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Resumen 

Este proyecto investiga si un régimen de entrenamiento en dos etapas puede mejorar la 
clasificación de géneros musicales. En lugar de entrenar modelos de deep learning 
directamente sobre un gran número de géneros detallados, se realiza una primera etapa en la 
que los géneros similares se agrupan en doce "macrogéneros". Los modelos se entrenan 
inicialmente con esta tarea simplificada y luego se afinan para clasificar los 103 géneros 
originales. Usando espectrogramas de Mel como entrada y evaluando arquitecturas CNN, 
ResNet-18 y Vision Transformer, el estudio concluye que el preentrenamiento jerárquico 
mejora la generalización en conjuntos de datos a gran escala y desbalanceados. Se utiliza el 
dataset Free Music Archive (FMA) como referencia principal. 

1. Introducción 

El metadato musical desempeña un papel esencial en la industria musical, permitiendo la 
clasificación, descubrimiento y distribución de canciones. Una de sus funciones clave es la 
clasificación por género, que facilita la navegación en catálogos, respalda sistemas de 
recomendación y aumenta la visibilidad de los artistas. Mientras que los métodos 
tradicionales dependían de características diseñadas manualmente y modelos simples, los 
avances recientes en deep learning permiten extraer patrones informativos automáticamente 
a partir del audio. 

Sin embargo, los modelos de aprendizaje profundo tienen dificultades para escalar cuando 
el número de etiquetas de género crece y el conjunto de datos se desbalancea. Las fronteras 
entre géneros son difusas y muchas canciones comparten características entre categorías. 
Para afrontar estos retos, este proyecto analiza el impacto de un enfoque jerárquico de 
entrenamiento. Al entrenar primero con categorías amplias (macrogéneros) y luego afinar 
con etiquetas más detalladas, se busca facilitar el aprendizaje de representaciones 
significativas y mejorar la precisión final. 

El dataset Free Music Archive (FMA) se emplea para validar este enfoque. Contiene más de 
100,000 fragmentos de audio etiquetados en 161 géneros. Los experimentos se centran en el 
subconjunto "FMA Small" de 8,000 pistas, lo cual permite una experimentación viable 
manteniendo diversidad y complejidad. 

2. Definición del proyecto 

La pregunta central de este proyecto es: ¿puede el preentrenamiento jerárquico mejorar el 
rendimiento de los modelos de deep learning en la clasificación de géneros musicales a gran 
escala? Para responderla, se comparan dos regímenes de entrenamiento: 

• Estándar: los modelos se entrenan desde cero para clasificar 103 géneros. 



• Jerárquico: los modelos se entrenan primero para clasificar 12 macrogéneros y 
luego se afinan con los 103 géneros originales. 

Los macrogéneros fueron definidos manualmente según similitudes acústicas y culturales 
percibidas, agrupando por ejemplo géneros como Indie Rock, Psych Rock y Noise Rock bajo 
“Rock”. Esta simplificación ayuda a los modelos a aprender patrones generales antes de 
abordar distinciones que requieren detalles más finos y complejos. 

3. Descripción del sistema 

El pipeline comienza con el preprocesamiento del dataset FMA Small. Cada clip de 30 
segundos se convierte en una imagen de espectrograma de Mel de 224x224 píxeles 
utilizando Librosa y Matplotlib. El conjunto se divide en entrenamiento, validación y prueba 
con una proporción 80/10/10. 

 

Figura 1 – Ejemplo de espectrograma Mel empleado en el entrenamiento 

El entrenamiento de los modelos se realiza en dos fases: 

• Preentrenamiento con macrogéneros: cada arquitectura se entrena para clasificar uno 
de los 12 grupos de géneros. 

• Fine-tuning: se reemplaza la capa final por una con 103 clases y se continúa el 
entrenamiento. 

CNN: Arquitectura con dos bloques de convolución, max pooling, dropout y capas densas. 

ResNet-18: Inicializada con pesos de ImageNet, se adapta la capa final para la tarea de 
clasificación por géneros. 

ViT: Aplica atención sobre parches 16x16 del espectrograma, también preentrenado en 
ImageNet. 

Optimización: Se utilizan Adam y AdamW con early stopping y label smoothing. Se aplican 
aumentos de datos como recorte, volteo y alteración de color. 

4. Resultados 

La Tabla 1 resume las precisiones obtenidas en test para cada arquitectura en tres escenarios: 
entrenamiento con macrogéneros (12 clases), entrenamiento directo con 103 géneros y fine-
tuning tras el preentrenamiento. 



Modelo Macrogéneross(12) Todos los 

géneros (103) 

Después del 

Fine-tuning 

(103) 

Mejora (%) 

CNN 50.00% 31.79% 33.42% 1,63% 

Vision 

Transformer 

51.86% 31.92% 35.65% 3,73% 

Resnet-18 59.53% 40.06% 42.93% 2,87% 

Tabla 1 – Precisiones obtenidas en test para cada arquitectura y régimen de entrenamiento. El porcentaje de 
mejora es la diferencia entre la precisión del modelo entrenándolo desde 0 en todos los géneros (3ª columna) 

y el mismo modelo entrenándolo en dos etapas (4ª columna) 

Los resultados muestran una caída significativa en la precisión al pasar de la tarea 
simplificada de 12 clases a la clasificación completa de 103 géneros. No obstante, todos los 
modelos mejoran su rendimiento cuando se afinan tras el preentrenamiento jerárquico. El 
Vision Transformer es el que más se beneficia, con una mejora del 3.73%, seguido por 
ResNet-18 con 2.87% y CNN con 1.63%. ResNet-18 alcanza la mayor precisión global, lo 
que destaca la eficacia de las conexiones residuales y los pesos preentrenados en la 
generalización ante estilos musicales diversos. 

5. Conclusiones 

Los experimentos confirman que el preentrenamiento jerárquico mejora la clasificación de 
géneros, especialmente en modelos complejos como ResNet-18 y ViT. Al aprender primero 
a distinguir categorías amplias, los modelos desarrollan representaciones más transferibles 
que les ayudan a clasificar etiquetas más detalladas. 

Este enfoque resulta especialmente útil en conjuntos de datos grandes y desbalanceados, 
donde el entrenamiento directo puede llevar al sobreajuste o una generalización deficiente. 
Incluso la CNN ligera mostró mejoras, lo que sugiere que el método es aplicable en una 
amplia gama de arquitecturas. 

Entre las líneas futuras se encuentran: automatizar la agrupación de géneros, permitir 
clasificación multi-etiqueta o aplicar el enfoque a conjuntos más grandes como FMA 
Medium. También sería interesante analizar la interpretabilidad de los modelos para 
identificar qué regiones del espectrograma influyen más en las decisiones de clasificación. 
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Summary 

This project investigates whether a two-stage training regime can improve music genre 
classification. Instead of training deep learning models directly on a large number of fine-
grained genres, a first stage groups similar genres into twelve "macrogenres." Models are 
initially trained on this simplified task and then fine-tuned to classify the original 103 genres. 
Using Mel-spectrograms as input and evaluating CNN, ResNet-18, and Vision Transformer 
architectures, the study finds that hierarchical pretraining improves generalization in large-
scale, imbalanced datasets. The Free Music Archive (FMA) dataset is used as the main 
benchmark. 

1. Introduction 

Metadata plays a critical role in the music industry, enabling the classification, discovery, 
and distribution of tracks. Among its many facets, genre classification allows users to browse 
catalogs, supports recommendation systems, and increases exposure for artists. While 
traditional classification relied on manually engineered features and simple models, recent 
advances in deep learning allow automatic extraction of informative patterns from audio 
data. 

However, deep learning models struggle with scalability when the number of genre labels 
grows and the dataset becomes imbalanced. Genre boundaries are often fuzzy, and musical 
tracks may share characteristics across multiple labels. To address these challenges, this 
project explores the impact of a hierarchical training approach. By training models first on 
broad genre categories (macrogenres) and then fine-tuning them on the detailed set, the goal 
is to facilitate the learning of meaningful representations and improve final classification 
accuracy. 

The Free Music Archive (FMA) dataset is used to test this approach. It offers more than 
100,000 audio clips labeled across 161 genres. The experiments focus on the "FMA Small" 
subset of 8,000 tracks, allowing for feasible experimentation while preserving diversity and 
complexity. 

2. Project Definition 

The central question this project addresses is: can hierarchical pretraining improve the 
performance of deep learning models for large-scale music genre classification? To answer 
it, two training regimes are compared: 

• Standard: Models are trained from scratch to classify 103 genres. 
• Hierarchical: Models are first trained to classify 12 macrogenres, then fine-tuned on 

the 103 original genres. 



The macrogenres were manually defined based on perceived acoustic and cultural similarity, 
grouping genres like Indie Rock, Psych Rock, and Noise Rock under "Rock." This 
simplification helps the model learn coarse patterns before dealing with fine-grained 
distinctions. 

Three architectures are tested: a lightweight CNN, ResNet-18, and a Vision Transformer 
(ViT). All models use Mel-spectrograms as input, which convert audio into 2D images by 
mapping frequencies to the Mel scale and measuring power over time. This image-like input 
enables the use of visual classification techniques. 

3. System description 

The pipeline begins with preprocessing the FMA Small dataset. Each 30-second clip is 
converted into a 224x224 Mel-spectrogram image using Librosa and Matplotlib. The dataset 
is split into training, validation, and test sets with an 80/10/10 ratio. 

 

Figure 2 - Example Mel-spectrogram used for training 

Models are trained in two phases: 

• Macrogenre pretraining: Each architecture is trained to classify one of 12 genre groups. 

• Fine-tuning: The classification head is updated for 103 classes, and the model is trained 
further. 

CNN: A two-block architecture with max pooling, dropout, and fully connected layers. 

ResNet-18: Initialized with ImageNet weights, the final layer is adapted for the genre task. 

ViT: Uses self-attention over 16x16 spectrogram patches, pretrained on ImageNet. 

Optimization: Adam and AdamW optimizers are used with early stopping and label 
smoothing. Augmentations like cropping, flipping, and color jitter are applied during 
training. 

  



4. Results 

Table 1 summarizes the test accuracies for each architecture across three settings: 
macrogenre training (12 classes), direct training on 103 genres, and fine-tuning after 
macrogenre pretraining. 

Model Macrogenres(12) All Genres 

(103) 

After Fine-

tuning (103) 

Improvement 

(%) 

CNN 50.00% 31.79% 33.42% 1,63% 

Vision 

Transformer 

51.86% 31.92% 35.65% 3,73% 

Resnet-18 59.53% 40.06% 42.93% 2,87% 

Table 1 – Accuracies obtained in tests for each architecture and training regime. The percentage 
improvement is the difference between the model's accuracy when trained from zero across all genres (3rd 

column) and the same model when trained in two stages (4th column). 

The results reveal a substantial decrease in accuracy when transitioning from the simplified 
12-class macrogenre task to the full 103-genre classification. Nevertheless, all models 
demonstrate improved performance when fine-tuned after macrogenre pretraining. The 
Vision Transformer benefits the most from this hierarchical approach, achieving a 3.73% 
improvement in accuracy, followed by ResNet-18 with 2.87%, and CNN with 1.63%. 
Among all models, ResNet-18 delivers the highest overall accuracy, highlighting the 
effectiveness of residual connections and pretrained weights in generalizing across diverse 
musical styles. 

5. Conclusions 

The experiments confirm that hierarchical pretraining improves genre classification 
performance, particularly for complex models like ResNet-18 and ViT. By first learning to 
distinguish broad genre categories, the models develop more transferable representations, 
which enhances their ability to classify fine-grained labels. 

This approach is especially beneficial in large, imbalanced datasets where direct training can 
lead to overfitting or poor generalization. Even the lightweight CNN showed improvements, 
suggesting that the method is broadly applicable. 

Future work could involve automated genre clustering, multi-label classification, or applying 
the method to larger datasets like FMA Medium. Interpretable models could also help 
identify which audio features contribute most to genre recognition.  
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1. INTRODUCTION 
This project explores the application of advanced 
Natural Language Processing (NLP) techniques in 
the music domain, aiming to explore diverse 
methodologies to automate the generation and 
enhancement of metadata for songs. 

1.1. CONTEXT AND MOTIVATION 

Music metadata refers to the embedded descriptive 
information in audio files that provides essential 
details about a song. This metadata serves to 
identify, label, and present audio content, 
encompassing elements such as the artist, producer, 
genre, composer, BPM, copyright details, release 
date, and album title. By enabling the systematic 
organization, storage, and utilization of files in 
various contexts and applications, metadata plays a 
crucial role in the music industry. Furthermore, it 
forms a critical bridge between technology and 
artistic creation, underpinning essential processes 
like song discovery, copyright management, and 
royalty payments. 

This project is driven by the motivation to enrich 
listeners’ musical experiences by making it easier to 
find, explore, and connect with tracks that match 
their tastes. Well-curated metadata is fundamental 
to achieving this objective, as it not only boosts a 
song’s visibility in search results but also facilitates 
intuitive browsing by genre, mood, or specific 
instrumentation.  

Beyond benefiting audiences, detailed metadata 
also increases exposure for artists. When tracks are 
simpler to locate, they gain a wider audience and 
become easier to share. Accurately credited works 
further pave the way for potential collaborations 
with other artists and industry professionals looking 
to partner on related projects. In particular, the 
classification of songs by genre and mood offers a 
clear pathway through extensive music libraries, 
enabling users to identify the style that aligns with 
their current mindset or personal preferences. By 

focusing on robust metadata, the project not only 
promotes an efficient musical search process but 
also lays the foundation for more personalized and 
meaningful interactions between listeners and 
musical content. 

1.2. PROJECT OVERVIEW AND OBJECTIVES 

This project investigates the effectiveness of a 
hierarchical pretraining strategy in large-scale 
music genre classification. Instead of directly 
training models to predict fine-grained genre labels, 
the original genre taxonomy is first grouped into a 
smaller set of acoustically and culturally coherent 
macrogenres. Models are initially trained on this 
simplified classification task and subsequently fine-
tuned on the original, more detailed genre set. This 
two-stage approach is compared against a standard 
regime in which models are trained from scratch to 
predict the full set of genres. 
 

Three deep learning architectures, Convolutional 
Neural Networks (CNN), Vision Transformers 
(ViT), and ResNet-18, are evaluated under both 
training regimes. All models operate on Mel-
spectrograms, which encode audio signals into 
time–frequency representations suitable for image-
based classification. Experiments are conducted on 
the Free Music Archive (FMA) dataset [1], which 
provides over 100,000 audio tracks across 161 
genres, offering a realistic benchmark characterized 
by high class imbalance and genre detail. By 
keeping the preprocessing pipeline, input format, 
and evaluation protocol constant, the study isolates 
the impact of hierarchical supervision on model 
performance. 

The following sections will delve into the technical 
details—from data preprocessing and macrogenre 
grouping to model architecture design and training 
protocols—culminating in a thorough performance 
comparison that highlights the advantages of 
hierarchical pre-training in music information 
retrieval. 
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2. STATE OF THE ART 

Automatic music genre classification has evolved 
through successive paradigms, from hand-crafted 
features and classical classifiers to end-to-end deep 
learning architectures that ingest spectrogram 
images. Early approaches relied on features such as 
Mel-Frequency Cepstral Coefficients (MFCCs), 
chroma and timbre descriptors, coupled with 
support vector machines or Gaussian mixture 
models to assign genre labels. Although these 
systems achieved moderate performance, their 
dependence on manual feature engineering limited 
their ability to generalize across diverse musical 
styles [7]. 

Convolutional neural networks (CNNs) reframed 
the problem by treating log-Mel spectrograms as 
images, learning hierarchies of time–frequency 
patterns directly. Initial three-layer CNNs 
demonstrated clear gains over MFCC-based 
pipelines on GTZAN, later supplanted by deeper 
backbones such as VGG, ResNet, DenseNet, and 
EfficientNet that achieved over 80% accuracy on 
GTZAN and FMA-small at the expense of tens of 
millions of parameters [3, 4]. Despite their strength 
in extracting local features, CNNs remain 
constrained by finite receptive fields and uniform 
treatment of all regions, limiting their ability to 
capture long-range temporal dependencies intrinsic 
to musical form. 

To incorporate sequential context, hybrid 
convolutional–recurrent architectures (CRNNs) 
appended LSTM or GRU layers to CNN-extracted 
feature maps. Such models improved upon pure 
CNNs for FMA-small, reaching around 65% 
accuracy while preserving moderate parameter 
counts [7]. However, recurrent stages introduce 
sequential bottlenecks that impede parallel training 
efficiency on modern accelerators. 

Attention-based models inspired by the Vision 
Transformer (ViT) have recently been applied to 
spectrograms by dividing inputs into non-
overlapping patches and employing self-attention to 

model global relationships. Pretrained ViTs fine-
tuned on spectrogram images can rival deep CNNs 
on GTZAN [8], but they demand substantial 
computational resources, careful optimization—
often involving AdamW or other advanced 
optimizers [5, 6]—and aggressive data 
augmentation to mitigate overfitting. 

Hybrid CNN–Transformer designs combine 
localized convolutional feature extraction with 
global self-attention. The CNN-TE architecture, for 
example, applies a lightweight convolutional front 
end followed by Transformer encoder layers, 
achieving state-of-the-art results on both GTZAN 
and FMA with fewer parameters and faster 
inference than monolithic CNNs [1]. Such hybrids 
leverage convolutional inductive bias for low-level 
pattern detection while reserving attention 
mechanisms for modeling high-level, time-spanning 
dependencies. 

Nevertheless, most studies focus on small to 
medium-scale datasets—such as GTZAN and the 
smaller FMA variants—leaving the behavior of 
modern architectures on large, imbalanced 
taxonomies (e.g., FMA “large” with 161 genres) 
largely unexplored [2, 4]. Furthermore, although 
hierarchical label structures are a natural fit for 
genre classification, few works have systematically 
investigated whether introducing coarse-to-fine 
label progression—such as grouping genres into 
higher-level clusters before fine-grained 
classification—can improve model performance 
[3]. This gap highlights the need for more empirical 
studies that evaluate hierarchical training setups 
under controlled conditions and at scale. 

In summary, while CNNs, CRNNs, Transformers, 
and their hybrids have each advanced music-genre 
classification, significant gaps remain in scalability, 
reproducibility, and the exploitation of hierarchical 
genre structures. A structured comparison of these 
architectures, using consistent preprocessing and 
evaluation setups, can help clarify how model 
design and training choices affect performance in 
large-scale music genre classification. 
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3. METHODOLOGY 
To implement and evaluate the proposed 
hierarchical and single-stage training regimes for 
music genre classification, a comprehensive 
pipeline encompassing data acquisition, 
preprocessing, model design, and rigorous training 
and validation protocols has been devised. This 
section describes in detail each step of that pipeline, 
highlighting how raw audio files were transformed 
into model-ready inputs, how three distinct deep-
learning architectures were constructed and adapted 
to this domain, and how all models were trained and 
evaluated under both the standard and hierarchical 
schemes. 

3.1. TECHNICAL DESCRIPTION 

Accurate music genre classification begins with 
transforming raw audio data into representations 
that deep learning models can effectively interpret. 
In this project, Mel-spectrograms were selected as 
the input format, as they allow framing the problem 
as an image classification task, enabling the use of 
convolutional and attention-based architectures 
originally developed for visual pattern recognition. 
A detailed explanation of how Mel-spectrograms 
are computed and why they are suitable for this task 
is provided in Section 3.2.  

Each audio clip from the Free Music Archive 
(FMA) dataset is converted into a fixed-size 
spectrogram image. The dataset is split into training, 
validation, and test sets following an 80/10/10 ratio, 
ensuring that each class remains balanced across 
splits. 

To address the challenges posed by large-scale 
classification and improve model training 
efficiency, the original 103 FMA genres were 
manually grouped by the author into twelve broader 
macrogenres. This grouping was based on perceived 
acoustic similarity and musical proximity, informed 
by an exploratory review of genre characteristics 
and listening comparisons. Subgenres such as Indie-
Rock, Psych-Rock, and Noise-Rock were, for 
example, grouped under the Rock macrogenre due 

to their shared instrumentation and production style. 
The idea is that coarse distinctions are learned first, 
and fine-grained categorization is tackled in later 
stages. 

The full mapping between macrogenres and 
subgenres, along with the number of tracks per 
subgenre, is provided in the Annex. This manual 
reduction from 103 to 12 classes was a key design 
choice to support structured learning and facilitate 
genre generalization. 

The macrogenre grouping significantly simplifies 
the initial learning task. By first learning to 
distinguish between broad categories (e.g., Rock vs. 
Pop), the model can develop robust low-level filters 
before fine-tuning on the detailed 103-genre task.  

This approach of hierarchical pretraining, starting 
with macrogenres and progressing to fine-grained 
genres, has been shown to facilitate scalability and 
improve classification performance in complex 
settings. [4] 

3.2.  DATA REPRESENTATION 

To enable the use of image-based neural 
architectures for audio classification, each audio file 
is transformed into a 2D visual representation 
capturing its time-frequency characteristics. 
Specifically, the raw waveform is first converted 
into a Mel-spectrogram, a perceptually meaningful 
representation that reflects the human ear’s 
sensitivity to different frequencies. This is done by 
applying the Short-Time Fourier Transform (STFT) 
to split the signal into overlapping time windows, 
computing the power spectrum for each, and 
mapping the resulting values onto the Mel scale. 
The logarithm of the magnitude (in decibels) is then 
taken to emphasize salient features. These 
spectrograms are stored as RGB images and resized 
to 224×224 pixels to match the input requirements 
of the visual backbone models. The final 
classification task is therefore formulated as an 
image classification problem, where each 
spectrogram corresponds to one of twelve genre 
labels. 
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Figure 1 - Mel-spectrogram of a 30-second country music 
snippet.	The vertical axis represents frequency bins mapped 

to the perceptual Mel scale, while the horizontal axis 
corresponds to time (in seconds). The color intensity encodes 

power in decibels (dB), with brighter regions indicating 
stronger spectral energy at specific time–frequency locations. 

3.3. MODEL DESIGN 

To explore how different neural architectures 
handle spectrogram-based audio classification, 
three models were implemented: a custom 
lightweight Convolutional Neural Network (CNN), 
a ResNet-18 with residual blocks, and a Vision 
Transformer (ViT). Each model was chosen to 
represent a distinct learning paradigm—local 
pattern recognition via convolutions, hierarchical 
feature refinement via residual learning, and global 
context modeling via self-attention. This diversity 
allows a meaningful comparison across different 
architectural biases in both standard and 
hierarchical training regimes. 

CNN 

The CNN architecture processes spectrograms 
resized to 128×128 pixels. It consists of two 
convolutional blocks: 

• The first block uses a 5×5 convolution (stride 2, 
16 channels), followed by ReLU, 2×2 max 
pooling, and spatial downsampling. 

• The second block uses a 3×3 convolution (stride 
2, 32 channels), followed by ReLU, a 4×4 max 
pooling, and batch normalization. 

After these layers, the output tensor of shape [32, 6, 
6] is flattened and passed through two fully 

connected layers with 1000 and 500 units, 
respectively, each followed by dropout (p = 0.2). 
The final classification head maps to either 12 or 
103 outputs, depending on the task. Dropout (p = 
0.6) is applied after the convolutional layers to 
prevent overfitting. The architecture is trained from 
scratch using standard cross-entropy loss, optimized 
by Adam for pretraining and AdamW during fine-
tuning. 

ResNet-18 

ResNet-18, a widely used deep residual network, 
was selected for its proven capacity to learn robust 
image features. Spectrograms are resized to 
224×224 and normalized to ImageNet statistics. The 
model is initialized with ImageNet-pretrained 
weights, and its final fully connected layer is 
replaced by a dropout (p = 0.5) and a linear 
projection to either 12 (macrogenres) or 103 (all 
genres) classes. 

During macrogenre training, moderate 
augmentations are applied (random resized 
cropping, horizontal flips, and color jitter), and 
training uses cross-entropy loss with label 
smoothing (ε = 0.1) to encourage generalization 
across acoustically similar genres. In the fine-tuning 
stage, the model is partially reinitialized: backbone 
weights are restored from the 12-class checkpoint 
where shapes match, and the classification head is 
reset. Fine-tuning proceeds with reduced learning 
rates and a learning-rate scheduler for robustness. 

ViT (Vision Transformer) 

The Vision Transformer introduces a fundamentally 
different approach by treating each 224×224 
spectrogram as a sequence of 16×16 image patches. 
Using the vit_base_patch16_224 architecture from 
TIMM, pretrained on ImageNet, the model is 
augmented with a custom classification head 
tailored to the genre task. 

During pretraining, augmentations include random 
resized cropping, flipping, rotation (±15°), and color 
jitter. Initially, only the head is trained while the 
transformer layers remain frozen; later, full fine-
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tuning is enabled with AdamW and early stopping. 
The attention-based architecture enables ViT to 
model long-range dependencies within 
spectrograms, potentially capturing global 
temporal–spectral patterns overlooked by purely 
convolutional approaches. 

3.4. TRAINING AND VALIDATION 

Training proceeds in two stages—macrogenre 
pretraining followed by fine-tuning on all 103 
genres—using consistent validation monitoring and 
early-stopping rules to ensure generalization. All 
networks optimize the cross-entropy loss [10] 
over 𝐶 classes.  

Two optimizers are employed: Adam [5] 
and AdamW [6]. Adam updates parameters 𝜃 by 
computing first and second moment estimates of the 
gradient. AdamW modifies this update by 
decoupling weight decay 𝜆 from the gradient 
calculations. This decoupling allows better control 
of regularization, particularly beneficial during fine-
tuning. Both optimizers are used throughout the 
training pipeline, with Adam typically applied in 
initial stages and AdamW during fine-tuning to 
stabilize convergence and prevent overfitting. 

Common Setup 

To ensure reproducibility, random seeds are fixed 
across libraries. Data is loaded using 
PyTorch DataLoader with a batch size of 32. 
Validation and test splits remain fixed, while 
training data is shuffled each epoch. The loss 
function is standard cross-entropy, with label 
smoothing (ε = 0.1) applied in ResNet training to 
reduce overconfidence. All models are evaluated 
using top-1 accuracy on the validation and test sets. 

CNN Training Protocol 

During macrogenre training, the CNN is initialized 
with 12 output units. The optimizer is Adam with 
learning rate 1×10−41×10−4. After ten epochs, the 
checkpoint with the highest validation accuracy is 
saved. For fine-tuning, the classification head is 

replaced with a 103-unit layer, and the remaining 
weights are loaded from the 12-class checkpoint. 
Training uses AdamW with weight 
decay 1×10−21×10−2, and early stopping is applied 
based on validation loss. 

ViT Training Protocol 

The ViT uses AdamW (lr = 1×10−41×10−4, 
weight decay = 5×10−35×10−3) throughout. 
Macrogenre pretraining includes strong 
augmentations, while fine-tuning uses only resizing 
and normalization. During fine-tuning, a new 
classification head is trained from scratch with 
pretrained backbone weights selectively restored 
where tensor shapes match. Early stopping halts 
training after three epochs without validation loss 
improvement. 

ResNet-18 Training Protocol 

ResNet training mirrors ViT’s regime but adds label 
smoothing and uses a learning rate scheduler 
(ReduceLROnPlateau) in the fine-tuning phase. 
During macrogenre training, ResNet runs for 20 
epochs, saving the best checkpoint based on 
validation accuracy. In fine-tuning, the 
classification head is reinitialized, backbone 
weights are reused, and a reduced learning rate (5 × 
10⁻⁵) is applied. Validation loss is monitored each 
epoch, and the best model is selected using early 
stopping. 

Evaluation 

Validation is always conducted in evaluation mode 
to disable dropout and update batch norm statistics. 
Each epoch’s validation loop computes loss and 
accuracy. The final test accuracy is reported using 
the best model checkpoint (based on validation loss 
for fine-tuning, or validation accuracy for 
pretraining). 
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4. EXPERIMENTS 

This section describes all the elements necessary to 
reproduce the experiments conducted in this project. 
As mentioned in Section 1.2, the main objective of 
this project is to evaluate how the choice of training 
regime influences the performance of music genre 
classification models. It seeks to determine whether 
introducing a hierarchical pre-training, where 
models are first trained to distinguish broad genre 
categories before fine-tuning on specific subgenres, 
can improve generalization and accuracy compared 
to training directly on the full set of fine-grained 
genres. 

The following subsections detail the datasets used, 
the preprocessing steps applied, and the 
configuration of both the hardware/software 
environment and the model training protocols. 

4.1. DATASET 

Initial prototyping on the GTZAN dataset [9] 
provided a lightweight environment for validating 
the spectrogram‐generation pipeline and tuning core 
model parameters; the main evaluation then 
leverages the Free Music Archive (FMA) [1] 
dataset, a well-known collection of Creative 
Commons-licensed music, widely used for tasks 
involving music information retrieval. The FMA 
dataset comprises over 100,000 tracks across 161 
annotated genres, ranging from popular styles like 
Rock, Jazz, and Electronic to niche genres like 
Chiptune, Glitch, or Avant-Garde. 

Each track in the FMA is accompanied by rich 
metadata (title, genre, license, duration, artist), and 
the dataset includes curated splits for training, 
validation, and testing. All tracks are sampled at 
44.1 kHz and provided in 30-second MP3 clips. The 
genre annotations are multi-level, allowing for 
coarse- and fine-grained categorizations, which 
made it particularly suitable for hierarchical 
classification strategies. 

Initially, experiments began with the FMA 
Medium subset (approximately 25,000 tracks), 

which balances data volume and genre diversity. 
However, a literature review revealed that many 
prior works achieved strong results using smaller 
subsets such as FMA Small, containing only 8,000 
tracks. Consequently, the dataset was scaled down 
to FMA Small to ensure comparability, reduce 
computational costs, and maintain consistency with 
standard benchmarks. This subset offers an ideal 
tradeoff between complexity and feasibility for 
model training on consumer-grade hardware. 

Despite the lower volume, FMA Small still reflects 
essential challenges in genre classification: 
temporal ambiguity, overlapping genre 
characteristics, and limited intra-class consistency. 
These aspects make it suitable for evaluating how 
architectural biases and hierarchical learning 
regimes affect classification. 

Data Preparation 

Two variants of the dataset were prepared: 

• 12-Class Macrogenre Dataset: A custom 
mapping collapsed over 100 original genres into 
twelve high-level “macrogenres,” including 
Rock, Pop, Jazz, Folk, Metal, Classical, and 
more. These were selected based on both 
acoustic similarity and cultural proximity, using 
genre taxonomy principles and musicological 
intuition. 

• 103-Class Full Genre Dataset: This included 
all sufficiently represented genres in FMA 
Small, leading to a high-dimensional 
classification task. Rare genres with fewer than 
a handful of examples (e.g., “Western Swing” 
with only 4 samples) were excluded to prevent 
instability during training and validation. 

All tracks were converted into Mel-spectrograms, 
which transform the raw waveform into a 
perceptually meaningful time–frequency 
representation. These spectrograms were stored as 
PNG images, with one per track, and organized into 
folders labeled by genre. Preprocessing was 
conducted using Librosa and Matplotlib, and visual 
normalization ensured consistency across samples.  
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Each dataset was split into training (80%), 
validation (10%), and test (10%) sets, with 
stratification to maintain class balance. 

Overall, the FMA Small dataset—restructured both 
for hierarchical and flat classification—provided a 
robust and reproducible basis for comparing 
architectural behavior across training strategies. 

4.2. CONFIGURATION 

All experiments were conducted on an Apple 
Silicon MacBook Pro M1 leveraging the MPS 
backend for GPU acceleration; fallback to CPU or 
CUDA-enabled GPU on Linux servers was 
supported via simple configuration flags. The 
software environment included Python 3.10, 
PyTorch 2.1, torchvision 0.15, timm 0.8.12, librosa 
0.9, scikit-learn 1.2, and matplotlib 3.7. Random 
number generators in Python, NumPy, and PyTorch 
were seeded with the value 42 to ensure 
reproducibility of data splits, model weight 
initialization, and data augmentation permutations. 
Training hyperparameters common to all models 
included a batch size of 32, the use of the Adam 
optimizer for initial CNN training and AdamW 
(learning rate = 1 × 10⁻⁴, weight decay = 1 × 10⁻²) 
for all Transformer and ResNet-18 runs, and early 
stopping with a patience of three epochs based on 
validation loss. Models were pretrained on the 12-
class macrogenre task for ten epochs and fine-tuned 
on the 103-class task for up to twenty epochs, with 

checkpoints saved at the best validation 
performance. 

5. RESULTS 
This chapter presents and interprets the 
classification performance achieved by each 
architecture under the two-stage hierarchical regime 
(macrogenre pretraining followed by fine‐tuning) 
and the single‐stage regime on both the 12-class 
“FMA Small” subset and the full 103-class problem. 
Rather than detailing implementation, the focus here 
is on comparative outcomes, the efficacy of 
hierarchical pretraining, and the relative inductive 
biases of CNN, ViT, and ResNet-18. 

5.1. SUMMARY OF TEST ACCURACIES 

Error! Reference source not found. aggregates the 
final test accuracies for each model on the FMA 
Small subset and the full-genre task, both when 
trained from scratch and when fine‐tuned following 
macrogenre pretraining. 

As shown in Table 1, all models exhibit a marked 
degradation when scaling from 12 to 103 target 
classes. The CNN’s accuracy declines by 18.21 
percentage points, the ViT by 19.94 pp, and ResNet-
18 by 19.47 pp. This drop highlights the intrinsic 
difficulty of discriminating among 103 fine-grained 
genres and underlines the importance of strong 
feature representations and regularization in high-
dimensional classification tasks. 

Model Macrogenres(12) All Genres (103) After Fine-tuning (103) Improvement (%) 

CNN 50.00% 31.79% 33.42% 1,63% 

Vision Transformer 51.86% 31.92% 35.65% 3,73% 

Resnet-18 59.53% 40.06% 42.93% 2,87% 

Table 1 - Accuracies obtained in tests for each architecture and training regime. The percentage improvement is the difference 
between the model's accuracy when trained from zero across all genres (3rd column) and the same model when trained in two 

stages (4th column).  
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5.2. BENEFITS OF HIERARCHICAL 
PRETRAINING 

Fine-tuning from macrogenre pretraining yields 
consistent gains across all architectures. Relative 
improvements on the 103-class task are +1.63% for 
the CNN, +3.73% for the ViT, and +2.87% for 
ResNet-18. The larger benefit for the ViT suggests 
that self-attention layers, when first conditioned on 
coarse distinctions, can more effectively adapt to 
subtle timbral patterns than when trained again. 
ResNet-18, already the strongest baseline, retains its 
lead and further consolidates its generalization 
when leveraging hierarchical transfer.  

5.3. COMPARISON OF INDUCTIVE BIASES 

ResNet-18’s superior performance in both regimes 
indicates that deep residual connections and 
pretrained visual filters transfer most effectively to 
spectrogram classification. The CNN, with only two 
convolutional blocks, captures gross frequency–
time features but lacks the depth to disentangle 
highly overlapping genre boundaries. The ViT, 
while competitive on the 12-class task, suffers from 
overfitting when trained from scratch on 103 genres; 
its reliance on large-scale attention requires staged 
learning to avoid memorizing misleading patterns. 

The results confirm that hierarchical staging 
enhances multi-class genre classification, 
particularly for architectures with weaker built-in 
inductive biases. Although ResNet-18 achieves the 
highest absolute accuracies, the ViT’s 
responsiveness to coarse-to-fine transfer suggests 
promising avenues for further curriculum design 
and regularization strategies. The modest 
improvements observed for the CNN indicate 
diminishing returns for very shallow models in 
large-scale label spaces. 

6. CONCLUSION AND FUTURE WORK 

This project set out to explore the impact of training 
regimes on music genre classification by comparing 
two contrasting approaches: a standard strategy, in 

which models are trained directly to predict fine-
grained genres, and a hierarchical curriculum that 
first groups genres into broader macrogenres before 
fine-tuning on the detailed taxonomy. The central 
hypothesis was that guiding models through a 
simplified intermediate task could lead to more 
effective feature learning and improved final 
performance. 

To investigate this, three deep learning 
architectures—CNN, ResNet-18, and Vision 
Transformer (ViT)—were implemented and trained 
using a unified input representation: Mel-
spectrograms. These time–frequency 
representations allowed us to transform the audio 
classification problem into an image classification 
task, leveraging powerful computer vision models 
and standard training pipelines. 

The Free Music Archive (FMA) served as the 
primary dataset, specifically the FMA Small subset. 
A careful mapping from over 100 original genre 
labels into twelve acoustically coherent 
macrogenres was carried out based on both 
musicological intuition and data availability. This 
transformation enabled a meaningful hierarchical 
learning setup. Initial prototyping with the GTZAN 
dataset ensured the robustness of the preprocessing 
pipeline and model configurations, allowing for a 
smooth transition to the more challenging and 
realistic FMA evaluation. 

6.1. SUMMARY OF FINDINGS 

The experimental results suggest that hierarchical 
training provides noticeable improvements across 
architectures, with stronger effects observed in 
models with higher capacity, such as ResNet-18 and 
ViT. This indicates that a structured label 
progression may help certain models learn more 
robust internal representations, particularly in tasks 
involving many classes. 

While the CNN showed modest improvements 
under the hierarchical regime, deeper architectures 
were better able to leverage the macrogenre 
pretraining to enhance their fine-grained 
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classification performance. This suggests that the 
benefits of hierarchical learning are more 
pronounced in architectures that can effectively 
capture long-range dependencies or hierarchical 
patterns. 

By training all models under the same conditions, 
with identical spectrograms, augmentation policies, 
and hyperparameter tuning, the comparison isolated 
the effects of architecture and training strategy. The 
use of Mel-spectrograms allowed the problem to be 
reframed as an image classification task, enabling 
the application of visual pattern recognition models 
in a consistent and fair way. 

The hierarchical curriculum also proved to be 
a computationally feasible enhancement. Since the 
macrogenre task involved fewer classes and was 
easier to solve, pretraining converged quickly and 
served as an efficient warm-up for the more 
complex fine-grained classification. This structure 
could be especially valuable in low-resource 
settings, where fully training large models from 
scratch is not possible. 

6.2. LIMITATIONS 

Several limitations should be acknowledged. First, 
the macrogenre mapping, while intuitive and 
grounded in genre similarity, is ultimately 
subjective and was constructed manually. Different 
mappings may yield different results, and automated 
clustering methods might offer a more principled 
alternative. 

Second, although the FMA Small dataset provides a 
rich set of genres and a realistic classification 
challenge, its scale still limits the generalization 
capacity of deep models, especially Transformers. 
Larger-scale experiments on FMA Medium or the 
full dataset could further validate the observed 
trends. 

Third, the models trained in this work were 
evaluated exclusively on classification accuracy. 
However, music genre classification is inherently 
ambiguous and multi-label in nature. A more 

nuanced evaluation using confusion matrices, genre 
co-occurrence, or even perceptual studies could 
provide deeper insight into model behavior. 

6.3. FUTURE WORK 

Building on the findings of this project, several 
promising directions could be pursued to extend and 
refine the approach. One immediate opportunity lies 
in replacing the manually defined macrogenre 
mapping with automated discovery methods, such 
as unsupervised clustering based on audio 
embeddings or topic modeling techniques like 
Latent Dirichlet Allocation (LDA), to derive genre 
hierarchies directly from the data. This would 
enhance reproducibility and potentially reveal more 
meaningful structure within the genre space. 
Another natural extension involves adopting a 
multi-task learning setup in which models 
simultaneously predict both macrogenres and fine-
grained genres, allowing them to benefit from 
hierarchical supervision without requiring separate 
training stages. Moreover, expanding the 
classification framework to support multi-label 
predictions would better capture the complexity of 
musical genre boundaries and reflect the real-world 
scenario in which songs often span multiple styles. 
Investigating model interpretability, particularly 
through the analysis of attention weights in 
Transformer-based architectures, could offer deeper 
insights into which spectro-temporal regions drive 
genre decisions and how these are influenced by 
hierarchical pretraining. Finally, testing the 
generalization of trained models to unseen genres or 
few-shot scenarios could help assess the robustness 
of the learned representations, while incorporating 
user feedback or perceptual evaluations may bring 
these systems closer to practical applications in 
music recommendation and discovery. 
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ANNEX 

Macro-genrse Sub-genre 

Rock Rock (8406) 

Indie-Rock (5756) 

Psych-Rock (2642) 

Noise-Rock (1893) 

Post-Rock (1512) 

Krautrock (734) 

Space-Rock (497) 

Pop Pop (8570) 

Experimental Pop (7330) 

Power-Pop (1032) 

Metal Metal (973) 

Death-Metal (197) 

Black-Metal (152) 

Folk Folk/Acoustic (7320) 

Psych-Folk (2300) 

Freak-Folk (1315) 

Free-Folk (755) 

British Folk (164) 

Jazz Jazz (2526) 

Free-Jazz (1542) 

Nu-Jazz (120) 

Modern Jazz (107) 

Jazz: Out (299) 

Jazz: Vocal (99) 

Punk Punk (5546) 

Post-Punk (1930) 

Electro-Punk (568) 

Hip-Hop/Rap Hip-Hop/Rap (6612) 

Hip-Hop Beats (1220) 

Alternative Hip-Hop (742) 

Abstract Hip-Hop (202) 

Electronic Electronic (35701) 

Electroacoustic (6133) 

Lo-Fi (6075) 

Ambient Electronic (5747) 

IDM (3484) 

Glitch (2825) 

Downtempo (2097) 

Minimal Electronic (1024) 

Breakbeat (735) 

Breakcore – Hard (511) 

Drum & Bass (500) 

Bigbeat (191) 

R&B / Soul R&B/Soul (2521) 

Soul-RnB (555) 

Classical Music Classical (3393) 

20th Century Classical (297) 

Chamber Music (170) 

Opera (162) 

Choral Music (216) 

Composed Music (635) 

Minimalism (1402) 

Country / Americana Country (1065) 

Americana (1068) 

Country & Western (75) 

Western Swing (4) 

World Music International (1855) 

World/International (313) 

Latin America (510) 
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Brazilian (238) 

African (232) 

Balkan (616) 

Middle East (157) 

Indian (198) 

N. Indian Traditional (4) 

South Indian Traditional (17) 

Turkish (65) 

Romany (Gypsy) (112) 

Klezmer (57) 

North African (40) 

Pacific (23) 

Asia-Far East (122) 

Spanish (117) 

Flamenco (47) 

Fado (26) 

Tango (30) 

Cumbia (68) 

Salsa (12) 

 

While this grouping captures a substantial portion of 
the FMA genres, some specific genres were 
excluded from the macrogenre grouping, 
including unclassifiable genres or those with 
minimal data representation. Genres like Indian 
Traditional (4) or Western Swing (4) have very few 
tracks, making it difficult to train robust models on 
them. 

 

 

 
 


