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Resumen 

Este trabajo presenta el diseño y construcción de un robot bípedo de bajo coste, entrenado 

mediante aprendizaje por refuerzo profundo. Mediante una metodología basada en 

simulación utilizando MuJoCo y PyTorch se compararon algoritmos para control continuo: 

DDPG, D4PG, SAC y MPO. Se diseñó la función de recompensa, logrando una locomoción 

estable y natural. El modelo final muestra resultados prometedores y establece una 

plataforma para futuras transferencias a la realidad. Este proyecto se centró en el diseño, los 

algoritmos y los resultados clave de la creación de un robot bípedo, con el objetivo de 

democratizar la investigación en robótica humanoide. 

Palabras clave: aprendizaje por refuerzo profundo, robot humanoide, SAC, D4PG, DDPG, 

MPO, locomoción bípeda, diseño de función de recompensa, MuJoCo 

1. Introducción 

El objetivo del proyecto es democratizar la locomoción robótica avanzada utilizando 

hardware accesible y técnicas modernas de inteligencia artificial. Los robots bípedos 

requieren estrategias de control complejas para mantener el equilibrio y la estabilidad. 

Inspirado por plataformas académicas como Cassie [1] y la investigación de DeepMind 

sobre aprendizaje por refuerzo en control continuo [2], este proyecto intenta reproducir y 

probar métodos similares en hardware no profesional. 

2. Definición del Proyecto 

El objetivo fue diseñar y entrenar un robot bípedo utilizando aprendizaje por refuerzo (RL) 

en simulación. Se construyó un robot personalizado con piezas impresas en 3D y 

servomotores, modelado digitalmente en Fusion 360 y simulado en MuJoCo [3]. El proyecto 

compara cuatro algoritmos de RL para control continuo: DDPG [4], D4PG [5], SAC [6], y 

MPO [7], usando una arquitectura consistente y observando su rendimiento bajo el mismo 

entorno y función de recompensa.Los objetivos secundarios incluyen: 

• Diseñar una función de recompensa modular y extensible para caminar [8][9]. 

• Explorar la aleatorización del entorno para la transferencia de simulación a mundo 

real [10]. 

• Construir un código abierto para liberar públicamente. 

3. Descripción del Sistema. 

El robot cuenta con 12 servomotores controlados por un Jetson Nano [11] y simulado usando 

MuJoCo. Su gemelo digital fue exportado automáticamente desde Fusion 360 a URDF y 

convertido a un XML compatible con MuJoCo utilizando fusion2urdf [12], una librería de 



código abierto. El espacio de observación incluye posición y orientación del torso, 

velocidades y posiciones y velocidades de las articulaciones, muestreadas a 100 Hz. 

 

Figura 1: Diseño del robot 

Diseño final del robot en la realidad, Fusion 360 y MuJoCo respectivamente. 

La arquitectura de control consiste en una red neuronal MLP de 2 capas (256,256) con una 

arquitectura actor-crítico, con modelos LSTM y CNN-1D implementados para su uso futuro 

en entornos más complejos donde se necesiten observaciones pasadas para un buen 

rendimiento. [2][13]. 

4. Resultados 

La primera etapa del esfuerzo experimental se centró en la ingeniería de la función de 

recompensa. Se introdujo iterativamente una serie de componentes de recompensa. Esto 

culminó en una función de recompensa modular que logra que un robot camine de forma 

efectiva y natural [8][9]. 

Término de 

Recompensa 

Definición Peso 

Sobrevivió un 

paso 
1 0.001 

Velocidad 𝑒−5·|𝑣𝑥𝑦−𝑐𝑥𝑦|2
 0.15 

Torque 
𝑒 

−0.02· 
1
𝑁

 ∑ 
|𝑡𝑚𝑜𝑡𝑜𝑟|

𝑡𝑚𝑎𝑥  
0.01 

Diferencia de 

acción 
𝑒 −0.02·∑ |𝑎𝑡−𝑎𝑡−1| 0.01 

Aceleración 

del torso 
𝑒 −0.01·∑ |𝑏𝑥 𝑦 𝑧| 0.05 



Orientación 

Yaw 
𝑒 −30·𝑞𝑑(𝑞𝑦𝑎𝑤,𝑐𝑦𝑎𝑤) 0.02 

Orientación 

Pitch y Roll 
𝑒 −30·𝑞𝑑(𝑞𝑝𝑖𝑡𝑐ℎ,𝑟𝑜𝑙𝑙,𝑐𝑝𝑖𝑡𝑐ℎ,𝑟𝑜𝑙𝑙) 0.04 

Orientación 

de los pies 
𝑒 −30·∑ 𝑞𝑑(𝑞𝑓𝑒𝑒𝑡,𝑦𝑝𝑟,𝑐𝑓𝑒𝑒𝑡,𝑦𝑝𝑟) 0.3 

Centrado del 

torso 
𝑒−20·|𝑝𝑥𝑦−

𝑝𝑟_𝑓𝑒𝑒𝑡,𝑥𝑦+𝑝𝑙_𝑓𝑒𝑒𝑡,𝑥𝑦

2
|2

 
0.1 

Contacto del 

pie 
{
Δt𝑡𝑑 𝑖𝑓 𝕝𝑡𝑑,𝑓 𝑎𝑛𝑑 𝑝𝑓,𝑥 > 𝑝𝑓′,𝑥 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑓 ∈  [𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

1.5† 

Table 1. Elementos de la Función de Recompensa Final 

𝑐 = un comando; 𝑞 = un cuaternión; 𝑝 = una posición; 𝑏 = aceleración del torso; 𝑞𝑑(·) = función de 

distancia entre cuaterniones;  𝕝𝑡𝑑 = variable booleana que indica un nuevo contacto con un pie distinto del 

anterior; 𝛥𝑡𝑡𝑑= diferencia temporal entre el último contacto premiado y el actual;  † = nota: al ser esta la 

única recompensa dispersa, su peso es significativamente mayor que los demás términos. 

 

 

Figura 2: Resultados finales de los algoritmos 

Gráficas que muestran los resultados tras ejecutar DDPG, D4PG, MPO y SAC. Se muestran, en orden, las puntuaciones 

finales obtenidas por episodio a lo largo de los pasos, la duración de los episodios a lo largo de los pasos, la recompensa 

media por paso y los pasos por segundo. Todas las gráficas han sido suavizadas para mostrar mejor los resultados, ya que la 

salida real es muy ruidosa. 



Cada algoritmo fue entrenado durante 30 millones de pasos en un entorno con un terreno 

plano. Las métricas principales analizadas fueron la recompensa final, la duración del 

episodio, la velocidad de entrenamiento y la calidad y estabilidad de la marcha. Los 

resultados fueron los siguientes: 

• SAC logró la recompensa más alta y la marcha más natural, con episodios 

constantes de 1000 pasos. 

• D4PG ofreció el mejor equilibrio entre velocidad y rendimiento, convergiendo 

rápidamente con una marcha estable. 

• MPO mostró un mayor tiempo de entrenamiento y peor rendimiento, pero 

potencial en entornos más complejos. 

• DDPG fue rápido y simple, pero inestable, con una calidad de marcha deficiente. 

El código se encuentra disponible en el siguiente repositorio de GitHub: 

https://github.com/AsterisCrack/BipedRobot  

5. Conclusiones 

Este trabajo demuestra que es posible entrenar políticas de locomoción bípedo estables 

utilizando técnicas modernas de aprendizaje por refuerzo en hardware no profesional. Al 

diseñar una función de recompensa modular y comparar cuatro algoritmos clave de RL, el 

proyecto ofrece un camino reproducible para futuros investigadores en robótica a bajo coste. 

Los objetivos futuros incluyen pruebas en el mundo real, integración de modelos temporales 

y aleatorización del dominio para la transferencia simulación-realidad. 
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ENGLISH VERSION 

Abstract 

This work presents a custom built and designed low-cost biped robot trained using deep 

reinforcement learning. A simulation-based methodology based on MuJoCo and Pytorch 

was developed to test and compare continuous deep reinforcement learning algorithms: 

DDPG, D4PG, SAC, and MPO. Special emphasis was placed on reward function 

engineering, achieving stable and natural locomotion. The final model shows promising 

results and establishes a platform for future sim-to-real transfer. This project was aimed 

towards the design, algorithms, and key outcomes of creating a biped robot, aiming to 

democratize humanoid robot research by simplifying the design and implementation process 

with a low-cost platform. 

Keywords: deep reinforcement learning, humanoid robot, SAC, D4PG, DDPG, MPO, 

bipedal locomotion, reward function design, MuJoCo 

1. Introduction 

The project aims to democratize advanced robotic locomotion by using accessible hardware 

and modern AI techniques. Biped robots require complex control strategies to maintain 

balance and stability. Inspired by academic platforms like Cassie [1] and DeepMind's 

research on reinforcement learning in continuous control [2], this project attempts to 

reproduce and test similar methods on hobby-grade hardware. 

2. Project Definition 

The goal was to design and train a biped robot using reinforcement learning (RL) in 

simulation. A custom robot was built with 3D-printed parts and hobby servos, digitally 

modeled in Fusion 360, and simulated in MuJoCo [3]. The project compares four continuous 

control RL algorithms, DDPG [4], D4PG [5], SAC [6], and MPO [7], using a consistent 

architecture, observing their performance under the same environment and reward function. 

Secondary objectives included: 

• Designing a modular and extensible reward function for walking [8][9]. 

• Exploring environment randomization for sim-to-real transfer [10]. 

• Building a codebase for future public release. 

3. System description 

The robot features 12 servo motors controlled by a Jetson Nano [11] and simulated using 

MuJoCo. Its digital twin was automatically exported from Fusion 360 to URDF and 

converted to MuJoCo XML using fusion2urdf [12], an open-source library. The observation 

space includes torso position, orientation, velocities, and joint positions and velocities 

sampled at 100 Hz. 



 

Figure 2: Robot design 

The final hardware design of the robot in reality, Fusion 360 and MuJoCo respectively. 

The control architecture consists of a 2-layer MLP (256,256) actor-critic architecture, with 

LSTM and 1D-CNN models implemented for future use in more complex environments 

where past observations are needed for good performance. [2][13]. 

4. Results 

The first stage of experimental effort was directed toward reward function engineering. A 

sequence of reward components was introduced iteratively. This culminated in a modular 

reward function that achieves effective and natural walking [8][9]. 

Reward 

Term 

Definition Weighting 

Survived a 

step 
1 0.001 

Velocity 𝑒−5·|𝑣𝑥𝑦−𝑐𝑥𝑦|2
 0.15 

Torque 
𝑒 

−0.02· 
1
𝑁

 ∑ 
|𝑡𝑚𝑜𝑡𝑜𝑟|

𝑡𝑚𝑎𝑥  
0.01 

Action 

Difference 
𝑒 −0.02·∑ |𝑎𝑡−𝑎𝑡−1| 0.01 

Base 

Acceleration 
𝑒 −0.01·∑ |𝑏𝑥 𝑦 𝑧| 0.05 

Yaw 

orientation 
𝑒 −30·𝑞𝑑(𝑞𝑦𝑎𝑤,𝑐𝑦𝑎𝑤) 0.02 

Pitch and Roll 

orientation 
𝑒 −30·𝑞𝑑(𝑞𝑝𝑖𝑡𝑐ℎ,𝑟𝑜𝑙𝑙,𝑐𝑝𝑖𝑡𝑐ℎ,𝑟𝑜𝑙𝑙) 0.04 

Feet 

orientation 
𝑒 −30·∑ 𝑞𝑑(𝑞𝑓𝑒𝑒𝑡,𝑦𝑝𝑟,𝑐𝑓𝑒𝑒𝑡,𝑦𝑝𝑟) 0.3 



Torso 

centering 
𝑒−20·|𝑝𝑥𝑦−

𝑝𝑟_𝑓𝑒𝑒𝑡,𝑥𝑦+𝑝𝑙_𝑓𝑒𝑒𝑡,𝑥𝑦

2
|2

 
0.1 

Feet contact 

position 
{
Δt𝑡𝑑 𝑖𝑓 𝕝𝑡𝑑,𝑓 𝑎𝑛𝑑 𝑝𝑓,𝑥 > 𝑝𝑓′,𝑥 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑓 ∈  [𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

1.5† 

Table 2. Elements of the Final Reward Function 

𝑐 = a command; 𝑞 = a quaternion; 𝑝 = a position; 𝑏 = base acceleration; 𝑞𝑑(·) = quaternion distance 

function;  𝕝𝑡𝑑 = a Boolean variable indicating a touchdown in the current timestep with a different foot from 

the last touchdown; 𝛥𝑡𝑡𝑑= time difference between the current and the last touchdown reward given;  † = 

note due to the feet contact reward being the only sparse reward the weight is significantly bigger than other 

terms. 

 

 

Each algorithm was trained for 30 million steps in a flat-terrain environment. The main 

metrics analyzed were final reward, episode length, training speed, and qualitative gait and 

stability. The results are the following: 

• SAC achieved the highest reward and most natural gait, with consistent 1000-step 

episodes. 

Figure 2: Results for the final algorithms 

Graphs showing the results after executing DDPG, D4PG, MPO and SAC. They show, in order, the final scores obtained per 

episode over the steps, the episode lengths over the steps, the mean reward per step, the steps per second. All graphs have been 

smoothed to better demonstrate findings since the real output is very noisy. 



• D4PG offered the best speed-performance tradeoff, converging quickly with stable 

walking. 

• MPO showed higher training time and worse performance, but potential in more 

complex environments. 

• DDPG was fast and simple but unstable, with poor final gait quality. 

The code can be found in the following GitHub page: 

https://github.com/AsterisCrack/BipedRobot  

5. Conclusions 

This work demonstrates that it is possible to train stable bipedal locomotion policies using 

modern reinforcement learning techniques on hobby-grade hardware. By designing a 

modular reward function and benchmarking four key RL algorithms, the project offers a 

reproducible path for future robotics researchers at a low cost. 

Future goals include real-world testing, integration of temporal models, and domain 

randomization for sim-to-real transfer. 
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1. INTRODUCTION 

The development of humanoid robots has long captured the imagination of researchers and engineers due to 

their potential to operate in human-centered environments and perform tasks in ways familiar and intuitive 

to people. Among the various challenges in humanoid robotics, bipedal locomotion remains one of the most 

complex, requiring real-time dynamic balance, control of multiple degrees of freedom, and adaptation to 

uneven terrain. The goal of this project is to tackle these challenges using a low-cost, accessible approach 

based on reinforcement learning techniques. The proposed bipedal robot is built from affordable, off-the-

shelf components and aims to lay the groundwork for open-source development of walking behaviors using 

modern machine learning methods. 

In this work, we take a practical approach to a problem typically reserved for highly specialized research 

groups with expensive equipment. Our robot uses hobby-grade servo motors, 3D-printed structures, and an 

affordable microcontroller-based control system. In contrast to high-end platforms such as Cassie [1] or 

Honda's ASIMO [2], which rely on sophisticated sensor arrays, precision machining, and proprietary 

software, our project investigates how far one can go in teaching a robot to walk using a combination of 

simple hardware and intelligent state-of-the-art algorithms. The core of this exploration lies in the application 

of reinforcement learning, particularly continuous deep reinforcement learning algorithms to learn effective 

locomotion strategies. 

1.1.  CONTEXT AND MOTIVATION 

Humanoid robots have evolved significantly in recent decades. From passive dynamic walkers to real-time 

balance controllers powered by deep reinforcement learning, the research community has made remarkable 

advances in modeling, control, and execution. Robots such as Cassie are now capable of impressive feats, 

including running, jumping, and navigating unstructured environments. However, the barrier to entry for this 

type of development remains prohibitively high for individual researchers, hobbyists, and students due to 

cost, complexity, and lack of open access to proprietary systems. 

This project is motivated by the desire to democratize humanoid locomotion research, making it more 

accessible to those outside large institutions. By working with inexpensive and widely available parts along 

with simple to understand and modular code, the aim is to bridge the gap between academic research and 

DIY innovation. The ultimate goal is to contribute to an ecosystem where anyone with basic engineering 

knowledge can experiment with bipedal robots and reinforcement learning, paving the way for broader 

educational and research applications. 

Moreover, the rapid development of open-source tools such as MuJoCo and PyTorch has made it increasingly 

feasible to simulate and train walking algorithms efficiently, even on modest hardware. Inspired by 

DeepMind’s work on MPO for continuous control tasks on hobby grade robots [3], this project explores 

similar principles in a drastically constrained environment. 
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1.2. OBJECTIVES 

Main Objective 

The primary objective of this project is to design and train a reinforcement learning (RL) model capable of 

controlling the locomotion of a custom-built biped robot. Leveraging recent advances in deep reinforcement 

learning and physics-based simulation environments, this project aims to lay the groundwork for achieving 

dynamic and stable bipedal walking using low-cost hardware components and DIY fabrication techniques. 

While the design and construction of the real-world robot will be thoroughly explained, the project will focus 

on evaluating and comparing different state-of-the-art reinforcement learning algorithms in terms of their 

efficiency, stability, and learning performance when applied to bipedal locomotion. The outcome will help 

identify the most suitable algorithms for training biped robots in resource-constrained conditions, without 

relying on high-end sensors or actuators. 

Secondary Objectives 

Although the initial plan included implementing full sim-to-real transfer, constraints due to the limited 

resources provided limited the scope of the project. Instead, the following secondary objectives were pursued, 

both of which are crucial foundational steps toward achieving those long-term goals in the future: 

1. Exploration and Experimentation on the Reward Function: 

A significant portion of the project was dedicated to researching and designing an effective reward 

function for learning a natural gait for the robot. Since the reward function is a key component in 

reinforcement learning, determining how to guide the agent toward stable, efficient and natural 

walking behavior proved essential. Various formulations were tested; such as velocity tracking, 

energy efficiency, torso stability, and foot placement accuracy; based on state-of-the-art work, to 

understand their impact on learning dynamics and final performance. 

2. Research on Next Steps Toward Sim-to-Real Transfer: 

While a full sim-to-real implementation was not completed, the project includes an exploration of 

techniques required to enable this transition. In particular, it investigates the use of environment 

randomization (e.g., varying mass, friction, sensor noise) as a method to improve the robustness of 

learned policies when moving from simulation to real-world execution. This work helps lay the 

groundwork for future integration of real hardware by identifying the major gaps and proposing 

practical steps to bridge them. 

 

1.3. PLANNING AND ECONOMIC VIABILITY 

The project was structured to minimize costs and development time while ensuring meaningful 

experimentation. The following strategies were adopted: 

• Hardware: The robot is built using 3D-printed PLA components along with aluminum braces, 

included with most servo motors. It is controlled by an NVIDIA Jetson Nano [4]; a low-cost 
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microcontroller targeted towards AI research. Each leg includes 6 degrees of freedom powered by 

standard hobby servos, keeping the total mechanical cost under €500. 

• Simulation: Training is performed in simulation using MuJoCo [5], which allows rapid iteration 

without risking physical hardware. Simulated training runs on a consumer-grade PC or cloud GPU, 

significantly reducing the need for expensive robotic test benches. 

• Development Schedule: Planning and Schedule: The project was initially structured into seven 

main phases distributed across the academic year, from October to June. These phases were: (1) 

robot design, (2) state-of-the-art review, (3) simulation environment setup, (4) algorithm 

implementation, (5) training and optimization, (6) sim-to-real transfer, and (7) analysis and report 

writing. 

The early stages progressed according to plan. The robot design, literature review, and simulation setup were 

successfully completed within the first semester (October–December). However, the subsequent phases 

experienced schedule deviations. 

The algorithm implementation phase began in January as planned and extended into March. However, the 

training and optimization phase, which started in February, required significantly more time than initially 

anticipated. The schedule was designed considering the compute power the university promised they would 

provide; unfortunately, these resources were never provided so training had to be done locally with a laptop. 

As a result, training and optimization occupied most of the time originally allocated for sim-to-real transfer 

and final analysis, which had to be deprioritized. 

Consequently, although a theoretical exploration of sim-to-real techniques was conducted, no physical 

deployment was achieved. Similarly, the final report was completed under tighter time constraints, 

overlapping with late-stage training experiments. 

Despite these shifts, the project was successful in achieving its main objective and laying the groundwork 

for future development, particularly in sim-to-real transfer and real-world testing. 

• Cost Overview: 

o Servos (12x): ~€240 

o Control board and power: ~€250 

o 3D printing materials: ~€20 

o Miscellaneous components (screws, wires, sensors): ~€20 

o Total: ~€500–550 

• Viability: This budget-friendly design demonstrates that meaningful work on biped locomotion 

does not require industrial-level investment, which reinforces the goal of open accessibility. 
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2. STATE OF THE ART 

2.1. HUMANOID PLATFORMS AND TRENDS 

Recently a lot of new humanoid/bipedal robots have emerged. For example, Figure 01, Tesla Optimus, 

Agility Robotics’ Cassie and Digit, Unitree H1 or Apptronik Apollo [14]. All these robots include very 

advanced algorithms and hardware, now featuring high-torque, back drivable electric actuators [15] and 

onboard vision, enabling agile locomotion and manipulation. These platforms apply the vision of “embodied 

intelligence” [16], which means integrating advanced AI with physical hardware. 

2.2. REINFORCEMENT LEARNING FOR LOCOMOTION 

Since the creation of the first deep RL methods, legged locomotion has significantly advanced. The state of 

the art in reinforcement learning for legged locomotion includes: 

• Model-based RL (MBRL): Learns environment dynamics to improve sample efficiency [17]. 

• On-policy algorithms (PPO, TRPO): Simple algorithms are still being used in training in 

parallelized simulation for real-time gait control [15]. 

• Hierarchical RL: For example, HWC-Loco employs a high-level planner to manage switching 

between velocity-tracking, balance, and safety recovery policies in different scenarios [18]. 

• Offline RL & world models: RWM-O trains entirely from pre-collected datasets, reducing 

dangerous real-world exploration [17]. Imitation learning, through adversarial motion priors and 

human motion capture, guides policy training to simplify the sim-to-real gap [16][19]. 

2.3. SIMULATION AND AI-GENERATED ENVIRONMENTS 

Modern simulation engines like NVIDIA’s Isaac Gym and DeepMind’s MuJoCo are essential for training 

legged locomotion policies over diversely randomized terrains in a faster and safer manner than real-life 

simulation [15]. State-of-the-art research extends this by using generative AI to produce synthetic 

environments. For example, MIT’s LucidSim uses LLMs to generate varied 3D terrains and textures, 

enabling “visual parkour” policy training [20]. 

2.4. VISION–LANGUAGE–ACTION MODELS 

One of the fastest growing and most interesting trends in robotics consists of integrating vision, language, 

and control via multimodal models. A few examples include: 

• PaLM-E embeds vision and proprioceptive data into a transformer-based LLM. This enables the 

model for planning, question answering, and multi-step manipulation tasks [21]. 

• Transformers have been trained to predict next-action tokens using a mixture of datasets, 

including physics simulation, mocap and YouTube videos. This model achieved zero-shot real-

world biped walking after only around 27 hours of data [22]. 

• MoRE fuses vision-language instruction models with RL through adapter modules and Q-learning 

fine-tuning, achieving generalization to novel commands [23]. 
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2.5. EMBODIED MANIPULATION AND INTELLIGENCE 

Locomotion controllers are just the beginning while creating a robot. The final goal for a functional robot is 

to manipulate its environment as humans do. Simultaneous locomotion and manipulation performance has 

been improving in recent years. For example, FLAM uses human motion-based captures to shape rewards 

for joint posture and task success, enhancing co-learning of walking and manipulation [19]. Broadly, the use 

of pre-trained perception and language models like CLIP, SAM and LLMs with RL is driving robots toward 

generalist embodied intelligence [19][21] 

RL robotics is rapidly advancing, and large research groups are creating practical and generalist models to 

operate robots. However, these technologies are not easily accessible to small researchers, and it is not easy 

to learn deep reinforcement learning from the ground. That is why the goal of this project is to simplify the 

development and research of the first stages towards more complex robotics controllers. 

3. METHODOLOGY 

This chapter presents the technical foundation of the project. It details the process followed to design the 

biped robot, digitalize it into a simulation-compatible format, and apply various reinforcement learning 

algorithms to train it for stable locomotion. 

3.1. TECHNICAL DESCRIPTION 

3.1.1. ROBOT DESIGN AND DIGITALIZATION 

The biped robot used in this project was entirely custom-built using low-cost, readily available components, 

with the aim of democratizing bipedal robotic research. The mechanical design was carried out using Fusion 

360, where custom parts were created to be 3D-printable in a hobby grade FDM 3D printer. Also, the robot’s 

legs were built using the aluminum braces included with the servo motors. Finally, to strengthen the 

connection between the legs and the torso, a construction with skateboarding bearings was made. The 

decision to use this type of piece was based on the goal of making the robot unexpensive and easy to build. 

The selected servo motors are 12 RDS3225 servo motors. These servos were chosen because they have 25kg 

of torque, which is enough for a small robot, while also being cheap and reliable. However, these servos do 

not include any type of encoder, which might be necessary in the future. The selected microcontroller was 

the NVIDIA Jetson Nano. This microcontroller was designed for AI applications and includes a GPU 

designed for AI models, making it the perfect choice for this project. As for the sensors, an IMU (inertial 

measurement unit) is present in the center of the torso to gather the inertial data needed as input for the model. 

To simulate the robot, a URDF (Unified Robot Description Format) model was automatically generated 

using a Fusion 360 extension [6]. This allowed for easy conversion into a MuJoCo compatible XML file. 

This step was crucial, as it avoided the need for manual calculation of link inertias and mass properties—

data which Fusion 360 could export directly based on material and geometry. The final design and adaptation 

in these platforms can be seen in Figure 3: Robot design. 
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Figure 3: Robot design 

The final hardware design of the robot in reality, Fusion 360 and MuJoCo respectively. 

3.1.2. Simulation with MuJoCo 

The simulation was performed using MuJoCo [3] (Multi-Joint dynamics with Contact), a physics engine 

designed for accurate and efficient simulation of robots and articulated structures. MuJoCo offers high-speed 

simulation and precise contact modeling, making it suitable for training reinforcement learning policies. 

The simulation process was organized into three progressively complex environments: 

1. Flat terrain, constant velocity: The initial environment had a flat plane and a fixed forward 

velocity goal. This was used to test the algorithms and design the reward function. 

2. Randomized environment: To simulate sim-to-real transfer, environmental parameters (e.g., 

friction, mass perturbation) were randomized during training. This improves robustness and 

adaptability. 

3. Random velocity and direction: In the final environment, the agent received a random target 

velocity vector (speed and direction) and had to learn how to reach it dynamically. 

All these environments shared the same terminal states. First, if the robot center of mass reaches a height 

lower than 20 cm it is considered that it fell, and the episode is terminated unsuccessfully. However, if it 

reaches a certain number of steps, in this case 1000, it is considered that the robot’s gait is stable and it is 

terminated successfully. 

Moreover, a functionality was added to execute MuJoCo simulations in sequence and in parallel. Having 

various simulations at the same time allows for efficient usage of compute power and enables faster training. 

In the end, 8 worker groups with 16 workers per group were selected for training. 
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3.1.3. Observation Space 

The observation vector was sampled at 100 Hz from the torso (where the real robot’s IMU is located) and 

included information necessary for balance and locomotion. The observation format was: 

Index Feature Description 

0-2 x, y, z Position of the torso 

3-6 qx, qy, qz, qw Orientation (quaternion) 

7-n joint_positions Current joint angles 

n+1 to n+3 vx, vy, vz Linear velocity of the torso 

n+4 to n+6 qvx, qvy, qvz Angular velocity of the torso 

... joint_velocities Angular velocity of all joints 

 

The absence of servo encoders in the real robot posed a future challenge: either the system must be upgraded 

to include them, or the observation space must be adapted to remove joint state dependency. 

Due to the complexity of the problem, environments 2 and 3 require past data, so in this environments the 

observation space will include a number of past observations-actions pairs along with the present 

observations. 

3.2. MODEL DESIGN 

To enable comparisons across different reinforcement learning algorithms, a consistent architecture was 

adopted for the actor and critic networks. 

3.2.1. MLP Architecture 

For the base environments (constant forward velocity), a Multilayer Perceptron (MLP) with two hidden 

layers of size (256, 256) and ReLU activations were used for both the actor and the critic. 

3.2.2. Temporal Models: LSTM and 1D-CNN 

For more complex environments that require memory, two temporal models were implemented and should 

be explored in the future: 

• LSTM (Long Short-Term Memory) layers were added before the MLP to handle time sequences 

of past observations. 

• A 1D Convolutional Neural Network (1D-CNN) was also implemented to capture patterns in the 

recent history of observations, offering faster training with slightly less flexibility than LSTM. 

This design allows the same input and output formats across models and facilitates benchmarking. 
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3.3. TRAINING AND VALIDATION 

3.3.1. Algorithms Explored 

Four actor-critic reinforcement learning algorithms were selected for evaluation, all suited for continuous 

control tasks: 

• DDPG (Deep Deterministic Policy Gradient): 

DDPG [13] is an off-policy, actor-critic algorithm that learns deterministic policies for continuous 

control by combining Q-learning with a policy gradient. It trains quickly but newer algorithms 

made it obsolete. 

• D4PG (Distributed Distributional DDPG): 

D4PG [24] builds on DDPG by using a distributional critic, n-step returns, and distributed 

experience collection, improving training stability and performance. It offers a strong balance 

between speed and reward quality, making it ideal for rapid experimentation. 

• MPO (Maximum a Posteriori Policy Optimization): 

MPO [7] frames reinforcement learning as probabilistic inference, alternating between policy 

improvement and supervised policy fitting steps. Although more robust and theoretically grounded, 

it is computationally intensive and slower to converge in practice. Also, tuning the bigger amount 

of hyperparameters can be difficult. 

• SAC (Soft Actor-Critic): 

SAC [8] is a stochastic, entropy-regularized actor-critic algorithm that encourages exploration by 

maximizing both reward and policy entropy. It achieves state-of-the-art stability and performance 

but requires more time to train compared to other methods. 

Each algorithm used is suited for continuous action spaces, all of them are off-policy algorithms, with actor-

critic architectures and distinct optimization strategies. All models were trained with the same MLP 

architecture: (256, 256) for both actor and critic, to allow for a fair and consistent comparison. They will be 

described in greater detail in ANNEX I. 

3.3.2. Reward Function Design 

Reward design was one of the most critical components for achieving stable and natural-looking walking 

behavior. Using D4PG for its stability and performance, the reward function was iteratively designed and 

tested. 

3.3.3. Evaluation Metrics 

The evaluation of each algorithm was based on: 

• Reward curve: The reward over time is arguably the most important metric to evaluate the 

different algorithms. With it we evaluate not only the final reward reached but also the speed at 

which each algorithm learns. 
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• Episode length curve: In the case of this project, the reward is not the only important metric to be 

maximized. Since we want the gait to be stable, a good metric to use is the episode length. Longer 

episodes consistently mean the robot does not fall as often, hence, a more stable gait. 

The combination of these two metrics is ideal to test the algorithms for a biped robot. The reward 

curve is the most important, but in some cases the design of the reward function is not tuned correctly, 

and it can allow for reward hacking, as will be explained later. Also, in some cases it is preferred to 

prioritize stability rather than perfecting components for the reward. For these reasons, this project 

will be looking at both curves to compare the algorithms. 

• Steps per second and training time: To evaluate the algorithms’ speed, it is essential to compare 

the algorithm speed. Each algorithm’s training speed differs greatly. For that, the training time and 

the steps per second will be compared. 

• Qualitative walking behavior (naturalness, symmetry): Finally, as a subjective metric, the 

naturalness, symmetry and overall quality of the gaits will be compared. This is a more visual and 

subjective metric, but it is interesting to look at the differences in results. 

3.3.4. Codebase 

All code was written in Python, following a modular and extensible architecture. This allowed for easy 

swapping of algorithms, networks, environments, and reward functions. The goal is to release the platform 

as open source, so that researchers and enthusiasts can contribute and develop new ideas without requiring 

expensive hardware. The algorithms and distributed environments were modified from Tonic RL Library 

[25]. 

The code can be found in the following GitHub page: https://github.com/AsterisCrack/BipedRobot  

4. EXPERIMENTS 

This section describes in detail the experimentation process, including the objectives, resources used, 

configuration, algorithm evaluation, reward function tuning, and performance assessment. All experiments 

were carried out exclusively in the first environment (flat plane, forward locomotion) due to hardware 

limitations. The goal was to establish a strong foundation and identify the most effective reinforcement 

learning algorithm and reward function for a stable and natural biped gait. 

4.1. OBJECTIVES 

The main goals of the experimentation phase were: 

• To compare the performance of four state-of-the-art continuous control reinforcement learning 

algorithms: Maximum a Posteriori Policy Optimization (MPO), Soft Actor-Critic (SAC), Deep 

Deterministic Policy Gradient (DDPG), and Distributed Distributional DDPG (D4PG). 

• To iteratively design, test, and refine the reward function in order to obtain a stable, natural and 

efficient walking pattern. 

• To assess training speed, convergence rate, and the final reward performance of each algorithm in a 

controlled simulated environment. 

https://github.com/AsterisCrack/BipedRobot
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Due to hardware constraints, experiments were limited to a flat-terrain environment with fixed target 

velocities, and only simple MLP-based architectures were trained. 

4.2. DATA 

No external datasets were used. All training data was generated online through interaction with the MuJoCo 

simulation environment. The robot receives observations at 100 Hz as described in 3.1, including position, 

orientation, velocity, and joint states. 

The environment provides a reward signal and a next observation after each action, completing the loop for 

reinforcement learning. 

4.3. CONFIGURATION 

Hardware: 

• Laptop model: MSI Prestige 15 

• CPU: Intel Core i7-10710U 

• RAM: 16GB 

• GPU: NVIDIA GeForce GTX 1650 Max-Q 

Software stack: 

• Simulation: MuJoCo physics engine 

• Programming language: Python 3.11 

• Frameworks: PyTorch, Gym 

4.4. REWARD FUNCTION EXPERIMENTATION 

A central component of this work involved the careful design and iterative refinement of the reward function, 

which guides the learning process of the reinforcement learning model. The reward function determines what 

behaviors are encouraged and which are penalized, making it a critical factor in shaping the quality, stability, 

and naturalness of the biped robot’s locomotion. 

In early experiments, it was observed that poorly designed rewards often led to unnatural or unstable gaits, 

or to the agent exploiting loopholes in the reward signal (e.g., shaking limbs rapidly to produce reward spikes 

without meaningful movement, standing still to avoid the penalization of failing). To mitigate this, 

experimentation was made following a modular and incremental reward design strategy, beginning with 

minimal terms and gradually incorporating additional components as needed to address specific behavioral 

deficiencies. 
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4.4.1. DESIGN PHILOSOPHY AND USE OF EXPONENTIAL TERMS 

All the reward components were formulated using exponential functions of the form 𝑒−𝑘 ∗ 𝑒𝑟𝑟𝑜𝑟^2 or 

𝑒−𝑘 ∗ |𝑒𝑟𝑟𝑜𝑟|. This structure provides several desirable properties: 

• Boundedness: Rewards are naturally scaled between 0 and 1, preventing gradient explosion. 

• Smoothness: The exponential curve penalizes large errors more harshly while allowing small errors 

to contribute meaningfully. 

• Gradient-based encouragement: Gradual improvements in behavior lead to measurable reward 

improvements, crucial for stable convergence. 

This approach was inspired by prior work on locomotion reward shaping, particularly in simulated robots, 

such as in the DeepMind Control Suite [11]. 

4.4.2. ITERATIVE TERM INTRODUCTION AND EFFECTS 

The D4PG algorithm was used to test and refine the reward, based on its stability and speed during learning. 

Below is an overview of how terms were progressively introduced and what they achieved. 

1. Velocity tracking 

Ensures the robot walks at a commanded velocity. For testing purposes, set at 0.5 m/s in x direction, but this 

velocity command is randomly chosen in more complex environments. This is the most basic reward element. 

It encourages forward locomotion in the desired direction. Without this term, the agent learned to stand still. 

When adding more complex terms, their penalization might surpass the reward of moving forward. Instead 

of increasing the reward for this term, which might cause gradient explosion, a conditional term was added 

to give a big negative reward if the velocity is less than a minimum. 

2. Torque and Control Smoothness 

To encourage energy efficient and smooth actions, two terms were added to minimize torque and minimize 

action difference between steps. These terms Reduced jerky limb movements, leading to more natural gaits. 

Adding these terms helped prevent the robot from using extreme joint torques that could cause instability or 

mechanical failure. It will also increase the life expectancy of the motors. 

3. Posture and Orientation Stability 

The robot now moved forward, but in an asymmetric and unstable manner. To solve this, torso stability is 

encouraged by adding a term to maintain a straight upright posture, with minimal roll or pitch deviations. 

These terms significantly reduced falling episodes due to instability, hence speeding up the training. Pitch 

and roll stabilization helped develop a more balanced and natural gait. 

4. Height tracking 

Most reward functions for biped robots [10] include a term for commanding a certain height, normally the 

base height of the standing robot. However, after experimentation, this term was not necessary in the end 

since the robot learned to maintain a certain stable height on its own.  
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5. Feet Orientation  

The robot, however, tended to walk with the side of the feet or in “tippy toes”. Ideally, the robot should use 

the full bottom of the feet as contact to improve stability. To solve this problem, a similar term to the torso 

orientation one was added for each foot. 

6. Torso Centering 

After the last element of the reward function, more natural gaits were emerging. However, the robot tended 

to lean too forward. According to the double pendulum walking model [9], a stable walk should always have 

the center of mass between the two feet in the sequence. To solve this issue, a new term was created to 

encourage the torso to be placed between the two feet. 

7. Feet contact Alternation 

Finally, after a very stable walking gait emerged. However, it was visually off-putting due to the asymmetry 

of the gait. In biological walkers, gaits usually involve alternating the legs that are forward and back at every 

step, creating a symmetric and visually pleasing gait. The emerging gait, moreover, presented an asymmetric 

gait where one leg was always placed behind the other, using very quick and short steps. 

To solve this, different approaches were explored. The final approach involves a sparse reward when one-

foot touches down in front of the other. This reward needs to depend on the time difference between the 

current and the previous feet contact reward given. This is because, with a constant reward, the training 

showed a form of reward hacking where it would do a lot of fast small steps to maximize the reward. 

 

4.5. PERFORMANCE ANALYSIS 

After experimenting on the reward function, finally, experiments were done on the different algorithms. This 

point will analyze the performance of all 4 algorithms. 

 

Figure 4: Critic loss curves of SAC and DDPG without exploration decay 

These algorithms without adding exploration decay show unstable training.  
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In the first times executing the different algorithms, a recurrent issue emerged. Training was very unstable 

in DDPG, D4PG and SAC, as seen in Figure 4. This is because MPO is the only algorithm that tunes 

exploration to stabilize learning. In the other algorithms, exploration is a hyperparameter that needs to be 

tuned. 

In the end, the solution to stabilize learning was a combination of two techniques. First, decreasing all reward 

terms to keep the reward low, ideally less than 1. This helps the gradients not to explode while learning. 

Second, the exploration was kept high in the beginning and was exponentially decreased during training. 

This helps collect information about the environment first and then tune the policy in later steps. 

4.5.1. DDPG 

DDPG is the oldest and simplest algorithm of the ones used, and its performance reflected it. Thanks to its 

simplicity, it was the fastest algorithm with an average of 627 steps per second. It was also the fastest to 

converge, as the mean reward stopped improving at roughly 20 million steps. 

The reward curve is steep, meaning training is fast. However, it stopped growing quickly and it didn’t achieve 

a high final reward. The gait is not very stable, as most episodes don’t finish successfully, with an average 

episode length of 600 out of the 1000 steps. Visually, the gait is very unstable, which leads to the robot trying 

to continuously balance itself instead of moving forward at a constant speed.  

4.5.2. D4PG 

D4PG builds upon DDPG making some important changes. These changes result in a more robust algorithm 

that keeps the good aspects of DDPG and fixes its issues. Same as DDPG, D4PG is a fast algorithm, with an 

average of 563 steps per second. However, it converges later than DDPG, making the overall training of this 

algorithm longer. Moreover, not only is D4PG fast, but also its performance is very good. The final reward 

curve is the steepest and, opposite to DDPG, the reward keeps increasing, achieving the second highest final 

reward, only below SAC. Also, the gait is very stable and symmetrical. The episode length curve is also very 

steep, matching the reward, and in the final training steps it reaches the 1000 steps consistently. 

4.5.3. MPO 

MPO is a very advanced algorithm and is capable of learning very complex environments and policies as 

proven by DeepMind [3]. However, this added complexity makes the algorithm very slow. With the same 

configuration as the others, MPO trained at only 248 steps per second on average. It also takes a lot of steps 

to converge, comparable to D4PG and SAC. 

The results were also surprisingly poor. Although being better than the simplest DDPG, the episode length 

and reward curves were less steep than the other algorithms, meaning its sample efficiency is the worst 

amongst all algorithms. The episode length reaches 1000 in some iterations, but the reward is not as high, 

and the final gait isn’t as stable as D4PG or SAC. MPO has potential for being a very good algorithm with 

environments with more complexity which requires a better balance on exploration.  

Another issue faced with MPO is the complexity of tuning its hyperparameters. It is the algorithm with most 

hyperparameters amongst the four tested, and it is very sensitive for all. It requires a delicate tuning of all of 

them, which is a hard and lengthy process. Probably, we have not found the optimal hyperparameters and 

that is one of the reasons why the performance is so poor. 
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4.5.4. SAC  

SAC is usually the baseline algorithm used for benchmarking, even in the current SOTA. The reasoning 

behind it is very clear by seeing its performance. SAC’s speed falls short compared to D4PG, with an average 

of 327 steps per second. Also, the reward curve is more linear, and it looks like it will take a very large 

number of steps to fully converge, making the overall training of this algorithm quite long. However, this is 

not an issue since its performance is so good. The final reward curve increases almost at a constant rate, 

achieving the highest final reward, possibly surpassing D$PG by a lot if enough training time was allowed. 

Also, the gait is the most stable and symmetrical. The episode length curve doesn’t match the reward curve 

so closely since it is the steepest amongst all the algorithms and at about 10 million steps it reaches the 1000 

steps almost always. This means that the learning process followed by SAC first created a stable gait that 

does not fall and then consistently modified this gait to maximize reward gain. 

5. RESULTS 

After the previously mentioned experimentation on the rewards, the final reward function consists of the 

following terms: 

Reward Term Definition Weighting 

Survived a step 1 0.001 

Velocity 𝑒−5·|𝑣𝑥𝑦−𝑐𝑥𝑦|2
 0.15 

Torque 
𝑒 

−0.02· 
1
𝑁

 ∑ 
|𝑡𝑚𝑜𝑡𝑜𝑟|

𝑡𝑚𝑎𝑥  
0.01 

Action Difference 𝑒 −0.02·∑ |𝑎𝑡−𝑎𝑡−1| 0.01 

Base Acceleration 𝑒 −0.01·∑ |𝑏𝑥 𝑦 𝑧| 0.05 

Yaw orientation 𝑒 −30·𝑞𝑑(𝑞𝑦𝑎𝑤,𝑐𝑦𝑎𝑤) 0.02 

Pitch and Roll 

orientation 
𝑒 −30·𝑞𝑑(𝑞𝑝𝑖𝑡𝑐ℎ,𝑟𝑜𝑙𝑙,𝑐𝑝𝑖𝑡𝑐ℎ,𝑟𝑜𝑙𝑙) 0.04 

Feet orientation 𝑒 −30·∑ 𝑞𝑑(𝑞𝑓𝑒𝑒𝑡,𝑦𝑝𝑟,𝑐𝑓𝑒𝑒𝑡,𝑦𝑝𝑟) 0.3 

Torso centering 
𝑒−20·|𝑝𝑥𝑦−

𝑝𝑟_𝑓𝑒𝑒𝑡,𝑥𝑦+𝑝𝑙_𝑓𝑒𝑒𝑡,𝑥𝑦

2
|2

 
0.1 

Feet contact 

position 
{
Δt𝑡𝑑 𝑖𝑓 𝕝𝑡𝑑,𝑓 𝑎𝑛𝑑 𝑝𝑓,𝑥 > 𝑝𝑓′,𝑥 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑓 ∈  [𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

1.5† 

Table 3. Elements of the Final Reward Function 

𝑐 = a command; 𝑞 = a quaternion; 𝑝 = a position; 𝑏 = base acceleration; 𝑞𝑑(·) = quaternion distance function;  𝕝𝑡𝑑 = a 

Boolean variable indicating a touchdown in the current timestep with a different foot from the last touchdown; 𝛥𝑡𝑡𝑑= time 

difference between the current and the last touchdown reward given;  † = note due to the feet contact reward being the only 

sparse reward the weight is significantly bigger than other terms. 

 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA MATEMÁTICA E INTELIGENCIA ARTIFICIAL 

 

19 

C2 General 

With this reward function, all algorithms were executed, achieving the results shown in Figure 5: Results for 

the final algorithms. The results show that the best algorithm overall is SAC, achieving not only the highest 

score and episode length, but a very stable training with a constant growth in score. This growth does not 

stop in the 30 million steps allowed for training, which indicates potential for even better performance. 

However, it is somewhat slow. For that reason, D4PG is the best algorithm for testing and experimentation. 

The final performance of the model is not as good as D4PG, but with almost double the training speed and a 

steepest reward curve at first, D4PG is the best algorithm for quick experimentation, making the process 

much faster and, in consequence, cheaper. 

For all these reasons, the recommended workflow for designing a biped robot with RL consists of using 

D4PG to tune the reward function and, at last, use SAC to train the final model. 

  

 

 

Figure 5: Results for the final algorithms 

Graphs showing the results after executing DDPG, D4PG, MPO and SAC. They show, in order, the final scores obtained per 

episode over the steps, the episode lengths over the steps, the mean reward per step, the steps per second. All graphs have been 

smoothed to better demonstrate findings since the real output is very noisy. 
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6. CONCLUSION AND FUTURE WORK 

This project has demonstrated the feasibility of applying deep reinforcement learning to control a custom-

built, low-cost biped robot in simulation. Through a combination of mechanical design, simulation with 

MuJoCo, and deep RL algorithms, we achieved stable and natural locomotion using only affordable hardware 

and open-source tools. The evaluation of four state-of-the-art RL algorithms—DDPG, D4PG, SAC, and 

MPO—revealed that SAC provided the best overall performance in terms of stability and final reward, while 

D4PG offered the fastest and most efficient experimentation cycle. 

A major contribution of this work lies in the modular design and iterative refinement of the reward function, 

which was key to shaping effective and natural gaits. By progressively incorporating terms such as velocity 

tracking, torque penalization, orientation tracking, and foot contact alternation, the final reward function 

enabled learning gaits that were not only functional but also symmetric and visually natural. The results 

validate the hypothesis that it is possible to achieve viable locomotion outcomes by focusing on reward 

engineering and algorithmic selection. 

Despite the hardware limitations that restricted training to simulation, the project took preliminary steps 

toward the secondary objective, sim-to-real transfer, by developing environments with environment 

randomization techniques. These methods are essential for building robustness in learned policies and will 

serve as a foundation for future real-world deployment. Additionally, while temporal models like LSTM and 

1D CNNs were implemented, their testing alongside environment randomization remains an open task due 

to computational constraints. 

In future work, we aim to extend the experiments to more complex environments and integrate the trained 

policies onto the physical robot platform. Further evaluation of sim-to-real techniques and temporal models 

will be critical for this transition. Ultimately, this project establishes a reproducible and extensible platform 

that can serve both the research community and hobbyist developers in advancing the field of low-cost, 

intelligent humanoid robotics. 

 

 

 

 

 

 

 

 

 

 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA MATEMÁTICA E INTELIGENCIA ARTIFICIAL 

 

21 

C2 General 

7. BIBLIOGRAPHY 

[1] Gong, Yukai, Ross Hartley, Xingye Da, Ayonga Hereid, Omar Harib, Jiunn-Kai Huang, Jessy Grizzle. 

"Feedback Control of a Cassie Bipedal Robot: Walking, Standing, and Riding a Segway." 

arXiv:1809.07279, 2018. 

[2] Sakagami, Yoshiaki & Watanabe, Ryujin & Aoyama, Chiaki & Matsunaga, Shinichi & Higaki, Nobuo 

& FujiMura, Kikuo. “The intelligent ASIMO: System overview and integration.” IEEE International 

Conference on Intelligent Robots and Systems. 3. 2478 - 2483 vol.3. 10.1109/IRDS.2002.1041641, 

2002. 

[3] Haarnoja, Tuomas, Ben Moran, Guy Lever, Sandy H. Huang, Dhruva Tirumala, Jan Humplik, Markus 

Wulfmeier, Saran Tunyasuvunakool, Noah Y. Siegel, Roland Hafner, Michael Bloesch, Kristian 

Hartikainen, Arunkumar Byravan, Leonard Hasenclever, Yuval Tassa, Fereshteh Sadeghi, Nathan 

Batchelor, Federico Casarini, Stefano Saliceti, Charles Game, Neil Sreendra, Kushal Patel, Marlon 

Gwira, Andrea Huber, Nicole Hurley, Francesco Nori, Raia Hadsell, Nicolas Heess. "Learning Agile 

Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning." arXiv:2304.13653, 2023. 

[4] Swaminathan, Tushar Prasanna, Christopher Silver, Thangarajah Akilan. "Benchmarking Deep Learning 

Models on NVIDIA Jetson Nano for Real-Time Systems: An Empirical Investigation." 

arXiv:2406.17749, 2024. 

[5] E. Todorov, T. Erez and Y. Tassa, “MuJoCo: A Physics Engine for Model-Based Control.” IEEE Xplore, 

2012 

[6] syuntoku14, “fusion2urdf.” GitHub, 2025 

[7] Abdolmaleki, Abbas, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, Martin 

Riedmiller. "Maximum a Posteriori Policy Optimisation." arXiv:1806.06920, 2018.  

[8] Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, Sergey Levine. "Soft Actor-Critic: Off-Policy Maximum 

Entropy Deep Reinforcement Learning with a Stochastic Actor." arXiv:1801.01290, 2018. 

[9] M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman, “The simplest walking model: stability, complexity, 

and scaling,” Journal of Biomechanical Engineering, vol. 120, 1998 

[10] Marum, Bart van, Aayam Shrestha, Helei Duan, Pranay Dugar, Jeremy Dao, Alan Fern. "Revisiting 

Reward Design and Evaluation for Robust Humanoid Standing and Walking." arXiv:2404.19173, 2024. 

[11] Tassa, Yuval, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, 

Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, Martin Riedmiller. "DeepMind 

Control Suite." arXiv:1801.00690, 2018. 

[12] Fujimoto, Scott, Herke van Hoof, David Meger. "Addressing Function Approximation Error in Actor-

Critic Methods." arXiv:1802.09477, 2018. 

[13] Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David 

Silver, Daan Wierstra. "Continuous control with deep reinforcement learning." arXiv:1509.02971, 2015. 

[14] Zhang, Qiang, Peter Cui, David Yan, Jingkai Sun, Yiqun Duan, Gang Han, Wen Zhao, Weining Zhang, 

Yijie Guo, Arthur Zhang, Renjing Xu. "Whole-body Humanoid Robot Locomotion with Human 

Reference." arXiv:2402.18294, 2024. 

[15] Ha, Sehoon, Joonho Lee, Michiel van de Panne, Zhaoming Xie, Wenhao Yu, Majid Khadiv. "Learning-

based legged locomotion; state of the art and future perspectives." arXiv:2406.01152, 2024. 

[16] Zhang, Qiang, Peter Cui, David Yan, Jingkai Sun, Yiqun Duan, Gang Han, Wen Zhao, Weining Zhang, 

Yijie Guo, Arthur Zhang, Renjing Xu. "Whole-body Humanoid Robot Locomotion with Human 

Reference." arXiv:2402.18294, 2024. 

[17] Li, Chenhao, Andreas Krause, Marco Hutter. "Offline Robotic World Model: Learning Robotic Policies 

without a Physics Simulator." arXiv:2504.16680, 2025. 

[18] Lin, Sixu, Guanren Qiao, Yunxin Tai, Ang Li, Kui Jia, Guiliang Liu. "HWC-Loco: A Hierarchical Whole-

Body Control Approach to Robust Humanoid Locomotion." arXiv:2503.00923, 2025. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA MATEMÁTICA E INTELIGENCIA ARTIFICIAL 

 

22 

C2 General 

[19] Zhang, Xianqi, Hongliang Wei, Wenrui Wang, Xingtao Wang, Xiaopeng Fan, Debin Zhao. "FLAM: 

Foundation Model-Based Body Stabilization for Humanoid Locomotion and Manipulation." 

arXiv:2503.22249, 2025. 

[20] Yu, Alan, Ge Yang, Ran Choi, Yajvan Ravan, John Leonard, Phillip Isola. "Learning Visual Parkour from 

Generated Images." arXiv:2411.00083, 2024. 

[21] Driess, Danny, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan 

Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre 

Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, 

Klaus Greff, Andy Zeng, Igor Mordatch, Pete Florence. "PaLM-E: An Embodied Multimodal Language 

Model." arXiv:2303.03378, 2023. 

[22] Radosavovic, Ilija, Bike Zhang, Baifeng Shi, Jathushan Rajasegaran, Sarthak Kamat, Trevor Darrell, 

Koushil Sreenath, Jitendra Malik. "Humanoid Locomotion as Next Token Prediction." arXiv:2402.19469, 

2024. 

[23] Zhao, Han, Wenxuan Song, Donglin Wang, Xinyang Tong, Pengxiang Ding, Xuelian Cheng, Zongyuan 

Ge. "MoRE: Unlocking Scalability in Reinforcement Learning for Quadruped Vision-Language-Action 

Models." arXiv:2503.08007, 2025. 

[24] Barth-Maron, Gabriel, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva TB, 

Alistair Muldal, Nicolas Heess, Timothy Lillicrap. "Distributed Distributional Deterministic Policy 

Gradients." arXiv:1804.08617, 2018. 

[25] Pardo, Fabio. "Tonic: A Deep Reinforcement Learning Library for Fast Prototyping and Benchmarking." 

arXiv:2011.07537, 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA MATEMÁTICA E INTELIGENCIA ARTIFICIAL 

 

23 

C2 General 

ANNEX I 

8.1. ALGORITHMS 

In this annex, each algorithm will be explained in more detail and a pseudocode for each one will be provided. 

8.1.1. DEEP DETERMINISTIC POLICY GRADIENT (DDPG) 

DDPG [13] is a model-free, off-policy, actor-critic algorithm tailored for continuous action spaces. It extends 

the Deep Q-Learning ideas to deterministic policies using the Deterministic Policy Gradient Theorem. DDPG 

serves as the foundation for more advanced algorithms like TD3 and D4PG. 

Key innovations of DDPG: 

• Uses a deterministic actor 𝜇(𝑠|𝜃𝜇) to output continuous actions directly. 

• Trains a critic to approximate the Q-function 𝑄(𝑠, 𝑎|𝜃𝑄) using bootstrapped targets. 

• Employs target networks and a replay buffer for stable training. 

Theoretical Formulation 

Policy and Critic Objectives 

The critic minimizes the Bellman loss: 

ℒ𝒬(𝜃𝑄) = 𝐸(𝑠,𝑎,𝑟,𝑠′)[(𝑄(𝑠, 𝑎|𝜃𝑄) − 𝑦)2] 

Where the target is: 

𝑦 = 𝑟 + 𝛾𝑄′(𝑠′, 𝜇′(𝑠′)|𝜃𝑄′
) 

• 𝑄′ and 𝜇′ are target networks, updated slowly to stabilize learning. 

The actor is trained to maximize the Q-value using the deterministic policy gradient: 

∇𝜃𝜇𝐽 ≈ 𝐸𝑠∼𝔻[∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑎=𝜇(𝑠) ⋅ ∇𝜃𝜇𝜇(𝑠|𝜃𝜇)] 

Target Networks 

• Target networks 𝑄′, μ′ are soft-updated after every step: 

θ𝑄′
← 𝜏θ𝑄 + (1 − τ)θ𝑄′

 

θμ′
← τθμ + (1 − τ)θμ′

 

Where 𝝉 ≪ 1, e.g. τ =  0.005 

Exploration 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA MATEMÁTICA E INTELIGENCIA ARTIFICIAL 

 

24 

C2 General 

Since the policy is deterministic, exploration is added via noise during training: 

𝑎𝑡 = μ(𝑠𝑡|θμ) + 𝒩𝓉 

Pseudocode 

Initialize actor μ(s|θμ) and critic Q(s,a|θQ) 

Initialize target networks: θQ′ ← θQ, θμ′ ← θμ 

Initialize replay buffer R 

 

for each training step: 

    Select action: a = μ(s|θμ) + noise 

    Execute a in environment, observe (r, s′) 

    Store (s, a, r, s′) in R 

 

    Sample mini-batch from R 

    Compute targets: y = r + γ Q′(s′, μ′(s′)) 

    Update critic by minimizing: 

        L = (Q(s, a) - y)^2 

 

    Update actor using: 

        ∇θμ J ≈ ∇a Q(s, a)|a=μ(s) ∇θμ μ(s) 

 

    Update target networks: 

        θQ′ ← τ θQ + (1 − τ) θQ′ 

        θμ′ ← τ θμ + (1 − τ) θμ′ 

 

8.1.2. DISTRIBUTED DISTRIBUTIONAL DDPG (D4PG) 

D4PG [24] is an extension of the DDPG algorithm, integrating three powerful improvements: 

1. Distributional Critics: Instead of predicting a scalar value 𝑄(𝑠, 𝑎), it learns a full distribution over 

possible returns. 

2. N-step Returns: Bootstrapping over multiple steps increases learning stability. 

3. Distributed Experience Collection: Parallel actors collect experiences and feed a centralized replay 

buffer. 

These changes make D4PG significantly more stable and performant in complex tasks such as locomotion 

and manipulation, improving over DDPG and even SAC in many benchmarks. 

Theoretical Formulation 

D4PG modifies DDPG in three major ways: 

 Distributional Critic 

Instead of approximating 𝑸(𝒔, 𝒂) ≈ 𝑬[𝒁(𝒔, 𝒂)], D4PG models the full distribution 𝒁(𝒔, 𝒂). 
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1. Distributional Bellman Operator 

𝓣𝝅𝒁(𝒔, 𝒂) = 𝒓(𝒔, 𝒂) + 𝜸𝒁(𝒔′, 𝝅(𝒔′)) 

Where 𝑍 is a random variable representing the return. 

2. Distributional Loss 

𝓛critic = 𝑫KL(𝚽𝓣𝝅𝒁′ ∥ 𝒁) 

Where: 

• Φ𝒯π𝑍′: projected target distribution 

• 𝑍: current prediction 

• 𝐷KL : KL divergence 

The projection operator 𝚽 ensures the target lies on the same support as the predicted distribution. 

 

N-Step Returns 

Rather than 1-step TD updates, D4PG uses N-step bootstrapping: 

𝒚 = ∑ 𝜸𝒏𝒓𝒕+𝒏

𝑵−𝟏

𝒏=𝟎

+ 𝜸𝑵𝒁(𝒔𝒕+𝑵, 𝝅(𝒔𝒕+𝑵)) 

This improves stability and learning speed, especially in sparse reward tasks. 

 

 Deterministic Actor Update 

Just like DDPG, the actor is deterministic and updated via the deterministic policy gradient: 

𝛁𝜽𝑱(𝜽) = 𝑬𝒔∼𝓓[𝛁𝜽𝝅𝜽(𝒔) ⋅ 𝛁𝒂𝑸(𝒔, 𝒂)|𝒂=𝝅𝜽(𝒔)] 

In D4PG, the actor uses the mean of the learned return distribution: 

𝑸(𝒔, 𝒂) = 𝑬[𝒁(𝒔, 𝒂)] 

And uses this in the standard actor gradient. 

Pseudocode 

Initialize actor π_θ and distributional critic Z_ϕ 

Initialize target networks θ', ϕ' 

Initialize distributed replay buffer 
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for each training step: 

    # Collect experience in parallel 

    For each actor: 

        a_t = π_θ(s_t) + noise 

        Execute a_t, observe r_t, s_{t+1} 

        Store (s_t, a_t, r_t, s_{t+1}) in shared replay 

 

    # Sample N-step transitions 

    (s, a, r_1...r_N, s') ~ Replay 

 

    # Critic update: 

    Compute target distribution: 

        y = r_1 + γ r_2 + ... + γ^N Z'(s', π(s')) 

    Project y onto support atoms 

    Compute KL loss to critic output Z(s,a) 

    Backpropagate and update ϕ 

 

    # Actor update: 

    Use ∇_θ Q(s, π(s)) = ∇_θ E[Z(s, π(s))] 

    Update θ via deterministic policy gradient 

 

    # Target updates: 

    θ' ← τ θ + (1−τ) θ' 

    ϕ' ← τ ϕ + (1−τ) ϕ' 

 

8.1.3. MAXIMUM A POSTERIORI POLICY OPTIMIZATION (MPO) 

MPO [7] is an off-policy actor-critic reinforcement learning algorithm that formulates the policy optimization 

process as a coordinate ascent in a KL-regularized EM-like setting. Unlike many actor-critic methods, it 

separates exploration and optimization through non-parametric policy improvement (E-step) and parametric 

supervised learning (M-step). 

Theoretical Formulation 

The optimization objective in MPO is derived from casting RL as a probabilistic inference problem. Given 

an auxiliary distribution 𝑞(𝑎 ∣ 𝑠) over actions, the regularized objective is: 

maxq,θ Eq(s,a)[r(s, a) − α ⋅ KL(q(a ∣ s) ∥ πθ(a ∣ s))] + logp(θ) 

Where: 

• 𝝅(𝒂 ∣ 𝒔; 𝜽): the current policy parameterized by 𝜃 

• 𝒒(𝒂 ∣ 𝒔): non-parametric target distribution 

• 𝜶: temperature (controls soft-max weighting) 

• 𝒑(𝜽): prior over policy parameters (usually Gaussian around current policy) 

The algorithm alternates between: 
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E-step (policy improvement): 

Compute a non-parametric distribution q∗(a ∣ s) ∝ πθ(a ∣ s) ⋅ e
Q(s,a)

η  

Where η is a temperature term, tuned by dual optimization. 

M-step (policy fitting): 

We now fix 𝑞 and update 𝝅 to match it: 

𝐦𝐚𝐱𝝅 𝑬𝒔∼𝝁𝒒(𝒔) [𝑬𝒂∼𝒒(𝒂|𝒔)[𝐥𝐨 𝐠 𝝅 (𝒂|𝒔)]]  s.t. 𝑬𝒔[KL(𝝅old|𝝅)] ≤ 𝛜 

This is solved via supervised learning where: 

• Inputs: states 

• Targets: actions weighted by 𝑞 

• Objective: maximize log-likelihood, regularized by KL to prior policy 

This step is crucial to fit the new policy, while keeping it close to the old one for stability. 

Pseudocode for MPO: 

 

# Initialization 

Initialize actor πθ, critic Qϕ, replay buffer D 

 

for each iteration: 

    # Sample batch of transitions from replay 

    Sample (s, a, r, s') ~ D 

 

    # Estimate Q-function using Retrace 

    Fit Qϕ with Expected SARSA or Retrace 

 

    # E-step: compute target distribution q(a|s) 

    For each s in batch: 

        Sample actions a_i from πθ 

        Compute weights w_i ∝ exp(Q(s, a_i)/η) 

        Normalize weights to get q(a|s) 

 

    # M-step: update πθ to minimize KL(q(a|s) || π(a|s; θ)) 

    Compute supervised loss weighted by q 

    Update actor parameters θ with gradient descent 

 

    # Update dual variables (α, η) using gradients 
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8.1.4. SOFT ACTOR-CRITIC (SAC) 

SAC [8]  is a state-of-the-art reinforcement learning algorithm designed for sample-efficient, stable learning 

in continuous control tasks. Unlike deterministic actor-critic methods such as DDPG, SAC uses a stochastic 

policy and incorporates entropy maximization to encourage exploration. This results in better stability and 

robustness across different environments and hyperparameter settings. 

SAC combines: 

• Off-policy learning for sample efficiency. 

• A stochastic actor that maximizes both return and entropy. 

• Twin Q-networks to mitigate overestimation bias. 

• A reparameterization trick for low-variance policy gradients. 

Theoretical Formulation 

SAC is based on the maximum entropy RL framework, where the agent maximizes a trade-off between 

expected return and entropy. The objective function it tries to optimize is: 

𝐽(𝜋) = ∑ 𝐸(𝑠𝑡,𝑎𝑡)∼𝜌𝜋
[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛼ℋ(𝜋(⋅ |𝑠𝑡))]

∞

𝑡=0

 

• α: temperature parameter that balances reward vs. entropy. 

• ℋ(π(⋅ |𝑠)) = −𝐸𝑎∼π[log π (𝑎|𝑠)] 

The entropy term encourages diverse action choices, improving exploration and robustness. 

Policy Iteration Framework 

SAC follows a soft variant of policy iteration, alternating between soft policy evaluation and soft policy 

improvement. 

1. Soft Policy Evaluation 

Given a policy π, we define the soft Bellman backup: 

𝑄π(𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) + γ𝐸𝑠𝑡+1
[𝑉π(𝑠𝑡+1)] 

Where: 

𝑉π(𝑠) = 𝐸𝑎∼π[𝑄π(𝑠, 𝑎) − lo g π (𝑎|𝑠)] 

The Q-network is trained to minimize: 

𝐽𝑄(θ) = 𝐸(𝑠,𝑎,𝑟,𝑠′) [
1

2
(𝑄θ(𝑠, 𝑎) − �̂�(𝑠, 𝑎))

2

]  
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�̂�(𝑠, 𝑎) = 𝑟 + γ𝐸𝑎′∼π[𝑄θ̅(𝑠′, 𝑎′) − αlo g π (𝑎′|𝑠′)] 

• Two Q-functions are used: 𝑄θ1
, 𝑄θ2

 

• A target network �̅� is used for stable bootstrapping. 

In SAC, what might stand out the most is the use of two different critics. They are used to reduce positive 

bias from overestimation in value targets (common in Q-learning), done by taking the minimum of the two: 

�̂�(𝑠, 𝑎) = 𝑟 + γ[min𝑖=1,2 𝑄θ𝑖
̅̅ ̅ (𝑠′, 𝑎′) − αlo g π (𝑎′|𝑠′)] 

This "Double Q" trick was introduced in DDPG's successor TD3 [12] and improves stability and 

performance. 

2. Soft Policy Improvement 

The policy 𝜋ϕ is updated using the reparameterization trick: 

• Let 𝑎 = 𝑓ϕ(ϵ, 𝑠), where 𝛜 ∼ 𝒩(0, 𝐼) 

• Then: 

𝐽π(ϕ) = 𝐸𝑠∼𝐷,ϵ∼𝒩 [αlo g πϕ (𝑓ϕ(ϵ, 𝑠)|𝑠) − 𝑄θ (𝑠, 𝑓ϕ(ϵ, 𝑠))] 

This results in a low-variance gradient estimate for stochastic policies. 

Pseudocode 

# SAC Algorithm 

Initialize: actor π_φ, Q-networks Q_θ1, Q_θ2, target Q̄ networks, replay buffer D 

 

for each step: 

    Sample action a ∼ π_φ(a|s) 

    Observe r, s′ from environment 

    Store (s, a, r, s′) in D 

 

    # Sample batch from D 

    Sample (s, a, r, s′) ~ D 

 

    # Critic update 

    a′ ~ π_φ(a′|s′), log π = log prob(a′|s′) 

    Q_target = r + γ * (min(Q̄_θ1(s′, a′), Q̄_θ2(s′, a′)) - α * log π) 

    Loss_Q = MSE(Q_θi(s,a), Q_target) for i=1,2 

    Update Q_θ1, Q_θ2 

 

    # Actor update (via reparameterization trick) 

    a ∼ π_φ, log π = log π_φ(a|s) 

    Loss_π = α * log π - min(Q_θ1(s,a), Q_θ2(s,a)) 

    Update φ 

 

    # Update target networks 

    θ̄ ← τθ + (1 - τ)θ̄ 
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