes,
even if the effective dimension remains high, the signal cannot flow from input to
output in a learnable way.

B Noise, too, plays a critical role. Consider a variational circuit interleaved with
unital channels such as depolarising noise. Since each such channel pushes
the state toward the maximally mixed state, the composition rapidly flattens the
cost landscape. In the extreme limit, all gradients vanish and the cost becomes
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. 13.3 OPTIMIZATION STRATEGIES

constant. This form of noise-induced barren plateau is particularly problematic for
near-term devices, where circuit depth and coherence time are both constrained.

B Even in the absence of decoherence, the process of estimating gradients via fi-
nite sampling introduces its own scale: for a circuit with n qubits and N shots,
the variance of gradient estimators behaves as O(1/+v/N), while the signal de-
cays as O(27™). This sets a practical bound beyond which optimization becomes
impossible due to shot noise dominating the signal.

Importantly, barren plateaus and effective dimension measure opposite facets
of model geometry. While the Fisher spectrum in Sec. quantifies how many di-
rections are informative at a given scale, barren plateaus indicate that no direction is
learnable under feasible resolutions. This is not a contradiction: a model can have full
capacity and still be untrainable if all informative directions are exponentially hard to lo-
cate. This distinction is observable in benchmark datasets [13.11 On low-dimensional
problems like Iris, models marvelously. But as the dimensionality and number of re-
quired qubits increases (e.g. the Wine or Digits datasets), QNN performance deterio-
rates faster than that of their classical counterparts.

Understanding and mitigating barren plateaus is thus critical to unleashing the full
potential of quantum neural networks. A wide array of architectural and algorithmic
solutions have been proposed, which we review in the section.

13.3 Optimization Strategies

Understanding and mitigating barren plateaus is not merely a matter of picking a
“better” optimizer; it calls for an orchestrated combination of architectural choices, cost-
function design, and geometry-aware updates. We summarize below the most promi-
nent ideas, progressing from circuit-level design to large-scale optimization heuristics;
citations point to the detailed derivations in [27, |28].

Layer-wise training. Freezing deep parameters and optimizing successive "front lay-
ers" avoids solving the full high-dimensional problem at once; additional layers are
thawed only after shallower blocks have converged.

Spectrally controlled initializations. Naive i.i.d. random seeds often place the cir-
cuit near a maximally mixed region, collapsing gradients at step 0. Even lightweight
fixes (e.g. the recent [S-initialization [29]) already improve models’ accuracies. More
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. 13.3 OPTIMIZATION STRATEGIES

principled, spectrally controlled schemes such as identity-plus-noise or Gaussian ker-
nels of width o ~ 1/4/n keep the initial Fisher spectrum finite. By ensuring no eigen-
value falls below 27" at epoch 0, these prescriptions postpone the onset of plateaus
and stabilize early training.

Natural-gradient philosophy (NGD and QNG). Section showed that the classi-
cal Fisher information F'(¢) provides a Riemannian metric on parameter space. Nat-
ural Gradient Descent rescales the raw gradient by F~1(9),

AO = —nF(0)'V,L,

so that each step corresponds to a unit Fisher distance. Because F'~! amplifies direc-
tions whose curvature is exponentially small, NGD effectively flattens the landscape,
turning many barren plateaus into gently sloping valleys that standard SGD (and its
derivatives e.g. Adam) could not traverse.

When the loss depends explicitly on the quantum state, the relevant geometry is no
longer Fisher—Rao but the Fubini—-Study metric, whose matrix representation is the
real part of the Quantum Geometric Tensor G(#). The Quantum Natural Gradient sim-
ply upgrades NGD by replacing F' with G"

A8 = —nG(0)TVL,

where G denotes the Moore—Penrose pseudoinverse. A block-diagonal approximation
to G can be estimated with only 2d additional circuit evaluations and has been shown to
outperform Adam and other state of the art optimizers across depths up to L = 6 and
n = 11 qubits [30]. Note that G was not required in the capacity analysis of Chap.
where output distinguishability is a classical statistical notion already captured by
F; for optimization, however, the search unfolds on the manifold of pure states, making
G indispensable.

Barren-plateau research is fast-moving and far from settled. Many of the remedies
above act more like vitamins (alleviating barren plateau symptoms for particular archi-
tectures or depths) than like a universal cure. A complete resolution will likely demand
deeper insight into quantum loss landscapes, noise-resilient metrics, and adaptive pro-
tocols that blend classical and quantum resources. Until then, the strategies surveyed
here offer practical relief and a roadmap for future exploration.
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| CONCLUSION |

In this book we framed the entire enterprise as a response to a tension: on the
one hand the astonishing empirical success of deep learning, on the other its un-
sustainable appetite for energy and compute. Over four parts we have watched
how quantum mechanics (Il) and quantum computing (ITl) transform that tension into
an opportunity by offering physical resources (e.g. superposition, entanglement, inter-
ference) that classical processors cannot emulate in polynomial time. When those
resources are organized into quantum neural networks (IV), they generate hypoth-
esis spaces whose effective dimension already saturates the parameter count with
only modest data, whereas a width-matched classical network leaves many directions
buried in extremely low curvature. In small-sample regimes that added geometric vol-
ume translates into learning curves that bend sooner and reach higher accuracies;
tangible evidence that quantum models can in practice outpace classical baselines in
both expressivity and sample efficiency.

That said, the very quantum rules that unlock this capacity simultaneously impose
two sharp handicaps. First, gradients are typically obtained through the parameter-
shift rule (10.2); each optimization step therefore demands two fresh circuit evaluations
per parameter and inherits shot noise that decays only as 1/+/shots. Second, even
when we are willing to pay that price the landscape itself may flatten into a barren
plateau (13.2), a region where every partial derivative becomes exponentially small in
the number of qubits, so training stalls for lack of measurable signal. These twin obsta-
cles, expensive and vanishing gradients, define the present boundary of quantum-
enhanced deep learning. They neither negate the capacity results nor doom quantum
models; they simply mark where engineering ingenuity and theoretical creativity must
next concentrate.

Several lines of attack have already appeared. On the gradient-estimation front,
shadow-tomography overlaps and the more speculative quantum memory construc-
tions promise to amortize backward-pass cost without forfeiting unbiasedness. Deeper
understanding of shadow protocols and advances toward practical quantum memories
may push this route much further. For the vanishing-gradient problem, natural-gradient
and, more specifically, quantum natural gradient updates pre-condition steps to re-
spect the underlying state geometry. Furthermore, layer-wise training and spectrally
balanced initializations tame barren plateaus by steering the circuit through regions
whose curvature remains resolvable. These methods, though still young, sketch a co-
herent interdisciplinary research programme that links algorithmic design, geometric
theory and hardware development.
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Our discussion has touched only a subset of the architectures now under explo-
ration: kernel-inspired circuits, tensor-network ansatze, observable-based outputs, error-
mitigated noise models and hybrid classical heads all beckon. The CUDA-Q and
Torch-Q toolkit introduced in [l and [[V|makes those variants accessible: swap a fea-
ture map, alter an entangling graph, review and modify the source code, try a different
gradient estimator and then benchmark under the metrics that matter (e.g. accuracy,
wall-clock time, joules consumed). Doing so will require the concerted effort of physi-
cists probing coherence budgets, computer scientists refining compilers, mathemati-
cians extending capacity theory and domain experts posing tasks that stretch today’s
prototypes.

The purpose set out at the start was fo educate so that collaboration could flourish.
The reader who now commands the algebra of qubits, the calculus of effective dimen-
sion and the pragmatics of running kernels on simulators or early QPUs is well placed
to contribute. Reproduce our experiments on data that matter to you; publish both
successes and failures; open-source your kernels so others can extend them. The
tools are free, the problems open-ended and the environmental and intellectual stakes
high. May the concepts, code and experiments collected here serve not as an endpoint
but as a springboard toward the next generation of quantum enhanced deep learning
architectures.
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