5o
&ITY
COMILLAS

UNIVERSIDAD PONTIFICIA

| 1car |

Degree in Engineering in Telecommunications Technologies

Bachelor’s final project

Scaling LLM Inference on a modern GPU Cluster

Author
Laura Gonzalez Moran

Supervised by Atilano Ramiro Fernandez-Pacheco Sanchez-Migallon -
Universidad Pontificia Comillas ICAI

Madrid
August 2025

Laura Gonzalez Moran, declara bajo su responsabilidad, que el Proyecto con ti-
tulo Scaling LLM Inference on a modern GPU Cluster presentado en la ETS
de Ingenieria (ICAI) de la Universidad Pontificia Comillas en el curso académico
2024/25 es de su autoria, original e inédito y no ha sido presentado con anterioridad
a otros efectos. El Proyecto no es plagio de otro, ni total ni parcialmente y la
informacion que ha sido tomada de otros documentos esta debidamente referenciada.

Fdo.: Laura Gonzalez Moran Fecha: 22 / 08 / 2025

Autoriza la entrega:
EL DIRECTOR DEL PROYECTO

Atilano Ramiro Fernandez-Pacheco Sanchez-Migallon

71216314B Digitally signed by
ATILANO ;'1;\/1‘&3(; 4B ATILANO

RAMIRO FERNANDEZ-
FERNANDEZ- PACHECO

Date: 2025.08.25
PACHECO 22:33:59 +02'00'

Firmado por GONZALEZ MORAN, LAURA (FIRMA) el dia
26/08/2025 con un certificado emitido por AC DNIE 006

5o
&ITY
COMILLAS

UNIVERSIDAD PONTIFICIA

| 1car |

Degree in Engineering in Telecommunications Technologies

Bachelor’s final project

Scaling LLM Inference on a modern GPU Cluster

Author
Laura Gonzalez Moran

Supervised by
Atilano Ramiro Fernandez-Pacheco Sanchez-Migallon - Universidad
Pontificia Comillas ICAI

Madrid
August 2025

Acknowledgements

I would first like to express my gratitude to the Systems Platform Research Group
at the University of Illinois Urbana-Champaign, for generously welcoming me into
their team and providing access to their computing infrastructure.

I am deeply thankful to my family, whose support has been a constant source of
strength for me, and whose unwavering encouragement and love have accompanied
me throughout my whole education.

Finally, I would like to sincerely thank Atilano, both for supervising this bachelor’s
thesis and for being an inspiring professor and mentor. His guidance and dedi-
cation have been invaluable, and I feel very fortunate to have learned under his
direction.

Scaling LLM Inference on a Modern GPU Cluster

Author: Gonzalez Moran, Laura
Director: Fernandez-Pacheco Sénchez-Migallon, Atilano Ramiro

Collaborating Entity: ICAI — Universidad Pontificia Comillas

Abstract

This Bachelor’s Thesis conducts a multivariable analysis of large-language-model
(LLM) inference performance at scale, with the goal of identifying the primary
factors driving resource inefficiency and their economic implications for infrastruc-
ture providers. To enable this analysis, an automated benchmarking pipeline was
developed to deploy open-source LLMs on an H100 GPU cluster, generate realistic
user workloads through controlled request streams, and capture fine-grained hard-
ware telemetry in real time. By systematically varying key parameters such as
concurrency, model size, sequence length, and tensor parallelism, the study char-
acterises how different workload profiles affect throughput, latency, and resource
saturation. The empirical results are used to derive role-aware operating recom-
mendations tailored to developers, system architects, infrastructure providers, and
hardware manufacturers, offering practical guidance for improving the efficiency,
scalability, and economic viability of LLM inference systems.

Keywords: Large Language Models, Inference, Benchmarking, KV-Cache, Scalability,
vLLM, AT Infrastructure.

1. Introduction

Generative Al inference platforms are nowadays used simultaneously by very large
user populations, and that volume keeps growing steadily [1|. Sustaining such
a user request rate requires a data center infrastructure equipped with state-of-
the-art Graphics Processing Units (GPUs) [2]. However, their acquisition and
operation involve multibillion-dollar investments, so optimising these resources is
essential to contain costs [3, 4]. As these workloads grow in complexity and vol-
ume, they place increasing strain on the underlying hardware, exposing bottlenecks
that limit throughput and degrade efficiency. Even small inefficiencies can accu-
mulate at scale, leading to disproportionate resource consumption and escalating
operational costs.

The economic impact has already become visible in industry: even companies
generating billions in revenue from Al services have reported difficulty achieving
profitability due to the overwhelming cost of operating large-scale inference [5, 3,
4]. In other words, without fundamental efficiency improvements, the business
models behind these platforms become unsustainable.

2. Project Definition

The purpose of this Final Degree Project is to produce measurable insight into
how large language model inference scales in practice and to convert that insight
into actionable guidance for those who build and operate these systems.

To that end, the work conducts a multivariable analysis of large-scale LLM in-
ference to identify the factors that most drive resource inefficiency and thereby
worsen the cost structure for infrastructure providers. It then designs and imple-
ments a reproducible benchmarking pipeline that deploys open-source language
models on an H100 cluster, generates realistic streams of user requests, and cap-
tures fine-grained hardware telemetry in real time so that performance can be
characterised across workloads. Finally, it distils the empirical findings into role-
aware recommendations that improve the efficiency of operating LLM inference
services.

These aims are summarised below:

e Conduct a multivariable analysis of large-scale LLM inference: Quan-
tify how performance and resource efficiency change as key workload and
system factors vary, and identify the main drivers of underutilisation that
deteriorate providers’ cost structure.

e Design a reproducible benchmarking pipeline: Build an automated
and repeatable pipeline that deploys open-source LLMs on an H100 clus-
ter, generates synthetic user workloads, and records fine-grained hardware
metrics at sub-second resolution to produce the datasets required for the
analysis.

e Deliver role-aware operating guidance grounded in empirical re-
sults: Translate measured behaviour into data-driven recommendations for
developers, system architects, infrastructure providers, and hardware manu-
facturers so each can apply the findings to improve efficiency across the Al
ecosystem.

3. System description

The implemented system has been designed as a modular benchmarking pipeline,
where each subsystem fulfills a precise responsibility while remaining independent
from the others. The architecture was structured to guarantee automation, repro-
ducibility, and extensibility, allowing the entire benchmark to be executed with a
single command or each component to be invoked individually for debugging and
validation.

Benchmark
Orchestrator
Script

Workload Generation Subsytem

E——

slore
results

¥ ‘Workload Generation
P Scripls

-~ . Inference
e LLM alredty,

Engine log
LLM data

Run Benchmark . deployed inthe > Y©S S
o
O script generate synthetic user responses
- workload
\ o - end
I Orchetrator
no

sel Benchmark
Parameters / Hardware Telemetry Collection
Subsytem

Hardware
deploy LLM I] Mo

run o store
benchmark Pass| Hardware Telemetry | _resutts

e —
arameters Collection Script

scrape
metrics

analyse
endpoint

results

[Metric
Analysis
and

Scripts

Underlying Infrastructure

VLLM API Server Endpoint: http://0.0.0.0:8000 Prometheus Metrics Endpoint http://0.0.0.0:8000/metrics

Deployed Large Language Model

Figure 1: Pipeline Orchestration Schema

The platform is divided into five main functional blocks. The first is Benchmark
Selection, which defines the open-source models and workload configurations used
to reflect realistic large-scale inference scenarios. The second block, Automated
Pipeline Orchestration, coordinates the execution of all subsystems through shell
scripts and configuration files, ensuring the correct sequence of operations without
manual intervention. The third block, User Workload Generation, produces real-
istic streams of concurrent requests that vary in prompt length, sequence length,
and concurrency, closely mirroring production user behaviour. The fourth block,

Hardware Telemetry Collection, captures fine-grained GPU and system-level met-
rics in real time using Prometheus, storing the results for later analysis. Finally,
the block of Metric Analysis and Visualization processes the recorded data to de-
rive insights on throughput, latency, and memory utilisation, highlighting scaling
behaviours and bottlenecks.

Overall, this modular design makes the pipeline flexible and transparent. Each
component can evolve independently, while their integration provides a comprehen-
sive end-to-end benchmarking system that is both reproducible and efficient.

4. Results

The experimental results gathered in this project thanks to the development of an
automated benchmarking system, allowed for a multivariable analysis of LLM in-
ference performance across a wide range of model architectures and workload con-
figurations. This analysis consistently identified GPU memory saturation (partic-
ularly coming from KV-cache accumulation) as the primary bottleneck that limits
throughput and drives up latency under load. While compute resources were often
underutilised, it was memory exhaustion that most frequently triggered system-
wide slowdowns and rendered the infrastructure economically inefficient.

This insight proved essential for understanding when and why inference workloads
fail to scale, and how such failures degrade the cost structure for infrastructure
providers. Armed with this empirical evidence, the final phase of the project trans-
lated these findings into a set of concrete, role-aware recommendations. These rec-
ommendations target the four key actors involved in the deployment of large-scale
Al systems: developers, system architects, infrastructure providers, and hardware
manufacturers.

Each recommendation is tailored to the decisions and tradeoffs that stakeholders
must routinely navigate. The following list provides a brief summary of the final
recommendations presented in the Applied Recommendations Informed by Empir-
1cal Findings section:

e Developers are guided to select models with memory-efficient attention
mechanisms, as these significantly reduce the risk of KV-cache saturation
during inference.

e System Architects are advised to specialise their clusters by workload type,
avoiding general-purpose architectures that often result in unpredictable sat-
uration behaviour and inefficient scaling.

e Infrastructure Providers are encouraged to offer purpose-built infrastruc-
ture profiles aligned with specific workload demands, and to maintain optimal

operating conditions through real-time telemetry monitoring and adaptive
scaling.

e Hardware Manufacturers are prompted to prioritise innovation in mem-
ory design, in line with recent industry trends toward memory pooling, hi-
erarchical KV-cache architectures, and disaggregated handling of prefill and
decode phases.

Together, these recommendations form a unified, evidence-based strategy for im-
proving the efficiency, scalability, and economic viability of LLM inference systems
across the entire Al infrastructure stack.

5. Conclusions

Once the development of this project has concluded, and based on the results
obtained, it can be confirmed that all proposed objectives have been successfully
achieved. A reproducible benchmarking pipeline was designed and implemented to
deploy open-source large language models on an H100 GPU cluster, generate real-
istic user workloads, and collect high-resolution hardware telemetry. This system
enabled a multivariable analysis of inference performance across different models
and workload conditions.

The results revealed that GPU memory saturation (especially from KV-cache accu-
mulation) was the most prominent bottleneck limiting throughput and increasing
latency under load. This finding provides a deeper understanding of the oper-
ational limits of current infrastructure and their implications for scalability and
cost-efficiency.

Finally, the insights derived from these benchmarks were used to develop tar-
geted recommendations for each stakeholder role across the Al infrastructure stack.
These recommendations offer actionable guidance for improving system-level effi-
ciency, supporting better technical and economic outcomes for future LLM infer-
ence deployments.

6. References

[1] Emma Roth. ChatGPT’s weekly users have doubled in less than a year.
https://www. theverge.com/2024/8/29/24231685/ openai - chatgpt -
200-million-weekly-users. The Verge, 29 Aug 2024. Aug. 2024. (Visited
on 08/22/2025).

https://www.theverge.com/2024/8/29/24231685/openai-chatgpt-200-million-weekly-users
https://www.theverge.com/2024/8/29/24231685/openai-chatgpt-200-million-weekly-users

2]

13l

4]

5]

Brian Caulfield. What’s the Difference Between a CPU and a GPU? https:
//blogs.nvidia.com/blog/whats-the-difference-between-a-cpu-and-
a-gpu/. NVIDIA Blog. Original post Dec 2009; periodically updated. Dec.
2009. (Visited on 08/22/2025).

Kenrick Cai. Alphabet reaffirms 375 billion spending plan in 2025 despite
tariff turmoil. https://www. reuters. com/technology/alphabet-ceo-
reaffirms-planned-75-billion-capital-spending-2025-2025-04-09/.
Reuters, 10 Apr 2025. Apr. 2025. (Visited on 08/22/2025).

Reuters. Microsoft to spend record $30 billion this quarter as Al investments
pay off. https://www.reuters.com/business/microsoft-spend-record-
30-billion-this-quarter-ai-investments-pay-off-2025-07-30/.
Reuters, 30 Jul 2025. July 2025. (Visited on 08/22/2025).

Reuters. OpenAl hits $12 billion in annualized revenue, The Information
reports. https://www.reuters.com/business/openai-hits-12-billion-
annualized-revenue-information-reports-2025-07-31/. Reuters, 31 Jul
2025. July 2025. (Visited on 08,/22/2025).

https://blogs.nvidia.com/blog/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/whats-the-difference-between-a-cpu-and-a-gpu/
https://www.reuters.com/technology/alphabet-ceo-reaffirms-planned-75-billion-capital-spending-2025-2025-04-09/
https://www.reuters.com/technology/alphabet-ceo-reaffirms-planned-75-billion-capital-spending-2025-2025-04-09/
https://www.reuters.com/business/microsoft-spend-record-30-billion-this-quarter-ai-investments-pay-off-2025-07-30/
https://www.reuters.com/business/microsoft-spend-record-30-billion-this-quarter-ai-investments-pay-off-2025-07-30/
https://www.reuters.com/business/openai-hits-12-billion-annualized-revenue-information-reports-2025-07-31/
https://www.reuters.com/business/openai-hits-12-billion-annualized-revenue-information-reports-2025-07-31/

Escalado de la inferencia de LLMs en un claster moderno de
GPUs

Autor: Gonzalez Moran, Laura
Director: Fernandez-Pacheco Sanchez-Migallon, Atilano Ramiro

Entidad Colaboradora: ICAI — Universidad Pontificia Comillas

Resumen

Este Trabajo de Fin de Grado realiza un anélisis multivariable del rendimiento de
la inferencia de modelos de lenguaje de gran escala (LLMs), con el objetivo de
identificar los principales factores que generan ineficiencia en el uso de recursos y
sus implicaciones econdémicas para los proveedores de infraestructura. Para llevar
a cabo este analisis, se desarroll6 una canalizaciéon de pruebas automatizada que
permite desplegar LLMs de co6digo abierto sobre un cluster de GPUs H100, generar
cargas de trabajo realistas mediante flujos de peticiones controladas, y capturar
telemetria de hardware de alta resoluciéon en tiempo real. Variando sistemética-
mente parametros clave como la concurrencia, el tamano del modelo, la longitud
de la secuencia y el nivel de paralelismo tensorial, el estudio caracteriza como difer-
entes perfiles de carga afectan al rendimiento en términos de throughput, latencia y
saturacion de recursos. Los resultados empiricos se utilizan para derivar recomen-
daciones operativas adaptadas a cada uno de los principales roles implicados en
la infraestructura de IA —desarrolladores, arquitectos de sistemas, proveedores
de infraestructura y fabricantes de hardware— ofreciendo asi una guia practica
para mejorar la eficiencia, escalabilidad y viabilidad econémica de los sistemas de
inferencia con LLMs.

Palabras clave: Modelos de Lenguaje de Gran Escala, Inferencia, Benchmarking, KV-
Cache, Escalabilidad, vLLM, Infraestructura de IA.

1. Introduccion

Las plataformas de inferencia de IA generativa son utilizadas hoy en dia de forma
simultanea por poblaciones de usuarios muy numerosas, y ese volumen contintda
creciendo de manera constante [1]. Sostener este ritmo de peticiones requiere
una infraestructura de centros de datos equipada con Unidades de Procesamiento
Gréfico (GPUs) de ultima generacion |2]. Sin embargo, su adquisicion y operacion

implican inversiones de varios miles de millones de doélares, por lo que optimizar
estos recursos resulta esencial para contener los costes |3, 4].

A medida que estas cargas de trabajo crecen en complejidad y volumen, ejercen una
presion cada vez mayor sobre el hardware subyacente, exponiendo cuellos de botella
que limitan el rendimiento y degradan la eficiencia. Incluso pequenas ineficiencias
pueden acumularse a gran escala, provocando un consumo desproporcionado de
recursos y un aumento significativo de los costes operativos.

El impacto econémico ya se ha hecho visible en la industria: incluso empresas que
generan miles de millones en ingresos por servicios de IA han reportado dificultades
para alcanzar la rentabilidad debido al elevado coste de operar inferencia a gran
escala [5, 3, 4]. En otras palabras, sin mejoras fundamentales en eficiencia, los
modelos de negocio detras de estas plataformas se vuelven insostenibles.

2. Definicién del Proyecto

El proposito de este Trabajo de Fin de Grado es ofrecer una visiéon cuantitativa so-
bre como escala en la practica la inferencia de grandes modelos de lenguaje (LLMs),
y transformar ese conocimiento en recomendaciones practicas para quienes disenan
y operan estos sistemas.

Con ese fin, el trabajo realiza un analisis multivariable de la inferencia de LLMs
a gran escala, con el objetivo de identificar los factores que mas contribuyen a la
ineficiencia en el uso de recursos y que, en consecuencia, deterioran la estructura
de costes de los proveedores de infraestructura. A continuacién, disena e imple-
menta una infraestructura de benchmarking reproducible que despliega modelos
de lenguaje de codigo abierto sobre un clister de GPUs H100, genera flujos real-
istas de peticiones de usuarios, y recoge telemetria de hardware de alta resoluciéon
en tiempo real para caracterizar el rendimiento bajo diferentes cargas de trabajo.
Por ultimo, destila los hallazgos empiricos en recomendaciones adaptadas a los
distintos roles del ecosistema, que permiten mejorar la eficiencia operativa de los
servicios de inferencia.

Estos objetivos se resumen a continuacion:

e Realizar un anilisis multivariable de la inferencia de LLMs a gran
escala: Cuantificar como cambian el rendimiento y la eficiencia en el uso de
recursos al variar distintos factores del sistema y de la carga de trabajo, e
identificar los principales causantes de infrautilizaciéon que afectan negativa-
mente a la estructura de costes de los proveedores.

e Disenar una infraestructura de benchmarking reproducible: Con-
struir una infraestructura automatizada y repetible que despliegue modelos

LLMs de codigo abierto en un claster H100, genere cargas sintéticas de tra-
bajo de usuario, y registre métricas de hardware a resoluciéon sub-segundo
para generar los datos necesarios para el analisis multivariable.

e Ofrecer recomendaciones operativas basadas en datos empiricos y
adaptadas por rol: Traducir el comportamiento observado en recomenda-
ciones practicas para desarrolladores, arquitectos de sistemas, proveedores
de infraestructura y fabricantes de hardware, de forma que cada uno pueda

aplicar los hallazgos para mejorar la eficiencia en su capa del ecosistema de
IA.

3. Descripcion del Sistema

El sistema implementado ha sido disenado como una infraestructura de bench-
marking modular, donde cada subsistema cumple una responsabilidad precisa
manteniendo su independencia respecto a los deméas. La arquitectura se ha estruc-
turado para garantizar automatizacion, reproducibilidad y extensibilidad, permi-
tiendo ejecutar todo el benchmark con un solo comando o invocar cada componente
de forma individual para tareas de depuraciéon y validacion.

A
k-
,igtfs LLM alreaty
deployed in the

Run Benchmark
O script

 yes

Workload Generation Subsytem

/Pass |

il —

slore
results
Workload G

Parameters

Scripts

generate synthetic user |
workload i

LLM
responses

sel Benchmark
Parameters

run
benchmark

P
o
no

deploy LLM

Hardware Telemetry Collection
Subsytem

[Pass |

Hardware Telemelry |

Hardware
metrics

store
resuits

Collection Script

Inference
Engine log
data

Benchmark
Orchestrator
Script

end
QOrchetratoy

;g!amepérs

scrape
metrics

analyse
endpoint

resuits

[Metric
Analysis
and

Scripts

Underlying Infrastructure

VLLM API Server Endpoint: http://0.0.0.0:8000 Prometheus Metrics Endpoint http://0.0.0.0:8000/metrics

Deployed Large Language Model

Figure 2: Esquema de Orquestacion del Pipeline

La plataforma se divide en cinco bloques funcionales principales. El primero es
Seleccion de Benchmark, que define los modelos de cédigo abierto y las configura-
ciones de carga de trabajo utilizadas para reflejar escenarios realistas de inferencia
a gran escala. El segundo bloque, Orquestacion Automatizada del Pipeline, coor-
dina la ejecucion de todos los subsistemas mediante scripts de shell y archivos de
configuracion, garantizando la secuencia correcta de operaciones sin intervenciéon
manual. El tercer bloque, Generacion de Carga de Trabajo de Usuario, produce
flujos realistas de peticiones concurrentes que varian en longitud del prompt, longi-
tud de secuencia y concurrencia, simulando fielmente el comportamiento de usuar-
ios en produccion. El cuarto bloque, Captura de Telemetria de Hardware, recoge
métricas detalladas de GPU y del sistema en tiempo real utilizando Prometheus,
y almacena los resultados para su posterior analisis. Finalmente, el bloque de
Andlisis y Visualizacion de Métricas procesa los datos registrados para obtener
conclusiones sobre rendimiento, latencia y uso de memoria, destacando patrones
de escalado y cuellos de botella.

En conjunto, este diseno modular hace que el pipeline sea flexible y transparente.

Cada componente puede evolucionar de forma independiente, mientras que su
integracion proporciona un sistema de benchmarking de extremo a extremo que es
tanto reproducible como eficiente.

4. Resultados

Los resultados experimentales obtenidos en este proyecto, gracias al desarrollo de
un sistema automatizado de benchmarking, permitieron llevar a cabo un analisis
multivariable del rendimiento de inferencia de modelos de lenguaje a gran escala
(LLM) en una amplia gama de arquitecturas de modelo y configuraciones de carga
de trabajo. Este anélisis identificd de forma consistente la saturacion de memoria
GPU (en particular, la acumulacion de KV-cache) como el principal cuello de
botella que limita el rendimiento y eleva la latencia bajo carga. Aunque los recursos
de computo permanecian frecuentemente infrautilizados, era la falta de memoria la
que més habitualmente provocaba ralentizaciones generalizadas y volvia ineficiente
la infraestructura desde el punto de vista econémico.

Este hallazgo resulté esencial para entender cuando y por qué las cargas de in-
ferencia dejan de escalar, y como estos fallos degradan la estructura de costes
para los proveedores de infraestructura. Con esta evidencia empirica, la fase final
del proyecto consistié en traducir estos hallazgos en un conjunto de recomenda-
ciones concretas y adaptadas a cada rol. Estas recomendaciones estan dirigidas
a los cuatro actores clave implicados en el despliegue de sistemas de inteligencia
artificial a gran escala: desarrolladores, arquitectos de sistemas, proveedores de
infraestructura y fabricantes de hardware.

Cada recomendacién esta adaptada a las decisiones y compromisos que estos ac-
tores deben afrontar de forma rutinaria. La siguiente lista proporciona un resumen
de las recomendaciones finales presentadas en la seccion Recomendaciones Apli-
cadas Informadas por Resultados Empiricos:

e Desarrolladores: se les orienta a seleccionar modelos con mecanismos de
atencion eficientes en memoria, ya que estos reducen significativamente el
riesgo de saturacion de KV-cache durante la inferencia.

e Arquitectos de Sistemas: se les recomienda especializar sus clisteres
segun el tipo de carga de trabajo, evitando arquitecturas generalistas que
suelen producir patrones de saturacién impredecibles y un escalado inefi-
ciente.

e Proveedores de Infraestructura: se les anima a ofrecer perfiles de in-
fraestructura especializados adaptados a las necesidades de cargas de tra-
bajo concretas, y a mantener condiciones 6ptimas de operaciéon mediante

monitorizacion de telemetria en tiempo real y escalado adaptativo.

e Fabricantes de Hardware: se les insta a priorizar la innovacion en el
diseno de memoria, en linea con las tendencias actuales del sector hacia
agrupamiento de memoria (memory pooling), arquitecturas jerdrquicas de
KV-cache y gestion desagregada de las fases de prefill y decode.

En conjunto, estas recomendaciones constituyen una estrategia unificada y basada
en evidencia para mejorar la eficiencia, escalabilidad y viabilidad econémica de los
sistemas de inferencia de LLM en toda la pila de infraestructura de IA.

5. Conclusiones

Una vez finalizado el desarrollo de este proyecto, y con base en los resultados
obtenidos, se puede confirmar que todos los objetivos propuestos han sido alcanza-
dos con éxito. Se disen6 e implementd una pipeline de benchmarking reproducible
para desplegar modelos de lenguaje abiertos en un cluster de GPUs H100, generar
cargas de trabajo realistas de usuarios y recopilar telemetria de hardware con alta
resolucion. Este sistema permitio realizar un anélisis multivariable del rendimiento
de inferencia bajo distintas condiciones de modelo y carga.

Los resultados revelaron que la saturacion de memoria GPU (especialmente debido
a la acumulacion de KV-cache) fue el cuello de botella més destacado, limitando el
rendimiento y aumentando la latencia bajo carga. Este hallazgo proporciona una
comprension mas profunda de los limites operativos de la infraestructura actual y
sus implicaciones en términos de escalabilidad y eficiencia de costes.

Finalmente, los conocimientos extraidos de estos benchmarks fueron utilizados
para desarrollar recomendaciones especificas dirigidas a cada uno de los roles den-
tro de la pila de infraestructura de IA. Estas recomendaciones ofrecen orientacion
practica para mejorar la eficiencia a nivel de sistema, facilitando mejores resul-
tados técnicos y econdémicos en futuros despliegues de inferencia de modelos de
lenguaje.

6. Referencias

[1] Emma Roth. ChatGPT’s weekly users have doubled in less than a year.
https://www. theverge.com/2024/8/29/24231685/ openai - chatgpt -
200-million-weekly-users. The Verge, 29 Aug 2024. Aug. 2024. (Visited
on 08/22/2025).

https://www.theverge.com/2024/8/29/24231685/openai-chatgpt-200-million-weekly-users
https://www.theverge.com/2024/8/29/24231685/openai-chatgpt-200-million-weekly-users

2]

13l

4]

5]

Brian Caulfield. What’s the Difference Between a CPU and a GPU? https:
//blogs.nvidia.com/blog/whats-the-difference-between-a-cpu-and-
a-gpu/. NVIDIA Blog. Original post Dec 2009; periodically updated. Dec.
2009. (Visited on 08/22/2025).

Kenrick Cai. Alphabet reaffirms 375 billion spending plan in 2025 despite
tariff turmoil. https://www. reuters. com/technology/alphabet-ceo-
reaffirms-planned-75-billion-capital-spending-2025-2025-04-09/.
Reuters, 10 Apr 2025. Apr. 2025. (Visited on 08/22/2025).

Reuters. Microsoft to spend record $30 billion this quarter as Al investments
pay off. https://www.reuters.com/business/microsoft-spend-record-
30-billion-this-quarter-ai-investments-pay-off-2025-07-30/.
Reuters, 30 Jul 2025. July 2025. (Visited on 08/22/2025).

Reuters. OpenAl hits $12 billion in annualized revenue, The Information
reports. https://www.reuters.com/business/openai-hits-12-billion-
annualized-revenue-information-reports-2025-07-31/. Reuters, 31 Jul
2025. July 2025. (Visited on 08,/22/2025).

https://blogs.nvidia.com/blog/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/whats-the-difference-between-a-cpu-and-a-gpu/
https://www.reuters.com/technology/alphabet-ceo-reaffirms-planned-75-billion-capital-spending-2025-2025-04-09/
https://www.reuters.com/technology/alphabet-ceo-reaffirms-planned-75-billion-capital-spending-2025-2025-04-09/
https://www.reuters.com/business/microsoft-spend-record-30-billion-this-quarter-ai-investments-pay-off-2025-07-30/
https://www.reuters.com/business/microsoft-spend-record-30-billion-this-quarter-ai-investments-pay-off-2025-07-30/
https://www.reuters.com/business/openai-hits-12-billion-annualized-revenue-information-reports-2025-07-31/
https://www.reuters.com/business/openai-hits-12-billion-annualized-revenue-information-reports-2025-07-31/

Contents

1 Introduction

2 Description of Technologies

2.1 NVIDIAHI00 NVL o o o
2.2 vLLM Inference Engine oL
2.3 Hugging Face
24 Prometheus
25 Python

251 Pandas.

2.5.2 Matplotlib

3 State of the Art
3.1 Stages in the Life Cycle of an LLM
3.1.1 Distributed Training
3.1.2 Production-Grade Inference
3.2 Transformer Architecture
3.2.1 Why transformers have led the A boom
3.2.2 Architectural breakdown of Transformers
3.2.3 The Attention Mechanism
3.3 From Theory to Execution: Infrastructure behind LLMs
3.3.1 DataCenters e
3.3.2 GPU Memory and Hardware Constraints
3.3.3 Quantization Lo
3.4 Scaling for Real-World Inference
3.4.1 Inference SLOs,
3.4.2 Parallelism Strategies L.
3.4.3 The Quadratic Complexity in the Attention Mechanism . . .
3.5 KV Caching and the Rise of Memory Bottlenecks
35.1 KV Caching
3.5.2 Memory Optimization Techniques

XV

3.5.3 Inference Engines oL

4 Project Definition

4.1
4.2
4.3
4.4
4.5

Motivation
Objectives
Methology
Planning
Economic Study
4.5.1 Cost Structure of Infrastructure Providers
4.5.2 Revenue Structure for Infrastructure Providers
4.5.3 Profit Structure for Infrastructure Providers

5 Implemented System

5.1

5.2

5.3

5.4

5.5

Benchmark Selection 0L
5.1.1 Concurrency-Related Benchmarks
5.1.2 Sequence Length-Related Benchmarks
5.1.3 Intra-node Scaling-Related Benchmarks
Pipeline Orchestration,
5.2.1 Purpose and Motivation
5.2.2 High-Level End-to-End Flow
5.2.3 Architectural Decisions
5.2.4 Benefits of This Approach
Workload Generation oL
5.3.1 Purpose and Role in the Benchmarking Pipeline
5.3.2 Model Access and Request Handling
5.3.3 Fundamental Benchmarking Unit: Single Request Flow . . .
5.3.4 Parameterization for Flexibility and Reproducibility
5.3.5 Benchmark Configuration Parameters
5.3.6 Structured Output and Result Logging
Hardware Telemetry Collection
5.4.1 Purpose and Role in the Benchmarking Pipeline
5.4.2 Data Source and Collection Method
5.4.3 Metric Parsing and Storage
5.4.4 Output Organization
5.4.5 Architectural Choices and Implications
Metric Analysis and Visualization Subsytem
5.5.1 Purpose and Role in the Benchmarking Pipeline
5.5.2 Input Data Preparation
5.5.3 Metric Selection and Filtering
5.5.4 Visualization and Output Storage
5.5.5 Abstraction Benefits o000

6 Analysis and Interpretation of Results 99

6.1 Analysis of Concurrency-Driven Performance Scaling 99
6.1.1 Analysis of GPU-Memory Saturation Across Concurrency
Levels 99
6.1.2 Analysis of Queue Formation Triggered by KV-Cache Ceiling 105
6.1.3 Analysis of KV-Cache Saturation Effects on Aggregate Through-
PUb . . e 113
6.1.4 Analysis of Peak Throughput under Varying Concurrency . . 121
6.1.5 Analysis of Latency Degradation Under Increasing Concur-
Y 01 123
6.1.6 Analysis of Model Size on Concurrency Limits 124
6.2 Analysis of Prompt and Generation Sequence Lengths on Inference
Latency o . e 126
6.2.1 PrefillOnlyo o 126
6.3 Analysis of Intra-Node Scaling Effects on Inference Performance . . 127
6.4 Applied Recommendations Informed by Empirical Findings 130
7 Conclusions 136
7.0.1 Achieved Objectives 136
7.0.2 Future Work. 137
Bibliography 138

A Alignment with the Sustainable Development Goals 144

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

3.17
3.18

Pipeline Orchestration Schema iv
Esquema de Orquestacion del Pipeline xi
NVIDIA HIOO NVL e 5
NVIDIA Logo o o 5
vLLM Logo)
Hugging Face Logo 6
Promethe Logo 7
Python Logo 8
Pandas Logo L 9
Matplotlib Logo 9
Large Scale Distributed Training 11
Inference 11
Learning stages in model training 12
Autorregressive mechanism in LLM inference 14
Multi-layer Perceptron 16
Recurrent Neural Network, 17
Tokenization e 20
Encoder-decoder Transformer 22
Decoder-only Transformer 23
Autoregressive decoding Lo 23
A decoder-only Transformer block 25
Mathematical expression of the Attention mechanism 26
Query, Key and Value computation 27
Multi-Head Attention 28
Abstraction Layers in a Data Center 29
Performance comparison of LLM Inference with H100 and B300

done by NVIDIA 32
Quantization example L 33
Breakdown of Inference latency that impacts SLO targets 34

xviil

3.19
3.20
3.21

3.22

4.1
4.2
4.3

4.4
4.5

5.1
5.2

5.3
5.4
)
5.6
5.7

5.8
5.9

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Comparison of Parallelism Strategies
Column-wise vs Row-wise Tensor Parallelism
An example of 3D-parallelism with data-parallelism, tensor paral-

lelism, and pipeline parallelism.
Paged Attention

Agile Development Cycle L.
Infrastructure Performance Profile
Concurrency threshold for KV-cache saturation as a function of

model size across different models.
Total Cost Structure for Infrastructure Providers
Profit Structure for Infrastructure Providers

Benchmark Families
Concurrency-Sweep Setup: Increasing Numbers of Simultaneous
User Requests Served by the Inference System
Sequence Length Setup: Increasing User Prompt Length Served to
the Inference System oL
Intra-node Setup: Increasing Tensor Parallelism in the Inference
System
Pipeline Orchestration Schema
Workload Generation Sub-system Schema
View of the end-to-end flow for a single simulated user request . . .
Hardware Telemetry Collection Sub-system Schema
View of the end-to-end flow for the Metrics Analysis and Visualiza-
tion subsystem. oL Lo

GPU KV-cache saturation curve for GPT-2-XL with increasing user
requests . .o oL oL L e
GPU KV-cache saturation curve for DeepSeek-LLM-7B with in-
creasing user requests
GPU KV-cache saturation curve for Qwenl.5-14B-Chat with in-
creasing user requests L. Lo
Admission, Queueing, and Memory Pressure. GPT-2-XL (1,200
concurrent user requests)o
Admission, Queueing, and Memory Pressure. Deepseek-7B (600
concurrent user requests) e
Admission, Queueing, and Memory Pressure. Qwenl.5-14B-Chat
(160 concurrent user requests)o
Admission, Queueing, and Memory Pressure. Falcon-40B (160 con-
current user requests)

6.8
6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31

6.32
6.33

Throughput over time for GPT-2-XL-1.5B with 1 concurrent request.114
Throughput over time for GPT-2-XL-1.5B with 10 concurrent re-

quests. e 114
Throughput over time for GPT-2-XL-1.5B with 50 concurrent re-
quests. . . .o 114
Throughput over time for GPT-2-XL-1.5B with 100 concurrent re-
quests. e 114
Throughput over time for GPT-2-XL-1.5B with 200 concurrent re-
quests. . ..o 114
Throughput over time for GPT-2-XL-1.5B with 300 concurrent re-
quests. . . . 114
Throughput over time for GPT-2-XL-1.5B with 400 concurrent re-
quests. e 114
Throughput over time for GPT-2-XL-1.5B with 500 concurrent re-
quests. . . .o 114
Throughput over time for GPT-2-XL-1.5B with 600 concurrent re-
quests. . ..o e 115
Throughput over time for GPT-2-XL-1.5B with 700 concurrent re-
quests. . . .o 115
Throughput over time for GPT-2-XL-1.5B with 800 concurrent re-
quests. . . .o 115
Throughput over time for GPT-2-XL-1.5B with 900 concurrent re-
quests. . ..o 115
Throughput over time for GPT-2-XI.-1.5B with 1000 concurrent
requests.o L L L 115
Throughput over time for GPT-2-XL-1.5B with 1100 concurrent
requests. oL 115
Throughput over time for GPT-2-XIL-1.5B with 1200 concurrent
requests. Lo L L 115
Throughput over time for DeepSeek with 1 concurrent request. . . . 116

Throughput over time for DeepSeek with 10 concurrent requests. . . 116
Throughput over time for DeepSeek with 50 concurrent requests. . . 116
Throughput over time for DeepSeek with 100 concurrent requests. . 116
Throughput over time for DeepSeek with 200 concurrent requests. . 116
Throughput over time for DeepSeek with 300 concurrent requests. . 116
Throughput over time for DeepSeek with 400 concurrent requests. . 116
Throughput over time for DeepSeek with 500 concurrent requests. . 116
Throughput over time for DeepSeek with 600 concurrent requests. . 116
Throughput over time for Qwen-14B with 1 concurrent request. . . 117
Throughput over time for Qwen-14B 10 concurrent requests. 117

6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48

6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62

6.63

Throughput over time for Qwen-14B 20 concurrent requests. 117

Throughput over time for Qwen-14B 30 concurrent requests. 117
Throughput over time for Qwen-14B 40 concurrent requests. 117
Throughput over time for Qwen-14B 60 concurrent requests. 117
Throughput over time for Qwen-14B 70 concurrent requests. 117
Throughput over time for Qwen-14B 80 concurrent requests. 117
Throughput over time for Qwen-14B 90 concurrent requests. 118
Throughput over time for Qwen-14B 100 concurrent requests. . . . 118
Throughput over time for Qwen-14B 110 concurrent requests. . . . 118
Throughput over time for Qwen-14B 120 concurrent requests. . . . 118
Throughput over time for Qwen-14B 130 concurrent requests. . . . 118
Throughput over time for Qwen-14B 140 concurrent requests. . . . 118
Throughput over time for Qwen-14B 150 concurrent requests. . . . 118
Throughput over time for Qwen-14B 160 concurrent requests. . . . 118
Concurrency threshold for KV-cache saturation as a function of

model size across different models.o 122
TTFT vs. concurrency for GPT2-XL-chat. 124
TTFT vs. concurrency for Deepseek-LLM-7B-chat. 124
TTFET vs. concurrency for Qwen-1.5-14B. 124
TTFT vs. concurrency for Falcond0B. 124
Concurrency threshold for KV-cache saturation as a function of

model size 125
TTFT vs. prompt length for Mistral-7B-128k. 126

Max TTFT vs. prefill input length (Qwen, prefill-only benchmark). 126
Throughput vs. KV-cache utilisation (Tensor Parallel = 1, Llama-

3.1-7T0B-FP8, 50req)« .o 128
Throughput vs. KV-cache utilisation (Tensor Parallel = 2, Llama-
3.1-T0B-FP8, 50req) 128
mThroughput vs. KV-cache utilisation (Tensor Parallel = 1, Llama-
3.1-70B-FP8, 100req) oo 128
Throughput vs. KV-cache utilisation (Tensor Parallel = 2, Llama-
3.1-7T0B-FP8, 100req) . . .« o v v v i 128
Throughput vs. KV-cache utilisation (Tensor Parallel = 1, Llama-
3.1-70B-FP8, 150req) o 128
Throughput vs. KV-cache utilisation (Tensor Parallel = 2, Llama-
3.1-7T0B-FP8, 150req)« v o v i 128
Throughput vs. KV-cache utilisation (Tensor Parallel = 1, Llama-
3.1-7T0B-FPS8, 200req) . .« v v i 129

Throughput vs. KV-cache utilisation (Tensor Parallel = 2, Llama-
3.1-70B-FP8, 200req) 129

6.64 Throughput vs. KV-cache utilisation (Tensor Parallel = 1, Llama-

3.1-T0B-FP8, 250req)o 129
6.65 Throughput vs. KV-cache utilisation (Tensor Parallel = 2, Llama-

3.1-7T0B-FP8, 250req) o 129
6.66 Al Inference Stakeholders Organized by System Layer 131

A.1 Sustainable Development Goals (SDG) 145

List of Tables

4.1 High-level project schedule. 52
4.2 Representative fixed cost components for infrastructure providers. . 56
4.3 Representative variable cost components for infrastructure providers. 57
4.4 Tllustrative operating points at saturation under this study’s bench-
mark conditions. 60
5.1 Overview of selected models used for benchmarking 63
5.2 Benchmark setup and hyper-parameters for the concurrency sweep . 66
5.3 Concurrency-sweep configurations for each of the selected models . 67
5.4 Most relevant Prometheus metrics to record for the concurrency
benchmarks L 68
5.5 Sequence-length benchmark matrix 70
5.6 Benchmark setup and hyper-parameters for the sequence-length ex-
periments Lo e 71
5.7 Most relevant Prometheus metrics for the sequence-length benchmarks 72
5.8 Benchmark setup and hyper-parameters for the intra-node (tensor-
parallel) scaling study 74
5.9 Run-specific configuration for the TP = 1 experiments 74
5.10 Run-specific configuration for the TP = 2 experiments 75

5.11 Key Prometheus metrics used for the intra-node scaling benchmarks

(tensor parallelism 1 vs 2).o oL 76

xxiil

Listings

5.1 Example of OpenAl client pointed to the local vLLM endpoint and

used to issue arequest. 82
5.2 Parsing benchmark configuration parameters inside the workload

generation subsystem. oL oo 86
5.3 Example of the orchestrator invoking the workload generation sub-

system with parameters defined as variables. 87

5.4 Example slice of the metrics.csv generated for one benchmark run;
actual files include hundreds of metrics and span the entire run

duration. L 90
5.5 Parsing Prometheus metrics and dynamically constructing a union
header to capture intermittent metrics. 92

XX1v

Chapter 1

Introduction

Over the past few years, large language models have transitioned from research ar-
tifacts to everyday tools that people consult for work, learning, and entertainment.
Adoption has been rapid and sustained, and platforms built on generative models
now serve very large user populations at the same time, a trend that continues
to accelerate as new features and integrations expand the addressable audience
[1]. As usage has grown, expectations have risen in parallel, because users who
experience fluid interaction in one application come to expect similarly low wait-
ing times and high availability in every application. The practical meaning of this
shift is simple. A service that aspires to be widely useful must remain responsive
under heavy demand and must deliver consistent quality regardless of time of day,
geographic mix, or traffic spikes.

Meeting that standard depends on the capacity and efficiency of the underlying
infrastructure. Modern generative systems are served most effectively on fleets of
recent Graphics Processing Units that can process the linear algebra that is at the
heart of inference, in a parallel manner. These GPUs reside in data centers, which
means that the path from a user’s prompt to a model’s response runs through these
facilities. Because these facilities must sustain both peak throughput and steady
low latency, operators need to provision clusters that combine compute, memory,
networking, and storage at significant scale. The consequence, however, is a cost
structure that is dominated by hardware acquisition and by the recurring expenses
of operating that hardware at high utilization. For example, public disclosures
and reporting show that the largest providers have raised capital expenditures
substantially to expand capacity for AI workloads, while unit prices for cutting
edge accelerators remain in the tens of thousands of dollars, which magnifies the
financial impact of even modest inefficiencies |2, 3, 4].

Because cost scales with capacity and demand is volatile, the economic viability
of serving hinges on how efficiently each unit of hardware is converted into useful
work. If resources are not used effectively, then the operator must deploy more
GPUs to deliver the same user experience, and that choice in turn raises capital
needs and depresses margins. If the operator chooses not to expand capacity,
then the service absorbs the inefficiency as longer queues and slower responses
during busy periods, which manifests as higher time to first token and elevated tail
latencies that users perceive as unresponsive behavior. Either path has a direct
business consequence. Higher hardware requirements increase cash outlays and
extend payback periods, and degraded responsiveness leads to lower engagement
and lower conversion for downstream products that depend on timely answers. At
scale, both paths can coexist, which is why companies can report strong revenue
growth while still facing sustained pressure on profitability from the infrastructure
required to serve these workloads globally [5, 2, 3].

This tension between demand, cost, and user experience becomes sharper as adop-
tion widens. More users translates into more concurrent sessions, and more con-
current sessions implies a larger aggregate working set moving through the serving
stack at any point in time. Since users now expect conversational interactions
rather than single shot prompts, sessions often persist across multiple turns and of-
ten include long contexts, which further increases the resources required to keep the
experience responsive. The result is a system that must deliver both high through-
put and low latency under workloads that are bursty and heterogeneous.

In this environment, the key question is how to maintain fast responses while keep-
ing the cost envelope sustainable as usage scales. This is a widespread challenge
in the industry, visible in the financial trajectories of the sector. For example,
hyperscalers have reported sustained increases in capital expenditures to support
Al infrastructure, which reflects both the need to build out new data centers and
the need to upgrade existing facilities to higher power and cooling densities |2,
3]. At the same time, leading providers report strong revenue momentum while
acknowledging the intensity of investment required to train and to serve modern
models [5]. These signals point to the same underlying dynamic. Demand for Al
services is large and growing, and the bottlenecks that limit efficient serving have
system wide economic effects. If left unaddressed, those effects propagate outward
from the data center into the product, where they appear as slower replies, stricter
usage policies, and higher prices that can narrow the set of users who benefit from
the technology.

The problem statement that follows from this chain of reasoning is clear. As
generative systems continue to scale to larger audiences, operators must deliver
interactive performance to millions of concurrent users in a way that keeps per

request cost within a sustainable range. The question is not whether further
hardware investment is possible, but whether the relationship between demand
and infrastructure costs can be managed so that growth strengthens the service
rather than undermining its economics. Solving this problem is essential for Al-
powered systems to remain viable as more people rely on them every day.

Chapter 2

Description of Technologies

This chapter presents the various technologies used in the development of the
project. The entire system rests on a stack that ranges from the processing hard-
ware, essential for running large-scale Al models, to the automation tools that
ensure the reproducibility of the experiments.

Specifically, the solution is organised into three major functional blocks:

e Execution and infrastructure: GPU hardware and the interconnect net-
work that determine computing capacity and scalability.

e Processing: The inference engine and model frameworks that allow large
language models to be loaded, optimised and served.

e Management and observability: Workload generation, telemetry, au-
tomation and data analysis, all essential for measuring performance and
drawing conclusions.

The technologies that make up each block are described in detail below.

2.1 NVIDIA H100 NVL

The NVIDIA H100 NVL is a dual-GPU inference accelerator built on the Hopper™
architecture and optimized for large-language-model deployment.

Each PCle Genb card houses two H100 GPUs, each equipped with 94 GB of high-
bandwidth HBM3 memory, for a combined total of 188 GB of on-board mem-

ory.

For this project, one NVIDIA H100 NVL’s was utilised.

2.2. vLLM Inference Engine

S

NVIDIA.

Figure 2.1: NVIDIA H100 NVL Figure 2.2: NVIDIA Logo

2.2 vLLM Inference Engine

vLLM stands for vectorized Large Language Model. It is a high-performance
and memory-efficient inference engine built to accelerate the deployment of large
language models.

An inference engine is a runtime system responsible for executing trained mod-
els and generating outputs in response to user inputs. It manages the schedul-
ing, memory usage, and compute resources needed to serve inference requests
efficiently.

Designed with throughput and scalability in mind, vLLM addresses key perfor-
mance bottlenecks in LLM serving by enabling faster, more efficient inference.
Originally developed as part of the open-source BentoML ecosystem, it is engi-
neered to make large-scale model serving practical and cost-effective.

/LLM

Figure 2.3: vLLM Logo

2.3. Hugging Face

2.3 Hugging Face

Hugging Face is an open-source platform and research community dedicated to
natural-language processing and generative artificial intelligence. Established in
2016, it maintains the Hugging Face Model Hub, a public repository where thou-
sands of pretrained checkpoints, tokenizers and configuration files are versioned
under permissive licences.

HUGGING FACE

Figure 2.4: Hugging Face Logo

The Transformers library maintained by Hugging Face provides a uniform Python
API that downloads, validates and initialises models with a single function call.
When combined with vLLM, this interface allows checkpoints to be streamed di-
rectly into GPU memory, avoiding intermediate conversion steps and eliminating
precision loss.

For this project, every open-source large language model required for the bench-
marks was retrieved from the Hugging Face Model Hub and subsequently deployed
on the H100 cluster to serve inference.

2.4 Prometheus

Prometheus is an open-source monitoring and alerting toolkit that was originally
developed at SoundCloud in 2012. It collects metrics by periodically scraping
HTTP endpoints that expose data in a text-based exposition format, and it stores
the samples as time-stamped series that can later be queried or visualised.

2.5. Python

Prometheus

Figure 2.5: Promethe Logo

In this project, Prometheus was leveraged through vLLM’s built-in integration
with the prometheus-client library, which automatically starts an HT'TP endpoint
at localhost:8000/metrics by default. This endpoint exposes a real-time list of
performance metrics that include token throughput, request counts, inference la-
tency, and KV cache usage, all formatted according to the Prometheus exposition
standard. During benchmarking, this endpoint was scraped at regular intervals
to collect and log these metrics for later analysis. Using Prometheus in this way
provided significant benefits for the project, like real-time observability and de-
tailed insights into performance bottlenecks without requiring a full monitoring
infrastructure.

2.5 Python

Python is a high-level, interpreted, object-oriented programming language. It was
created by Guido van Rossum and first released in 1991. Known for its clear syntax
and clean design, Python has become one of the most widely used programming
languages due to how easy it is to read, learn, and use.

In addition, Python stands out for its flexibility and can be applied in a wide
variety of domains — from web development and data analysis to machine learning
and automation. Its strong and active community provides extensive libraries and
frameworks that speed up development and enable access to state-of-the-art tools

2.5. Python

and techniques.

python’

Figure 2.6: Python Logo

Python was selected for this project due to its clear and concise syntax, which
allows developers to express complex ideas with minimal code. Its design phi-
losophy prioritizes code clarity, reducing the likelihood of errors and making the
implementation easier to maintain and extend over time.

2.5.1 Pandas

Pandas is a Python library designed for handling and analyzing structured data.
It provides powerful and efficient data structures, such as the DataFrame, which
allow users to organize, clean, and process data in a straightforward way. Pandas
is widely used in data analysis tasks, making operations like filtering, grouping,
and transforming data both simple and efficient.

In this project, Pandas has been essential for accessing and manipulating informa-
tion related to hardware performance metrics collected during the benchmarking
of LLM inference. Its capabilities have enabled the transformation of raw data, the
filtering and selection of specific subsets, and the handling of missing or anomalous
values, among other data processing tasks.

2.5. Python

Python .

ﬁlpandas

Figure 2.7: Pandas Logo

2.5.2 Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive
visualizations in Python. It provides a flexible and expressive API that allows
users to generate a wide variety of plots, such as line charts, bar graphs, scatter
plots, histograms, and heatmaps. Its pyplot module offers a simple interface for
quickly building visualizations, making it a popular choice for data exploration
and reporting.

In this project, Matplotlib has been used to visualize performance metrics, allowing
for clearer interpretation of trends, comparisons between models, and identification
of anomalies during LLM inference benchmarks.

matpl:tlib

Figure 2.8: Matplotlib Logo

Chapter 3

State of the Art

This chapter aims to give an overview of the research landscape most significant
for understanding present-day LLMs. The discussion spans both the mathematical
principles that govern LLM behavior and the practical realities of deploying these
systems at scale. Once this foundation is laid, recognizing the challenges that
surface in production will become clearer, leading to a better understanding of
how the conducted benchmarks mirror those challenges.

Drawing on the broad corpus of LLM research, this chapter concentrates on the
aspects most relevant to the objectives of the study. The chapter first opens
with the life cycle of an LLM, tracing the path from model training to real-time
inference. It then offers an intuitive look at the transformer architecture that
underpins nearly every state-of-the-art model and explains its role in the recent
surge of Al capability. Next, it examines the physical infrastructure that supports
these models, including data centers, accelerators and networking, and follows with
the principal strategies used to scale them efficiently. Finally, the chapter closes
with a review of the key bottlenecks that emerge from the inner workings of LLMs,
preparing the ground for the performance evaluation that follows.

3.1 Stages in the Life Cycle of an LLM

The life cycle of a large language model can be differentiated into two principal
phases: training and inference [6]. Each phase presents distinct requirements
that lead to different practical implications, such as resource footprint, hardware
layout, and optimization strategies. For example, training prioritizes aggregate
throughput and massive parallelism, while inference focuses on low latency and
responsiveness under fluctuating demand. This section will cover the main phases

10

3.1. Stages in the Life Cycle of an LLM

of the LLM life cycle, revealing what they consist of and how each introduces
distinct operational characteristics and system-level requirements.

A

=
-
O —

O

n

l

Hi therel Translate
"Hello" to Spanish

I

Figure 3.1: Large Scale Distributed Figure 3.2: Inference
Training

3.1.1 Distributed Training

The objective of training a large language model is teaching it to predict what
comes next in a piece of text by learning from a vast dataset, typically ranging
hundreds of billions to a few trillion pieces of text, where each piece could be a
word, part of a word, or even a single character |7|. In a simplified view, the
model is a system comprising a vast collection of numbers, called parameters,
organized within a specific architecture (including attention mechanisms, feed-
forward networks, and layer normalization) [8]. An intuitive way to think about
these parameters is as turning knobs that the model can tune to adjust its own
behavior, in a manner that improves its outputs. This is similar to how a musician
might tune their instrument to produce the right notes. These parameters serve
various purposes, such as representing token embeddings or weights in different
layers of a neural network [9][10].

At the start of the training process, each parameter is initialized to a specific
value, following schemes designed to prevent training problems. Initially, the model
produces essentially meaningless outputs as it has not had the opportunity yet to
learn any patterns in human language.

To learn to generate appropriate outputs, the model undergoes an iterative pro-
cess of refinement. During each iteration, the model processes the input text
and attempts to predict what comes next by calculating values through its neu-
ral network layers. The model generates a prediction in the form of probability
scores for every possible word or character it knows. This prediction is then com-
pared against the correct answer using a mathematical function, known as the

11

3.1. Stages in the Life Cycle of an LLM

cross-entropy loss, which measures the accuracy of the prediction[11]|. Using this
measurement of accuracy, the model automatically adjusts its internal parameters
through a mathematical optimization technique called backpropagation, gradually
improving its ability to make accurate predictions in future iterations [12].

In order for a model to learn what qualifies as the correct output, several training
paradigms may be employed. In practical systems, these paradigms are often
combined sequentially, rather than applied in isolation, to take advantage of their
complementary strengths.

Large Language Model

Reward Model

Reinforcement Learning
“Who are the key . . “Jerome Powell,
Supenvised Leaming

Self-Supervised Learning
A /

Figure 3.3: Learning stages in model training

A common initial stage in the training process of large language models is self-
supervised learning [13]. This approach allows the model to learn from raw, unla-
beled data by generating supervision signals directly from the data itself. Specif-
ically, a portion of the data is treated as the input, while another portion is des-
ignated as the target output. The model is trained to predict the target based on
the input.

In the context of natural language, self-supervised learning typically takes one
of two forms. Masked language modeling, used in models like BERT, involves
hiding certain tokens within a sentence and asking the model to predict them [14].
Next-token prediction, employed by models such as GPT, involves providing a
sequence of tokens and training the model to predict the following token [15]. Both
methods enable the model to process incomplete text and optimize its predictions
by comparing them to the actual tokens in the dataset, improving results with
each iteration.

By training on that raw text, the model builds a broad internal understanding
of grammar, facts, and reasoning patterns. The key advantage of self-supervised
learning is that these representations are learned without the need for human-
annotated labels, which are significantly expensive. Instead, raw text that is plen-
tiful and cheap can be used instead. Therefore, it makes this an ideal starting

12

3.1. Stages in the Life Cycle of an LLM

point for model training, because it allows the model to develop rich internal rep-
resentations using large volumes of inexpensive text, making it feasible to train
the model on massive datasets collected from the internet, without the need for
costly human annotation.

To further improve the model’s performance on specific tasks, a subsequent train-
ing phase known as supervised learning is often employed [16]. In this phase, each
training example consists of an input paired with a corresponding output label,
typically provided by human annotators. However, creating high-quality labeled
datasets often requires the participation of skilled annotators and, in some cases,
multiple rounds of review to ensure accuracy and consistency, which is more costly.
That is the reason why it is usually only applied after self-supervised learning has
created a good model foundation for language understanding. Nonetheless, this
second phase is needed in order to improve the ability of the model to complete
well-defined tasks where there’s a clear, correct answer.

Even with this added supervision, though, the model does not always behave in
ways that align with what people actually want. This becomes especially important
in open-ended or ambiguous situations, where many answers might be possible, but
only some are truly helpful, polite, or even safe. For that reason, a third training
stage known as reinforcement learning is often introduced [17]|. Unlike supervised
learning, reinforcement learning does not rely on explicit labels. Instead, the model
interacts with an environment and learns from feedback in the form of rewards or
penalties. Rather than being told exactly what to say, the model explores different
outputs and gradually learns which types of responses are preferred, based on
whether they lead to higher or lower reward signals.

To summarize, training a language model involves three main stages. Self-supervised
learning builds a broad understanding of language using raw text. Supervised
training then teaches the model to follow specific instructions using labeled exam-
ples. Finally, reinforcement learning helps the model align its responses with what
people actually prefer, especially in more open-ended situations.

While understanding how the model learns is key, it is also important to look at
how this training is actually carried out in practice, given the massive scale of
today’s language models. Training is performed offline and typically only a few
times, until the model reaches an acceptable level of performance. Because the
model must process vast amounts of text to learn meaningful patterns, training
times can take from a few weeks up to multiple months [18]. To reduce this time,
engineers focus on maximizing throughput, which refers to how much text the
model can process per second during training.

The training of these LLMs is done offline, and it happens in a punctual manner,

13

3.1. Stages in the Life Cycle of an LLM

a few times, until an acceptable performance is achieved. The huge amounts of
data that the model needs to ingest in order to obtain insightful patterns can lead
to very big training times, so engineers try to optimize for throughput so that the
training is done in less time. This is done by using thousands of computing nodes
in parallel, which work together in a distributed manner as if they were a single
machine [19]. To function cohesively, these nodes must be interconnected through a
high-speed network, making bandwidth one of the most critical requirements.

3.1.2 Production-Grade Inference

Once the model has been successfully trained, the next phase in its lifecycle is
called inference. Inference refers to the stage where the trained model is used to
generate outputs based on new input data that was not seen during training. For
example, using the patterns it has learned, the model may be asked to translate a
sentence or to explain a particular concept.

The nature of the workload during inference is fundamentally different from train-
ing. Unlike in training, the model does not update its internal weights. Instead,
it uses the same fixed parameters to produce outputs consistently for each input.
In many language models, the response is generated step by step, where each new
part of the output depends on everything that has been produced so far. This
approach is known as autoregressive, and it works much like writing a sentence
one word at a time, where each word is chosen based on the ones that came before.
By building the response step by step in this way, the model can stay consistent
with the context and gradually shape a coherent and meaningful output [20)].

LA
UL

Figure 3.4: Autorregressive mechanism in LLM inference

Additionally, the way training and production inference are executed on hardware
differs significantly. As previously mentioned, training focuses on processing vast
amounts of data in parallel across thousands of machines, with the goal of max-
imizing throughput and completing the training process in the shortest possible
time. Inference, however, introduces a different set of constraints. Because of the

14

3.2. Transformer Architecture

autoregressive nature of many language models, each part of the output must be
generated sequentially, with every new element depending on what has already
been produced. This limits the benefits of parallelism. According to Amdahl’s
Law, when most of a process is inherently sequential, adding more computing re-
sources results in diminishing returns. Distributing a single inference task across
many devices increases communication overhead, which can outweigh any speed-up
gained from additional hardware [21].

As a result, it is generally more efficient to serve many users by running multiple
independent model replicas on individual GPUs, rather than relying on one big,
tightly coordinated multi-GPU setup.

It is of great importance to take into account how, in real-life deployments, the
role of inference is to serve the requests of real users interacting with the model
in real time. These systems have recently grown to massive scales, often handling
thousands of requests every second [22]. In this context, inference systems must
also be carefully designed to optimize for latency and fault tolerance, since all
of these factors directly impact how fast and reliable the model feels to the end
user.

In addition to throughput, inference systems must also optimize for other critical
factors such as latency and fault tolerance, all of which directly affect the quality
and reliability of the deployed model.

These factors become especially important when considering that, unlike training,
inference runs continuously. Every time someone asks the model a question, re-
quests a translation, or uses it in an application, inference is taking place. This
turns inference into a recurring cost that depends on how often the model is used,
how many users it serves, and how much computing power is needed to generate
each response. While training represents a significant one-time investment, infer-
ence is where the ongoing costs accumulate, so as usage scales, these recurring
costs can grow substantially and, in the long run, may even surpass the cost of
training itself.

3.2 Transformer Architecture

The previous chapter explored how large language models are trained and served,
highlighting the distinct computational demands of training and inference. To
understand why these demands grow so quickly, it helps to look inside the models
themselves. Most of today’s leading language systems are built on the Transformer
architecture, whose design choices largely determine both their power and their
scaling challenges.

15

3.2. Transformer Architecture

3.2.1 Why transformers have led the AI boom

During the revival of neural-network research in the mid-1980s, much attention was
focused on the multi-layer perceptron (MLP). This feed-forward network accepted
a single, fixed-length input vector and delivered promising results on small image
tasks, such as classifying 16 x 16-pixel characters. MLPs, however, struggled with
sequential data such as speech, language, and sensor readings. Because an MLP
processed all input positions at once and had no internal memory, it could not
link the current step to what came before, so it failed to capture the patterns that
sequential data needed [23].

Output Layer

Figure 3.5: Multi-layer Perceptron

Researchers soon realized that solving sequential tasks would need a new kind
of network, one that could remember what happened a moment ago in order to
figure out what comes next. The solution became the recurrent neural network
(RNN). From the early 1990s through the mid-2010s, RNNs were the standard
tool for tasks that involved text or audio [23|. They powered language modeling
for text generation, speech recognition, sentiment analysis, image captioning, and
even early question-answering systems, all by using their built-in memory to link
each step of a sequence to the one before it. What made this model so widespread
for these tasks is the capability of processing causally ordered data, and being
able to accomodate for different lengths of inputs without having to change the
underlying design. An RNN reads information much like a person reads a sentence,
one element at a time. At each step it acceptes the current symbol (for example, a
character, a word, or a short slice of audio), combines it with what it has already
stored in memory, and produces an intermediate output called the hidden state.
This hidden state then moves forward to the next step, allowing the network to
stitch context across the entire sequence.

Although this mechanism captures short-range patterns effectively, training plain

16

3.2. Transformer Architecture

fw fw tw tw

v =) O - -
©, OO

Figure 3.6: Recurrent Neural Network

RNNs revealed a deeper limitation. One of the main challenges was that the hidden
state had a fixed dimensionality, meaning the network had to compress all relevant
information from the past into a space of constant size. Trying to store an entire
sentence in a single fixed-width vector is like trying to fit a novel onto a sticky
note;important details are inevitably lost as the sequence grows longer.

When the relevant history extends beyond what the hidden state can meaningfully
retain, the network struggles to preserve useful context. This leads to issues during
training, where gradients either vanish or explode, making it difficult to learn
long-range dependencies [24]. For example, in a summarization task involving
long input text, an RNN might fail to maintain the necessary context across time
steps, resulting in incomplete or low-quality summaries.

These limitations motivated the development of more advanced RNN architectures,
such as the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU),
which aimed to better preserve long-term information [25]. While these variants
offered improvements, they still fell short of delivering a breakthrough in handling
truly long-range dependencies.

In 2014, Bahdanau, Cho, and Bengio introduced a new idea called attention [26].
At the time, the common approach to sequence tasks like translation was to use
RNNs that first processed the entire input sentence and then compressed it into
a single vector, which the model would use to generate the output. But this
method had a major limitation: it assumed that every part of the input was
equally relevant for predicting each word in the output. In reality, different output
words often depend more on certain parts of the input than others [27]. The
researchers proposed a better approach. Instead of using the same compressed
vector for every step of the output, the model could create a new one each time,
focusing only on the parts of the input that mattered most in that moment. This
idea, called attention, allowed the model to weigh each piece of the input differently
depending on what it was trying to predict.

17

3.2. Transformer Architecture

The details of how attention works will be explored in the next sections, but for
now, it is enough to understand this: attention solved the problem of forcing the
model to squeeze all input information into a single vector. Instead, it gave the
model the ability to look back and selectively focus on what truly mattered, step
by step.

Even with all these improvements, RNNs still faced a major limitation that made
them difficult to use at large scale. Because they processed input one step at a
time, each step had to wait for the one before it to finish. This meant that the
model could not take full advantage of modern hardware like graphic processing
units (GPUs), which are designed to process many things in parallel. While some
parallelism was possible across different sequences, the model still had to move
step by step through each one, which made training slower.

This became a problem when trying to scale up. In real-world systems that in-
volve huge amounts of data or serve large numbers of users, efficiency matters.
RNNs struggled to keep up because their design made it hard to speed things up
using the kinds of parallel computing that modern infrastructure relies on. This
bottleneck helped motivate the search for new architectures that could overcome
these limits.

Everything changed in 2017 when a group of researchers introduced the Trans-
former architecture in the paper “Attention Is All You Need” [28]. At the time,
most models for processing text were based on RNNs, which read one word at a
time, in order. The Transformer took a different approach. Instead of reading
words step by step, it looked at the entire sequence all at once, allowing the model
to process the full input in parallel.

This was a major breakthrough, because it meant that modern hardware like
GPUs, which are built to handle many computations at the same time, could be
used much more efficiently [28]. Training became faster, which made it possible
to build larger models without waiting weeks for each experiment to finish.

The Transformer still relied on the idea of attention, which had been introduced
a few years earlier, but it placed it at the center of the architecture. The key
innovation was finding a way to make attention work without relying on recurrence,
which made parallel processing possible. In doing so, the Transformer combined
the best of both worlds: it kept the ability to focus on the most relevant parts of
the input, while being far more scalable than earlier approaches like RNNs.

It was the development of the Transformer architecture that opened the door to
the current Al boom. By allowing models to process entire sequences of words in
parallel rather than one at a time, it became possible to train much larger models

18

3.2. Transformer Architecture

in much less time, while taking full advantage of modern hardware like GPUs. This
shift made it feasible to scale model size dramatically without training becoming
unbearably slow or expensive. Once those technical roadblocks around training
speed and context handling were relaxed, scale took over.

In 2020, OpenAl released GPT-3, a 175-billion-parameter Transformer model that
could perform a wide variety of language tasks just by seeing a few examples
written in plain text [29]. This ability, called in-context learning, showed that
one single model could adapt on the fly to translation, summarization, question
answering, and more, all without task-specific training.

Two years later, ChatGPT reached one hundred million users in just eight weeks,
becoming the fastest-growing consumer application in history [30]. This moment
kicked off a wave of generative Al tools, research, and investment across the world.
By combining flexible attention with efficient parallelism, the Transformer deliv-
ered the two key ingredients needed for progress: the ability to understand long-
range context and the practicality to train at massive scale. Together, those ad-
vances turned what had once been a research idea into the foundation of today’s
AT revolution.

3.2.2 Architectural breakdown of Transformers

Before diving into how Transformers generate responses, it helps to take a step
back and look at how they are built. This section walks through the main parts
that make up a Transformer model, starting with how text gets prepared and
ending with how the model produces its output. Each part has a specific role in
helping the model understand context, recognize patterns, and generate language
that makes sense.

When a prompt is typed into a Transformer-based model, the first step is to break
this non-fixed length text into discrete symbols that the model can reason about
[31]. Splitting text into individual characters is too fine-grained, as each character
carries limited semantic meaning on its own. In contrast, using full words can be
too coarse, since new, rare, or misspelled words appear frequently, resulting in an
impractically large vocabulary for the model to handle. Algorithms like byte-pair
encoding (BPE) or WordPiece found a solution by splitting phrases by frequently
recurring groups of letters, known as tokens [32]. This way, common words like
“network” end up as single tokens, whereas rarer or morphologically complex items
like “generalisation” are split into pieces such as “general”, “isa”, “tion”. On average,
one token tends to be about four characters long. For simplicity, this text might
sometimes refer to tokens and words interchangeably, although they are not exactly
the same thing.

19

3.2. Transformer Architecture

Fine Tuning is fun for all!

[34389, 13932, 278, 318, 1257, 329, 477, @]

Fine Tuning is fun for all!

Figure 3.7: Tokenization

This tokenization technique yielded a vocabulary that is compact enough for the
neural network’s parameters to handle, yet expressive enough to reconstruct any
string unambiguously by concatenation. So every time a user inputs a prompt,
this one gets split into tokens, and mapped to the token ID that represents each
one. For example, the sentence “Transformers rock!” might become the sequence
3201, 1059, 14, 2, where the final value 2 represents an end-of-sequence marker,
also represented as an <eos> symbol.

Splitting the prompt into a sequence of token IDs is not enough, though. Given
that each token has been assigned an arbitrary numerical ID, which carries no
semantic meaning on its own, the meaning of the word is lost. In order to perform
well, the model needs a representation of words that allow to understand relation-
ships between other words. In a single dimension, every token is forced to live on a
straight number line: one coordinate, no angles, just 'larger’ or smaller’. Imagine
trying to arrange the four tokens: woman, man, girl, and boy on that line. They
differ along at least two meaningful axes, gender and age, but the line can honor at
most one of them. In this case, if woman and man terms are placed closer together,
and girl and boy are placed in the other side to represent age, the girl would be
stranded away from woman even though she is also female, and same with the
boy and man. No matter how you shuffle positions, it is not possible to encode
two different types of relationships (age and gender) that the language demands
in a single dimension. However, representing these tokens in a two-dimensional
space would resolve the issue: By drawing the x-axis for gender and the y-axis for
age, suddenly orthogonality and Euclidean distance work together to encode every
relationship correctly.

In real life, words can share hundreds of thousands of subtle relationships with
one another. To capture these patterns in a form that a model can reason about,
each word is represented as a high-dimensional vector, commonly known as an
embedding. The dimensionality of these vectors, denoted as d, is chosen based
on what was considered sufficient for the model’s capacity and task. By moving
beyond a single dimension into dozens or even hundreds, the model gains more

20

3.2. Transformer Architecture

degrees of freedom to encode meaning. In this multi-dimensional space, properties
such as vector length, direction, and the angles between vectors all carry useful
information. This allows the space to bend and organize itself so that similar words
naturally cluster together based on how often they appear in similar contexts.

A quick thought experiment can show the value of having extra room in a high-
dimensional space. Suppose that words such as king, queen, prince, princess, man,
woman, boy, girl, lion, and lioness are placed into a space defined by four carefully
chosen axes: gender, age, social rank, and species.

Suddenly, simple vector arithmetic can be used to capture relationships that hu-
mans recognize intuitively: the displacement king — queen is almost identical to
man — woman, while king — prince parallels man — boy. Even cross-species
analogies emerge: king — lion and queen — lioness line up because the “royal”
dimension mirrors “apex animal.” What humans achieve informally with language
(such as grouping concepts along many overlapping criteria), the embedding for-
malizes with vectors, allowing subsequent layers of the Transformer to manipu-
late meaning with nothing more exotic than dot products and matrix multiplica-
tions.

The more dimensions, the more degrees of freedom exist in order to represent
the complex semantical relationships between words. Two vectors can be nearly
parallel to signal near-synonymy, almost orthogonal to signal irrelevance, or op-
posed to mark antonymy, all without forcing unrelated pairs to collide. In that
sense, dimensionality is not the whole story, since training data and model depth
also matter. Nonetheless, without a sufficiently roomy space the other ingredients
would have nowhere to write the subtle patterns humans interpret as semantic
knowledge.

This mapping of tokens to embeddings from the input prompt is performed in
parallel, rather than one token at a time. As a result, the model receives a collection
of embeddings (vectors of dimension d) corresponding to the initial prompt, which
it must then process to generate an output. However, since all tokens have been
processed simultaneously, the model has no inherent way of knowing the original
order of the embeddings. They are effectively unordered.

This presents a problem, because it is clear that the order of words in a sentence
is essential for understanding meaning. For example, the sentence "Dog bites
man" conveys something very different from "Man bites dog." To address this,
a positional encoding is added to each embedding before the sequence enters the
first block of the Transformer architecture. These encodings provide information
about the position of each token in the sequence.

21

3.2. Transformer Architecture

Once the token embeddings have been combined with their respective positional
signals, the prompt has been fully translated into a format the model can under-
stand. From that point onward, the sequence can be passed through the model to
generate the desired output.

am a student
$
ENCODERS # DECODERS
I

Figure 3.8: Encoder-decoder Transformer

Now here is an overview of what blocks are inside of the transformer architectural
model. The 2017 Google version of the Transformer architecture, often referred
as the Vanilla Transformer, encompased two major blocks, called the encoder and
the decoder [28]. The encoder’s role was to process the entire input sequence in
parallel, in order to gain a context vector which is a representation of the contents
of the input. On the other hand, the decoder’s role was to generate the output,
one token at a time. However, in recent years the decoder-only transformer was
introduced, like for example gpt-2, and it proved to perform to the same standard
as the vanilla transformer in text generation tasks, after adjustments and fine-
tuning, so it became the de-facto architecture for LLMs from there forward [33].
Most state of the art models, like Deepseek, OpenAl’s 03, LLamas, Grok etc. all
have the decoder-only architecture, so this is the one that will be explained further
[34].

As previously explained, the input of the transformer model is a prompt, turned
into embeddings, which are all taken at once, in a parallel manner. Because of
this, positional encodings are added to establish the correct order of words of
the sequence [35]. While these embeddings capture some semantic relationships
between words, they lack context sensitivity. This means the same word will have
the same embedding regardless of its context within a sentence or document.

The prompt is then forwarded through all of the blocks of the transformer model,
and the output, is a probability distribution. For GPT models, the output is the
probability of each token being the next token in the sequence. For example, if the
vocabulary of a model were to be composed of around 50,000 words, the model

22

3.2. Transformer Architecture

Output Probability
{next token)

Softmax

+

Linear
— A
[Block 2... N)

[Block 1

Add & Norm <
_—

|' Feed |
| Forward)
Add & Norm le—
I
Masked

Mulii-Head
Attention

t1 ¢

Positional

% Encoding

|’ Input “|
| Embedding)

Input (prompt)

Figure 3.9: Decoder-only Transformer

would output at each new step the probability that each of them is the next token.
For example, if the input is " I am going to the " the next token is more likely to
be the word "park" than "ate" or any other words of the vocabulary.

In modern large language models like GPT, the prompt is extended one word at a
time. The initial prompt is inserted, and the first word of the answer is generated.
This word is then appended to the original prompt, forming a slightly longer input.
The new prompt is passed through the model again to predict the next word. In
this way, the full full output will be constructed one token at a time through an
iterative process known as autoregression.

8

—»l-i‘;-:"lce upon a :i:f1e|

Figure 3.10: Autoregressive decoding

As a note, during inference, there are several techniques for selecting the next token
based on the model’s output. Since the model produces a probability distribution

23

3.2. Transformer Architecture

over all possible next tokens, one option is to sample from that distribution. This
introduces an element of randomness, so that even if the same prompt is given
multiple times, the generated output may differ each time. Another option is
to always select the token with the highest probability, which makes the model’s
behavior fully deterministic.

Inside each of the blocks, lies two fundamental components. The first one is the
attention block, and the second is the feed-forward network [36].

The attention block is what makes the transformer powerful. It is the block that
enables the model to understand the context and nuances in languages, making
it better at reasoning.The core idea is inspired by how humans process language.
When reading a sentence, meaning is not assigned to each word in isolation, but
rather in relation to the surrounding words. For instance, the word "second"
can take on different meanings depending on context. In the sentence "The light
turned green within a second," it refers to time, while in "She finished in second
place in the race", it refers to position. The role of the attention block is to take
each original embedding, which initially contains no context, and transform it into
a richer, more informative version that reflects the meaning of the word within
its specific context. Following the "second" example, after passing through the
attention block, the embedding vector for the word "second" in the first sentence
would shift to a region in the embedding space closer to vectors like "time" or
"clock." In contrast, in the second sentence, that same embedding would move
toward vectors such as "ranking" or "position." This demonstrates how proximity
in embedding space can reflect semantic similarity. These contextually enriched
embeddings provide the model with a better understanding of the relationships
between words, allowing it to reason more effectively by capturing the subtleties
and nuances of language [37]. However, this attention block also introduces
practical complexities that are highly relevant to this thesis and will be discussed
in detail in later sections.

Finally, the attention mechanism enriches the embeddings with contextual infor-
mation, these vectors are passed through a feed-forward layer, which is a simple
neural network applied in parallel to each embedding. The role of this layer is
to process the context-aware embeddings and perform deeper reasoning on them.
It can be thought of as the part of the model that interprets and stores knowl-
edge. Through training, this component can learn factual information such as the
capital of Spain being Madrid, the start date of World War II, or how to write
code in Python. In addition to the attention mechanism and feed-forward layer,
another component called layer normalization also occurs before and after these
main sub-layers. Its role is to stabilize training by normalizing the input values,
which helps the model converge more reliably. While important for performance,

24

3.2. Transformer Architecture

Output [[T T T I T TICTTICTT
C
CID
[Pointwise Feed-Forward Transformation }

[Layer Normalization]

®
%

Masked Multi-Head Attention

ﬁ

[Layer Normalization]

N\
Input [T T [T TICTTICT T
LLM #s are cool

Figure 3.11: A decoder-only Transformer block

it will not be the main focus of this section.

These two main sequential steps, the attention mechanism and the feed-forward
layer, are grouped into a module known as a Transformer block [36]. This block
is repeated N times to increase the model’s capacity to form complex and nu-
anced abstractions, which ultimately improves its performance. Once the input
has passed through all N blocks, the model produces the next token in the se-
quence. The updated prompt, now including the newly generated token, is fed
back into the model, and this process continues iteratively until the model signals
the end of the response by producing a special end-of-sequence token (<eos>).
However, in some cases, the output may stop before this token is reached if the
language model provider enforces a limit on output length to manage computa-
tional costs. From the users’ perspective, this may result in incomplete or abruptly
ended responses.

3.2.3 The Attention Mechanism

The attention mechanism allows all tokens of the prompt to attend to all other
tokens, in more or less measure based on how much relevance each other token
poses. The goal is to take a word embedding, and through passing it through the
attention block, to shift this vector embedding so that the new representation now
takes account of the context around it. The question now becomes how the model
determines which other tokens are most relevant to the current one. It does that
by calculating, for each previous word, what its attention score is to the new one.
The higher the value, the higher the relevance that token has with the new one.

25

3.2. Transformer Architecture

The mathematical expression of attention is the following [28]:

Attention(Q, K, V) = softmax(Q

W
V@

Figure 3.12: Mathematical expression of the Attention mechanism

The mechanism has three main elements: the Query, the Key and the Value. These
names come from the database terminology, because it has similarities with how
words are searched in a database.

In the attention head, the model first receives the input token embedding, and
generates three vectors called Q, K and V from it. These three elements are
calculated by multiplying the input embedding through Wq, Wk and Wv [28].
These three matrices weights are generated during training the model, and remain
unchanged once training is done. The Q vector can be thought to represent a
Query, meaning a question of how this token relates to all other previous ones. This
query is then compared against all keys of all previous tokens, and this generates
attention scores for each of the previous tokens, that signify how relevant each
one is to the given query. For example the phrase "My mother is pretty and she
..." the word "she" will calculate the attention score which each of the previous
words, and in this case will yield a higher scores for the words "mother" and "my"
because these are the most relevant to this new token. This comparison of Query
and Keys is represented mathematically by a matrix multiplication, which in the
formula is the dot product between Q and K [34].

Now that a list of attention scores for each key has been computed, the degree
of relevance of the previous words to the current token can be understood. The
next objective is to determine how much the original embedding should be ad-
justed in each direction to more closely resemble the keys that received higher
attention scores. Much like in databases, where information is stored in key-value
pairs, in Transformers the key is used to represent previous tokens in the sequence,
while the value encodes how the original embedding should be altered to reflect
similarity to that key. In the final step, each attention score assigned to a key
is cross-referenced with its corresponding value. The attention score determines
the proportion of influence, and the value provides the precise direction and mag-
nitude of the adjustment. Together, these allow the original embedding to be
transformed into a contextually enriched version that better reflects its relation-
ship to surrounding tokens. By adding together all of the contributions from each
of the keys and their attention score (a * V) to the original embedding, the result
is a new embedding that has shifter closer to the previous tokens that were con-
textually relevant, gaining a richer expression of the word, therefore allowing the

26

3.2. Transformer Architecture

Figure 3.13: Query, Key and Value computation

model to reason better. Following the presented example, the word "she" in the
sentence "My mother is pretty and she ..." by passing through the attention block,
will shift in the high-dimensional space in a way that will make it a lot closer to
the word "mother", a bit closer to the word "my" and a tiny bit closer to the
word "pretty". How much it will move towards each of the other words will be
determined by the resulting attention scores of each of them. A higher attention
score will yield a higher movement towards similarity.

As a note, once the dot product between Q and K has been computed and the
raw attention scores obtained, a softmax function is applied. This transformation
is used to normalize the scores into a probability-like distribution between 0 and
1, allowing them to be interpreted as relative importance weights. Additionally, it
has been observed that as the dimensionality of the K and V vectors, denoted as
dy, increases, the resulting values from the QK product tend to grow dispropor-
tionately large. To prevent these inflated values from overwhelming the softmax
computation, the scores are scaled by dividing them by the square root of dj. This
scaling helps maintain numerical stability and ensures that the attention remains
balanced across different positions [38].

In modern large language models, it is often assumed that a single token may
hold multiple types of relationships with other tokens in the sequence. To capture
these diverse relationships, multiple attention heads are used instead of relying on

27

3.3. From Theory to Execution: Infrastructure behind LLMs

head; = Attention(X W'I-Q, XWE XWP)

MultiHead(X) = [heady, ..., head),|W?°

A~
Scaled Dot-Product h
Attention
| | |
Linear Linear Linear
\Y K Q

Figure 3.14: Multi-Head Attention

only one [39]. In this configuration, each attention head is assigned its own set of
learned weight matrices, namely W,, Wj, and W,, which allows different aspects
of the input to be processed in parallel. This setup enables distinct semantic
patterns to be captured at the same time, leading to a richer and more nuanced
understanding of the input.

3.3 From Theory to Execution: Infrastructure be-
hind LLMs

Most major large language models are built upon the transformer architecture,
which defines the mathematical operations guiding their behavior. However, un-
derstanding these operations in isolation provides only a partial view. It is equally
important to examine how these computations are carried out by physical infras-
tructure, since that is where the practical challenges of deploying and scaling such
models become apparent. The complexity of inference at scale does not arise solely
from the model itself, but from the interaction between algorithmic design, hard-
ware capabilities, and system-level coordination. To truly understand how LLMs
work, it is necessary to connect the theory behind them with how they are actually
run on machines.

28

3.3. From Theory to Execution: Infrastructure behind LLMs

3.3.1 Data Centers

When someone interacts with a large language model, for example by asking it a
question or giving it a prompt, the response that comes back is not generated on
their phone or laptop. Instead, the request travels across the internet to a remote
facility known as a data center. That is where the real work happens.

These data centers are the physical homes of the powerful computers that make
large language models possible. They achieve this by housing the machines and in-
frastructure needed to run heavy computations. While many types of data centers
exist, some are designed specifically for artificial intelligence workloads. Addi-
tionally, data centers can be found in many parts of the world, and their location
often depends on access to cheap electricity, reliable internet connectivity, political
stability, and other factors. Given the scale of their operations, their environmen-
tal impact is becoming increasingly significant. Recent findings show that data
centers accounted for more than 4% of total U.S. electricity consumption in 2024

[40].

Echelon GPU cluster design occurs on three separate levels of abstraction:

Cluster

Figure 3.15: Abstraction Layers in a Data Center

Inside an AI data center, the infrastructure is carefully organized into distinct
layers, each serving a specific function [41]. At the highest level of abstraction
lies the cluster level, which involves planning the overall layout of the data center
floor. This includes working within physical space constraints, managing power
availability, and ensuring that the design will support the required computational
capacity.

The next layer of design occurs at the rack level. A cluster is typically composed
of multiple racks, and this stage involves determining the physical arrangement
and exact placement of individual machines, or nodes, within each rack. It also
includes planning how these nodes will be interconnected to function as a unified
system.

Finally, at the node level, the previously defined computational and storage re-
quirements guide the selection of hardware components. Each node typically

29

3.3. From Theory to Execution: Infrastructure behind LLMs

contains a central processing unit (CPU) and multiple graphics processing units
(GPUs), which are interconnected through a high-speed fabric. The CPU is re-
sponsible for tasks such as booting and running the operating system, managing
incoming requests or running background services. These types of tasks are often
difficult to parallelize and involve many small, sequential decisions. Because of
this, CPUs are particularly well suited for handling control-heavy workloads that
do not benefit much from running on many processors at once.

However, in the transformer architecture that has been mathematically described
in section 3.2.3, all computations can be mostly boiled down to a series of ma-
trix multiplications, which are operations that are inherently parallel-friendly. To
illustrate this parallelism, Consider two 2 x 2 matrices

A= {an &12] B — {511 512} _

a21 Q929 le b22
Their product C' = AB has entries

ci1 = abi + ajgba,
C12 = a11b12 + a12b92,
Co1 = a21b11 + agaba,

Coa = Q21012 + agbaa.

Each ¢;; depends only on one row of A and one column of B, never on the values
of any other element of C'. Four independent compute units can therefore load
their required row and column, perform the two multiply—add operations, and
write their single result without waiting for the others. Because there is no data
dependency among the outputs, each computation can be done in parallel. There-
fore the computation scales cleanly across as many parallel lanes as the hardware
provides. For this reason, GPUs are preferred over CPUs for running the model’s
forward pass. GPUs are specifically designed to handle large-scale parallel work-
loads, making them particularly well-suited for LLM inference. Within a single
node, multiple GPUs can be used in coordination with the CPU, enabling signifi-
cantly faster inference than would be possible with CPUs alone.

In data centers, a critical component of the infrastructure is the networking fabric,
which manages communication between machines and nodes. A widely adopted
topology is the leaf-spine architecture, a two-tier implementation of the classic
Clos network design [42|. In this setup, leaf switches are installed at the rack level
and connect directly to all nodes within their respective racks. These switches are
typically implemented as Top of Rack (ToR) switches. To avoid a single point of
failure, it is common to deploy multiple ToR switches per rack. This redundancy
increases fault tolerance and enhances the overall reliability of the system.

30

3.3. From Theory to Execution: Infrastructure behind LLMs

However, nodes in different racks often need to exchange data. For this reason,
each ToR switch is connected to one or more spine switches, which form a high-
speed aggregation layer that interconnects all ToR switches in the cluster. This
design ensures that traffic between any two racks can traverse the fabric by passing
through at most one ToR and one spine switch, ensuring consistent latency and
bandwidth across the entire cluster.

This design is highly scalable, as additional spine switches can be introduced to
increase total network bandwidth without requiring a complete redesign of the
fabric. It also offers path diversity and redundancy: if one spine switch fails,
traffic can be rerouted through alternative paths, preserving connectivity and per-
formance.

Both the nodes connected to the ToR switches and the ToR switches connected
to the spine layer typically use Ethernet with RoCEv2 (RDMA over Converged
Ethernet) or InfiniBand, depending on the cluster architecture [43|[44]. In clusters
optimized for peak Al training and inference performance, InfiniBand is often pre-
ferred due to its ultra-low latency and support for in-network compute. Meanwhile,
RoCEv2 running over high-speed Ethernet links (400 or 800 Gbps) is increasingly
popular in large-scale cloud deployments, as it builds on existing Ethernet infras-
tructure while still offering RDMA capabilities.

3.3.2 GPU Memory and Hardware Constraints

Understanding the structure of modern data centers reveals the physical limits
that shape the deployment of large-scale Al workloads, such as constraints im-
posed by power, cooling, and network topology. However, within each rack and
server, another layer of constraint plays a more direct role in model execution:
the capabilities and limitations of the GPUs themselves. Even with high-speed
interconnects and densely packed accelerators, inference performance ultimately
depends on what each GPU can compute and, critically, how much data it can
store in memory. The following section shifts the focus from the data center-level
infrastructure to the local hardware level, examining current GPU memory capac-
ities, how they interact with model weights and runtime data, and why they often
become the primary bottleneck in serving large models at scale.

First, it helps to have a clear understanding of the high-end GPU landscape as
of for 2025. NVIDIA is considered a pioneer in GPU technology, and has mul-
tiple products that vary in cost and performance, and categorized in three main
architectures: the Ampere, Hopper and Blackwell architectures.

In 2020, NVIDIA released the A100, based on the Ampere architecture, which
quickly became the go-to accelerator for both training and inference of LLMs.

31

3.3. From Theory to Execution: Infrastructure behind LLMs

In late 2022, the H100 was launched, based on the new Hopper architecture. It
kept the same memory capacity but significantly increased both throughput and
memory bandwidth. Then, in 2024, the H200 was announced as an upgrade to the
H100, and in 2025 the Blackwell architecture has been launched as a predecesor of
the Hopper, with their new B300, having x11 more throughput than H100 during
inference [45]]46].

Llama 3.1 405B Real-Time Throughput

Output Tokens per Second per GPU

HGX H100 HGX B300

Figure 3.16: Performance comparison of LLM Inference with H100 and B300 done
by NVIDIA

In order to understand what difference they have between each other, we need to
introduce some terms that are relevant to performance in LLM inference at the
hardware level. Cuda cores are the primary processing units of the GPU. Higher
CUDA core counts generally translate to better parallel processing performance.
Additionally, tensor cores are specifically useful for deep learning tasks, given that
they are optimized for dense matrix multiplications. Therefore, a larger number
of tensor cores directly translates to immediate throughput gains. Another very
relevant parameter is the VRAM GPU memory. This is the memory available to
store the model itself and the prompts that users send to the model. The more
memory there is, the higher number of concurrent users can be served, improving
throughput. However, the available memory is irrelevant without sufficient mem-
ory bandwidth. No matter how fast a GPU is at doing computations, if it must
wait for the model weights and prompts to be retrieved form the GPU memory,
there will be idle time that will increase latency.

Knowing this,

32

3.3. From Theory to Execution: Infrastructure behind LLMs

These performance figures are not just theoretical. OpenAl disclosed that GPT-4
training consumed roughly twenty-five thousand A100 GPUs over about 90 to 100
days [47]. Even at conservative cloud pricing, that footprint represents hundreds of
millions of dollars in hardware time alone. when it comes to inference, OpenAl used
a cluster of 128 A100s to serve the live model to the public, keeping enough capacity
on hand for traffic spikes. In private efforts, the investment grows even larger. In
a recent interview, Jensen Huang described how xAl assembled a supercomputer
made up of one hundred thousand H100 GPUs in just nineteen days. At a cost
of thirty to forty thousand dollars per H100, the total expense for GPUs alone
ranges between three and four billion dollars [48]. Such numbers underline a basic
fact: achieving competitive Al performance requires massive initial investment in
infrastructure.

3.3.3 Quantization

When memory becomes the bottleneck, reducing the size of the data stored be-
comes a natural response. One of the most effective ways to do this is by lowering
the precision of the numbers used to represent a model’s weights. At its core, a
transformer is a network of parameters, each a single number. These values are
usually stored in 16-bit floating point (FP16) or, increasingly, in even smaller for-
mats like FP8. Since memory usage scales directly with the number of bits per
parameter, switching from FP16 to FP8 can nearly halve the memory footprint
[49]. This enables serving larger models or handling more simultaneous requests
without increasing hardware.

0.34 3.75 5.64 64 134 217
1.12 2.7 -0.9 76 119 21
Quantization
-4.7 0.68 1.43 3 81 9
FP32 INT8

Figure 3.17: Quantization example

This reduction in precision is called quantization. In practice, applying quantiza-
tion trades some accuracy for gains in latency and throughput. Lower precision
numbers are faster to move, faster to multiply, and take up less memory per to-
ken. The obvious concern is that shrinking precision might hurt output quality,
however, larger networks seem to tolerate quantization better, maintaining quality
while gaining speed.

33

3.4. Scaling for Real-World Inference

3.4 Scaling for Real-World Inference

3.4.1 Inference SLOs

Large language models are no longer confined to research labs or academic bench-
marks. Today, they operate as real-time services deployed at massive scale, serving
millions of users across applications such as chat assistants, search engines, copi-
lots, and enterprise tools. Unlike the training phase, which is compute-intensive
but offline and non-interactive, inference happens live, often in response to a user
prompt. This shift makes inference a fundamentally different challenge: it must
deliver responses quickly, reliably, and at scale. A delay of even a few hundred mil-
liseconds can significantly affect user experience, especially in interactive use cases
like chat or code completion. At the same time, inference is resource-hungry. The
underlying infrastructure relies on scarce and expensive hardware like GPUs, and
these resources must be shared efficiently across thousands of concurrent requests.
On top of that, workloads are highly dynamic. Traffic can spike unexpectedly,
inputs vary in length and complexity, and different applications place different de-
mands on the system. In this unpredictable environment, it becomes essential to
define clear goals for what the system should prioritize. Service Level Objectives
(SLOs) provide this guidance. They define acceptable performance boundaries
and help teams make informed tradeoffs between latency, throughput, cost, and
quality. Without them, optimization efforts risk being misaligned with real-world
expectations, leading to either overprovisioned systems or poor user experience.

Reauestin Process St ‘ | ‘ ‘
l l >

i TPOT TPOT TPOT

Queueing T\'mei Prefill Latency Decode Latency
TTFT

Total Inference Time

B SquezeBit

Figure 3.18: Breakdown of Inference latency that impacts SLO targets

Service Level Objectives (SLOs) are measurable targets that define the expected
performance of a system. In the context of LLM inference, SLOs might specify that

34

3.4. Scaling for Real-World Inference

the time to first token (TTFT) should be under 200 milliseconds for 95 percent
of requests, or that the cost per thousand tokens should stay below a certain
threshold. Other examples include time per output token (TPOT), request success
rate, or GPU utilization efficiency. What distinguishes SLOs from simple metrics is
intent. While metrics describe what is happening in the system, SLOs define what
should happen. They set the performance boundaries within which the system
is considered healthy. SLOs also differ from Service Level Agreements (SLAs),
which are formal contracts between a service provider and a customer. SLAs
are legal commitments and often carry financial penalties if not met, whereas
SLOs are internal goals that guide system design, monitoring, and operational
response.

Different stakeholders rely on SLOs for different reasons. Infrastructure engineers
use them to optimize how resources like GPUs are allocated and batched. Site
Reliability Engineers (SREs) use them to set up alerts and to decide when to
trigger incident response processes. Product teams refer to SLOs to ensure that
user-facing features deliver a smooth and responsive experience. In enterprise
settings, SLOs also inform discussions with customers, particularly for API-based
LLM services where consistent quality and performance are crucial. In this way,
SLOs act as a contract between the system and its stakeholders, given they align
engineering efforts with real-world expectations.

However, it is important to note that different applications of large language mod-
els place value on different performance goals, and as a result, each use case requires
a distinct set of SLOs. For instance, systems designed for offline processing care
far less about latency. In these settings, such as document classification/tagging
or metadata generation, the priority is maximizing throughput in order to process
as much data as possible at the lowest possible cost. These workloads often run
in the background or overnight, where response time is less critical than total job
completion time and GPU utilization.

By contrast, real-time systems such as chatbots or interactive agents care deeply
about latency. A user waiting for a reply expects the first words to appear almost
instantly. In these cases, time to first token (TTFT) is the most important SLO,
because it directly shapes the user’s perception of responsiveness. Once generation
begins, time per output token (TPOT) only needs to be fast enough to keep up
with the user’s reading speed. This balance allows systems to save compute while
still delivering a fluid experience. However, in use cases like LLM-powered agents,
where the model must perform reasoning steps, call APIs, or trigger external tools,
what matters most is end-to-end latency. These systems may wait on multi-step
chains of thought or external calls, so the goal is to minimize total response time
across all components.

35

3.4. Scaling for Real-World Inference

An intuitive way to think about these tradeoffs is to consider the interaction style.
When a human is actively waiting, as in chat or code assist, the system must
respond quickly and smoothly. But when the task is happening in the background,
like indexing or batch summarization, the focus shifts to how much work can be
done per unit of time and cost. SLOs formalize these needs so that each system is
tuned for what actually matters to the user or the business.

3.4.2 Parallelism Strategies

Meeting the right SLOs is not simply a matter of adding more compute or scaling
blindly. Each objective such as latency, high throughput, or predictable cost places
specific demands on how the underlying infrastructure is designed. These demands
become especially critical when serving LLMs at scale, where the cost of inefficien-
cies can multiply quickly. In this context, parallelism strategies have become one
of the most powerful levers available. Whether it is optimizing how tokens are
generated in parallel, how requests are batched across GPUs, or how computation
is distributed across nodes, the choice of parallelism strategy has a direct impact
on a system’s ability to meet its SLOs. The next section explores these strategies
in detail, focusing on how different forms of parallelism can be used to navigate
the tradeoffs between latency, throughput, and hardware efficiency.

Natural Language Processing (NLP) is advancing quickly in part due to an increase
in available compute and dataset size. The abundance of compute and data enables
training increasingly larger language models via self-supervised pretraining [50].
Empirical evidence indicates that larger language models are dramatically more
useful for NLP tasks such as article completion, question answering, and natural
language inference. As these models become larger, they exceed the memory limit
of modern accelerators like GPUS. One solution has been proved to be to split
the model across multiple of them. This not only alleviates the memory pressure,
but also increases the amount of parallelism that can be done independently of
the microbatch size, since multiple accelerators can process requests at the same
time.

Withing the paralellism strategy, there are two paradignms: Data Parallelism and
Model Parallelism.

Data Parallelism primarily involves deploying multiple replicas of the model on
different GPUs. All model replicas are the same and share identical parameters.
The key idea is that each replica independently processes user requests without
needing to communicate intermediate computations with the others. Instead of
having a single model instance process one input at a time, data parallelism al-
lows the system to scale horizontally by assigning each incoming prompt to an

36

3.4. Scaling for Real-World Inference

I
& —— —— Model

|
|
:

|

(@) No Paral- (b) Data Paral- (c) Fully Sharded
lelism lelism (DP) Data Parallel (FSDP)
(] ==
: -
I -) oo Y O Y Y P
oo U3 wuz - - 7 - e T S,
[5 a0 e Rarzgars 2 :

h | |

(d) Tensor Parallelism (TP) (e) Pipeline Paralleism (PP)

Fig. 12. Comparison of Parallelism Strategies

Figure 3.19: Comparison of Parallelism Strategies

available replica of the model. Each replica then performs the full forward pass
for its assigned prompt or batch (collection) of prompts and returns the output
independently. In production systems like OpenAl’s ChatGPT, data parallelism
is one of the core strategies used to serve massive volumes of inference requests.
The model is deployed across hundreds or thousands of GPUs in the data center,
and each group of GPUs, or nodes, runs its own standalone copy of the model,
often referred as worker. In order to manage the large volume of requests per sec-
ond, load balancing is used as a mechanism to route requests to available workers,
aiming to distribute the workload evenly across available resources, avoid overload-
ing any single GPU, reduce inference latency, and maximize system throughput.
While data parallelism is effective for increasing throughput during inference by
replicating the model across multiple GPUs and distributing input prompts among
them, it falls short in one critical scenario: when the model itself is too large to
fit into the memory of a single GPU. As language models grow in size, reaching
tens or hundreds of billions of parameters, the memory footprint of a single model
instance can easily exceed what is available on any one device. In such cases, data
parallelism becomes insufficient, since each replica requires the full model to be
loaded.

To overcome this limitation, large-scale systems employ model parallelism. The
high-level idea behind model parallelism is to divide the model itself across mul-
tiple GPUs so that each GPU stores and computes only a part of it, which allow
multiple GPUs to work together as a single logical unit to process a request end-
to-end.

37

3.4. Scaling for Real-World Inference

A common implementation of model parallelism is tensor parallelism, in which
each layer of the model is computed collaboratively across multiple GPUs. By
splitting the linear layers (which are essantially matrix multiplications) inside a
transformer, such as attention heads, or feed forward layers, each GPU can handle
a slice of the computation of each layer, rather than assigning entire layers to
different GPUs. This enables multiple GPUs to collectively act as a single large
GPU that hosts and executes the model.

Tensor Parallel Strategies

Column Parallel Row Parallel

Figure 3.20: Column-wise vs Row-wise Tensor Parallelism

There are two main ways to split a tensor across GPUs in tensor parallelism:
by rows or by columns. In the row-wise method, the weight matrix is divided
along its output dimension, so each GPU holds a different set of rows. During
computation, each GPU receives the full input and produces a partial output
vector that corresponds to its assigned rows. Once all GPUs have completed their
local computations, their outputs must be concatenated to form the full output of
the layer.

In the column-wise method, the weight matrix is split along its input dimension,
meaning each GPU stores a subset of the columns. The input vector is also par-
titioned so that each GPU receives only the portion relevant to its slice of the
matrix. Each GPU computes a partial result, and these must be summed across
all devices to obtain the final output.

Both approaches effectively parallelize the matrix multiplication, but they require
that the GPUs exchange intermediate results at the end of each computation,
which must be done for every layer of the model. That means cross-GPUs com-
munication therefore needs to happen in order for the final output to be delivered.
This communication step occurs once per layer and introduces an inherent latency
cost, and the extent of this cost depends heavily on the speed and bandwidth of
the interconnect between GPUs.

38

3.4. Scaling for Real-World Inference

When fast links such as NVLink or NVSwitch are available, the overhead remains
relatively low. On the other hand, in systems connected over slower buses like
PCle, communication delays can become a significant performance bottleneck.
For this reason, the efficiency of tensor parallelism is closely tied to the underlying
hardware and the design of the communication layer. However, it is important to
note that Tensor parallelism cannot scale indefinitely. There is a practical ceiling,
after which the cost of synchronization and the lack of meaningful computation
per GPU outweigh the benefits of parallel compute, and diminishing returns or
even worse performance can be detected.

Nontheless, despite the added communication overhead, tensor parallelism often
reduces overall end-to-end latency by enabling multiple GPUs to work in parallel
on each layer, which makes it particularly well-suited for real-time applications.
For that reason, tensor parallelism remains one of the most effective strategies for
enabling large-scale language model inference.

Another common implementation of model parallelism is pipeline parallelism. In
this implementation, the layers of the neural network are divided into sequen-
tial stages, with each stage assigned to a different GPU. Instead of splitting the
computation within individual layers, as in tensor parallelism, pipeline parallelism
assigns full blocks of consecutive layers to different devices. It is primarily used
when the model is too large to fit within the memory limits of a single GPU or
even across a few GPUs using tensor parallelism alone. By distributing entire
segments of the model across multiple GPUs, it allows very deep networks to be
executed end to end. One of its main advantages is that it reduces memory pres-
sure on individual GPUs and allows the model to scale across a larger number
of devices without requiring each GPU to coordinate computation within layers.
However, pipeline parallelism also comes with limitations. Because the input must
pass through the pipeline stages one after another, there is an inherent delay be-
fore the output can be produced. This is especially problematic during inference
with small batch sizes, where the lack of parallel work across tokens leads to idle
time, known as "pipeline bubbles," in which some GPUs are waiting for others to
finish their stage. As a result, pipeline parallelism can underutilize hardware and
increase per-token latency unless the pipeline is kept full, typically through large
batch sizes or micro-batching techniques.

In real modern LLM system, a combination of the three parallelism strategies
are employed to achieve efficient and scalable performance. These strategies are
not mutually exclusive but rather complementary. Typically, tensor parallelism
is applied within a single machine, leveraging the high-bandwidth interconnects
between GPUs to split the computation of individual layers. Pipeline parallelism is
then used across machines or nodes in a cluster, with each node handling a different

39

3.4. Scaling for Real-World Inference

3~ I~ 3~ 3~
lAR:AILReducel;a/&-j I;ﬁ{&,/ Data Parallel Rank 1 l;{y\/ I\fy‘}

Data Parallel Rank 0

TP: Tensor Parallelism Sequence Parallel Rank 0

Pipeline Stage 0

Pipeline Stage 1 Pipeline Stage 2 Pipeline Stage 4

Send/Recv Send/Recv Send/Recv

™0 > |
[—) B
L — Y 1
L e—

TP-3

-1
™2
-3

[

[l

LAl

LA

LLM Layers 0-3

LLM Layers 4-7 LLM Layers 8-11 LLM Layers 12-15

Figure 3.21: An example of 3D-parallelism with data-parallelism, tensor paral-
lelism, and pipeline parallelism.

segment of the model. Finally, data parallelism operates at the outermost layer,
replicating the full pipeline-tensor stack across multiple groups of GPUs to process
different inputs in parallel and maximize system throughput.

3.4.3 The Quadratic Complexity in the Attention Mecha-
nism

The attention mechanism is the core feature that made the transformer archi-
tecture so effective. By enabling each token to attend to every other token in a
sequence, it captures subtle patterns, long-range dependencies, and nuanced con-
text. This capability has played a central role in the success of large language
models across a wide range of tasks. However, the same mechanism introduces
a significant computational burden during inference, especially in autoregressive
generation.

In autoregressive generation, a model produces one token at a time. With each new
token, the model reprocesses the entire sequence generated so far. This involves
tokenizing all previous words, embedding them, and computing the correspond-
ing key (K) and value (V) vectors for each token. These steps are repeated at
every generation step, even for tokens that have already been processed in earlier
steps.

The attention block performs pairwise comparisons between every query (Q) and
every key (K). For a sequence of n tokens, this results in an n X n attention
matrix, where each position reflects the attention score between two tokens. As a
result, the time and memory complexity of self-attention grows quadratically with
sequence length. This behavior, described formally as O(n?), becomes inefficient
as sequences grow longer, particularly during generation.

40

3.5. KV Caching and the Rise of Memory Bottlenecks

To illustrate this more clearly, consider the phrase:
"The quick brown fox jumps over the lazy dog."

Assuming this tokenizes into 9 tokens, generating the 9th token requires computing
attention scores between it and the 8 that came before. For the model to do this,
it must re-embed all previous tokens, recompute their K and V vectors, and then
calculate the attention scores between the new query and each of those 8 keys.
Now consider a sequence with 1,000 tokens. To generate token 1,001, the model
must reprocess all 1,000 previous tokens. This process repeats for every additional
token, which leads to rapidly increasing computation.

A crucial observation can be made here. While the query vector changes at each
generation step, since it corresponds to the newly generated token, the keys and
values of previous tokens do not change. Once the K and V vectors have been
computed for earlier tokens, they remain valid and can be reused.

This idea lead to the creation of a computation optimization technique, called KV
Caching. Instead of recomputing the keys and values at every step, the model can
store them after their first computation and reuse them in subsequent steps. Only
the new query vector needs to be calculated and compared against the cached
keys. This eliminates redundant computation and reduces the cost of attention
from quadratic to approximately linear with respect to sequence length.

Such an optimization has become essential in large-scale deployments of language
models, where improving throughput and minimizing latency directly translates
to better performance and lower cost. KV caching allows for significantly faster
generation without affecting output quality, and has become a standard component
in nearly all production-grade inference systems.

3.5 KV Caching and the Rise of Memory Bottle-
necks

3.5.1 KV Caching

The following section explores the KV caching technique in greater detail. It covers
how the cache is implemented and how it affects memory and performance. Most
importantly, this section discusses the new challenges KV Caching introduces when
scaling LLMs across machines or GPUs.

KV caching represents a deliberate tradeoff. In autoregressive models, computing
the key and value representations for all previously generated tokens at each de-
coding step leads to a computational cost that scales quadratically with sequence

41

3.5. KV Caching and the Rise of Memory Bottlenecks

length. This cost becomes prohibitive in real-world workloads. To mitigate this
issue, KV pairs corresponding to past tokens are stored in GPU memory, avoiding
redundant computation during each forward pass [51].

However, this shift from compute-bound to memory-bound workloads introduces a
new set of constraints. The principal concern is that GPU memory is both expen-
sive and limited. As described in section 3.3.2, a modern high-end GPU typically
provides around 90 GB of usable memory. As will be shown in this section, this
capacity is insufficient to support the thousands of concurrent requests required in
large-scale inference scenarios. This section will uncover how such memory capac-
ity is insufficient to accommodate the thousands of concurrent requests typically
required by large-scale inference workloads.

Per-token memory consumption (in bytes) of the KV cache = 2 - Njayers - Nheads -
dhead : Pa

o understand the extent to which KV caching can become a bottleneck, it is useful
to compute the amount of memory required per token. The first step is to realize
that for each new token that the model generates, both the K an V need to be
stored. The Q does not need to be stored because it is only used one time to
compute the attention between the current token and the previous ones, meaning
previous tokens do not need to store their () value. However, each of these Ks and
Vs arent just a single number, instead, they are a vector of dimension dje.q. How
big dyeaq is will depend on the model itself, and it is a reflection of how many degrees
of freedom the model has to compute attention, meaning that the more dimensions
a vector has, the more contextual meaning we can infuse into the vectors, as
previously mentioned with the "second" example in section 3.2.2. The size dpeaq
is also normally related to the number of parameters a model has. The larger
the model is, the higher dye.q tends to be, which is also why they allow for more
contextual understanding and why larger models tend to perform better than larger
ones (but point out exceptions). Since K and V are vectors of dimensiondpeaq, they
are a composition of individual numbers, also called parameters. Each number
is represented can also be represented in different precisions. A good metaphor
would be how we can refer the number pi to be 3.1415926535, 3.1415 or 3. The less
precision is used, the less memory it occupies to store, but also less precise it is.
Similarly, in LLMs, each of the numbers in a tensor can be stored with FP32 (32
bits) , which is equivalent to 4bytes/parameter, FP16 (16 bits) which is equivalent
to 2bytes/parameters, FP8 (8bits) which is equivalent to 1byte/parameter . Other
types like BF16 also exists, but it still occupies 2bytes/parameter. Like in the pi
case, the larger the precision is, the more accurate outputs and better responser
the model will be able to deliver, but it will come at the cost of needing to store
in more memory, which is very costly. By reducing the precision for example

42

3.5. KV Caching and the Rise of Memory Bottlenecks

from FP16 to FPS8, the model parameter memory occupation drops to half the
original, which for big state of the art LLM models used for inference, typically
ranging from dozens to hundreds of billion of parameters, is a huge memory saving.
Another thing to take into account when calculating the memory cost of a single K
V pair for a single token, is the fact that most transformer architectures now have
multiple attention heads per layer to be able to capture different rich contextual
meanings and nuances at the same time, and each one has to have its own set of
Ks and Vs [39]. This means that for a single token, the memory utilization of a
K and V pair needs to be multiplied by the number of attention heads that exist,
referred to as npeaqs- Whats more, the transformer architecture has multiple layers
Niayers, SO it also has to be multiplied by the total amount of layers. This total KV
Cache memory utilization is just for storing a single token. In real life scenarios,
users will use multiple tokens, that can be broken down into two categories: the
prefill, which is the input tokens that the user gives to the model as a prompt for
the request; and the decode tokens, which are the output tokens the model gave
the user as an answer [52]. Therefore means that the total memory consumption
of a single user, in reality, is not only the memory consumption of a single token,
but the sum of memory consuption for each of the tokens at both the prefill and
decode stages of inference. This is one of the largest current problems in inference
systems, because memory consumption is therefore dependent of the sequence
length of a users prompt and its answer, yet these values cannot be known ahead
of time. The number of tokens a user will use for its request/prompt can not be
known before the request is made, and the length of the text that the model will
output is also not known a priori. This makes it really challenging to optimize
memory, because systems need to account for varying length workloads in real
time, without being able to know how much memory each user requires ahead of
time. The problem magnifies at large scales, when thousands of requests need to
be processed in parallel, each having its own sequence length, which is not known
a priori.

3.5.2 Memory Optimization Techniques

The previous section showed that the key-value cache is both the reason large
language models can generate quickly and the reason they so easily run out of
GPU memory. Once every layer starts appending its new keys and values, the cache
grows in a straight line with sequence length, and it must stay resident for as long
as the conversation lasts. In practice this turns memory, rather than arithmetic
throughput, into the true limiter of contemporary inference. That observation has
guided an intense sequence of engineering efforts whose common goal is to optimize
the utilization of memory during inference, leading to higher proportion of SLO
achievements.

43

3.5. KV Caching and the Rise of Memory Bottlenecks

In the very first wave of public large-language-model demos, like GPT-2 in 2019, re-
searchers tried doing inference directly on deep-learning frameworks like Pytorch
[53]. Given that during inference only the forward pass needs to be computed,
instead of additionally computing the backward pass, in which gradients are re-
quired, these parts that track them can be disabled to be optimized for inference.
This “raw-eager” recipe worked because early open-source LLMs were only a few
hundred million parameters and prompts were short. As soon as users asked for
longer contexts, two structural problems appeared. The first one was due to the
fact that concurrent requests coming from multiple users were grouped together,
so that all these requests could be sent to the model in one shot. This strategy
of grouping multiple user requests is called batching, and it lets the hardware be
able to compute multiple requests in parallel, effectively increasing throughput.
However, this strategy did not take into account that requests from different users
can diverge hugely on length. For example, one user might request a short reply
while another pushed the model toward a multi-paragraph essay. This became a
problem, because since very item in the batch had to march through the network
layer by layer in lock-step, the quickest request could not be returned to its owner
until the slowest request had reached the same layer. Requests that have finished
earlier than other requests in a batch cannot return to the client, while newly ar-
rived requests have to wait until the current batch completely finishes. The short
sequence therefore stalled inside the GPU even though it no longer needed any
computation. This resulted in having a noticeable share of GPU capacity idle at
every forward pass.

Inspired by this issue, researchers at the univerity of Seul introduced a scheduling
mechanism that schedules execution of concurrent requests at the granularity of
iteration (instead of request) [54]. With this approach, the scheduler now receives
an output on every iteration, which corresponds to the generation of one single
response token, and it can therefore detect the completion of a requests and imme-
diately return its generated token to the client, without making it wait for other
requests to be finished. It also means that once a request is finished, another one
can be started in the next iteration, not having to wait in the queue until the
whole batch is finished.

This was a big step in optimizing inference. However, another obstacle that was
still highly relevant in these systems appeared in memory. As discussed in pre-
vious sections, for every new output token that the model generated as part of
its response, is Key and Value would have to be stored in memory to reduce the
computational overhead for next tokens. However, previous LLM serving systems
fell short in optimizing this KV Cache memory allocation. They worked like this:
Each time a new request was processed, they would reserve a fixed and contiguous

44

3.5. KV Caching and the Rise of Memory Bottlenecks

amount of memory space in the GPU, that it would correspond to the set amount
of output tokens that the model answer was limited to (eg: 2048 tokens). How-
ever, the challenge is that in inference, the amount of space it will take, as well
as its lifetime, cannot be known a priori. A very short output will therefore not
fully occupy the reserved memory space it was given, and a too large output will
see its answer cut short because it has ran out of its reserved chunk of memory.
This phenomenon of under-utilizing reserved memory is called internal fragmen-
tation, and it used to account to about 57.3% of unused GPU memory [55]. In
real life, where GPU memory is both scarce and extremely expensive, this ineffi-
ciency became a huge problem, especially for large scale systems. Another type of
fragmentation was the external fragmentation, that happened because the system
could have many different maximum sizes for the reserved memory. Over time,
smaller blocks that were being liberated after the end of their conversations, left
small gaps between other larger blocks. This meant that even if the memory was
liberated, another large memory block of new KV Caches could not be put inside
these blocks, because it could not fit properly in the tiny space. Since splitting the
KV values in a non-contiguous manner was not possible, plenty of gaps were left
unused. The total amount of free space might be large, but because it is broken
into many separate pockets rather than one continuous stretch, a program that
asks for a single big block cannot be satisfied even though, in theory, enough bytes
are available. It is like a parking lot where many narrow gaps sit between parked
cars; all the gaps together could fit a bus, yet the bus cannot enter because no
single gap is long enough.

m Since they cannot take all books at once,
Physical KV blocks

they select only - (Device Memory)

Block 0 all books at once
Block Table
Logical KV blocks F;TZ:LC:I #filled / LI
BlockO | Since | they | canno t | take B A Block 2
Block 1 all books at once K 3 1ol ——" Block 3 . they | select | only
Block 2 , they | select | only 5 A Block 4
Block 3 M M Block 5 | since they | cannot | take

Block 6

Block n

Figure 3.22: Paged Attention

Researchers from UC Berkley and Standford found a way to solve this problem.

45

3.5. KV Caching and the Rise of Memory Bottlenecks

They took inspiration on the way that operating systems (OS) handle allocation
and management of memory in an efficient way, and applied it to LLM inference
systems. The technique, called PagedAttention, is based on the realization that
having big memory blocks that have to be stored in a contiguous way to store
KV Cache can lead to both internal and external fragmentation [55|. In order to
mitigate them, user requests are instead broken down into fixed-size pages, that
represent small chunks of memory. One request’s KV pairs are composed of a
sequence of contiguous logical pages, but these logical pages are then mapped to
different physical memory locations, that do not have to be physically stored in a
contiguous manner inside the GPU. This is done by creating a block table, that
maps where is each logical KV block/page stored in the physical KV pages. TO
illustrate this, when a request is first process, the algorithm will start to store
each token’s KV pairs in one block/page, until no space is left. Then, for the next
token, another block is allocated for the new KV pair to be stored, which does not
have to be physically contiguous to the previous block, and this happens until the
EOS token is generated, or the maximum output length is reached. By storing the
KV values from one request in many logical small blocks, which are all the same
size, the internal fragmentation is greatly reduced, because the maximum wasted
memory space for each request will be equivalent to the size of the page, which is
very small compared to the single block where the whole request’s KV pairs were
previously stored. Additionally, external fragmentation, that is, those gaps of
unutilized memory that stood between requests, are completely eliminated, since
all the percentage of GPU memory that is reserved for KV values is now divided
in same-length pages or blocks, so there is no wasted gaps between each one.

In summary, PagedAttention algorithm allows KV blocks to be stored in a non
contiguous manner, which fully eliminated external fragmentation in GPU memory
while greatly reducing internal fragmentation.

Since the debut of PagedAttention, several other branches of research have refined
or extended this idea. PagedAttention brought significant memory savings by al-
locating GPU memory on demand, but it came at a cost. It broke the illusion of a
clean, contiguous memory layout, forcing attention kernels to handle fragmented
memory manually. This meant that attention kernels could no longer access the
key-value (KV) cache with a simple linear pointer. Now, before the kernel can
read token T’s key or value, it must consult a page table (a mapping structure)
to figure out where in physical memory the block for token T is located. This
lookup step added a layer of complexity because the kernel could not assume sim-
ple memory layout anymore. It also increased code implementation complexity,
and introduced a small but persistent performance penalty during inference. Re-
searchers at Microsoft realized these problems and came up with vAttention, a new

46

3.5. KV Caching and the Rise of Memory Bottlenecks

approach that preserves the simple, contiguous view of memory expected by high-
performance attention kernels, while still allocating physical memory only when
needed [56]. Instead of relying on the application page tables and manual memory
management, vAttention leverages CUDA’s virtual memory system to reserve a
long, contiguous range of virtual addresses at the start of each request. Physical
memory is then mapped into that virtual range on demand as the conversation
grows. Because the kernel sees a clean, unbroken address space, no special logic
is needed to dereference tokens, and unmodified kernels like FlashAttention-2 or
FlashAttention-3 can be used directly [57]. This design removed the need for extra
lookups in the code and lets the model run faster, while still keeping memory usage
efficient and avoiding unnecessary waste.

Recently, there has been a wave of new optimization techniques that go beyond
local memory management and explore broader system-level strategies for scaling
LLM inference. These approaches are often driven by the realization that the
attention mechanism, and especially the KV cache, is the main factor limiting
memory capacity. One example is Infinite-LLM, which builds on the idea that
attention layers consume the most memory, while other parts of the model such as
MLPs and normalization layers are relatively lightweight [58]. Based on this, the
system offloads attention computations and KV cache storage to a set of secondary
GPUs, allowing the main GPUs to handle the rest of the network. This makes it
possible to support much longer sequences without overwhelming a single device.
Another example is Mooncake, which is grounded in the belief that not all inference
tasks need to happen on the same machine [59]. It introduces a disaggregated setup
where the prefill and decoding stages are handled by different GPU groups, and the
KV cache is shared across a cluster-wide pool that includes both CPU memory and
local storage. A dedicated scheduler manages what gets loaded or evicted, helping
the system handle a larger number of simultaneous conversations than would be
possible in a traditional single-node setup.

3.5.3 Inference Engines

The recent rapid expansion of large language models has resulted in a wide range
of services powered by artificial intelligence, such as chatbots, virtual assistants,
code-generation tools, and Al-augmented search engines. These models rely on
a common architecture and are typically trained on massive datasets using large-
scale distributed infrastructure. As previously discussed, during training, the pri-
mary objective is to teach the model how to predict the next token given a context.
This workload is highly predictible as the process always involves preparing batches
of uniform data, pad them to the same length and process them in parallel across
thousands of GPUs.

47

3.5. KV Caching and the Rise of Memory Bottlenecks

Inference, on the other hand, is a different story. It happens in the real world,
which means that rather than running on fixed-size batches, the model must now
respond to a live stream of requests that vary widely in length, complexity, and
urgency. For example, some users might send a short question and expect an
answer in under a second, while others might request a full essay or code generation
that spans hundreds of tokens. Each request must be processed as it arrives,
and often begins generating one token at a time, which is far less efficient for
GPU compute. Moreover, unlike training, which can be paused and restarted in
a controlled environment, inference systems must run continuously and remain
responsive under unpredictable workloads.

This shift from training to inference introduces a new set of constraints and bottle-
necks that were not present during training. The system must now make real-time
decisions about how to schedule requests, allocate memory dynamically, and pre-
vent compute or memory resources from sitting idle.

The memory optimization techniques such as PagedAttention, parallelism tech-
niques such as Tensor and Pipeline Parallelism, and batching techniques are ways
to improve the efficiency of serving systems [55]. These techniques are valuable
on their own, but they only reach their full potential when guided by a system
that knows how and when to use them. Optimizing one component in isolation
can bring measurable improvements, but serving large language models at scale
requires balancing many moving parts at once that all are interconnected, and
any one of them can become a bottleneck if the others are not coordinated prop-
erly.

In order to solve this issue, specialized systems called inference engines have
emerged [60]|61][62]. Inference engines represent a coordination layer that sits
between the model and the hardware, and is responsible for making decisions on
the fly about how to group requests, how much memory to allocate, and how
to keep the GPUs busy without creating delays. They utilize multiple optimiza-
tion techniques discussed in Section 3.5.2, in a way that adapts continuously to
changing workloads and system conditions.

48

Chapter 4

Project Definition

This chapter aims to justify the development of the project by addressing the
motivation behind it. Additionally, it outlines the objectives to be pursued, de-
scribes the methodology employed, and details the project’s schedule and budget
estimate.

4.1 Motivation

The past two years have witnessed an unprecedented surge in the use of generative-
AT services. Chatbots, code companions, and content-creation platforms now at-
tract a volume of queries that would have seemed implausible only a few product
cycles ago. What began with a few thousand simultaneous conversations per model
has expanded to tens of thousands of concurrent sessions sustained throughout the
day. Major cloud providers already report petabyte-scale inference workloads, a
figure that continues to rise as new applications emerge and user bases expand
geographically.

This rapid adoption reshapes expectations for responsiveness. End users perceive
conversational Al as an always-on utility and demand replies that arrive in real
time, much like the response of a search engine or a messaging app. Traffic spikes
triggered by global news events, marketing campaigns, or software releases can
multiply baseline demand within minutes.

Scaling these services is not merely a question of purchasing additional hardware.
A single NVIDIA H100 accelerator costs about USD 25 000 and draws more than
700 W under load. Production clusters often deploy thousands of such GPUs,
bringing capital expenditure into the hundreds of millions of dollars before ac-
counting for networking, cooling, and physical space. Operating expenses add

49

4.2. Objectives

even more weight to the bill. The electricity required to run the GPUs, ongoing
maintenance contracts, and regular hardware refresh cycles can push the lifetime
cost of ownership into the billion-dollar range for a large-scale provider. In this eco-
nomic context, the industry has shifted its focus away from continually acquiring
costly hardware toward maximising the utilisation of the infrastructure already
in place, since each percentage of under-utilised translates to a direct financial
penalty.

The industry priority is therefore to extract the maximum performance from the
existing infrastructure. However, achieving this goal calls for a rigorous, data-
driven grasp of how model design, workload characteristics, and hardware con-
straints interact under real operating conditions. Only by mapping these rela-
tionships in detail can engineers devise scheduling, batching, and precision strate-
gies that keep latency low while pushing memory and compute resources to their
practical limits. This project sets out to provide that empirical foundation, de-
livering the insights needed to scale generative-Al services responsibly and cost-
effectively.

4.2 Objectives

The main objective of this project was to conduct a multivariable analysis of
LLM inference performance at scale of the underlying Al infrastructure, in order
to identify the factors that most drive resource inefficiency and, in turn, worsen
the cost structure for Al infrastructure providers. To enable this analysis, a sec-
ond objective was to design and implement a reproducible benchmarking pipeline
that deploys open-source language models on an H100 cluster, generates realistic
streams of user requests, and captures fine-grained hardware telemetry in real time
so that performance can be characterised across workloads. Finally, a third ob-
jective was to distil the empirical findings into insights and recommendations for
operating LLM inference services more efficiently. The remainder of this section
explains these objectives in greater detail:

e Conduct a Multivariable analysis of large-scale LLM inference:
Quantify how inference performance and resource efficiency change when
key workload and system factors vary, and identify the main drivers of re-
source underutilisation that deteriorate the cost structure of infrastructure
providers.

e Design a reproducible benchmarking pipeline: Design and implement
an automated and reproducible benchmarking pipeline built to deploy open-
source large language models on an H100 cluster, generate synthetic streams

20

4.3. Methology

of user workloads, and record fine-grained hardware metrics at sub-second
resolution, in order to produce the datasets required for the multivariable
analysis.

e Deliver role-aware operating guidance grounded in empirical re-
sults: Convert the benchmark results into data-driven recommendations
that span the full stack of roles, from developers and system architects to
infrastructure providers and hardware manufacturers, enabling each to ap-
ply the findings to make better choices and improve the efficiency of the Al
ecosystem.

4.3 Methology

An agile methodology will be adopted for the development of the project, founded
on iterative and incremental software production. The work will be organised
into successive sprints, each defined as a short, fixed period. Within every sprint,
tasks will be identified, prioritised, and addressed in a cooperative and flexible
manner.

Figure 4.1: Agile Development Cycle

The intention is that tangible results will be produced during each iteration, so
that continuous adaptation can be achieved as the project advances. By this
means, feedback will be gathered regularly, and adjustments or improvements

ol

4.4. Planning

will be introduced whenever new needs or requirements are recognised during the
development process.

The agile methodology was selected because of the wide range of advantages it
offers over other software-development approaches. The main advantage is that
productivity is raised by organising the work into sprints, which makes rapid and
frequent deliveries of functional code possible. This practice keeps the product
in a usable state at all times, allowing feedback to be gathered from users and
adjustments or improvements to be introduced.

The approach also encourages members to collaborate continuously, which helps
everyone make faster, better decisions. Altogether, these benefits lead to higher-
quality software and allow the project goals to be met more efficiently.

4.4 Planning

This section outlines the planning methodology adopted for this project. It ex-
plains how the work was divided into well-defined tasks and distributed across the
entirety of the alloted time.

Task \ Month Oct Nov Dec Jan Feb Mar Apr May

Project kick-off & scope lock-in v

Deep literature review & v v v
problem refinement

Benchmark Suite Design & 4
Selection

Development and Deployment v
Metrics-Collection Subsystem

Implementation of Synthetic 4
User-Traffic Generation

Subsystem

Implementation of Automated

Orchestration Layer

Execution of Benchmarks

Analysis and Validation of

Experimental Results

Thesis Writing v v v 4

S OSS S
AN

Table 4.1: High-level project schedule.

o2

4.5. Economic Study

The overall timeline is presented in Table 4.1. Each row indicates the months
allocated to a specific task, with overlaps introduced to shorten feedback loops
and minimise idle time. The execution and results of all tasks shown in Table 4.1
are discussed in detail in Chapter 5.

Operationally, task tracking was handled with Trello. A single board held three
workstreams (thesis documentation, system implementation, and benchmark ex-
ecution and analysis) which were further broken down into cards. Cards flowed
through the standard To Do, In Progress, and Done columns, providing an up-to-
date snapshot of progress and helping to prioritise daily effort.

4.5 Economic Study

This section develops an economic analysis of costs, revenue, and profit from the
perspective of a core stakeholder in the ecosystem: the infrastructure provider.
The objective is to translate the behavior observed under controlled LLM infer-
ence workloads into a concise model that informs capacity planning, pricing, and
operational targets.

Drawing on the experimental results reported in Section 6, a common economic
model emerges as a conceptual abstraction of inference system behavior. The
model holds regardless of the specific LLM, hardware vendor, or deployment con-
figuration, provided that usage is priced per unit of useful work and throughput
is taken as the measure of output.

Figure 4.2 presents the Infrastructure Performance Profile, plotting aggregate
throughput, understood as the useful work delivered by the entire inference system,
as concurrent user demand increases.

Performance Curve
Throughput

Saturation P.

Equilibrium P.

A B C

. v

Concurrent Users

Figure 4.2: Infrastructure Performance Profile

23

4.5. Economic Study

@
=1
=]
S

~
=}
S
S

GPT2-XL-1.5B Aggregate Throughput vs. Concurrency

| —e— aggregate Throughput

6000 1

5000 1

6300 6443 °

@
<]
b1
S

]
3
S
S

Deepseek—7B Aggregate Throughput vs. Concurrency

4000 1

—e— Aggregate Throughpt

&
S
S
]

3000 1

3000 4
20001

N
-1
S
s

AggregatT throughput (tokens / s)
AggregatT throughput (tokens / s)

1000 4 1000 1

200 300 400 500

Concurrent requests (N)

1050100 200 300 400 500 600 700 800 900 1000 1100 1200 no so0 100

Concurrent requests (N)

(b) Concurrency threshold for KV-cache
saturation (Deepseek-7B)

(a) Concurrency threshold for KV-cache
saturation (GPT2-xI-1.5B)

Qwen-1.5-14B — Aggregate Throughput vs. Concurrency

2,703 2740 7o

—e— Aggregate Throughput 2633

25001
20001
1500 1

1000

@
<]
o

AggregatT throughput (tokens / s)

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Concurrent requests (N)

(c) Concurrency threshold for KV-cache
saturation (Qwenl.5-14B)

Figure 4.3: Concurrency threshold for KV-cache saturation as a function of model
size across different models.

This conceptual abstraction of the LLM infrastructure performance profile shown
in Figure 4.2, derived directly from the project’s benchmark results such as the
one shown in Figure 6.48, will serve throughout the economic analysis as a uni-
fying abstraction, removing model- and configuration-specific details because the
governing relationship remains invariant.

As shown in Figure 4.2, the Infrastructure Performance Profile delineates three op-
erating regions A, B, and C, each with distinct characteristics that shape inference
system behavior. These regions are:

Region A: Spare Capacity. In Region A the system operates with spare ca-
pacity, because provisioned resources exceed concurrent demand, which means
work does not contend and queues do not form. As a result, each additional user
translates almost one to one into useful work, so throughput scales in step with
demand. As observed in the experiments reported in Section 6.1.2, the slope angle

o4

4.5. Economic Study

« is less than or equal to 45 degrees.

a < 45°

Latency remains minimal, since requests begin service immediately and do not
need to share scarce resources, and user experience reflects this absence of waiting.
This regime ends at the "equilibrium point", where all resources become active,
and beyond which the system transitions to Region B.

Region B: Shared Capacity and Emerging Queues. In Region B the system
operates near full utilization, because demand begins to exceed the number of
independent service slots, which forces resources to be shared across requests.
One important characteristic of this region is that throughput still continues to
increase, although with a smaller slope than in Region A, since part of the capacity
is now spent on the overheads of sharing resources. This pattern is consistent with
the queue formation documented in Section 6.1.2.

b < a

Region B ends at the "saturation point". Beyond this point, the aggregate through-
put declines, because the resources required to accommodate an additional request
exceed the net useful work contributed by the system.

Region C: Overload and Throughput Collapse. In Region C demand ex-
ceeds the sustainable service capacity by a wide margin, which forces intense con-
tention and coordination overheads. Useful work declines because shared resources
are repeatedly reallocated, caches are thrashed, and waiting amplifies across the
pipeline. The result is that each additional concurrent request consumes more ca-
pacity than the net work it contributes, so aggregate throughput falls while latency
and error risk rise.

Building on the characterization of Regions A, B, and C above, the following
summary consolidates the main trade offs and indicates, for each regime, whether
conditions favor users and providers:

e Region A — Optimal for a newly arriving user because added latency is
minimal, yet economically suboptimal for the provider since part of the ca-
pacity remains unutilized and revenue per unit of capacity is low.

e Region B — Resources are shared, which introduces additional waiting
and slightly degrades user experience, while it is economically preferable for

25

4.5. Economic Study

the provider because aggregate throughput and utilization rise up to the
"saturation point".

e Region C — Demand exceeds sustainable capacity, therefore each extra
request reduces net useful work, so aggregate throughput declines and latency
escalates, which makes this regime undesirable for both users and provider.

4.5.1 Cost Structure of Infrastructure Providers

Once the performance profile of inference systems is established, it becomes nec-
essary to define the cost structure that limit infrastructure providers, since this
structure sets the boundaries for pricing and the economically desirable operating
region.

Provider costs can be grouped into two categories: fixed costs and variable costs.

Fixed Costs

On the one hand, fixed costs are incurred by infrastructure providers regardless of
user workload. The following figure summarizes the main categories:

Fixed cost category Examples

Hardware acquisition and depreciation | GPUs or TPUs, servers

Rack and power delivery Racks, PDUs or UPS

Networking fabric and optics Switches, structured cabling

Datacenter space and facilities Colocation or lease

Salaried staffing SRE or platform engineers, facilities
staff

Physical security and compliance Access control, guard services

Insurance, taxes, and audits Insurance premiums, property taxes

Enterprise software and support Orchestration or monitoring licenses,
support

Table 4.2: Representative fixed cost components for infrastructure providers.

Variable Costs

On the other hand, variable costs scale with system usage. Some examples include
electricity and water consumption, which rise with demand. Table 4.3 lists the
most prominent variable cost categories for inference providers:

o6

4.5. Economic Study

Variable cost category Main drivers and examples

Compute electricity GPU power, CPU power

Cooling energy and water Chiller energy, evaporative water

Metered platform services Load balancer usage, API gateway requests
Per request licensing Model licenses, runtime licenses

Storage and data movement | Object storage, retrieval egress

Burst staffing and support | Overtime, contractor hours

Table 4.3: Representative variable cost components for infrastructure providers.

Cost Curve

Concurrent Users

Figure 4.4: Total Cost Structure for Infrastructure Providers

Therefore, the total cost for infrastructure providers is the sum of fixed and variable
components:

Total Cost = FC + VC

Np Ny
FC=)F, and VC=)V,

i=1 j=1

4.5.2 Revenue Structure for Infrastructure Providers

Revenue refers to the monetary inflow obtained by charging per unit of useful
work, independent of the costs incurred.

For infrastructure providers, revenue follows the Infrastructure Performance Pro-
file in Figure 4.2, because the service is priced per unit of useful work, typically

57

4.5. Economic Study

measured in tokens. As throughput rises, billable tokens increase and revenue
grows.

Consequently, revenue inherits the three operating regions discussed earlier: in
Region A it grows almost one to one with demand, in Region B it continues to rise
with diminishing marginal gains due to resource sharing, and beyond saturation
in Region C it declines as aggregate throughput falls.

Here is an example of how revenue would be computed in the case of infrastructure
providers:

Let pyx be the price per 1,000 tokens. The per-token price is

Pix
1000

Ptok =

If T,(D) denotes billable tokens per second at demand D, then the instantaneous
revenue rate 1s

R(D) = pux T(D) = 1505 To(D):

Over an interval of length At, the revenue is

Revenue(At, D) ~ 1%18{0 Ty (D) At.

4.5.3 Profit Structure for Infrastructure Providers

Profit is defined as the difference between revenue and total cost:

II=R- Ctotal-

Based on the cost and revenue structures defined in previous sections, the final
profit structure takes the following shape for infrastructure providers, shown in
figure 4.5:

Based on this profit analysis, Region A is undesirable for the provider because a
portion of capacity remains idle, which implies overprovisioning and leaves fixed
costs dominant. Consequently, Region A is both technically inefficient and eco-
nomically unfavorable.

Moving into Region B, all provisioned resources come into play, which makes the
regime at least technically efficient. Profit can still be negative at first, because
fixed costs weigh heavily, but as demand rises a threshold is reached where revenue
equals the sum of fixed and variable costs, the break even point. From that moment
up to the "saturation point", each increment of demand produces positive profit

o8

4.5. Economic Study

Profitability Curve

SaturationP. Total Cost

Break Even 1 ===--" Break Even 2
I

Concurrent Users

Figure 4.5: Profit Structure for Infrastructure Providers

and better utilization, and although gains diminish as resources are shared more
intensely, the aggregate profit still benefits from more user load.

Crossing into Region C, the marginal request consumes more capacity than the
useful work it adds, but variable costs continue to accumulate, so profit erodes
until it can turn negative again.

Taken together, this economic study supports a clear operating objective: keep
the system near the upper end of Region B, the saturation point, where profit is
typically highest while service remains stable. To achieve this, providers should
enforce per node admission control that keeps observed concurrency close to this
point and scale horizontally to track demand, so individual nodes remain near the
optimum rather than drifting into overload.

This guidance is stated without any fix numeric values, in order to remain model
and configuration agnostic, allowing any provider to apply it regardless of deploy-
ment specifics.

However, to ground the guidance with concrete examples, Table 4.4 reports the per
node concurrency at which aggregate throughput peaked for representative mod-
els, using the hardware configuration described in Section 5.1.1 and a comparable
workload pattern. These values are derived from Figure 6.48, and for these exam-
ples, they represent the exact point where maximum profit can be obtained.

29

4.5. Economic Study

Model Parameters | Per node concurrency at Saturation P.
GPT2-xl 1.5B ~ 900
Deepseek-7B B ~ 400
Qwenl.5-14B 14B ~ 120

Table 4.4: Tllustrative operating points at saturation under this study’s benchmark

conditions.

Since the saturation point shifts with model updates, hardware changes, and work-
load composition, it should be remeasured whenever those factors change.

60

Chapter 5

Implemented System

In this chapter, the implemented system will be described in depth. The platform
has been organised as a modular pipeline whose subsystems cooperate to execute
every benchmark automatically and reproducibly. Each subsystem is defined by a
single, precise responsibility and can be invoked on its own for debugging or exten-
sion. When combined, the entire pipeline can be launched with a single command,
performing a full end-to-end benchmark run without manual intervention.

To better understand the structure and function of the system, this chapter is
divided into five main sections, each corresponding to a distinct phase of the im-
plemented system or pipeline stage:

e Benchmark Selection: This section will describe the process of choosing
models and tasks that reflect real-world large-scale LLM inference scenarios.
The benchmarks that were finally selected span a diverse range of model sizes
and deployment settings, in order to capture the performance characteristics
and trade-offs relevant to modern Al workloads.

e Automated Pipeline Orchestration: This section will describe how the
different subsystems were coordinated through automation scripts and con-
figuration logic. The orchestration was meant to enable seamless execution
of end-to-end benchmark run and also ensure that each component operated
in the correct order with minimal manual intervention.

e User Workload Generation: This section will explain how the system
simulated realistic user traffic patterns under varying load conditions. The
goal was to evaluate how each model behaved under different user workloads,
by generating inference requests that mimic real-world user usage scenarios,
allowing a deeper understanding of performance and resource usage for each

61

5.1. Benchmark Selection

case.

e Hardware Telemetry Collection: This section will explain what hardware-
level data was captured in real time during each benchmark run, focusing on
GPU and system resource utilization. It will also detail how these metrics
were collected and stored in a way that enabled a clear view of the underlying
infrastructure’s behavior.

e Metric Analysis and Visualization: This section will explain how the
collected hardware metrics were processed to better understand system per-
formance. It will describe the scripts used to extract and filter the data, as
well as how the results were visualized to compare workloads and highlight
performance trends.

5.1 Benchmark Selection

The goal throughout this selection process was to create a representative and
diverse set of experiments that reflect how large language models actually perform
in practice. These benchmarks form the foundation for the analysis presented
in Chapter 6, where their results are studied in detail to uncover insights about
throughput, latency, memory saturation, and system efficiency.

To capture the behaviour of vLLM across a representative spread of real-world
workloads, six open-source LLMs were chosen. The set ranges from a lightweight
1.5 B-parameter model baseline to a 70 B-parameter FP8 model, covering three
size “buckets” (small, medium, large) and including both dense and long-context
variants. Each model brings a distinctive property, that helps isolate different
performance bottlenecks during inference.

62

5.1. Benchmark Selection

Size VRAM | Jontext
Bucket Parameters (GiB) Window
Model Architecture (tokens)
(Huggingface
Repository)
Small gpt2-x1 1.5B Decoder-only 2.97 1024
Transformer
Small Mistral-7B- 7B Decoder-only 13.56 128 k
128k Transformer
Medium | deepseek- 7B Decoder-only 12.87 4 096
ai/deepseek- Transformer
llm-7b-chat
Medium | Qwen/Qwenl.5- 14 B Decoder-only 26.43 32 768
14B-Chat Transformer
Large tiiuae/falcon- 40 B Decoder-only 76.93 2 048
40b Transformer
Large RedHatAI/Meta- 70 B Decoder-only 67.70 128 k
Llama-3.1- Transformer

70B-Instruct-
FP8

Table 5.1: Overview of selected models used for benchmarking

The set of experiments has been organised into three benchmark families, each
chosen to highlight a distinct factor that influences the efficiency of large language-
model inference. Grouping the tests in this way makes it possible to study factors
such as workload concurrency, sequence length or intra-node parallelism without
letting one variable obscure the others. The idea is that by isolating these angles,
it is possible to uncover where bottlenecks originate and how they interact with
model size and hardware configuration.

63

5.1. Benchmark Selection

{ Benchmark Families:
Concurrency-Related Sequence Length- Intra-node Scaling-
Benchmarks Related Benchmarks Related Benchmarks

Figure 5.1: Benchmark Families

The following subsections introduce each family in turn, outlining its purpose,
experimental setup, and the primary metrics of interest.

5.1.1 Concurrency-Related Benchmarks

Concurrency denotes the number of user requests the model must serve at once.
A useful analogy is a single-barista café. When five people place their orders
together, the barista prepares each drink in turn; as the queue lengthens, every
customer’s wait extends and the barista’s workload rises. Similarly, when many
requests arrive simultaneously at an LLM endpoint, the system must attend to
them at the same time, which can slow individual responses and reduce overall
efficiency.

In real-world LLM deployments concurrency stands out as a principal driver of per-
formance, because production chatbots, retrieval-augmented-generation pipelines
and code-completion services almost never process a single request in isolation.
On the contrary, these systems routinely need to process hundreds or even thou-
sands of queries each second while still being expected to satisfy tight service-level
objectives for latency.

64

5.1. Benchmark Selection

Inference Inference Inference Inference
System System System System
H100 GPU H100 GPU H100 GPU H100 GPU
Humber of Concurrent User
Requesis

Figure 5.2: Concurrency-Sweep Setup: Increasing Numbers of Simultaneous User
Requests Served by the Inference System

With this motivation in mind, the objectives of this first family of benchmarks
were the following:

e Memory-Saturation Threshold: Determine the level of concurrency at
which the KV-cache exhausts available GPU memory.

e Throughput under Load: Quantify how aggregate tokens-per-second changes
with rising concurrency and assess the extent to which memory saturation
constrains peak throughput.

e Latency Scaling: Measure the growth in latency the request count in-
creases.

¢ Queue-Formation Dynamics: Observe when and how request queues
build up in the scheduler and relate their depth to concurrency and cache
pressure.

e Impact of Model Size: Compare these effects across models of different
parameter counts to reveal how model scale shifts the saturation point and
alters throughput and latency trends.

In order to conduct these experiments, the following configurations were uti-
lized:

65

5.1. Benchmark Selection

Parameter Value
Number of Nodes 1

Number of GPUs (tensor parallelism) 1

User Prompt Length 128 tokens
Model Output Generation Length 512 tokens
KV-cache dtype FP16
Metrics Collection Interval (Prometheus) | ~200 ms

Table 5.2: Benchmark setup and hyper-parameters for the concurrency sweep

These benchmarks were executed on a single node and tensor-parallelism set to
one, guided by two considerations. First, the goal was to push each model to its
concurrency limit, by finding the point at which hardware resources became ex-
hausted. Because of this, restricting the testbed to a single GPU allowed for the
resource limits to appear sooner, and required far fewer simulated user requests
to reach. If multiple nodes or multiple GPUs had been utilized, the hardware
ceiling would have been pushed much higher, forcing a much larger traffic load
before the same bottlenecks emerged. Second, a single-GPU setup avoids the
communication overhead that would arise in multi-GPU or multi-node configura-
tions. Eliminating those extra latencies ensured that any trends in response time
remained attributable to scheduler pressure and KV-cache usage, not to network
contention or collective-communication delays.

Another chosen setting was the length of the user requests, measured in tokens.
A prompt length of 128 tokens and maximum generated output of 512 tokens was
selected, to reflect a typical interactive use case while keeping individual requests
modest in size. Every request in the concurrency sweep used these same limits,
ensuring that input and output length remained constant across all traffic levels.
This uniformity allowed the experiment to isolate the effect of increasing concur-
rency on hardware utilisation and latency without confounding factors introduced
by variable sequence lengths.

Furthermore, all models were served in FP16 format, a widely adopted industry
standard that balances numerical precision with memory efficiency. Using the
same dtype for every model prevented quantisation differences from influencing
the latency and throughput measurements.

Lastly, preliminary tests were conducted to determine the best metric-scraping
frequency. The concluded result was to scrape and save the Prometheus hard-
ware metrics every 200ms, since this interval provided a satisfactory temporal

66

5.1. Benchmark Selection

resolution to capture load fluctuations while imposing negligible overhead on the
system.

Concurrency VRAM
Model Levels Tested VRAM left for Deploy
(number of (GiB) | KV-Cache | Time (s)
requests) (tokens)
gpt2-xl 1, 10, 50, 100, 200, 2.9676 268 208 1.813296
300, 400, 500, 600,
700, 800, 900, 1 000,
1100, 1 200
deepseek-7B-chat 1, 10, 50, 100, 200, | 12.8726 141 808 4.415860
300, 400, 500, 600
Qwen-14B-Chat 1, 10, 20, 30, 40, 50, | 26.4278 64912 3.361213
60, 70, 80, 90, 100,
110, 120, 130, 140,
150, 160
Falcon-40B 1, 10, 20, 30, 40, 50, | 76.9338 18688 8.945311
60, 70, 80, 90, 100,
110, 120, 130, 140,
150, 160

Table 5.3: Concurrency-sweep configurations for each of the selected models

A further aim of the concurrency experiments was to examine how model size
influences performance. Larger models store more parameters and, as a result,
each token occupies more memory; fewer tokens can therefore reside in the KV-
cache at any one time, limiting the number of concurrent requests the system can
handle. Table 5.3 confirms this relationship. When each model was deployed, the
available KV-cache decreased as model size increased. For example, GPT-2 XL,
with 1.5 billion parameters, accommodated 268 208 tokens, whereas the 40-billion-
parameter Falcon model could hold only 18 688 tokens. Because all users share
this finite memory pool, a smaller cache directly reduces the maximum number of
simultaneous requests the server can support. The implications of this constraint,
and associated findings, are discussed in detail in the Results chapter.

67

5.1. Benchmark Selection

Metric ID Prometheus Type | Unit
gpu_cache usage perc Gauge % (no unit)
num_requests waiting Gauge Requests

request queue time seconds Histogram Seconds
time to first token seconds Histogram Seconds
time to first token seconds sum | Counter Seconds

time to_ first token seconds count | Counter Count
time per output token seconds Histogram Seconds
generation tokens total Counter Tokens
timestamp Gauge Seconds

Table 5.4: Most relevant Prometheus metrics to record for the concurrency bench-
marks

For every experiment, more than 300 hardware metrics were collected every 200 ms.
However, for the concurrency-related benchmarks, Table 5.4 lists the metrics that
best support the stated objectives. For instance, gpu_ cache usage_ perc indicated
the concurrency level at which the KV-cache exhausted available GPU memory,
while time_ to_first token seconds sum and time_ to_first token_ seconds count
were used to compute the mean time-to-first-token latency for each level of con-
current requests. In addition, metrics such as num_ requests waiting and re-
quest _queue _time seconds were used to track queue growth by reporting both
the number of pending requests and their waiting times.

The analysis and interpretation of these concurrency-related benchmarks are de-
tailed in Section 6.1, under the Results chapter.

5.1.2 Sequence Length-Related Benchmarks

In real-world large-language-model inference, user prompts may range from brief
search queries to entire contracts or chat transcripts that expand with each turn.
For example, a user might ask the model to translate a short phrase, whereas
another might request the same model to process a full document and summarise
it. Each of these tasks has completely different characteristics, yet the system
must adapt to all.

The length of the model’s response is likewise variable. Some users expect concise
answers, while others request detailed technical explanations, step-by-step reason-
ing, or multi-paragraph summaries.

68

5.1. Benchmark Selection

Because neither prompt length nor output length can be known in advance and
both can vary widely from one request to the next, adjusting the underlying in-
frastructure to perform well across this spectrum is increasingly challenging.

user prompt:

user prompt: I
user prompt: — —
user prompt: ’—|____ - —
I I 7 7
Inference Mifeeres
Inference Inference
System System System System
/1 node ~ /1 node (1 node Y /1 node
H100 GPU | |H100 GPU H100 GPU | |H100 GPU H100 GPU | |H100 GPU H100 GPU | | H100 GPU

output: 1 token output: 1 token [oulput 1 token | [output: 1token |

User Prompt Length

Figure 5.3: Sequence Length Setup: Increasing User Prompt Length Served to the
Inference System

This has driven the motivation to study this second family of benchmarks, re-
lated to the sequence-length of user requests and model outputs. The objective of
this benchmark family is therefore to determine how varying sequence length, in
both the user prompt and the model’s generated output, reshapes overall system
behaviour. Specifically, the study pursued the following objectives:

e Prompt-Length Impact: Quantify how expanding the input sequence up
to 128 k tokens affects time-to-first-token latency and prefill throughput.

¢ Generation-Length Impact: Measure how extending the maximum out-
put length influences end-to-end latency and tokens-per-second decoding
rate, thereby assessing decoder efficiency.

e Streaming Benefit: Compare streaming and non-streaming responses for a
fixed workload in order to determine the reduction in user-perceived response
time against the non-streaming baseline.

To address these objectives, the study was organised into the three experiments
summarised in Table 5.5. In the first experiment the model’s maximum generation

69

5.1. Benchmark Selection

length was fixed to a single token, while the user-prompt length increased from 8
k to 128 k tokens across successive runs.This configuration was chosen because it
allowed to isolate the impact of input size on prefill latency.

The second experiment focused on decoder behaviour: the prompt length was held
constant at 128 tokens and the permitted output length was expanded step by step
up to 128 k tokens, thereby exposing decode-time efficiency.

Finally, a third experiment compared user-perceived latency with and without
streaming by running the same workload twice; once with the streaming flag en-
abled and once with it disabled.

Experiment | User Prompt Length Output Length Streaming
8k, 16 k, 24 k, 32 k,
40 k, 48 k, 56 k, 64 k,
L 72k, 80 k, 88 k, 96 k, I token True
104 k, 112 k, 120 k, 128 k
8k, 16 k, 24 k, 32 k,
40 k, 48 k, 56 k, 64 k,
2 128 tokens 72k, 80 k. 88 k. 96 k, True
104 k, 112 k, 120 k, 128 k
3 64 k tokens 64 k tokens False / True

Table 5.5: Sequence-length benchmark matrix

The following configurations were utilized for these sequence length-related bench-
marks:

70

5.1. Benchmark Selection

Parameter Value
Number of Nodes 1
Number of GPUs (tensor parallelism) 2

Model Used

Mistral-7B-128k

Context Window

128 k tokens

Number of Concurrent User Requests

1

Model VRAM Occupation

GPUO: 6.78 GiB
GPU1: 6.78 GiB

VRAM left for KV-Cache (tokens)

GPUO: 1 194 848 tokens
GPU1: 1 194 848 tokens

Model Deployment Time

5315 s

KV-cache dtype

FP16

Metrics Collection Interval (Prometheus)

~200 ms

Table 5.6: Benchmark setup and hyper-parameters for the sequence-length exper-

iments

Out of all the configurations necessary for these benchmarks, a model with an
exceptionally large context window was particularly crucial, since the experiments
required handling very long prompts and equally extensive generations. Alterna-
tives such as GPT-2-XL or DeepSeek-LLM-7B-Chat provide much smaller context
limits, which would not have allowed a broad enough range of sequence lengths
to yield meaningful conclusions. Mistral-7B-128k was selected for this reason: its
128-k-token window greatly exceeds that of the other models used in this study,

as shown in Table 5.1.

71

5.1. Benchmark Selection

Metric ID Prometheus Unit
Type
vllm:gpu _cache usage perc Gauge % (no unit)
vllm:request prompt tokens Histogram Tokens
vllm:request _generation tokens Histogram Tokens
vllm:time to first token seconds Histogram Seconds
vllm:request prefill time seconds Histogram Seconds
vllm:time per output token seconds | Histogram Seconds
vllm:request _decode time seconds Histogram Seconds
vllm:e2e request latency seconds Histogram Seconds
vllm:iteration tokens total Histogram Tokens
vllm:prompt _tokens total Counter Tokens
vllm:generation tokens total Counter Tokens
timestamp Gauge Seconds

Table 5.7: Most relevant Prometheus metrics for the sequence-length benchmarks

Lastly, Table 5.7 details the metrics of interest for this second family of bench-
marks. Since latency can be divided into into prefill, decode, and end-to-end
measurements, metrics such as request-prefill-time-seconds, request-decode-time-
seconds, and eZe-request-latency-seconds were key in order to analyse each one
independently.

The analysis and interpretation of these sequence length-related benchmarks are
detailed in Section 6.2, under the Results chapter.

5.1.3 Intra-node Scaling-Related Benchmarks

Tensor-parallelism may be pictured as an assembly line in which two identical
stations share the same task: instead of a single worker multiplying all of the
matrices that drive a 70-billion-parameter model, each GPU processes one-half of
the computation, handing partial results to its partner until a token is completed.
In theory this duplication should halve the time required to produce each token; in
practice, the extra coordination and data exchange can erode much of that ideal
speed-up, so the true benefit must be measured rather than assumed.

The question matters because modern applications such as chat assistants, code
generation tools and search augmentation impose latency budgets of only a few
hundred milliseconds, meaning that even a modest improvement in aggregate

72

5.1. Benchmark Selection

tokens-per-second can translate into a perceptibly smoother user experience when
thousands of requests are served in parallel.

However, it is also important to take into account the fact that every additional
GPU represents a concrete cost in power, cooling and rack space. Therefore, if
tensor-parallelism of two does not deliver commensurate returns under typical
traffic, operators may prefer to use a fleet of single-GPU nodes rather than fewer
multi-GPU boxes for their data centers.

This has driven the motivation to study this third family of benchmarks, related
to Intra-node Scaling. The objective of this benchmark family is to quantify the
real-life trade-offs of single vs double tensor-parallelism in LLM inference systems.
Specifically, the study pursued the following objectives:

Inference Inference
System System

1 node 1 node

H100 GPU D H100 GPU | H100 GPU

Figure 5.4: Intra-node Setup: Increasing Tensor Parallelism in the Inference Sys-
tem

e Throughput Scaling: Measure the change in aggregate tokens-per-second
when tensor parallelism is increased from 1 to 2 and determine whether the
additional GPU delivers proportional gains.

e GPU-Utilisation Balance: Examine utilisation metrics on both devices
to assess how evenly compute and memory bandwidth are exercised under
tensor parallelism equal to 2.

e KV-Cache Distribution: Observe how splitting the model affects avail-
able KV-cache per GPU and identify whether this alleviates or merely shifts
memory pressure.

e Concurrency Efficiency: Verify that throughput improvements, if any,
persist across several concurrency levels rather than only at the single traffic
point used for comparison.

e Cost—Benefit Analysis: Combine the above findings to decide whether the
marginal performance gained by adding a second GPU justifies its additional

73

5.1. Benchmark Selection

power and occupancy within the node.

In order to conduct these experiments, the following configurations were uti-
lized:

Parameter Value

Number of Nodes 1

Number of GPUs (tensor parallelism) 1 GPU / 2 GPUs

Model Used Meta-Llama-3.1-70B-Instruct-FP8
Context Window 128 k tokens

KV-cache dtype FPS

Metrics Collection Interval (Prometheus) | ~200 ms

User Prompt Length 1 000 tokens

Model Output Generation Length 128 tokens

Table 5.8: Benchmark setup and hyper-parameters for the intra-node (tensor-
parallel) scaling study

Parameter Value

Tensor Parallelism 1

User Prompt Lengths” 1, 10, 20, ... , 250
Model Output Generation Length | 128 tokens

Model VRAM Occupation 67.70 GiB

VRAM left for KV-cache 29 648 tokens
Model Deployment Time 7.873756 s

Table 5.9: Run-specific configuration for the TP = 1 experiments

74

5.1. Benchmark Selection

Parameter Value
Tensor Parallelism 2
User Prompt Lengths” 1, 10, 20, ... , 250

GPUO: 33.87 GiB
GPU1: 33.87 GiB
GPUO: 278 496 tokens
GPU1: 278 496 tokens
Model Deployment Time 9.416891 s

Model Output Generation Length | 128 tokens

Model VRAM Occupation

VRAM left for KV-cache

Table 5.10: Run-specific configuration for the TP = 2 experiments

As it can be observed in Table 5.8, Meta-Llama-3.1-7T0B-Instruct was paired with
FP8 weights because this precision keeps the 70-billion-parameter model small
enough to fit on one GPU and, at the same time, lets the model be split cleanly
across two GPUs when tensor parallelism is enabled. Every request carried a
prompt of exactly 1 000 tokens, and the model was allowed to emit at most 128
tokens. Fixing these lengths removed sequence-size as a source of variation, so
throughput changes could be traced only to the level of parallelism. The bench-
mark ran twice for each traffic level: first with tensor parallelism set to 1 and
then with it set to 2. Aggregate tokens-per-second were collected in both cases.
To check whether any speed-up remained stable as load grew, the same test was
repeated automatically for 25 different concurrency points, from 1 up to 250 simul-
taneous requests. This setup held every parameter constant except the number
of GPUs that shared the model, allowing a clear view of how intra-node tensor
parallelism affected throughput, GPU memory balance and overall efficiency.

75

5.1. Benchmark Selection

Metric ID Prometheus Type | Unit
vllm:iteration tokens total Histogram Tokens
vllm:prompt tokens total Counter Tokens
vllm:generation tokens total Counter Tokens
vllm:e2e request latency seconds | Histogram Seconds
vllm:request prefill time seconds | Histogram Seconds
vllm:request decode time seconds | Histogram Seconds
vllm:gpu cache usage perc Gauge % (no unit)
vllm:num requests running Gauge Requests
process _resident memory bytes Gauge Bytes
timestamp Gauge Seconds

Table 5.11: Key Prometheus metrics used for the intra-node scaling benchmarks
(tensor parallelism 1 vs 2).

The set of metrics captured for this third benchmark family was limited to those
that directly reflect throughput, latency, and memory balance, which are the core
concerns of the intra-node study. For instance, iteration-tokens-total records every
token produced within each sampling window; dividing that figure by the window
duration yields aggregate tokens per second and makes it possible to track how
throughput changes between TP 1 and TP 2. Likewise, pairing gpu-cache-usage-
perc with process-resident-memory-bytes shows how the KV-cache is distributed
across the two GPUs and whether the second device truly relieves pressure or
merely mirrors it.

To conclude, the analysis and interpretation of these intra-node scaling-related
benchmarks can be read in Section 6.3, under the Results chapter.

76

5.2. Pipeline Orchestration

5.2 Pipeline Orchestration

Benchmark
Orchestrator
Script

Workload Generation Subsytem

—
[store
results
le—
b,
r 9 P'mm_‘“ Seripts Inference
J='the LLM alreaty. | / |/ Engine log
" deployedin the > _¥®S - LM data
Orchestrator script frastructure?” generate synthetic user responses
p workioad
I % end
v Orchetratoy
set Benchmark ne

Parameters Hardware Telemetry Collection erdware
deploy LLM mo

un o store
beachmark /Pass | Hardware Telemetry | resufts

—_
Pirameters Collection Script

scrape
metrics

analyse
endpoint

results

— i
Metric

Analysis
Visualization Scripts I—

and
Visualization

Underlying Infrastructure

VLLM API Server Endpoint: htp://0.0.0.0:8000 Prometheus Metrics Endpoint: http://0.0.0.0:8000/metrics

Deployed Large Language Mode! ‘

Figure 5.5: Pipeline Orchestration Schema

5.2.1 Purpose and Motivation

Running this project was expected to involve hundreds of experiments, each with
its own configuration and operational parameters. Additionally, each experiment
involves several subsystems working together, including model deployment, user
workload generation, telemetry capture, and results aggregation. Since each run
was anticipated to produce large and varied outputs, such as telemetry logs and
metric dumps, it was clear that without a unifying approach, coordinating these
experiments would become slow and inconsistent, as well as prone to error. Run-
ning everything manually would likely lead to misplaced files, inconsistent results,
and timing issues between subsystems. Although each part could run on its own,
without proper coordination they would not follow the same naming rules or start
and finish in sync, making the results harder to manage.

To address these challenges, the decision was made to design a system that would
act as an orchestration layer for the benchmarks. This layer was responsible for
coordinating the execution of all subsystems, ensuring that they operated in the
correct sequence and under consistent conditions. It also centralised the control

7

5.2. Pipeline Orchestration

of configuration parameters, allowing new experiments to be defined and executed
without modifying the underlying subsystem code.

The following requirements were defined for the orchestration system:

Automate the execution of all subsystems to remove the need for manual
coordination.

Maintain modularity so each subsystem could be invoked and maintained
independently.

Produce clean and consistently structured output to simplify post-processing
and analysis.

Ensure reproducibility so that experiments with identical configurations fol-
low the same execution path in the pipeline.

Include fault tolerance mechanisms to handle and recover from subsystem
failures gracefully.

5.2.2 High-Level End-to-End Flow

At a conceptual level, a single benchmarking run followed a clear and repeatable
sequence of actions. This overview focuses on the logical flow rather than the
implementation details, providing a top—down view of how the system operated
from start to finish.

1.

Environment Preparation. The orchestrator created the necessary direc-
tory structure for storing all results and logs, ensuring that each run could
be traced back to its configuration.

Model Availability Check. It verified that the chosen large language
model was active on the target infrastructure. If the model was not detected,
the orchestrator initiated a complete deployment, applying all predefined pa-
rameters that influenced the underlying environment, including the selected
open-source model and the tensor parallelism configuration chosen for that
benchmark.

Configuration Execution Loop. For each experiment configuration (for
example, a specific request count):

(a) The telemetry scraper was started to capture metrics in real time.

(b) The user workload generator was started in parallel, and was tasked
with sending synthetic user requests to the deployed large language

78

5.2. Pipeline Orchestration

model, following the specified configurations that detailed the parame-
ters such as number of concurrent users or token limits for input prompts
and model responses.

(c¢) Once the user workload completed, the telemetry scraper was stopped
to finalise metric collection.

4. Result Storage. All outputs, which included raw telemetry, processed met-
rics, and workload logs, were saved using a consistent directory structure.
This standardisation made post-processing and comparison across experi-
ments straightforward.

Observation: In practice, a single benchmark pipeline execution could in-
clude dozens of runs of the same benchmark, varying one parameter while
keeping the others fixed. This allowed the effect of that parameter to be
isolated and its influence on performance to be measured more accurately.

5. Optional Model Shutdown. After completing the scheduled benchmark,
the orchestrator decided whether to terminate the inference engine based
on its initial state. If the engine had been started by the orchestrator, it
was shut down to free resources. If it had already been running before the
benchmark began, it was left active.

Each stage of this flow was fully parameterised. Variables such as the model name,
number of requests, output length, and output directory could be adjusted at the
start of the orchestrator script, allowing the same system to adapt seamlessly to
new benchmarking scenarios.

5.2.3 Architectural Decisions

Given the system requirements outlined in Section 5.2.1, the Pipeline Orchestration
system was designed with the following architectural principles in mind:

e Separation of Concerns: The orchestration logic was kept separate from
the telemetry and workload subsystems, ensuring that these components
remained reusable and could be tested independently.

e Parameter Passing: Key parameters, such as -model, -num_requests, and
—output_length, were supplied at runtime. This decoupled subsystem logic
from benchmark-specific constants, allowing greater flexibility.

e Parallel Execution: The telemetry scraper ran concurrently with workload
generation so that metrics reflected the same time window as the processed
requests.

79

5.2. Pipeline Orchestration

e State Management: A timestamp file was used to assign a common iden-
tifier to all results from a single run, simplifying traceability.

e Idempotence: Before starting a new instance, the system verified whether
vLLM was already running, preventing unnecessary restarts.

5.2.4 Benefits of This Approach

The architectural decisions outlined above addressed the specific requirements of
the orchestration system and had direct, measurable benefits:

e Reproducibility: Each benchmark followed the same automated process,
which minimised human intervention and ensured that results could be com-
pared under identical conditions.

e Scalability: New benchmarks, models, or hardware configurations could be
added by changing parameters, without modifying the underlying code.

e Traceability: The directory structure preserved a clear mapping between
configurations and their results, making retrieval straightforward during anal-
ysis.

e Resource Awareness: Storing telemetry output directly to disk prevented
unnecessary GPU memory use, leaving more resources available for model
inference. This links to the storage strategy discussed in Section ?7?.

To summarize, this section outlined the overall design and operation of the Pipeline
Orchestration system, providing a high-level view of its role, architecture, and
benefits. The following subsections will examine the implementation of each com-
ponent in detail, explaining how the design choices described here were realised in
practice.

80

5.3. Workload Generation

5.3 Workload Generation

stored
responses
in csv files

Workload Generation
Orchesirator ——w Arguments———» Scripts T

simulated user requesis model
responses

vLLM API Server Endpoint:
hittp://0.0.0.0:5000

Inference
System

Deployed Large
Language Model

Figure 5.6: Workload Generation Sub-system Schema

5.3.1 Purpose and Role in the Benchmarking Pipeline

This section describes the workload generation subsystem, responsible for creating
and sending synthetic user requests to the inference backend. These workloads
emulated different usage patterns of users to stress the inference system under
specific conditions such as high concurrency, growing sequence length, and varying
tensor parallel configurations.

It is important to clarify that the goal of this subsystem was not to replicate the full
variability of real-world user traffic, but rather to construct controlled workloads
in which a single parameter of interest could be varied while others remain fixed.
This methodological choice allowed for isolating the effect of specific factors, such
as the number of concurrent requests, the length of the input prompt, or the
configuration of tensor parallelism, and observing their direct impact on inference
performance. In this sense, the purpose of the workload generation subsystem was
not to mimic production heterogeneity, but to generate precise and repeatable user

81

1

N

5.3. Workload Generation

input patterns that enable targeted performance investigations.

To serve this role effectively, the subsystem was designed to meet these core re-
quirements:

e Allow workloads to be fully configurable, so that key parameters can be
independently controlled and varied across experiments.

e Support automation, enabling the execution of multiple benchmarks in se-
quence without manual intervention.

e Ensure reproducibility, by making all inputs and configurations explicitly
defined and reusable for consistent reruns.

The specific strategies used to fulfill these requirements, including how workloads
are parameterized, automated, and logged, are described in the subsections that
follow.

5.3.2 Model Access and Request Handling

Once the purpose of the workload generation subsystem has been established, it
becomes essential to explain how requests were transmitted to the underlying in-
ference engine. In the benchmarking system developed for this project, the model
was hosted locally using a vLLM server, which exposed a REST API that repli-
cated the structure and behavior of OpenAl’s official API. Rather than manually
crafting low-level HTTP requests, which would involve explicitly building pay-
loads, setting headers, and parsing responses, the decision was made to integrate
the official OpenAl Python client library as the interface responsible for issuing
and handling inference requests.

from openai import OpenAl

Configure the client to target the local VvLLM server
client = OpenAI(
api_key="dummy", # vLLM does not validate this
base_url="http://localhost:8000/v1"

)

Issue a concise completion request

resp = client.completions.create(
model="RedHatAI\Meta-Llama-3.1-70B-Instruct-FP8",
prompt="Hello " % 128, # ~128-token prompt

max_tokens=64,
temperature=0.0

82

5.3. Workload Generation

5)
16

17 text = resp.choices[0].text.strip()

Listing 5.1: Example of OpenAl client pointed to the local vLLM endpoint and
used to issue a request.

The decision to use the OpenAl client in this project was deliberate and driven
by both practical and architectural considerations. At its core, the client pro-
vided a clean, standardized way to communicate with any server that followed the
OpenAl API specification. This meant that no custom networking logic needed
to be written. The only configuration required was specifying a different base
URL, which in this case pointed the client to the locally hosted vLLM server at
http://localhost:8000/v1. Since this was defined in the configuration rather
than in the code itself, the scripts worked for both local and remote deployments
without needing any modifications.

Once connected, the client’s completions.create() method was used as a high-
level interface for sending inference requests. Here, essential parameters such as
the prompt, model name, maximum token count, and temperature could be set
in a concise, readable way. This avoided low-level request construction and made
the workload generation scripts easier to read, maintain, and adapt.

Equally important was the client’s built-in validation and error handling. These
features automatically checked the integrity of responses and managed common
connection issues, removing the need to manually implement these safeguards.
From a software engineering perspective, this design choice aligned with best prac-
tices: keeping request logic modular, ensuring fault tolerance, and preserving the
ability to switch between deployment environments with minimal effort.

Overall, the use of the OpenAl client served a practical and architectural role.
It enabled standardized access to the inference server while abstracting away the
mechanics of request construction and transmission. This design choice aligned
with the broader goals of the benchmarking system, which emphasized clarity and
reusability. The resulting implementation allowed requests to be issued efficiently
and consistently, supporting a variety of workloads while remaining adaptable to
changes in infrastructure or deployment strategy.

5.3.3 Fundamental Benchmarking Unit: Single Request Flow

Figure 5.7 illustrates the end-to-end flow of a single simulated user request launched
from the workload generation subsystem. This represents the smallest executable
unit within the benchmarking process, being one request from one user, and serves

83

5.3. Workload Generation

Generate Synthetic User
Prompt

Format and send request to

_y Perform model inference
local vLLM API

—>

\

Measure latency and capture

T —» Save results for analysis

Return gererated output —»

Figure 5.7: View of the end-to-end flow for a single simulated user request

as the foundation upon which larger experiments are built. In practice, each full
benchmark consisted of hundreds of such requests executed in sequence or in par-
allel, with only one variable (for example, prompt length or number of concurrent
users) changing between runs. Presenting the single-request flow first makes it
possible to understand the fundamental mechanics before examining more com-
plex scenarios involving large-scale parameter sweeps. At this level, the process is
straightforward and fully controlled. A prompt is first defined, either manually or
programmatically depending on the benchmark configuration. The prompt is then
sent to the locally hosted vLLM server via the OpenAl client, which abstracts the
details of request construction, transmission, and response parsing.

Once the request reaches the vLLM server, it is processed by the large language
model which was previously selected and deployed into the infrastructure. Be-
hind the scenes, this involves tokenizing the input prompt, running it through
the model’s transformer layers, and using the prebuilt key—value (KV) cache to
efficiently handle attention computations for each generated token. The model
produces an output sequence, which is returned to the workload generation sub-
system. At this point, the total time taken for the request is measured and used to
calculate the latency. The generated output, together with its associated latency,
is then saved to a results file for later analysis.

These per-request results complement the hardware-level metrics collected in real
time by the metrics collection subsystem (described in Section 5.4), providing
both application-level and system-level perspectives on performance within the
same benchmark run.

5.3.4 Parameterization for Flexibility and Reproducibility

To support repeatable and configurable experimentation, the workload generation
scripts were designed to receive their configuration through command-line argu-
ments rather than hardcoded values. This choice allowed the same script to be

84

5.3. Workload Generation

reused across a wide variety of benchmark scenarios, with no need to modify its in-
ternal logic between runs. Parameters such as the number of concurrent requests,
the maximum number of output tokens, the model to be tested, and the directory
in which results were saved could all be specified externally when launching the
script.

This approach introduced several important benefits:

e Flexibility: It enabled rapid changes in workload configuration without
requiring edits to the code.

e Reproducibility: The exact conditions of a benchmark could be clearly
defined, stored, and repeated at any time.

e Modularity: The logic of how a benchmark operated was kept separate
from the specifics of a given test case.

e Reduced likelihood of error: Avoiding hardcoded parameters removed
the need for manual edits before each run, lowering the risk of inconsistency
and misconfiguration.

5.3.5 Benchmark Configuration Parameters

As recently mentioned, the configuration of each benchmark run was controlled
through a small set of command-line arguments that defined the behavior of the
workload generation script. These arguments were selected to provide direct con-
trol over the key characteristics of the benchmark, making it easy to vary important
parameters without modifying the script itself. The table below summarizes each
argument, its purpose, and an example of how it was used:

Argument Purpose Example

-num_requests | Number of concurrent re- | —num_requests 50
quests to simulate
—prompt_length | Number of tokens in the gen- | —prompt_length 8192
erated prompt
—output_length | Max tokens to generate per | —output_length 128

request
-model Name of the model to query | -model gpt2-x1
—output_dir Directory where results will | --output_dir./results/
be saved {benchmark_family_name}/

{timestamp}/{LLM_name}/
{specific_config}

85

5.3. Workload Generation

Each of these arguments controls a different aspect of the workload. For example,
increasing the number of requests turns a single-user scenario into a concurrency
stress test. Changing the output length affects the amount of work the model must
do for each input, while selecting a different model allows for comparisons across
architectures or sizes. Specifying a unique output directory for each run ensures
that results are not overwritten and remain easy to organize and trace. A it can
be observed, other parameters that had to do with the underlying deployment
strategy, such as —tensor-parallelism, were not needed for this script, bacause this
subsystem was only in charge of generating the synthetic user requests that were
sent to the infrastructure once i was already deployed. These other parameters,
were used in other stages of the automated benchmarking pipeline in order to con-
duct the deployement of the underlying model.

import argparse

def parse_args() -> argparse.Namespace:

"""Parse benchmark parameters provided by the orchestrator

at runtime."""

p = argparse.ArgumentParser(

description="Workload generation subsystem

configuration.”

)

p.add_argument(”--num_requests"”, type=int, required=True,
help="Number of concurrent requests to

simulate.”)

p.add_argument("--prompt_length”, type=int, required=True,
help="Number of tokens in the generated

prompt.")

p.add_argument("--output_length"”, type=int, default=128,
help="Max tokens to generate per request

(default: 128).")

p.add_argument (”--model", type=str,

default="gpt2-x1",
help="Model to query during inference

(default: gpt2-x1).")

p.add_argument(”--output_dir", type=str, required=True,
help="Directory where results will be

saved.")

return p.parse_args()

Listing 5.2: Parsing benchmark configuration parameters inside the workload
generation subsystem.

86

5.3. Workload Generation

Within the benchmark orchestrator, the workload generation subsystem could be
invoked directly as a standalone process by executing the command shown in
Listing 5.3. All parameters required for the run were defined at the top of the
orchestrator script, allowing the call to remain clean and free of hardcoded val-
ues. This structure meant that the same subsystem invocation could be reused
multiple times within a loop inside the orchestrator, for example to incrementally
vary the prompt length or the number of concurrent requests across successive
runs. As a result, the configuration for an entire sequence of benchmarks could
be adjusted in a single location, without modifying the subsystem’s internal code
or repeatedly editing the command itself. This design choice reflected one of the
broader architectural goals of the benchmarking framework, which was to reduce
manual intervention and allow parameter sweeps to be automated in a controlled
and repeatable manner.

#!/bin/bash
Orchestrator snippet: launches the workload generation
subsystem with parameters.

python3 workload_generation_subsystem.py \
--num_requests $NUM_REQUESTS \
--prompt_length $PROMPT_LENGTH \
--output_length $OUTPUT_LENGTH \
--model $MODEL_NAME \
--output_dir $OUTPUT_DIR

Listing 5.3: Example of the orchestrator invoking the workload generation
subsystem with parameters defined as variables.

To summarize, this parameterization was meant to make the subsystem both ex-
pressive and user-friendly, since with only a few well-defined inputs, a wide variety
of benchmark configurations can be created and executed in a consistent and con-
trolled way.

5.3.6 Structured Output and Result Logging

A key design choice in the workload generation subsystem was the use of a user-
defined output directory for storing benchmark results. By requiring the path to
be specified through the —output-dir argument, the script avoided overwriting
data from previous runs and enforced a clean separation between experiments.
Each set of responses and measurements was saved in its own dedicated folder,
making it straightforward to trace results back to the specific configuration that
produced them.

87

5.4. Hardware Telemetry Collection

The results were written in JSON Lines (JSONL) format, which was well-suited
for storing structured data in a way that was both machine-readable and line-by-
line parseable. This format facilitated efficient post-processing, especially in cases
where results from many requests needed to be filtered, aggregated, or visualized.
Keeping outputs in their own directories also simplified comparisons across runs,
since each folder could be inspected or analyzed independently without ambigu-

ity.

This structure proved especially valuable when benchmarks were launched in se-
quence through automation scripts. By assigning a unique output directory to each
configuration, results could be collected systematically without requiring manual

intervention. This organization strategy contributed directly to the reproducibility
and scalability of the overall benchmarking pipeline.

5.4 Hardware Telemetry Collection

loop until stored hardware

benchmark c N metrics in csv files in
is finished the established output
directory

Parameter Hardware Telemetry
ARS—=Y >
Orchestrator ————— capture Collection Script

scrape /metrics return real-time
endpoint every hardware metrics
0.2s
Prometheus Metrics
Endpoint:
http://0.0.0.0:8000/metrics

Inference
System

Deployed Large
Language Model

Figure 5.8: Hardware Telemetry Collection Sub-system Schema

88

5.4. Hardware Telemetry Collection

5.4.1 Purpose and Role in the Benchmarking Pipeline

The hardware telemetry collection subsystem had the purpose of capturing hardware-
level activity in real time while benchmarks were running. The need for collecting
these low-level metrics arose from the fact that this project aimed to identify the
underlying causes of inference performance, which could not be fully understood
without examining detailed traces of metrics such as GPU utilization, memory allo-
cation, and KV cache usage throughout the execution of each benchmark. Having
this information available made it possible to establish direct correlations between
changes in workload parameters and their immediate impact on the hardware,
which in turn enabled a deeper understanding of performance characteristics and
the identification of potential bottlenecks.

To serve this role effectively, the subsystem was designed to meet these core re-
quirements:

e Capture hardware metrics in real time, at high temporal resolution during
benchmark execution.

e Align data collection with workload execution windows, enabling direct cor-
relation between system-level and application-level metrics.

e Minimize monitoring overhead, so that metric collection did not introduce
measurable impact on inference performance.

e Store telemetry outputs in the same run-specific directory as the user work-
load results, allowing each benchmark’s data to be traced back to its exact
configuration.

5.4.2 Data Source and Collection Method

The hardware telemetry collection subsystem relied on the Prometheus metrics
endpoint exposed by vLLM at localhost:8000/metrics. This endpoint, built
into the vLLM serving framework, was chosen because it continuously reports
detailed hardware and model statistics through a standardized interface. Using
this built-in capability removed the need to modify the serving code and kept
monitoring completely non-intrusive.

A main reason for using this endpoint was that it provided both GPU-level and
model-level statistics in a single source. This made it straightforward to align hard-
ware activity with the exact moment a request was processed. Other tools, such as
nvidia-smi polling or NVIDIA Nsight profiling, could monitor GPU resources but
would either require elevated permissions or introduce higher monitoring overhead.

89

26

5.4. Hardware Telemetry Collection

They also lacked access to model-specific metrics like KV cache usage, which was
critical for this study.

The metrics were presented in the Prometheus exposition format, which is plain-
text and easy to parse programmatically. Each metric included descriptive names
and labels, such as GPU device indices, which were necessary for correct inter-
pretation in multi-GPU setups. To retrieve these metrics, the subsystem used the
Python requests library instead of a full Prometheus client SDK. This kept the
implementation lightweight and portable, allowing it to run in any environment
without extra dependencies.

Collection was performed at a fixed rate of 0.2 seconds, resulting in five scrapes per
second. This interval was chosen as a trade-off between temporal resolution and
overhead. It was short enough to capture spikes in GPU utilization while keeping
the impact on benchmark performance minimal.

timestamp,process_start_time_seconds,process_cpu_seconds_total,
vllm:num_requests_running,

vlilm:num_requests_waiting,
vllm:gpu_cache_usage_perc{device="0"},
vllm:gpu_cache_usage_perc{device="1"},
vllm:gpu_prefix_cache_queries_total,
vllm:gpu_prefix_cache_queries_created,
vllm:gpu_prefix_cache_hits_total,
vllm:gpu_prefix_cache_hits_created,
vlilm:num_preemptions_total,
vllm:num_preemptions_created,
vlilm:prompt_tokens_total,vllm:prompt_tokens_created,
vllm:generation_tokens_total ,vllm:generation_tokens_created,
vllm:request_success_total ,vllm:request_success_created,
vllm:iteration_tokens_total,request_params_max_tokens,
vlilm:time_to_first_token_seconds,
vlilm:time_per_output_token_seconds,
vllm:e2e_request_latency_seconds,

vlilm: request_queue_time_seconds,
vllm:request_prefill_time_seconds,
vllm:request_decode_time_seconds,
vllm:request_inference_time_seconds,
vllm:cache_config_info,http_requests_total

#For each benchmark run, the telemetry subsystem records more
than 300 unique metrics at ©0.2-second intervals. This
listing only shows a representative subset.

0.0, 1.754207399e+09, 0.00, 0, 0, 0.0, 0.0, 0,

90

30

39

5.4. Hardware Telemetry Collection

0, 0, 0, o0, 0, 0, 0, 0, 0, 0,
0, 0, 512, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0, 0

0.2, 1.754207399e+09, 0.15, 50, 5, 15.3, 14.7, 100,
100, 95, 95, 0, 0, 6400, 6400, 0, 0,
50, 50, 6400, 512, 0.062, 0.002, 0.064, 0.002, 0.040,
0.022, 0.062, 0.062, 0, 50

0.4, 1.754207399e+09, 0.31, 50, 5, 20.4, 19.9, 200,
100, 185, 90, 0, 0, 12800, 6400, 0, 0,

100, 50, 12800, 512, 0.063, 0.002, 0.064, 0.002, 0.040,
0.022, 0.062, 0.062, 0, 100

0.6, 1.754207399e+09, 0.48, 50, 5, 25.6, 25.1, 300,
100, 270, 85, 0, 0, 19200, 6400, 0, 0,
150, 50, 19200, 512, 0.064, 0.002, 0.065, 0.002, 0.041
0.022, 0.062, 0.062, 0, 150

0.8, 1.754207399e+09, 0.64, 50, 5, 30.7, 30.2, 400,
100, 360, 90, 0, 0, 25600, 6400, 0, 0,
200, 50, 25600, 512, 0.065, 0.002, 0.066, 0.002, 0.041
0.023, 0.063, 0.063, 0, 200

1.0, 1.754207399e+09, 0.80, 50, 5, 35.8, 35.4, 500,
100, 450, 90, 0, 0, 32000, 6400, 0, 0,
250, 50, 32000, 512, 0.065, 0.002, 0.066, 0.002, 0.041,
0.023, 0.063, 0.063, 0, 250

1.2, 1.754207399e+09, 0.96, 50, 5, 40.3, 39.8, 600,
100, 545, 95, 0, 0, 38400, 6400, 0, 0,
300, 50, 38400, 512, 0.066, 0.002, 0.067, 0.002, 0.041,
0.023, 0.063, 0.063, 0, 300

)

)

4.8, 1.754207399e+09, 3.86, 50, 5, 99.8, 99.2, 2400,
100, 2190, 90, 0, ©0,122880, 6400, 51200, 6400,
1200, 50, 128000, 512, 0.075, 0.003, 0.076, 0.003, 0.046,
0.027, 0.070, 0.070, 0, 1200

5.0, 1.754207399e+09, 4.02, 50, 5, 100.0, 99.8, 2500,
100, 2280, 90, 0, 0,128000, 6400, 56320, 6400,
1250, 50, 134400, 512, 0.076, 0.003, 0.077, 0.003, 0.047,
0.027, 0.070, 0.070, 0, 1250

Listing 5.4: Example slice of the metrics.csv generated for one benchmark run;

actual files include hundreds of metrics and span the entire run duration.

91

5.4. Hardware Telemetry Collection

5.4.3 Metric Parsing and Storage

Once the raw metrics were retrieved from the Prometheus endpoint, they needed
to be parsed and stored in a format that would be both complete and easy to
work with during analysis. Each metric line from the endpoint included a name,
an optional set of labels enclosed in braces, and its value. The parsing logic was
designed to keep the metric name and its label set together as a single unique
identifier, since separating them could lead to ambiguity when different devices or
instances reported the same metric name. To achieve this, a regular expression was
used to capture the entire metric name together with its labels before assigning the
corresponding numeric value. This ensured that the column naming in the stored
dataset remained unambiguous and traceable to the exact metric source.

The final output format for each benchmark run was a CSV file in which the first
column recorded the elapsed time in seconds since the start of the run, and each
subsequent column corresponded to one of the collected metrics. This choice was
made because CSV is both human-readable and well supported by common data
analysis tools such as Pandas for Python, which was later used to filter, aggregate,
and visualize results. By storing the data in this way, the subsystem ensured that
post-processing could be done efficiently without additional conversion steps, and
most importantly, that the relationship between workload behavior and hardware
state could be easily explored during analysis.

import re

Regex to capture full metric name (with labels) and its value
_metric_re = re.compile(

r'*(La-zA-Z_:1[a-zA-Z20-9_:1%)"' # Metric name

r' (\{L*"3}1*\})?' # Optional label

set

r'\s+([-+1?2\d*\.?2\d+(?:[eE]J[-+]1?\d+)?)$' # Metric value
)
def parse_metrics(text):

"""Return dict: 'metric_name{labels}' -> float(value)"""

metrics = {}

for line in text.splitlines():
if not line or line.startswith("#"):

continue
m = _metric_re.match(line)
if m:
name, labels, val = m.groups()
metrics[name + (labels or "")] = float(val)

92

5.4. Hardware Telemetry Collection

return metrics

Build complete header from all keys observed during run
all_keys = []
for _, m in records:
for key in m:
if key not in all_keys:
all_keys.append(key)

writer.writerow(["timestamp”] + all_keys)

Listing 5.5: Parsing Prometheus metrics and dynamically constructing a union
header to capture intermittent metrics.

During the implementation of the telemetry subsystem, an issue appeared when
parsing certain metrics from the Prometheus endpoint. Some of these metrics
were only exposed intermittently, depending on the execution stage or the GPU’s
internal state. If the CSV header was defined in advance, any metric that did not
appear in the first scrape would be omitted entirely from the output. This meant
that valuable data could be lost, and runs could not be compared reliably because
each CSV file might have a different column structure.

To prevent this, the decision was made to adopt a dynamic “union header” ap-
proach. Instead of fixing the CSV header before collection, the header was built
from the union of all metric keys encountered during the run, which ensured that
even metrics appearing only once were also included in the final dataset. Addi-
tionally, this approach kept the structure consistent across benchmarks.

Lastly, all collected metrics were stored locally on the cluster’s file system rather
than being sent to a cloud service. This was an intentional architectural decision
based on the nature of the benchmarking environment. The compute nodes op-
erated within a controlled network segment where outbound internet access was
not always guaranteed. In such settings, relying on a remote storage service would
introduce uncertainty and additional points of failure. Keeping storage local re-
moved any dependency on external connectivity and aligned with common High
Performance Computing (HPC) practices, where network-isolated workloads are
preferred for both security and reproducibility.

A potential concern with saving metrics locally is whether or not it would take up
memory needed for later benchmarks. In practice, this was not an issue because
the metrics were written straight to the node’s disk, not stored in GPU memory.
This meant that all GPU VRAM remained available for inference, with no loss
of capacity or performance. As a result, collecting and storing telemetry had no

93

5.4. Hardware Telemetry Collection

effect on throughput or latency in any benchmark run.

5.4.4 Output Organization

The hardware telemetry collected during a benchmark run was stored in the same
run-specific output directory as the corresponding workload results. This design
ensured that both application-level outputs, such as latency and throughput mea-
surements, and hardware-level traces, such as GPU utilization and memory usage,
were co-located in a single, self-contained folder. As a result, there was no need
to cross-reference separate storage locations or rely on external mapping files to
match telemetry data with its corresponding workload execution.

Placing the telemetry alongside the workload results also guaranteed a strict one-
to-one correspondence between the two datasets. Every set of hardware metrics
was inherently tied to a specific benchmark configuration and execution window,
eliminating the risk of mismatched or misaligned data during analysis. This ap-
proach was especially important when running multiple benchmarks in sequence,
as it prevented any accidental overwriting or mixing of results from different ex-
periments.

This output structure had further benefits for reproducibility and post-run analy-
sis. Since each run’s data was fully encapsulated in its own directory, any bench-
mark could be revisited, re-analyzed, or shared without requiring additional con-
text. The stored metrics could be examined in isolation or compared directly with
other runs simply by inspecting their respective folders, making the organization
both intuitive and scalable for large benchmarking campaigns.

5.4.5 Architectural Choices and Implications

This subsystem was built with a few clear architectural principles in mind. First, it
was designed to work regardless of whether the benchmark was single-node, multi-
node, or even running on a different serving backend. As long as a Prometheus
endpoint was available, the scraper could capture metrics in real time. This effec-
tively decoupled the telemetry subsystem from the model serving logic, making it
reusable across a wide range of setups without modification.

Another key design choice was to avoid hardcoding output locations inside the
telemetry subsystem. Instead, all storage paths were passed in as parameters from
the benchmark orchestrator at runtime. This meant that the orchestrator could
decide where results should be stored, keeping the telemetry logic clean and focused
solely on data collection. It also ensured that both the telemetry subsystem and the
workload generation subsystem could store their outputs in the same run-specific

94

5.5. Metric Analysis and Visualization Subsytem

directory. This made it easy to keep workload data and hardware telemetry side
by side, which simplified later correlation and analysis.

By following these patterns, the subsystem remained portable, easy to integrate,
and consistent in its behavior across different benchmarks. It could be triggered
automatically by the orchestrator for any configuration, while still remaining a
standalone tool that could be reused in other benchmarking workflows.

5.5 Metric Analysis and Visualization Subsytem

5.5.1 Purpose and Role in the Benchmarking Pipeline

The purpose of this last subsystem was to convert the raw, real-time data collected
during the execution of the experiments into a format that was intuitive to interpret
and from which conclusions could be drawn. While the specific metrics plotted
varied according to the objectives of each benchmark, the underlying analysis and
visualization framework remained unchanged.

This subsystem was designed to be flexible in how it integrated with the bench-
marking pipeline. It could operate in two distinct modes:

1. Automated mode. If the orchestrator provided the path to the output
directory where all results had been stored, the subsystem could retrieve
the corresponding data files, process them, apply filtering, and generate the
designated graphs automatically, storing them back in the same directory.

2. Decoupled mode. The subsystem could be run independently of the bench-
marking pipeline to manually create new graphs or explore various metrics in
a more case-specific manner, without being constrained by the automation
layer.

95

5.5. Metric Analysis and Visualization Subsytem

Results Directory Lookup —» Data Ingestion —» Schema Normalization
|
\]
Metrics Selection —> Filtering —» Visualizations Generation
|
\]

Visualizations Storing

Figure 5.9: View of the end-to-end flow for the Metrics Analysis and Visualization
subsystem.

5.5.2 Input Data Preparation

As already detailed in Section 5.4, every experiment in the benchmarking pipeline
ultimately produced a standardized CSV log containing the complete set of met-
rics scraped during execution, regardless of the model, hardware configuration, or
workload parameters involved. This was the result of a deliberate design choice
to ensure that downstream analysis could be performed without having to ac-
count for differences in data format or metric availability between runs. The first
responsibility of this subsystem was therefore to locate the correct results direc-
tory for the experiment and load the corresponding CSV into memory, ensuring
that no relevant data source was overlooked. From there, the dataset was cleaned
and normalized into a state suitable for analysis, which involved verifying consis-
tent timestamp formats across all entries, preserving metric labels so that filtering
could later be performed with precision, or simplifying column names when this
improved readability without losing information. This preparation step was essen-
tial, as it transformed the raw output of the execution stage into a structured and
coherent dataset that could serve as the foundation for every subsequent decision
in the analysis process.

5.5.3 Metric Selection and Filtering

With the dataset prepared, the next task was to determine which signals would
actually be examined, a decision that was guided by the specific objectives of the
benchmark at hand. To maintain flexibility and reusability, metrics were identi-
fied dynamically through pattern matching in their names (for instance, locating
any metric containing time_to_first_token_seconds or gpu_cache_usage_perc)
rather than by relying on fixed column names tied to a specific run. This meant

96

5.5. Metric Analysis and Visualization Subsytem

that the same analysis code could be applied across very different scenarios without
modification, even when the underlying models or workloads changed.

Once identified, these metrics were filtered to isolate only the relevant ones, which
varied depending on the questions the benchmark was intended to answer, as de-
tailed in Subsection 5.1. For example, in the case of latency-oriented studies,
the metrics that resulted most important were those focused on TTFT, time per
output token, and queue times. On the other hand, throughput studies priori-
tized token generation rates and concurrent request counts, and resource usage
investigations emphasized GPU memory, KV-cache utilization, and other similar
indicators.

5.5.4 Visualization and Output Storage

The final stage in this subsystem was concerned with translating the curated met-
rics into visual outputs, such a plots, histograms, dual-axis overlays, and others.
The objective was that the metrics could be interpreted at a glance without the
reader needing to read through large numeric tables. While the choice of spe-
cific plots was dictated by the focus of the benchmark, the visualization patterns
themselves were intentionally kept consistent across experiments to support com-
parability.

Once generated, all visualizations were stored back into the same results directory
alongside the processed datasets, keeping each run’s artifacts self-contained and
easy to revisit. This completed a design loop in which the data flowed from raw
collection, through preparation and selection, into a form that directly answered
the benchmark’s original questions.

5.5.5 Abstraction Benefits

The analysis layer was intentionally designed to operate independently from the
telemetry collection subsystem. This separation was a choice, and it allowed the
analysis logic to remain agnostic to the origin, structure, or context of the metrics
it processed. By avoiding any hard link between the two stages, it became possible
to reuse the same analysis framework across very different experimental conditions
without much modification.

This decision resulted in the following benefits:

e Broad applicability: The system could work with metrics from any type
of benchmark, regardless of whether it focused on latency, throughput, or
resource utilization, since the underlying analysis logic did not assume a fixed
set of inputs.

97

5.5. Metric Analysis and Visualization Subsytem

e Backend flexibility: It could accommodate different serving backends, pro-
vided they exposed Prometheus-compatible endpoints, making it possible to
integrate new models or infrastructures without changes to the analysis code.

e Instant adaptability: New metrics could be incorporated immediately into
the analysis simply by matching their names, removing the need to rewrite
parsing routines whenever an experiment introduced new telemetry signals.

In summary, the Metrics Analysis and Visualization subsystem converted the col-
lected telemetry into readable plots and statistics, with an approach that stayed
consistent across benchmarks while allowing straightforward adaptations to adjust
to different experimental setups.

98

Chapter 6

Analysis and Interpretation of
Results

In the following chapter, the results produced by the benchmark suite, executed
after the system described in Chapter 5 had been implemented, are examined in
detail and their performance implications are discussed.

Just like presented in Section 4.1, the accelerating volume of generative-Al traffic
is placing unprecedented pressure on existing data-centre infrastructures. Because
meeting that demand requires clusters of state-of-the-art GPUs whose acquisition
and operation entail multibillion-dollar spendings, maximising the utilisation of
memory and compute resources has become imperative. This project tackles that
challenge by running a comprehensive benchmark suite that stresses LLM inference
and measures how memory pressure, workload size, and cluster scale together
constrain throughput and latency.

6.1 Analysis of Concurrency-Driven Performance
Scaling

6.1.1 Analysis of GPU-Memory Saturation Across Concur-
rency Levels

In this first benchmark, the analysis focused on how increasing the number of con-

current user requests affected GPU memory utilization, thereby laying the ground-

work for the later experiments that linked memory pressure to the throughput and
latency experienced by users, which is largely driven by KV-cache contention and

99

6.1. Analysis of Concurrency-Driven Performance Scaling

scheduling overhead.

The goal was to perform a controlled stress test of the GPU memory and determine
how many simultaneous requests it could sustain before saturation occurred. In
order to achieve that, the benchmark gradually raised the concurrency level while
recording the occupancy of the KV cache and the overall device-memory footprint
at each step.

The initial model deployed was GPT-2-XL, which contained 1.5 billion parame-
ters. It was hosted on a single node equipped with one H100 GPU offering 93.6
GiB of available memory. A single-node setup was chosen deliberately to elimi-
nate inter-node latency and other distributed factors that might have distorted the
measurements. By limiting the deployment to a single accelerator, the total mem-
ory pool was also constrained, which in turn reduced the number of concurrent
requests required to reach saturation.

GPT-2-XL model: 1.5 Billion parameters

Peak KV-cache utilisation vs. concurrent user requests

1.0 | ===-Saturation (100 %) FE s s - s - s === s s e s s e s s s == == ==

0.8 4

0.6

0.4

Max KV-cache usage (%)

0.2

0.0

T T T
0 200 400 600 800 1000 1200
Concurrent requests

Figure 6.1: GPU KV-cache saturation curve for GPT-2-XL with increasing user
requests

As shown in Figure 6.1, GPU-memory utilisation rose almost linearly as the num-
ber of concurrent requests increased from 1 to 1 000. At about 400 simultaneous
requests the footprint reached roughly 40% of the H100’s 93.6 GiB capacity. When
concurrency hit 600, utilisation climbed to 60%, corresponding to 56.16 GiB of oc-
cupied memory. The trend continued until the cache neared saturation around

100

6.1. Analysis of Concurrency-Driven Performance Scaling

1,000 requests.

This proportional growth can be attributed to the fact that each prompt contained
approximately 128 tokens and the model’s maximum output length was capped at
512 tokens. Because both lengths remained constant, every request occupied an
identical slice of the key—value cache. Increasing concurrency therefore meant that
the GPU accumulated additional slices of equal size, which pushed the memory
counter upward in a nearly straight line. The observation confirmed the expected
behaviour that, with a steady token budget, KV-cache consumption scales linearly
with the number of active requests.

Another observation drawn from Figure 6.1 was that memory utilisation grew lin-
early only until full saturation was reached, that is, until 100% of the available
memory was consumed. For this 1.5-billion-parameter model running on a single
H100 GPU, the safe operating range lay between 1 and roughly 1,000 concurrent
requests. Beyond that level, additional requests saturated the memory. Further-
more, if users at a given concurrency increased prompt length, requested longer
responses, or expanded the context window, the cache would have reached 100%
utilisation even sooner.

These results revealed that the number of user requests processed concurrently
had a direct impact on GPU-memory utilisation. Because GPU memory is finite,
identifying the saturation point is essential for designing a batching policy that
stays within the safe operating zone.

101

6.1. Analysis of Concurrency-Driven Performance Scaling

Deepseek-1lm-7b-chat model: 7 Billion parameters

Peak KV-cache utilisation vs. concurrent user requests

1.0 | ===-Saturatiom (100 %) FE s s - s s s == e s e e s e e s s R === = s = =

0.8

0.6

0.4

Max KV-cache usage (%)

0.2 4

0.0

T T T T T T
0 100 200 300 400 500 600
Concurrent requests

Figure 6.2: GPU KV-cache saturation curve for DeepSeek-LLM-7B with increasing
user requests

This benchmark also meant to analyse how the choice of model and its parameter
scale, including both the count and dimensionality, affected the number of con-
current requests the system could handle. To illustrate this effect, a second open-
source model, DeepSeek-LLM-7B-Chat, was deployed with the same hardware
configuration described earlier. DeepSeek contained about 7 billion parameters,
whereas GPT-2-XL carried only 1.5 billion. Larger models typically incorporate
more layers and wider embedding dimensions to improve reasoning capability, but
this expanded architecture also increases the memory required to store a single
token. The relationship among these factors can be derived from the formula
presented and discussed in Section 3.5.1.

Total size of KV Cache (in bytes) :

20t Nayers Ttheads dhead P, a

The number of transformer layers in the model, niayers, as well as the attention
heads per layer, npeags, and the vector dimension of each of those heads, dyeaq, are
all dependent on the particular model that is deployed.

In Figure 6.2, it was proved how Deepsek-LLM-7B-chat, with a larger count for
all transformer-related specifications, achieved a larger use of KV cache memory

102

6.1. Analysis of Concurrency-Driven Performance Scaling

usage than GPT2-XL, for the same number of concurrent requests. For example,
for a number of 200 concurrent user requests, the GPT2-XL had to occupy 20% of
the total memory, while Deepsek-LLM-7B-chat’s memory usage mounted to more
than 40% of the total available GPU memory.

This benchmark also revealed the precise load at which the DeepSeek-LLM-7B-
chat model exhausts the available KV-cache: saturation was observed once concur-
rency reached roughly 500 simultaneous requests, with the cache already at 90%
utilisation near 400. For this 7 billion parameter model, memory rather than com-
pute becomes the dominant bottleneck once concurrency crosses the 500-request
threshold. If user prompt length and model result length had to remain untouched,
other practical options of reducing KV witching the KV cache to lower-precision
formats such as FP8 (8-bit floating point) or BF16 (16-bit bfloat), which cut the
cache footprint by 4x and 2x respectively, or distributing the model over addi-
tional GPUs so the cache can be sharded. These momory optimiation techniques
are discussed in detail in Section 3.5.2.

Qwenl.5-14B-Chat model: 14 Billion parameters

Peak KV-cache utilisation vs. concurrent user requests

1.0 ===-Saturation (100) F o s s s s s s s s s e s e e e e s s e s = R T = R T ==

o o o
+u =] [=+]
| | |

Max KV-cache usage (%)

o
8]
|

0.0 T T T T T T T
0 25 50 75 100 125 150

Concurrent requests

Figure 6.3: GPU KV-cache saturation curve for Qwen1.5-14B-Chat with increasing
user requests

A third model, Qwen-1.5-14B-Chat, with approximately 14 billion parameters,
was also deployed so that the earlier findings could be validated on a substan-
tially larger architecture and the conclusions strengthened. Examining a network
roughly twice the size of DeepSeek-LLM-7B and four times larger than GPT-2-XL

103

6.1. Analysis of Concurrency-Driven Performance Scaling

made it possible to verify whether the link between model capacity and KV-cache
pressure remained consistent.

The curve in Figure 6.3 climbs rapidly and shows that the cache reaches full utilisa-
tion at about one hundred twenty-five concurrent requests. This saturation point
arrives much sooner than the thresholds recorded for the other two models. Com-
pared with GPT-2-XL, which saturated at about 1,000 requests, Qwen-1.5 reached
its limit at roughly 130 requests, leaving a gap of 870 requests. A similarly wide
difference appeared when set against DeepSeek-LLM-7B, whose memory ceiling
hit around 500 requests, so Qwen-1.5 saturated nearly 370 requests earlier.

In summary, the results from this benchmark, together with the state of the art
previously discussed, lead to the following findings:

e What does higher concurrency do to the underlying infrastructure?

If all other factors are held fixed, raising concurrency steadily increases GPU
memory pressure. With a fixed prompt and output budget, each request
occupies the same slice of the KV cache, so total usage grows almost linearly
with the number of active requests until the GPU memory approaches its
limit. These results provide a clear picture of what is the safe operating
window for each large language model, and when the memory saturation can
be expected.

e What model characteristics define the KV-cache memory ceiling?

The key idea is that the memory added by each token is governed by the
model’s attention geometry, not by the raw parameter count. Each trans-
former layer stores a fresh set of keys and values for the new token, so adding
layers increases the per-token footprint. Within each layer, what matters is
how many distinct KV sets exist and how wide they are. For example, more
attention heads or a larger head dimension means more bytes per token,
while choosing a lower-precision cache such as FP8 or BF16 can reduce that
cost.

Another practical constraint also shapes where the ceiling appears. When a
model is deployed, its weights and runtime buffers must be loaded into GPU
memory, and only the remaining headroom is available for the KV cache. A
larger model therefore tends to leave less free memory even if the per-token
KV size is the same, which lowers the admissible concurrency on a fixed
device.

However, it is a common misconception that the ceiling depends mainly on
total parameter count. Two models with the same number of parameters can

104

6.1. Analysis of Concurrency-Driven Performance Scaling

have noticeably different concurrency limits, because components like feed-
forward width, embedding size, and vocabulary size can inflate parameter
count without changing the KV stored per token. What moves the ceiling
is the attention-side design. For example, in multi-query attention all query
heads share a single KV set per layer, and in grouped-query attention heads
share KV in small groups. Both reduce the number of stored KV sets and
push the ceiling to higher concurrency.

o Why should operators care about the KV cache saturation point?

In production, GPUs are billed by time and not by requests. When the
cache is full, the system cannot admit more concurrent work even if compute
pipelines still have room. This leaves compute capacity idle while the clock
keeps running. The direct result is fewer tokens delivered per GPU hour,
which raises the cost per token.

For example, if a service delivers more tokens per second in the safe region
and fewer tokens per second near the memory ceiling, the dollars per million
tokens increase in proportion to that drop. This means that hitting a daily
token target requires more GPUs, which raises spend and lowers margin. It
also means that shared fleets become less cost efficient when one workload
pushes devices into the memory bound regime. This first benchmark was
meant to show where this efficiency break happens for each model, which is
the point where cost starts drifting upward.

AS

6.1.2 Analysis of Queue Formation Triggered by KV-Cache
Ceiling

The previous benchmark established how concurrency alone drove GPU-memory
pressure. However, memory percentages by themselves only indicate capacity,
but they do not reveal anything about how new traffic is handled when capacity
tightens. Therefore, this next section will address a simple question that matters
in practice: How does approaching memory capacity change the system’s ability
to process new user requests?

To answer this, results from several models were examined side by side. The analy-
sis followed four time series, namely running requests, waiting requests, cumulative
completions, and KV-cache usage, to track how admission and progress changed
as memory filled. The findings from each graph are discussed below.

105

6.1. Analysis of Concurrency-Driven Performance Scaling

Completed requests)

Completions & Queue Growth vs KV-Cache — GPT-2-XL, 1,200 Waiting requests
Running requests
1200 - KV-cache usage (%)

1000 -

800 -

600 -

Requests (count)

400 -

200 -

0 10 20 30 2 50
Timestamp (s)

Figure 6.4: Admission, Queueing, and Memory Pressure. GPT-2-XL (1,200 con-
current user requests)

Figure 6.4 depicted the joint evolution of four time series under a burst of 1,200
requests, that the model GPT2-XL model had to process. The level of 1,200 con-
current user requests was selected for this figure because the previous benchmark
(Figure 6.1) showed that it drove the KV cache to full utilisation. This made
it possible to observe how the system handled both newly arriving and already
running requests as capacity tightened.

As it can be observed in this first figure, most of the 1,200 requests arrived almost
at once. The reason why the server admitted a very large fraction immediately
was because, during prefill, each request only carried its prompt tokens and the
per-request KV slice was small. This explained why the running curve rose to
nearly one thousand within the first seconds while the waiting curve remained at
zero. In parallel, the KV-cache percentage climbed smoothly because every active
request was adding keys and values as tokens were embedded.

As decoding proceeded, each active request kept accumulating tokens, which in-
creased the KV footprint per request. With a fixed memory pool, the system could
not keep as many sequences active as during prefill. Therefore, the scheduler re-
duced the effective active set over time. On the plot this appeared as a gradual
decline in the running curve from roughly one thousand toward the mid-hundreds.
Additionally, cumulative completions grew steadily, which matched the expecta-
tion for fixed or capped outputs that finished at slightly different times.

A clear change in regime appeared when KV-cache usage first reached saturation,

106

6.1. Analysis of Concurrency-Driven Performance Scaling

since from that point the queue became visible. The waiting curve rose because
additional requests could not be admitted without exceeding the KV pool. The
running curve settled into a plateau that reflected how many sequences could fit
in memory at that moment given their current token counts, called the capacity
knee, in which more offered concurrency no longer translated into more active
work.

Overall, this behavior was consistent with a KV cache-bound system under fixed
token budgets. Early in the run, small per-request footprints allowed many se-
quences to run in parallel. As output tokens accumulated, per-request memory
grew and the active set had to shrink. Queueing appeared only when the cache
was effectively full, which indicated that memory, rather than compute, was the
practical limiter of how much concurrent work this replica could sustain.

. Completed requests)
Completions & Queue Growth vs KV-Cache — Deepseek-7b-chat, 600 Waiting requests
Running requests
600 - KV-cache usage (%)

Requests (count)
w [
o o
S =)

[¥]
=1
o

100 -

0 5 10 15 20 25 30 35

Timestamp (s)
Figure 6.5: Admission, Queueing, and Memory Pressure. Deepseek-7B (600 con-
current user requests)

The same experiment was repeated for the Deepseek model in order to see how the
dynamics changed across models. Figure 6.5 showed the four traces again: running
requests, waiting requests, cumulative completions, and KV-cache usage.

In this model, saturation arrived much earlier and it lasted longer. Deepseek
reached the KV ceiling in the low-teens seconds and then stayed pinned near
100% for many seconds. By contrast, GPT2-XL in the earlier plot approached
the ceiling later and only briefly. The most direct explanation was the per-token
KV size. Deepseek-7TB’s attention geometry, with more depth and wider heads

107

6.1. Analysis of Concurrency-Driven Performance Scaling

than GPT-2-XL, implied a larger KV footprint per token, which meant that fewer
simultaneous sequences could fit before memory ran out.

A visible queue also formed mid-run. For GPT-2-XL, the queue appeared only late,
while for Deepseek it rose sooner and persisted while the KV cache was pinned.
However, the reason behind the formation of the queue remained the same for
both models: Once the cache was full, either new arrivals or preempted sequences
had to wait until enough blocks were freed.

Another main difference between the GPT2-XL model and the Deepseek model
is that the running series plateaued lower. Deepseek stabilized around roughly
460 running sequences, whereas GPT-2-XL sustained close to one thousand early
in the run. This was again consistent with a larger KV footprint per request in
Deepseek. The engine capped the active set earlier in order to stay within the
same H100 memory budget. Additionally, the completions curve for Deepseek
climbed more slowly during the pinned period and then finished in a sharper wave
as memory was released. GPT-2-XL showed a steadier accumulation. This pattern
fit a scenario in which KV pressure and preemption delayed some decodes, so more
of them completed together once headroom returned.

In short, the Deepseek figure exhibited the expected shape for a KV-bound run
with a larger per-token memory footprint: an early admission surge during prefill,
an early and sustained period at full KV usage, visible waiting while memory
was tight, and a fast drain when many generations completed and freed blocks.
The differences relative to GPT-2-XL can be attributed directly to the models’
attention geometries and the resulting KV sizes.

The third model evaluated with this benchmark was Qwenl1.5-14B-Chat, and its
results are presented in Figure 6.6. In the case of this third model, the KV-cache
filled much earlier and from a much smaller offered load. This can be proved
by comparing the steepness of the KV-cache usage curve, which, with only 160
concurrent requests, climbed almost linearly and hit 100% around 16-17 s, then
stayed pinned until 23-24 s. The reason for this steep rise in GPU memory
utilization is that Qwen-14B’s attention geometry allocated more bytes per token
than the 1.5 B and 7 B models, so the same number of simultaneous requests
consumed memory faster and left less headroom.

Even with a rapidly growing memory utilization, the system still admitted all 160
requests immediately, as the yellow running line jumped straight to 160 at the start
and remained there for many seconds. Nonetheless, as decoding progressed, each
request’s KV slice grew, so the fixed memory pool could no longer support all 160
at once and the running line started to step down while KV stayed saturated.

108

6.1. Analysis of Concurrency-Driven Performance Scaling

Completed requests)

Completions & Queue Growth vs KV-Cache — Qwen1.5-14B-Chat, 160 Waiting requests
Running requests
160 - KV-cache usage (%)

140 -

120 -

100 -

80 -

Requests (count)

60 -
40 -
20-

0- i i i " i i '
0 5 10 15 20 25 30
Timestamp (s)

Figure 6.6: Admission, Queueing, and Memory Pressure. Qwenl.5-14B-Chat (160
concurrent user requests)

The most distinct trait between the results for Qwenl.5-14B and the previous
models was how no requests were completely finished until the very end of the
run, at about 22 s in. Instead, requests progressed slowly while the cache was
saturated and then finished close together once the first wave completed and freed
blocks. GPT-2-XL showed a steadier accumulation of completions, while Deepseek
sat in between, with some mid-run completions but still a late surge. The Qwen
shape is what one expects when memory is binding for most of the run and the
scheduler must ration active decoding.

Taken together, the Qwen plot is the “most memory-bound” of the three. The un-
derlying reason was the larger KV bytes per token implied by Qwen-14B’s attention
geometry. With fixed token budgets and identical hardware, that larger per-token
footprint makes concurrency translate into memory pressure faster, which in turn
changes the dynamics of running, waiting, and completion compared with GPT-
2-XL and Deepseek-7B.

109

6.1. Analysis of Concurrency-Driven Performance Scaling

. Completed requests)
Completions & Queue Growth vs KV-Cache — Falcon-40B-Chat, 160 Waiting requests
Running requests
160 - KV-cache usage (%)

140 -

120 -

100 -

80 -

Requests (count)

60 -
40 -
20-

0- v ' 0 0 i
0 5 10 15 20
Timestamp (s)

Figure 6.7: Admission, Queueing, and Memory Pressure. Falcon-40B (160 concur-
rent user requests)

This final experiment was also conducted with a fourth model, Falcon-40B. Be-
cause Falcon had the largest parameter count, the initial expectation was to see
a stronger version of the previous runs, since loading more weights leaves less
headroom for KV and a larger model might increase the memory cost per token.
However, Figure 6.7 showed a different outcome and invited a closer look.

First, no visible queue appeared at any time, since the green waiting series stayed at
zero while all 160 requests completed. This contrasted with GPT-2-XL, DeepSeek-
7B, and Qwen-14B, where a queue emerged once the KV cache reached 100%. The
most direct explanation was that Falcon never drove the KV cache to its ceiling
under this load, so admission control did not need to hold new work back.

Two architectural facts explained why KV usage remained below saturation. Falcon-
40B used multi-query attention, where all query heads in a layer shared a single
KV set. In standard multi-head attention each head keeps its own KV, which
makes the per-token KV bytes grow with the number of heads. With multi-query
attention the model kept one KV per layer instead of one per head, which reduced
the per-token KV footprint. As a result, even though the model was larger in total
parameters, the part that governs KV growth per token was lighter. With fewer
bytes per token, the same 160 in-flight requests consumed less GPU memory, so
the cache did not fill.

The running series also followed a different shape. It jumped to nearly all 160 at
the beginning because prefill could embed many prompts in parallel while their KV

110

6.1. Analysis of Concurrency-Driven Performance Scaling

slices were still small. It then declined to a stable plateau as decoding progressed,
since each active request accumulated tokens and its KV grew. vLLM’s chunked
prefill and scheduler kept only as many sequences decoding as comfortably fit in
memory, which maintained a steady band of running requests. Because KV usage
stayed below the ceiling, admission did not block, and the waiting series remained
at zero while the active set was managed internally by the scheduler.

Another interesting insight is how completions accumulated smoothly from start
to finish. The blue curve rose almost monotonically to 160, without the mid-run
stall observed when other models sat at 100% KV usage. This behavior fit the
picture above, since there was no admission backlog and the decode set stayed
stable.

To summarize, Falcon-40B behaved differently because its per-token KV cost was
lower and the scheduler kept decode concurrency within that lighter budget. The
run was not KV-cache-bound at 160 offered requests, which produced no queue,
sub-saturation KV usage, a shrinking running set after prefill, and a steady march
of completions. This reinforced that KV geometry, rather than parameter count
alone, determined whether a given workload would reach the memory ceiling.

With the results in view, the analysis can be distilled into a small set of insights
that matter in practice, outlined below:

e How does approaching memory capacity change the system’s ability to process
new user requests?

The figures presented in this subsection showed a simple pattern that matters
in practice. While KV usage was low, new traffic was admitted immediately,
running stayed high, and waiting stayed at zero. As decoding progressed,
each request grew its KV slice, which meant the active set had to shrink
even if more users arrived. Near the top of the KV scale the system stopped
turning offered load into active work, running flattened, waiting appeared,
and completions started to bunch when memory was freed. In other words,
once memory was tight, adding more concurrency did not produce more
useful work. This naturally leads to the next question, which is how to
choose a model that avoids hitting this knee at the system’s target SLOs.

e How should a model be selected for a given SLO when two options have
similar parameter counts but different per-token KV footprints?

The comparison across models made the choice clear. What mattered for
admission at target concurrency was the per-token KV footprint, not the
raw parameter count. For example, Qwen-14B saturated early because each
token occupied more KV bytes, while Falcon-40B stayed below the ceiling at

111

6.1. Analysis of Concurrency-Driven Performance Scaling

the same offered load because its attention design shared KV and reduced
bytes per token.

As a practical recommendation, to select a model that stays admission-
friendly at peak concurrency, preference should be given to architectures
with smaller KV per token or to using lower-precision KV, provided quality
targets are still met.

o What level of headroom keeps the service inside a no-queue, predictable regime?

The figures indicated that visible waiting began only when KV lived in the
high nineties, and that stability returned as soon as a small amount of mem-
ory was freed.

As a practical operating rule, to keep the service in a safe regime, KV usage
should be tracked continuously because it is the first signal to move when
memory becomes the limiter. The system should be held inside a target
band below the knee by capping tokens in flight, since this directly controls
how much KV is allocated at once. In these runs, leaving about ten to fif-
teen percent headroom kept admission smooth. The exact margin should be
revalidated whenever model geometry, precision, or workload mix changes,
because each of these shifts the bytes per token or the baseline weight foot-
print.

With admission dynamics now quantified, the next step is to ask what this means
for users and SLOs. The following subsections therefore examine how approach-
ing the memory ceiling changes aggregate tokens per second that the system can
provide, as well as the latency that users experience as a result of it.

112

6.1. Analysis of Concurrency-Driven Performance Scaling

6.1.3 Analysis of KV-Cache Saturation Effects on Aggre-
gate Throughput

After examining the earlier figures, the next question that naturally arises is how
memory saturation and queuing shape the performance of an inference system, and
in particular, what this means for both inference service providers and end users.
While the previous results highlighted how resources are consumed under different
concurrency levels, it remains to be understood how these pressures ultimately
translate into the metrics that companies and end users directly perceive.

To address this, an analysis was carried out, whose objective was to capture how
throughput evolved as the KV-cache approached its limits and began to saturate.
This analysis was repeated across different models in order to assess whether the
choice of model influences throughput behavior or alters the severity of degradation
once saturation occurs.

The results of these experiments are summarized in the figures that follow, which
trace throughput as a function of elapsed time under varying concurrency levels.
These will be discussed in detail below.

113

6.1. Analysis of Concurrency-Driven Performance Scaling

GPT2-xl— Peak Tl

put vs. GPU KV-cache utilisation— 1 requests

— Throughput (tok/s)
— = GPU memory usage (%)

hroughput (tokens / second)

3
Elapsed time (s)

Figure 6.8: Throughput over time for
GPT-2-XL-1.5B with 1 concurrent re-
quest.

GPT2-xI— Peak Throughput vs. GPU KV-cache utilisati 50 t:

0 100
6000 — Throughput (tokis)

— = GPU memory usage (%)

5 5000

2000

Throughput (to

1000

2
Elapsed time (s)

Figure 6.10: Throughput over time for
GPT-2-XL-1.5B with 50 concurrent re-
quests.

GPT2-xI— Peak Throughput vs. GPU KV-cache utilisatit 200 quest:

— Throughput (tokis)
~ = GPU memory usage (%)

10000
8000

6000

Throughput (tokens / second)

6 8
Elapsed time (s)

Figure 6.12: Throughput over time for
GPT-2-XL-1.5B with 200 concurrent
requests.

GPT2-xI— Peak Throughput vs. GPU KV-cache utilisation— 400 requests
00

14000 — Throughput (tok/s)
— = GPUmemory usage (%)

Throughput (tokens / second)
GPU memory usag:

10 15 20
Elapsed time (s)

Figure 6.14: Throughput over time for
GPT-2-XL-1.5B with 400 concurrent
requests.

GPT2-xl— Peak Throughput vs. GPU KV-cache utilisation— 10 requests
1750 — Throughput (tok/s) o
— = GPUmemory usage (%)
5 1500
§ 1250
£ 1000
< 70
5 500
£ 250 B
0
—_— 0
o 1 2 5 6 7

2
Elapsed time (s)

Figure 6.9: Throughput over time for
GPT-2-XL-1.5B with 10 concurrent re-
quests.

GPT2-xI— Peak Throughput vs. GPU KV-cache utilisation— 100 concurrent requests

— Throughput (tok/s)
8000 — = GPU memory usage (%)
% 6000
£ 4000
8 2000
o
o

6
Elapsed time (s)

Figure 6.11: Throughput over time for
GPT-2-XL-1.5B with 100 concurrent
requests.

GPT2-xl— Peak Tl

put vs. GPU he utilisati 300 requests
S

— Throughput (tokls)
~ = GPU memory usage (%)

second)

Throughput (tokens.

75 10.0 125 15.0 175
Elapsed time (s)

Figure 6.13: Throughput over time for
GPT-2-XL-1.5B with 300 concurrent
requests.

GPT2-xI— Peak Throughput vs. GPU KV-cache utilisation— 500 concurrent requests |

14000 — Throughput (tokis)

— = GPUmemory usage (%)
5 12000
8 10000
§ 8000
< 6000
S 4000
= 2000

0 >

o 15
Elapsed time (s)

Figure 6.15: Throughput over time for
GPT-2-X1-1.5B with 500 concurrent
requests.

114

6.1. Analysis of Concurrency-Driven Performance Scaling

GPT2-xI— Peak Tl put vs. GPU he utilisation— 600 quests
16000 — Throughput (takis)

— - GPU memory usage (%)
14000

12000

10000

8000

3
T
&

Throughput (tokens / second)

15
Elapsed time (s)

Figure 6.16: Throughput over time for
GPT-2-XL-1.5B with 600 concurrent
requests.

GPT2-xl— Peak Throughput vs. GPU KV-cache 800
17500

— Throughput (tokis)
— = GPUmemory usage (%)

PO

)

\ 80

/ second)
\

12500

v
1
1
10000 p
1
\
1
1

Throughput (tokens

\

20
Elapsed time (s)

Figure 6.18: Throughput over time for
GPT-2-XL-1.5B with 800 concurrent
requests.

GPT2-xI— Peak
16000

ghput vs. GPU he utilisati 1000 q

_ 2= Thigughput (toks)
=77 = GPlmemory usage (%)

14000
- \ 80
- 1 =

\
\

1

i

8000 4
|

Throughput (tokens / second)

GPU memory

20 30 a0
Elapsed time (s)

Figure 6.20: Throughput over time for
GPT-2-XL-1.5B with 1000 concurrent
requests.

GPT2-xl— Peak Tl
16000

vs. GPU he utilisati 700 requests |

— Throughput (tok/s)
— = GPU memory usage (%)
14000

12000

10000

8000

6000

4000

Throughput (tokens / second)

2000

0

15
Elapsed time (s)

Figure 6.17: Throughput over time for
GPT-2-XL-1.5B with 700 concurrent
requests.

GPT2-xl— Peak Throughput vs. GPU KV-cache 900 ’H‘
00
16000 e ——
o R memaryusage 00
- \

8000

20 20 40
Elapsed time (s)

Figure 6.19: Throughput over time for
GPT-2-XL-1.5B with 900 concurrent
requests.

GPT2-xl— Peak

ghput vs. GPU he utilisati 1100 requests

PE G ———
Il . Ghumemary o 00
\

- \
15000

g

Throughput (tokens / second)

20 30
Elapsed time (s)

Figure 6.21: Throughput over time for
GPT-2-XL-1.5B with 1100 concurrent
requests.

GPT2-xI— Peak Throughput vs. GPU KV-cache utilisation— 1200 concurrent requests

P — Throughput (tokis)
— - GPU memory usage (%)
)

\ 80
1
\
\

GPU memory usage (%)

\
|
1
1
1
i
T
i
1
\

30
Elapsed time (s)

Figure 6.22: Throughput over time for
GPT-2-XL-1.5B with 1200 concurrent

requests.

115

Dee

6.1. Analysis of Concurrency-Driven Performance Scaling

pseek-LLM-7B-chat TI vs. GPU KV-

h

1 requests
Throughput (tok/s) -
— = GPUmemory usage (%)

Deepseek-LLM-7B-chat T|

vs. GPU KV-

h

10

2
Elapsed time (s)

requests
‘Throughput {tok/s) o
== GPU memory usage (%)

Figure 6.23: Throughput over time for
DeepSeek with 1 concurrent request.

Deepseek-LLM-7B-chat T| vs. GPU KV-

50

requests Deepseek-LLM-7B-chat Tl
Throughput (toks) B

— = GPUmemory usage (%)

a 5
Elapsed time (s)

ghput vs. GPU KV-cach,

Figure 6.24: Throughput over time for
DeepSeek with 10 concurrent requests.

6

2
Elapsed time (s)

100 requests
Throughput (tokjs) B
— = GPUmemory usage (%)

Figure 6.25: Throughput over time for
DeepSeek with 50 concurrent requests.

Deepseek-LLM-7B-chat Throughput vs. GPU KV-cache utilisation— 200 concurrent requests
00

“Throughput (tokis)
— = GPUmemory usage (%)

6
Elapsed time (s)

Figure 6.26: Throughput over time for
DeepSeek with 100 concurrent requests.

Deepseek-LLM-7B-chat Throughput vs. GPU KV-cache utilisation— 300 concurrent requests

GPU memory u:

8
Elapsed time (s)

Throughput (tokss)
— = GPU memory usage (%)

Figure 6.27: Throughput over time for
DeepSeek with 200 concurrent requests.

5 100 125
Elapsed time (s)

Figure 6.28: Throughput over time for
DeepSeek with 300 concurrent requests.

Deepseek-LLM-7B-chat Throughput vs. GPU KV-cache utilisation— 400 concurrent requests Deepseek-LLM-7B-chat Throughput vs. GPU KV-cache utilisation— 500 concurrent requests
185 !
Throughput (tokis) L A Throughput (oks)
______ - GPUmemryussoe () = i GPU memry usage (4
-~ \ s 1
s - \ 80 P !
- 1 7 1
r” 1 1 1
- 1 i
-) Ad i
-7 A . 1
- ’ 1
e \ e A
-7 \ 40 7 1
e i - i
. i
e ! e 1|
- i . |
, 1 i 1
L i ; i
/ [l ’ \
; ! , / A
B 3 T 3 E3 E3 G 3 3 i E3 E3 »
Elapsed time (s) Elapsed time (s)

Figure 6.29: Throughput over time for
DeepSeek with 400 concurrent requests.

LM-7B-chat Tl vs. GPU h 600 requests
~= 100
g 1 Throughput (tok/s)
, \
.
!
:
,
.
l
Al 1
/, i
’ 1 a0
,/ 1 =
’ S E
y
’ \\
z \
! 1
o 5 10 15 20 25 30 35
Elapsed time (s)

Figure 6.31: Throughput over time for
DeepSeek with 600 concurrent requests.

Figure 6.30: Throughput over time for
DeepSeek with 500 concurrent requests.

116

6.1. Analysis of Concurrency-Driven Performance Scaling

Qwen1.5-14B Throughput vs. GPU he utilisation— 1 requests

— Throughput (tok/s)

— - GPU memory usage (%)

Elapsed time (s)

Figure 6.32: Throughput over time for
Qwen-14B with 1 concurrent request.

vs. GPU KV-cache utilisati 20 t:

— Throughput (tokis)
— = GPUmemory usage (%)

., QWen1.5-14B T

6
Elapsed time (s)

Figure 6.34: Throughput over time for
Qwen-14B 20 concurrent requests.

,, Qwen1.5-14B Throughput vs. GPU KV-cache utilisation— 40 concurrent requests

— Throughput (tokis)
— = GPU memory usage (%)

6 8
Elapsed time (s)

Figure 6.36: Throughput over time for
Qwen-14B 40 concurrent requests.

Qwen1.5-14B Throughput vs. GPU KV-cache utilisati 70 t:

— Throughput (tokis)
~ = GPUmemory usage (%)

2

75 10,0
Elapsed time (s)

Figure 6.38: Throughput over time for
Qwen-14B 70 concurrent requests.

vs. GPU KV-cache utilisati 10 q

— Throughput (tok/s)
— - GPU memory usage (%)

Qwen1.5-14B TI

- 100

6
Elapsed time (s)

Figure 6.33: Throughput over time for
Qwen-14B 10 concurrent requests.

Qwen1.5-148B ghput vs. GPU KV-cache utilisation— 30 requests
—— Throughput (tok/s) -
— = GPUmemory usage (%)

80

ut (tokens / second)

Throu

6
Elapsed time (s)

Figure 6.35: Throughput over time for
Qwen-14B 30 concurrent requests.

Qwen1.5-14B Throughput vs. GPU KV-cache utilisation— 60 concurrent requests

— Throughput (tokis)
~ = GPU memory usage (%)

100

2000

1500 4

1000 -

Throughput (tokens / second)

6 8
Elapsed time (s)

Figure 6.37: Throughput over time for
Qwen-14B 60 concurrent requests.

Qwen1.5-14B Throughput vs. GPU KV-cache utili: 80 t: .
100
— Thoughput k)
4000 == G memory usage 09
£ 3000
2 Lo
£ 2000 s
by w §
2 1000 &
= 20

75 100
Elapsed time (s)

Figure 6.39: Throughput over time for
Qwen-14B 80 concurrent requests.

117

6.1. Analysis of Concurrency-Driven Performance Scaling

Qwen1.5-14B Tl vs. GPU he utilisation— 90 requests
— Toroughput (okis)

4000 — = GPU memory usage (%)
3 80
& 3000
2 2000
b Lao
3 1000 +

00 25 50 75 10.0 125 15.0 175
Elapsed time (s)

Figure 6.40: Throughput over time for
Qwen-14B 90 concurrent requests.

Qwen1.5-14B Throughput vs. GPU KV-cache utilisation— 110 q

— Throughput (tokis)

000k L~ GPUmemory usage (%)

nd)

S 4000

3 2000

Throughput (tokens / seco

1000 -

00 25 5.0 7.5 125 15.0 175 200

10,0
Elapsed time (s)

Figure 6.42: Throughput over time for
Qwen-14B 110 concurrent requests.

Qwen1.5-14B

ghput vs. GPU KV-cach, 130 q

0 co 100
27— Throughput (tokis)
4000 1 - Gru memory usege 50
_ \
5 Lao
& 3000
£ 2000 :
: ta0 §
2 1000 1 g
F 1 20
i
|
0
-’ . e o
o 5 2 2

10 15
Elapsed time (s)

Figure 6.44: Throughput over time for
Qwen-14B 130 concurrent requests.

Qwen1.5-14B Throughput vs. GPU KV-cache utilisati 150 q
5000

nd)

2 4000

1000 -

Throughput (tokens / secor

15
Elapsed time (s)

Figure 6.46: Throughput over time for
Qwen-14B 150 concurrent requests.

Qwen1.5-14B T
5000 5

put vs. GPU he utilisation— 100 requests

— Throughput (tok/s)
— = GPU memory usage (%)
T 4000 - -
peigl
1
\
1

3000 -

2000 +

hroughput (tokens / second:

1000 -

00 25 50 75 100 125 150 175 20.0
Elapsed time (s)

Figure 6.41: Throughput over time for
Qwen-14B 100 concurrent requests.

Qwen1.5-14B Tl vs. GPU KV-cache utilisati 120

requests
Gl 100

5000 _ = Throughput (tokss)
7" 1=~ GpUmemory usage (%)
\

80

4000 -

3000 -

2000 -

Throughput (tokens / second)

1000 -

10
Elapsed time (s)

Figure 6.43: Throughput over time for
Qwen-14B 120 concurrent requests.

Qwen1.5-14B Throughput vs. GPU KV-cache 140 t: .
1140
P "— Throughpu (tokss)
vl “ = GPU memory usage (%)

5 4000 1
% 3000

£ 2000-
€ 1000

10 15
Elapsed time (s)

Figure 6.45: Throughput over time for
Qwen-14B 140 concurrent requests.

Qwen1.5-14B Tl

L — Throughput (tokis)
= = GPU memory usage (%)

ond)

4000 +

|
i
]
i
|
1
3000 !
I

tokens / se

2000 +

1000 -

Throughput

0 5 10

15
Elapsed time (s)

Figure 6.47: Throughput over time for
Qwen-14B 160 concurrent requests.

These figures reveiled a repetitive pattern, since although the exact throughput val-

118

6.1. Analysis of Concurrency-Driven Performance Scaling

ues varied across models, the overall shape of the curves remained consistent.

One of the most important observations gathered from the figures was that through-
put tended to decline over time, even before the KV-cache was fully saturated. At
first glance, one might expect throughput to remain stable until memory exhaus-
tion occurs, but this was not the case. Instead, a gradual erosion was seen across
all runs. This decline is linked to the fact that as more sequences accumulated
in memory, scheduling and memory-access patterns became increasingly complex.
For example, each additional sequence required bookkeeping and introduced con-
tention in memory access, so the system spent slightly more time managing state
and slightly less time generating new tokens.

The implication of this pattern for inference providers is that performance degra-
dation begins well before the “cliff” of memory exhaustion, meaning that running
a system near its limit is risky even if it has not yet hit the ceiling.

The second major observation came from runs where the KV-cache eventually sat-
urated. In these cases, throughput did not simply plateau at a fixed maximum
value. Instead, it decreased steadily over time, eroding in a roughly linear fashion
once the cache was full. This collapse was driven by several compounding factors.
Once the KV cache was full, overhead rose because the system had to evict and
remap memory pages in order to admit new tokens. This process slowed gen-
eration since some sequences were delayed or cut short, and GPU kernels faced
greater contention while waiting for memory operations to complete. As a result,
throughput declined rather than stabilizing, showing that saturation did not just
cap performance but actively degraded it.

Together, these results show that saturation destabilizes the inference system. This
is due to the fact that, once the cache is full, every new request makes the system
less efficient. For providers, this highlights the importance of carefully managing
load to avoid not just the memory ceiling itself but also the performance cliff that
follows. For end users, it means that latency and quality of service can deteriorate
more sharply than expected once the system is pushed beyond safe utilization
levels.

To conclude, the analysis of the presented figures revealed the following insights,
summarized as the following points:

e How does throughput evolve as concurrency increases, and what happens once
memory saturation is reached?

Throughput declined over time even before memory saturation, reflecting the
growing KV footprint of active sequences during decoding. Once the KV-
cache reached its limit, the decline became sharper, showing that saturation

119

6.1. Analysis of Concurrency-Driven Performance Scaling

not only prevented further scaling but actively eroded system efficiency.

Why does flattening throughput at the memory ceiling matter for inference
providers in terms of efficiency and cost per token?

When many user requests are processed at the same time, the system ini-
tially produces tokens at a higher rate, which is reflected as higher through-
put. However, this growth does not continue indefinitely. Once the memory
reserved for storing intermediate results is fully used, the system cannot ad-
mit more active work, so throughput stops increasing and instead flattens
at a ceiling. From that point onward, no matter how much additional de-
mand is offered, the number of tokens completed per second remains roughly
constant, or even diminishes as observed in the previous figures.

This plateau is important because it means that the hardware is not produc-
ing more useful work even though it is being asked to handle more requests.
In practice, GPUs continue to spend time maintaining the waiting queue,
holding partial states, and scheduling work that cannot immediately run.
This overhead consumes the same amount of costly GPU hours without de-
livering extra completions. For an inference provider, this translates directly
into efficiency loss, because the cost per generated token rises once the system
is past the ceiling.

Another way to see this is by looking at the business side. Providers often
operate under fixed budgets for compute, so every second of GPU time that
does not translate into more output increases the average cost of serving
each request. When throughput flattens, the system is no longer scaling
with demand, and the service ends up charging the same resources for less
incremental benefit. This is why the ceiling is not only a technical detail
but also a financial one: it marks the boundary where extra load turns into
waste rather than more revenue or more satisfied users.

In short, flattening throughput signals that the system has reached the point
where memory constraints, rather than raw compute power, are in control.
For operators, this means that keeping the service inside a safe headroom
below the ceiling is not only a way to ensure smoother performance but also
a way to make sure that every unit of GPU time is used effectively and that
cost per token remains predictable.

How does sustained throughput relate to predictable service-level objectives,
and what risks arise when queues form?

The key ideas is that while throughput on its own is a useful number, its real
importance comes from how stable it remains over time. A provider that

120

6.1. Analysis of Concurrency-Driven Performance Scaling

promises to deliver results within a certain time window, such as under a
service-level objective (SLO), depends on throughput staying consistent. If
the number of tokens produced per second holds somewhat steady, then the
system can reliably predict how long it will take to serve a given volume of
requests. This predictability is what makes SLOs enforceable, since guaran-
tees about response times rest on the assumption that work flows through
the system at a steady pace.

The risk appears when memory becomes saturated and a queue begins to
form. At that moment, throughput may go flat and even decrease at the
ceiling, but requests in the queue no longer progress immediately. Therefore,
each new user entering the system has to wait until enough memory is freed
by completed requests, which results in a rise in latency experienced by
individual users. From a business perspective, this is dangerous, because
the service is still incurring the same costs to run the hardware, yet users
perceive a slowdown and may see SLOs being violated.

Therefore, sustained throughput without queues is a sign of a healthy oper-
ating regime where efficiency and predictability align. Once queues appear,
the same hardware is no longer translating directly into satisfied users, since
part of its time is spent holding work that cannot advance. This highlights
why inference providers must not only measure throughput but also monitor
admission and queueing closely. It is the combination of both that determines
whether SLOs are being met in practice.

6.1.4 Analysis of Peak Throughput under Varying Concur-
rency

After examining how throughput evolved over time at fixed levels of concurrency,
the next step was to analyze the problem from a different perspective. Instead
of observing the full trajectory of each run, this section focuses on the maximum
throughput achieved at each concurrency level. In other words, each point in the
plots below represents the highest throughput observed during the run for a given
number of concurrent requests, regardless of when it occurred.

The following figures present the results for the different models evaluated. De-
spite differences in size and configuration, all of them exhibited a consistent over-
all shape: throughput first grew almost linearly with concurrency, then entered
a regime of slower improvement, and finally declined once the system was over-
loaded.

121

6.1. Analysis of Concurrency-Driven Performance Scaling

5 4 s
£ g g
g £ 3

N
-1
S
s

AggregatT throughput (tokens / s)

(a) Concurrency threshold for KV-cache

6000 1

5000 1

3000 4

1000 1

GPT2-XL-1.5B Aggregate Throughput vs. Concurrency

Deepseek—7B Aggregate Throughput vs. Concurrency

| —e— aggregate Throughput

6300 6443 °

—e— Aggregate Throughpt

@
<]
b1
S

]
3
S
S

4000 1

3000 1

20001

AggregatT throughput (tokens / s)

1000 1

1050100 200 300 400 500 600 700 800 900 1000 1100 1200

Concurrent requests (N)

saturation (GPT2-xI-1.5B)

Qwen-1.5-14B — Aggregate Throughput vs. Concurrency

0 50 100 200 300 400
Concurrent requests (N)

saturation (Deepseek-7B)

25001

20001

1500 1

1000

@
<]
o

AggregatT throughput (tokens / s)

—e— Aggregate Throughput 2633

2,703 2740 7o

541

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Concurrent requests (N)

(c) Concurrency threshold for KV-cache
saturation (Qwenl.5-14B)

500 600

(b) Concurrency threshold for KV-cache

Figure 6.48: Concurrency threshold for KV-cache saturation as a function of model

size

across different models.

Several key insights emerged from this analysis:

e How does peak throughput evolve with increasing concurrency?

At first, throughput rose nearly in proportion to the number of concurrent re-
quests, since additional demand could be absorbed without contention. Once
the hardware was fully engaged, however, each new request still contributed
some additional throughput, but at a slower rate, as resources had to be
shared. Finally, when concurrency became excessive, throughput began to
decline because the overhead of coordination and contention outweighed the
useful work contributed by new requests.

o What does this reveal about inference system behavior?

The results show that systems naturally progress through three performance
phases as concurrency grows: an initial period of efficient scaling, a zone of

122

6.1. Analysis of Concurrency-Driven Performance Scaling

diminishing returns once resources are saturated, and an eventual decline
under overload. This pattern highlights the trade-off between maximizing
utilization and maintaining stability, as the most efficient operating point
lies between underuse and overload.

e Are these patterns model-dependent?

While the absolute concurrency thresholds varied across models, the qualita-
tive shape of the curve remained consistent. This indicates that the observed
progression is not an artifact of a particular model, but instead a general
property of LLM inference workloads.

Having seen how throughput declined as memory pressure grew, the next step is
to ask how this behavior translates into what users actually notice. The follow-
ing subsection therefore explores this question by examining how the collapse of
throughput at saturation reshapes the latency that users experience, and how that
can interfere with established SLOs.

6.1.5 Analysis of Latency Degradation Under Increasing Con-
currency

This subsection examines how latency evolved as the number of concurrent requests
increased. The goal was to identify the extent to which scaling concurrency impacts
responsiveness, particularly in terms of time-to-first-token (TTET). The following
figures present the results for the four tested models: GPT2, Deepseek, Qwen, and
Falcon.

In theory, what should be observed is a “flat—then—knee-then—steep” curve in
TTFT as concurrency grows. At low concurrency levels, latency remains sta-
ble, followed by a sudden inflection point once the system approaches saturation,
and finally a sharp rise in delay as resources become overloaded.

However, not all models under study exhibited this expected behavior. In several
cases, the results showed a near-linear increase in TTFT as concurrency rose. This
can be attributed to the workload generator design. Because the driver submitted
all N requests simultaneously in burst mode, TTFT measurement effectively in-
corporated the waiting time in the submission queue. As a result, each additional
request waited behind the others, producing a linear growth with slope approx-
imately equal to the prefill time per request. In this scenario, the concurrency
experiment reflects serialized prefill processing rather than steady-state queuing
effects, explaining the deviation from the theoretical knee-shaped curve.

The main conclusions from this experiment can be summarized as follows:

123

6.1. Analysis of Concurrency-Driven Performance Scaling

GPT2-XL-chat — TTFT Latency vs. Concurrency Deepseek-LLM-7B-chat — TTFT Latency vs. Concurrency

o
°

4
°
&

14
°
@

4
o
IN]

Mean time-to-first-token (s)
Mean time-to-first-token (s)

4
°

0.00
0 200 400 600 800 1000 1200 [

Concurrent requests (N)

100 200 300 400 500 600
Concurrent requests (N)

Figure 6.49: TTFT vs. concurrency for Figure 6.50: TTFT vs. concurrency for
GPT2-XL-chat. Deepseek-LLM-7B-chat.

Qwen-1.5-14B — TTFT Latency vs. Concurrency Falcon40B — TTFT Latency vs. Concurrency

0.05

0.10s

o
1

0.10s
095
0.04

0.03%4°

0.02

Mean time-to-first-token (s)
Mean time-to-first-token (s)
o
>
3

0.01

0 20 40 60 80 100 120 140 160 0 20 40

60 80 100 120 140 160
Concurrent requests (N)

Concurrent requests (N)

Figure 6.51: TTFT vs. concurrency for Figure 6.52: TTFT vs. concurrency for
Qwen-1.5-14B. Falcon40B.

e How does TTFT evolve under increasing concurrency? For some models,
TTFT increased in a nearly linear fashion with concurrency, rather than re-
maining flat at first and then rising sharply. This indicates that the workload

generator’s burst submission amplified queueing effects at every concurrency
level.

e What does this reveal about system behavior? The discrepancy between the
expected knee-shaped curve and the observed linear trend highlights the
sensitivity of latency measurements to workload design. In burst scenarios,
TTFT reflects serialized prefill delays, while in sustained arrival scenarios,
batching and scheduling effects would dominate. This underlines the impor-
tance of workload configuration when interpreting latency results.

6.1.6 Analysis of Model Size on Concurrency Limits

Building on the observations of Subsection 6.1.1, where GPU memory utilisation
was tracked across rising concurrency levels, the next benchmark investigated how

124

6.1. Analysis of Concurrency-Driven Performance Scaling

the size of the language model itself constrained concurrency. By keeping the
hardware configuration constant and varying only the parameter count and ar-
chitecture, the test aimed to identify the point at which different models first
exhausted the KV cache and could no longer admit additional user requests.

Model Size vs. KV-cache Saturation Point

GPT-2-XL
1000 Max observed concurrency in sweep

800

600
DeepSeek-7B

Falcon-40B

Concurrency at KV-cache saturation
(requests)

200 Qwen-14B6

0 5 10 15 20 25 30 35 40
Model size (billions of parameters)

Figure 6.53: Concurrency threshold for KV-cache saturation as a function of model
size

Figure 6.53 plots each model’s parameter count on the horizontal axis against the
concurrency level at which its KV cache became full. GPT-2-XL, with 1.5 billion
parameters, did not saturate until the benchmark reached roughly 1 000 simul-
taneous requests. DeepSeek-LLM-7B, at 7 billion parameters, saturated earlier,
near 500 requests. Qwen-1.5-14B, with 14 billion parameters, reached its ceiling at
about 130 requests. Finally, Falcon-40B, despite having nearly three times more
parameters than Qwen, saturated at around 200 concurrent requests.

The first three points traced a steep downward slope, suggesting that larger models
impose heavier memory demands per request and therefore reduce the number of
concurrent users a single GPU can support. However, the Falcon-40B result high-
lighted that model size alone does not fully determine concurrency limits. Falcon
employs multi-query attention (MQA), which shares KV-cache entries across heads
and thus moderates memory growth compared to standard multi-head attention.
Even so, its concurrency ceiling remained lower than Qwen-14B, showing that
architecture-level choices shape how efficiently memory is used and may counter-
balance or exacerbate the raw effect of parameter count.

125

6.2. Analysis of Prompt and Generation Sequence Lengths on Inference Latency

The figure therefore illustrates that while memory rather than compute becomes
the dominant bottleneck as models scale, the exact concurrency limit depends
not only on parameter size but also on design decisions such as the attention
mechanism. Therefore, capacity planning needs to consider both model size and
architecture, since features like MQA can change how many users a model can
support, even if the parameter count stays the same.

6.2 Analysis of Prompt and Generation Sequence
Lengths on Inference Latency

6.2.1 Prefill Only

The objective of this benchmark was to evaluate how increasing the prompt length
provided by a user impacts overall inference latency. To obtain a sufficient number
of data points capturing scaling behavior, the experiment was conducted with the
Mistral-7B model, which supports a context length of up to 128k tokens. This
extended context window enabled long runs and allowed the effect of prompt length
on system performance to be quantified with precision.

Selected results from this benchmark are presented in the following figures:

TTFT vs. Prefill Input Length

124

1.0+

TTFT (s)
Max Time-to-First-Token (s)

0.6

2 2 210 J12 Jle

0.4+ Prefill Input Length (tokens)

T T T T T T
20000 40000 60000 80000 100000 120000

Prompt length (tokens) Figure 6.55: Max TTFT vs. prefill in-
Figure 6.54: TTFT vs. prompt length f)nu;ﬂj;%ngth (Qwen, prefill-only bench-

for Mistral-7B-128k.

Based on the analysis of these figures, the main conclusions are as follows:
e How does TTFT scale with prompt length?

TTFT increased approximately linearly as prompt length grew. This behav-
ior reflects the fact that each additional token requires a full forward pass

126

6.3. Analysis of Intra-Node Scaling Effects on Inference Performance

through all transformer layers, making the compute cost per token effec-
tively constant. The slope of this linear growth depends on model size, since
larger models perform more FLOPs per token and therefore exhibit steeper
increases.

e Why is TTFT nonzero even for very short prompts?

Even at minimal input lengths, TTFT did not fall to zero. This is explained
by fixed runtime overheads such as framework initialization, batching win-
dows, scheduling, and kernel setup. As a result, the plotted curves showed a
positive intercept at zero tokens.

6.3 Analysis of Intra-Node Scaling Effects on In-
ference Performance

A natural extension of the previous experiments was to ask how inference perfor-
mance changes when a model is distributed across multiple GPUs within the same
node. The motivation for this family of benchmarks lies in evaluating whether
tensor parallelism can effectively raise throughput ceilings, delay memory satura-
tion, or otherwise alter the efficiency profile of the system. The central question is
whether splitting the model across two devices improves performance in practice,
or if the added coordination overhead offsets the potential gains.

To explore this, multiple tests were conducted in which a fixed number of con-
current user requests were issued to the inference system under two deployment
configurations: first, with the model loaded entirely on a single GPU (TP=1); and
second, with the model split evenly across two GPUs (TP=2). For this study, the
chosen workload was LLaMA-70B-FP8, a model that occupied roughly half of the
available memory when placed on a single GPU. This ensured that the model could
both fit comfortably on one device and also be meaningfully distributed across two,
without either configuration being artificially constrained.

The results obtained from these experiments are presented in the following fig-
ures:

127

6.3. Analysis of Intra-Node Scaling Effects on Inference Performance

i-LLama-3.1-70B-Instruct-FP8 Peak Throughput vs. GPU KV-cache utilisatii 50 concurrent req

— Throughpu tokis)

1400 — = GPU memory usage (%)s

a0

£ 1200

% 1000

= 200

4 6 8
Elapsed time (s)

Figure 6.56: Throughput vs. KV-
cache utilisation (Tensor Parallel =
1, Llama-3.1-70B-FP8, 50req)

-LLama-3.1-70B-Instruct-FP8 Peak Throughput vs. GPU KV-cache utilisati 100 concurrent re:

2500 — Throughput (tokis)
~ = GPUmemory usage ()5

80

6
Elapsed time (s)

Figure 6.58: mThroughput vs. KV-
cache utilisation (Tensor Parallel =
1, Llama-3.1-70B-FP8, 100req)

‘LLama-3.1-70B-Instruct-FP8 Peak Throughput vs. GPU KV-cache utilisation— 150 concurrent re:

3500 — Throughput (tokis)
~ = GPUmemory usage (%)s

6
Elapsed time (s)

Figure 6.60: Throughput vs. KV-
cache utilisation (Tensor Parallel =
1, Llama-3.1-70B-FPS8, 150req)

rLLama-3.1-70B-Instruct-FP8 Peak Throughput vs. GPU KV-cache utilisati 50 req
000

— Througnput tokis)

— = GPU memory usage (%)s

a
Elapsed time (s)

Figure 6.57: Throughput vs. KV-
cache utilisation (Tensor Parallel =
2, Llama-3.1-70B-FP8, 50req)

-LLama-3.1-70B-Instruct-FP8 Peak Throughput vs. GPU KV-cache utilisati 100 concurrent re:

3000 — Throughput (tokis)
~ = GPUmemory usage (3]s

2
Elapsed time (s)

Figure 6.59: Throughput vs. KV-
cache utilisation (Tensor Parallel =
2, Llama-3.1-70B-FP8, 100req)

‘LLama-3.1-70B-Instruct-FP8 Peak Throughput vs. GPU KV-cache utilisation— 150 concurrent re:

— Throughput (tokis)
— = GPU memory usage (%)s

6
Elapsed time (s)

Figure 6.61: Throughput vs. KV-
cache utilisation (Tensor Parallel =
2, Llama-3.1-70B-FP8, 150req)

128

6.3. Analysis of Intra-Node Scaling Effects on Inference Performance

-LLama-3.1-70B-Instruct-FP8 Peak Throughput vs. GPU KV-cache utilisati
3000

6 8
Elapsed time ()

Figure 6.62: Throughput vs. KV-
cache utilisation (Tensor Parallel =
1, Llama-3.1-70B-FP8, 200req)

-LLama-3.1-70B-Instruct-FP8 Peak Throughput vs. GPU KV-cache utilisati
= T

8
sssssssssss ()

Figure 6.64: Throughput vs. KV-
cache utilisation (Tensor Parallel =
1, Llama-3.1-70B-FP8, 250req)

-LLama-3.1-70B-Instruct-FP8 Peak Throughput vs. GPU KV-cache utilisati
00

-LLama-3.1-70B-Instruct-FP8 Peak Throughput vs. GPU KV-cache utilisati
5000

— Throug

Figure 6.63: Throughput vs. KV-
cache utilisation (Tensor Parallel =
2, Llama-3.1-70B-FP8, 200req)

— Throug

Figure 6.65: Throughput vs. KV-
cache utilisation (Tensor Parallel =
2, Llama-3.1-70B-FP8, 250req)

The following results can be summarized into these insights:

e How does increasing tensor parallelism from 1 to 2 change the throughput

curve as Concurrency scales?

Across all tested levels of concurrency, throughput increased when moving
from TP=1 to TP=2. The magnitude of this improvement, however, depended
strongly on the system load. At low concurrency, the difference between the
two configurations remained minor, since a single GPU could already process
requests efficiently. As concurrency grew, the single-GPU case struggled to
sustain performance, while the two-GPU configuration benefited from the
additional compute and memory resources, resulting in more pronounced
gains.

Does TP=2 delay the point of KV-cache saturation compared to TP=1, and by
how much?

The introduction of a second GPU shifted the saturation point to higher
concurrency levels. With tensor parallelism, the effective KV-cache capacity
doubled, reducing memory pressure and allowing the system to accommodate
more requests before reaching saturation.

129

6.4. Applied Recommendations Informed by Empirical Findings

o At what concurrency levels do the benefits of tensor parallelism become most
visible?

The benefits of TP=2 became most apparent at high concurrency, where the
single-GPU configuration exhibited clear throughput degradation. In these
scenarios, distributing the model across two devices prevented bottlenecks
and delivered higher sustained throughput.

o Are throughput fluctuations (peaks and valleys) more pronounced under TP=2,
and what does this suggest about coordination overhead?

Throughput fluctuations were more pronounced in the TP=1 runs, reflect-
ing the strain placed on a single device as it approached its limits. Under
TP=2, the additional resources provided a more stable execution environment,
indicating that coordination overhead did not outweigh the advantages of
parallelization.

6.4 Applied Recommendations Informed by Em-
pirical Findings

Following the successful implementation of the automated benchmarking pipeline
and the multivariable analysis of inference performance conducted in the previous
sections, this final part presents a set of concrete recommendations derived from
the key empirical insights gathered throughout the study. These recommendations
are structured around four core roles involved in the design and operation of LLM
inference infrastructure: developers, system architects, infrastructure providers,
and hardware manufacturers.

130

6.4. Applied Recommendations Informed by Empirical Findings

Developers

System Architects

Infrastructure Providers

Hardware Manufacturers

Figure 6.66: Al Inference Stakeholders Organized by System Layer

By adopting a role-based perspective, each group can focus on actionable prac-
tices within its domain that, when considered collectively, help improve resource
utilisation, contain operational costs, and strengthen the scalability of inference
systems across the full Al stack. The recommendations aim not only to guide
technical decisions but also to align optimisations across the ecosystem, ensur-
ing that performance gains achieved at one layer do not become inefficiencies at
another.

The role-aware recommendations are detailed below:

1. Recommendations for Developers

From the perspective of developers, one of the most critical design choices when
building Al systems is the selection of the model to deploy. Based on the bench-
marks conducted in this project, a key recommendation is to evaluate candidate
models not only by their parameter count, but also by the architectural design of
their Attention Blocks, as this aspect plays a central role in determining memory
utilisation during inference.

The experiments show that the attention mechanism—particularly its query pat-
tern—has a direct and significant impact on the memory footprint, which in turn
shapes the scalability and efficiency of inference workloads. In practice, a higher
parameter count does not necessarily imply higher memory consumption. For in-
stance, the Falcon-40B model demonstrated more favourable memory behaviour
under load than Qwen-14B, despite having nearly three times as many parame-
ters. This efficiency stems from Falcon’s use of multi-query attention, a design

131

6.4. Applied Recommendations Informed by Empirical Findings

that substantially reduces the memory allocated per token during inference and
thereby delays the onset of saturation.

Therefore, developers should incorporate memory scaling characteristics into their
model selection criteria, particularly when targeting high-throughput, resource-
constrained environments. Choosing models with efficient attention architectures
can yield substantial gains in inference performance without requiring additional
hardware investment.

2. Recommendations for System Architects

Beyond the selection of individual models or inference frameworks, system archi-
tects must make high-level design decisions about how inference workloads are
physically and logically distributed across the infrastructure.

A key recommendation derived from the benchmarking results is to avoid building
large, multi-purpose GPU clusters that attempt to serve all types of generative
workloads equally. Instead, inference infrastructure should be specialised: archi-
tects should provision multiple subsystems that are tailored to the computational
and memory demands of each application domain.

For example, models serving vision tasks with long image captions or multi-
modal embeddings behave very differently from chat-oriented models with shorter
prompt-response patterns. The concurrency limits, memory saturation thresh-
olds, and latency profiles vary significantly between domains, which directly affects
other choices such as sequence length tolerances or number of tensor parallelism
utilised among others. Mixing these workloads within the same cluster leads to
performance variability and inefficient resource utilisation.

Therefore, a more effective architectural strategy is to deploy multiple homoge-
neous clusters, each configured for a specific workload family, and route traffic
based on those characteristics. This design enables more predictable saturation
behaviour, and therefore more efficient horizontal scaling.

Adopting this specialised multi-cluster strategy does involve a clear tradeoff. On
one hand, it introduces higher provisioning complexity and may increase short-
term infrastructure costs due to dedicated hardware allocation. On the other hand,
it enables more predictable saturation behaviour, higher throughput, and more
efficient resource utilisation, particularly under sustained or high-volume traffic.
As such, system architects must make this tradeoff based on the stringency of the
service level objectives (SLOs) they are expected to meet.

132

6.4. Applied Recommendations Informed by Empirical Findings

3. Recommendations for Infrastructure Providers

Infrastructure providers play a foundational role in the efficiency of large-scale
Al systems. Although they do not design models or select inference strategies,
they are ultimately responsible for building, maintaining, and offering the physical
infrastructure upon which inference workloads run. This includes everything from
selecting the hardware to configuring cluster layouts, setting provisioning policies,
and exposing infrastructure options to higher-level users such as system architects
and platform engineers. As such, their decisions shape the operational envelope in
which all other layers of the Al stack must function.

One actionable recommendation is that infrastructure providers, in close collab-
oration with system architects, should ensure that their service portfolio offers
not only general-purpose clusters but also configurations purpose-built for spe-
cific workload types. Rather than deploying a single large multi-purpose system,
providers should expose a set of specialized, single-purpose infrastructure profiles
that align with the diverse nature of Al applications, such as those focused on
image processing, text generation, or low-latency streaming. These specialized se-
tups should be readily consumable and easily selectable by the clients who make
architectural decisions, enabling better alignment between workload requirements
and hardware capabilities.

Because the growing number of configuration choices may introduce complexity
and uncertainty for consumers, infrastructure providers are also in a unique posi-
tion to offer advisory and consulting services that help system architects navigate
this landscape. These services could include workload profiling, trade-off analysis,
and tailored deployment recommendations, ensuring that clients can extract the
maximum value from the infrastructure and make informed choices based on their
performance, latency, and cost constraints.

Beyond this, as an additional recommendation, infrastructure providers must care-
fully weigh the trade-off between resource overprovisioning and Service Level Agree-
ments(SLAs) compliance, in order to keep the system operating at its technical
optimum while ensuring that the business remains economically sustainable. To
help identify where this ideal operating point resides, a detailed economic study has
been developed in Section 4.5, breaking down how the provider’s profit structure
evolves as a function of the aggregate throughput delivered by the system.

Once this optimal operating region is determined, infrastructure providers must
monitor saturation thresholds and user concurrency levels in real time, and im-
plement mechanisms for automated horizontal scaling to keep the system near
this ideal operational point. Doing so minimizes the risk of drifting into low-
efficiency or negative-profit regions, and helps sustain both high performance and

133

6.4. Applied Recommendations Informed by Empirical Findings

predictable margins under varying traffic conditions, as discussed in the economic
analysis.

4. Recommendations for Hardware Manufacturers

While software and system-level changes can improve efficiency to some extent,
the underlying hardware imposes hard limits, and manufacturers are in a unique
position to alleviate the root causes of bottlenecks observed during inference at
scale.

The multivariable analysis conducted in this project consistently pointed to GPU
memory utilisation, with a particular emphasis on the saturation caused by KV-
cache storage, as the most prominent bottleneck limiting inference throughput
under increasing load. Across all benchmarks, it was memory pressure, not com-
pute saturation, that most often triggered the collapse of throughput and the rise
in latency that users experienced.

This insight reveals a critical design priority for the next generation of Al hardware.
To enable more efficient scaling of LLM inference, manufacturers should prioritise
innovation in memory design, including how memory is sized, structured, and
accessed across devices.

Several promising avenues include:

e Memory expansion through cross-device pooling: Increase effective
memory capacity by aggregating memory across devices using memory pool-
ing techniques. This allows key-value cache entries to overflow gracefully
into shared memory spaces rather than causing hard capacity limits on a
single device. The recent Mooncake proposal exemplifies this approach by
introducing CXL-based pooled memory architectures to enable large-scale
KV-cache storage beyond local GPU boundaries [59].

e Disaggregated handling of prefill and decode phases: Separate the
compute and memory allocation strategies for the prefill and decode stages of
LLM inference. Prefill stages tend to be short and memory-heavy, while de-
code stages require longer residency and are more latency-sensitive, so by dis-
aggregating them (as seen in NVIDIA’s newly released Dynamo project) sys-
tems can schedule these phases on heterogeneous hardware more efficiently,
reducing peak memory demand and improving GPU reuse [63].

e Hierarchical KV-cache management across memory tiers: Design
GPU systems to manage KV-cache using multiple memory tiers, such as
high-bandwidth GPU memory, slower CPU RAM, and optionally SSD-based

storage. Recent work in disaggregated KV-caching proposes promoting and

134

6.4. Applied Recommendations Informed by Empirical Findings

evicting cache entries between these tiers dynamically, similar to how multi-
level CPU caches operate [59]. This extends effective cache capacity and
delays saturation, especially when most of the context window is not needed
for active decoding.

135

Chapter 7

Conclusions

This chapter closes the project by revisiting the previously defined objectives and
assessing the extent to which they were achieved. Finally, it outlines possible
future work, suggesting ways in which the system could be extended or adapted
to address new needs.

7.0.1 Achieved Objectives

The primary objectives of this Final Degree Project have been fully achieved. As
outlined in Section 4.2, this work set out to investigate the performance and cost-
efficiency of LLM inference at scale through a multivariable lens, supported by a
robust experimental pipeline and culminating in a set of role-specific recommenda-
tions for improving infrastructure-level efficiency. The contributions made across
these three fronts are summarised below:

e Multivariable analysis of LLM inference performance: Through an
extensive suite of experiments varying key parameters such as concurrency,
model size, input length, and tensor parallelism, this project systematically
revealed how different factors interact to affect inference throughput, latency,
and GPU utilisation. The analysis consistently identified GPU memory sat-
uration (particularly coming from KV-cache accumulation) as the primary
bottleneck limiting system performance under load. This insight allowed for
a deeper understanding of when and why inference systems fail to scale, and
how this impacts the cost structure for infrastructure providers.

e Design and implementation of a reproducible benchmarking pipeline:
A modular, automated benchmarking system was developed to orchestrate
model deployment, request generation, and telemetry capture across an H100

136

GPU cluster. The pipeline ensured repeatability by varying one experimen-
tal variable at a time while holding others fixed, capturing telemetry at sub-
second granularity, and storing structured outputs for later analysis. This
tool enabled the multivariable study to proceed in a systematic and scalable
fashion.

e Empirical foundation for role-aware operating guidance: The bench-
mark results were distilled into targeted recommendations for each of the
four key roles involved in the AI infrastructure stack: developers, system
architects, infrastructure providers, and hardware manufacturers. Each rec-
ommendation reflects the practical implications of the performance patterns
uncovered during experimentation and offers actionable strategies tailored
to the decisions and levers available to each stakeholder. This guidance is
intended to help each role operate their portion of the stack more efficiently,
thereby improving overall system performance and economic viability.

Beyond fulfilling its original goals, the project delivered a flexible benchmarking
system that can be extended to evaluate new workloads, models, and hardware
configurations. The reproducibility and clarity achieved in the data collection and
analysis process ensure that this work can serve as a foundation for future research
and performance tuning efforts in production settings.

7.0.2 Future Work

While this thesis has focused on intra-node benchmarking, the implementation of
an automated and reproducible benchmarking system opens the door to broader
explorations. The most natural next step would be to extend these experiments
to an inter-node setting, where multiple H100 nodes operate together as a full
cluster. Such a study was beyond the scope of this work, as the cost of deploying
and maintaining multi-node infrastructure can reach hundreds of thousands of
dollars.

Investigating this scenario would provide valuable insights into the scalability lim-
its of large language model inference. In particular, it would make it possible to
determine under which conditions pipeline parallelism continues to provide perfor-
mance gains over single-node deployments, and how the choice of model architec-
ture influences these outcomes.

Pursuing this line of work would complete the picture initiated in this thesis, en-
abling a more comprehensive understanding of inference performance across both
single-node and distributed multi-node environments.

137

Bibliography

1]

2]

13l

4]

[5]

[6]

Emma Roth. ChatGPT’s weekly users have doubled in less than a year.
https://www. theverge.com/2024/8/29/24231685/ openai-chatgpt -
200-million-weekly-users. The Verge, 29 Aug 2024. Aug. 2024. (Visited
on 08/22/2025).

Kenrick Cai. Alphabet reaffirms $75 billion spending plan in 2025 despite
tariff turmoil. https://www. reuters. com/ technology/alphabet-ceo-
reaffirms-planned-75-billion-capital-spending-2025-2025-04-09/.
Reuters, 10 Apr 2025. Apr. 2025. (Visited on 08/22/2025).

Reuters. Microsoft to spend record $30 billion this quarter as Al investments
pay off. https://www.reuters.com/business/microsoft-spend-record-
30-billion-this-quarter-ai-investments-pay-off-2025-07-30/.
Reuters, 30 Jul 2025. July 2025. (Visited on 08/22/2025).

Wayne Williams. Nvidia’s fastest AI chip ever could cost a rather reasonable
$40,000 — but chances that you will actually be able to buy one on its own
are very, very low and for a good reason. https://www.techradar.com/pro/
nvidias-fastest-ai-chip-ever-could-cost-a-rather-reasonable-
dol1ar40000 - but - chances - that -you-will - actually - be-able-to-
buy-one-on-its-own-are-very-very-low-and-for-a-good-reason.
TechRadar Pro, 26 Mar 2024. Mar. 2024. (Visited on 08/22/2025).

Reuters. OpenAl hits $12 billion in annualized revenue, The Information
reports. https://www.reuters.com/business/openai-hits-12-billion-
annualized-revenue-information-reports-2025-07-31/. Reuters, 31 Jul
2025. July 2025. (Visited on 08/22/2025).

Yiheng Liu et al. Understanding LLMs: A Comprehensive QOuerview from
Training to Inference. 2024. arXiv: 2401 .02038 [cs.CL]. URL: https://
arxiv.org/abs/2401.02038.

138

https://www.theverge.com/2024/8/29/24231685/openai-chatgpt-200-million-weekly-users
https://www.theverge.com/2024/8/29/24231685/openai-chatgpt-200-million-weekly-users
https://www.reuters.com/technology/alphabet-ceo-reaffirms-planned-75-billion-capital-spending-2025-2025-04-09/
https://www.reuters.com/technology/alphabet-ceo-reaffirms-planned-75-billion-capital-spending-2025-2025-04-09/
https://www.reuters.com/business/microsoft-spend-record-30-billion-this-quarter-ai-investments-pay-off-2025-07-30/
https://www.reuters.com/business/microsoft-spend-record-30-billion-this-quarter-ai-investments-pay-off-2025-07-30/
https://www.techradar.com/pro/nvidias-fastest-ai-chip-ever-could-cost-a-rather-reasonable-dollar40000-but-chances-that-you-will-actually-be-able-to-buy-one-on-its-own-are-very-very-low-and-for-a-good-reason
https://www.techradar.com/pro/nvidias-fastest-ai-chip-ever-could-cost-a-rather-reasonable-dollar40000-but-chances-that-you-will-actually-be-able-to-buy-one-on-its-own-are-very-very-low-and-for-a-good-reason
https://www.techradar.com/pro/nvidias-fastest-ai-chip-ever-could-cost-a-rather-reasonable-dollar40000-but-chances-that-you-will-actually-be-able-to-buy-one-on-its-own-are-very-very-low-and-for-a-good-reason
https://www.techradar.com/pro/nvidias-fastest-ai-chip-ever-could-cost-a-rather-reasonable-dollar40000-but-chances-that-you-will-actually-be-able-to-buy-one-on-its-own-are-very-very-low-and-for-a-good-reason
https://www.reuters.com/business/openai-hits-12-billion-annualized-revenue-information-reports-2025-07-31/
https://www.reuters.com/business/openai-hits-12-billion-annualized-revenue-information-reports-2025-07-31/
https://arxiv.org/abs/2401.02038
https://arxiv.org/abs/2401.02038
https://arxiv.org/abs/2401.02038

Bibliography

[7] Fanlong Zeng et al. “Distributed training of large language models: A survey”.
In: Natural Language Processing Journal 12 (2025), p. 100174. 1SSN: 2949-
7191. DOI: https://doi.org/10.1016/j.nlp.2025.100174. URL: https:
//www.sciencedirect.com/science/article/pii/S2949719125000500.

[8] Yash Sharma. Decoder-Only Transformers Explained: The Engine Behind
LLMs. https://medium. com/@yash9439/decoder-only-transformers-
explained-the-engine-behind-11ms-3a3224086afe. Accessed: 2025-08-
21. 2023.

[9] Hendrik Strobelt. Neural Network Embeddings Explained. https://medium.
com/data-science/neural-network-embeddings-explained-4d028e6f0526.
Accessed: 2025-08-21. 2019.

[10] Jiirgen Schmidhuber. “Deep learning in neural networks: An overview”. In:
Neural Networks 61 (Jan. 2015), pp. 85-117. 1SSN: 0893-6080. DOI: 10.1016/
j.neunet.2014.09.003. URL: http://dx.doi.org/10.1016/j.neunet.
2014.09.003.

[11] Ayon Ghosh. Cross Entropy in Large Language Models (LLMs). https://
medium.com/ai-assimilating-intelligence/cross-entropy-in-large-
language-models-11ms-4f1c842b5fca. Accessed: 2025-08-21. 2024.

[12] Matthew Stewart. Backpropagation: Step by Step Derivation. https: //
towardsdatascience. com/backpropagation-step-by-step-derivation-
99ac8fbdcc28/. Accessed: 2025-08-21. 2019.

[13] Jie Guiet al. A Survey on Self-supervised Learning: Algorithms, Applications,
and Future Trends. 2024. arXiv: 2301.05712 [cs.LG]. URL: https://arxiv.
org/abs/2301.05712.

[14] Amit Kumar. Masked Language Model: All You Need to Know. https://
medium. com/@amit25173/masked- language-model-all-you-need-to-
know-12ab35319d09. Accessed: 2025-08-21. 2023.

[15] Alonso Silva. Next Token Prediction. https: //huggingface . co/blog/
alonsosilva/nexttokenprediction. Accessed: 2025-08-21. 2023.

[16] Lorna Franklin. Supervised Fine-Tuning: Customizing LLMs. https://medium.
com/mantisnlp/supervised-fine-tuning-customizing-1llms-a2cledbf22c3.
Accessed: 2025-08-21. 2024.

[17] Shuhe Wang et al. Reinforcement Learning Enhanced LLMs: A Survey. 2025.
arXiv: 2412.10400 [cs.CL]. URL: https://arxiv.org/abs/2412.10400.

139

https://doi.org/https://doi.org/10.1016/j.nlp.2025.100174
https://www.sciencedirect.com/science/article/pii/S2949719125000500
https://www.sciencedirect.com/science/article/pii/S2949719125000500
https://medium.com/@yash9439/decoder-only-transformers-explained-the-engine-behind-llms-3a3224086afe
https://medium.com/@yash9439/decoder-only-transformers-explained-the-engine-behind-llms-3a3224086afe
https://medium.com/data-science/neural-network-embeddings-explained-4d028e6f0526
https://medium.com/data-science/neural-network-embeddings-explained-4d028e6f0526
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003
https://medium.com/ai-assimilating-intelligence/cross-entropy-in-large-language-models-llms-4f1c842b5fca
https://medium.com/ai-assimilating-intelligence/cross-entropy-in-large-language-models-llms-4f1c842b5fca
https://medium.com/ai-assimilating-intelligence/cross-entropy-in-large-language-models-llms-4f1c842b5fca
https://towardsdatascience.com/backpropagation-step-by-step-derivation-99ac8fbdcc28/
https://towardsdatascience.com/backpropagation-step-by-step-derivation-99ac8fbdcc28/
https://towardsdatascience.com/backpropagation-step-by-step-derivation-99ac8fbdcc28/
https://arxiv.org/abs/2301.05712
https://arxiv.org/abs/2301.05712
https://arxiv.org/abs/2301.05712
https://medium.com/@amit25173/masked-language-model-all-you-need-to-know-12ab35319d09
https://medium.com/@amit25173/masked-language-model-all-you-need-to-know-12ab35319d09
https://medium.com/@amit25173/masked-language-model-all-you-need-to-know-12ab35319d09
https://huggingface.co/blog/alonsosilva/nexttokenprediction
https://huggingface.co/blog/alonsosilva/nexttokenprediction
https://medium.com/mantisnlp/supervised-fine-tuning-customizing-llms-a2c1edbf22c3
https://medium.com/mantisnlp/supervised-fine-tuning-customizing-llms-a2c1edbf22c3
https://arxiv.org/abs/2412.10400
https://arxiv.org/abs/2412.10400

Bibliography

[18] Kar Vaitheeswaran. How Long Will It Take to Train an LLM Model Like
GPT-8% https://karvai.medium. com/how-long-will-it-take-to-
train-an-11lm-model-1like-gpt-3-d48407198077. Accessed: 2025-08-21.
2023.

[19] Alexandru M. Gherghescu et al. “A Look Into Training Large Language Mod-
els on Next Generation Datacenters”. In: arXiv preprint arXiv:2407.12819
(2024). URL: https://arxiv.org/abs/2407.12819.

[20] Zixuan Zhou et al. A Survey on Efficient Inference for Large Language Mod-
els. 2024. arXiv: 2404.14294 [cs.CL]. URL: https://arxiv.org/abs/2404.
14294.

[21] Reiner Pope et al. Efficiently Scaling Transformer Inference. 2022. arXiv:
2211.05102 [cs.LG]. URL: https://arxiv.org/abs/2211.05102.

[22] —. How OpenAl Serves Millions of Requests for GPT Models. Accessed:
2025-08-22. 2025. URL: https://sderay.com/how-openai-serves-millions-
of-requests-for-gpt-models/.

[23] Zachary C. Lipton, John Berkowitz, and Charles Elkan. A Critical Review of
Recurrent Neural Networks for Sequence Learning. 2015. arXiv: 1506.00019
[cs.LG]. URL: https://arxiv.org/abs/1506.00019.

[24] Daksh Patel. Understanding the Vanishing and Ezploding Gradient Problems
m RNNs. https://medium.com/@helloitsdaksh@@7/understanding-the-
vanishing-and-exploding-gradient-problems-in-rnns-7621efd97605.
Accessed: 2025-08-22. 2021.

[25] Merve Durna. NLP with Deep Learning: Neural Networks, RNNs, LSTMs,
and GRU. https://medium.com/@mervebdurna/nlp-with-deep-learning-
neural-networks-rnns-1stms-and-gru-3de7289bb4f8. Accessed: 2025-08-
22. 2020.

[26] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Align and Translate. 2016. arXiv: 1409.
0473 [cs.CL]. URL: https://arxiv.org/abs/1409.0473.

[27] Yacine Bouaouni. From RNNs to Transformers: A Journey through the Evo-
lution of Attention Mechanisms in NLP. https://medium.com/@yacinebouaouni@7/
from-rnns-to-transformers-a-journey-through-the-evolution-of-
attention-mechanisms-in-nlp-ef937e2c8d05. Accessed: 2025-08-22. 2023.

[28] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762
[cs.CL]. URL: https://arxiv.org/abs/1706.03762.

[29] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv:
2005.14165 [cs.CL]. URL: https://arxiv.org/abs/2005.14165.

140

https://karvai.medium.com/how-long-will-it-take-to-train-an-llm-model-like-gpt-3-d48407198077
https://karvai.medium.com/how-long-will-it-take-to-train-an-llm-model-like-gpt-3-d48407198077
https://arxiv.org/abs/2407.12819
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2211.05102
https://arxiv.org/abs/2211.05102
https://sderay.com/how-openai-serves-millions-of-requests-for-gpt-models/
https://sderay.com/how-openai-serves-millions-of-requests-for-gpt-models/
https://arxiv.org/abs/1506.00019
https://arxiv.org/abs/1506.00019
https://arxiv.org/abs/1506.00019
https://medium.com/@helloitsdaksh007/understanding-the-vanishing-and-exploding-gradient-problems-in-rnns-7621efd97605
https://medium.com/@helloitsdaksh007/understanding-the-vanishing-and-exploding-gradient-problems-in-rnns-7621efd97605
https://medium.com/@mervebdurna/nlp-with-deep-learning-neural-networks-rnns-lstms-and-gru-3de7289bb4f8
https://medium.com/@mervebdurna/nlp-with-deep-learning-neural-networks-rnns-lstms-and-gru-3de7289bb4f8
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://medium.com/@yacinebouaouni07/from-rnns-to-transformers-a-journey-through-the-evolution-of-attention-mechanisms-in-nlp-ef937e2c8d05
https://medium.com/@yacinebouaouni07/from-rnns-to-transformers-a-journey-through-the-evolution-of-attention-mechanisms-in-nlp-ef937e2c8d05
https://medium.com/@yacinebouaouni07/from-rnns-to-transformers-a-journey-through-the-evolution-of-attention-mechanisms-in-nlp-ef937e2c8d05
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165

Bibliography

[30] Neal Reeves et al. “The Death of Wikipedia?” — Exploring the Impact of
ChatGPT on Wikipedia Engagement. 2024. arXiv: 2405.10205. URL: https:
//arxiv.org/abs/2405.10205.

[31] Dan Jurafsky. Transformer Models. https://web.stanford.edu/~jurafsky/
slp3/slides/transformer24aug . pdf. Lecture slides, Stanford University.
Accessed: 2025-08-22. 2024.

[32] DataTechNotes. Tokenization in LLMs: BPE and WordPiece. https: //
www . datatechnotes . com/ 2025/ 06/ tokenization-in-11lms-bpe-and-
wordpiece.html. Accessed: 2025-08-22. 2025.

[33] Nicholas Roberts. “How Powerful Are Decoder-Only Transformer Neural
Models?” In: arXiv preprint arXiv:2305.17026 (2023). URL: https://arxiv.
org/abs/2305.17026.

[34] Jay Alammar. The lllustrated Transformer. https://jalammar.github.io/
illustrated-transformer/. Accessed: 2025-08-22. 2018.

[35] Shuxiao Chen et al. “A Simple and Effective Positional Encoding for Trans-
formers”. In: arXiv preprint arXiv:2104.08698 (2021). URL: https://arxiv.
org/abs/2104.08698.

[36] Dmitriy Guzhov. Simplifying Transformer Blocks: A Detailed Mathemati-
cal Ezxplanation. https://medium.com/autonomous-agents/simplifying-
transformer-blocks-a-detailed-mathematical-explanation-c422d3e3ef8f.
Accessed: 2025-08-22. 2023.

[37] Cameron R. Wolfe. Decoder-Only Transformers: The Workhorse of Modern
Al https://cameronrwolfe.substack.com/p/decoder-only-transformers-
the-workhorse. Accessed: 2025-08-22. 2023.

[38] Aditya Thiruvengadam. Transformer Architecture: Attention Is All You Need.
https://medium.com/@adityathiruvengadam/transformer-architecture-
attention-is-all-you-need-aeccd9f50d09. Accessed: 2025-08-22. n.d.

[39] Aditya Pande. Understanding LLMs 1: Introduction to Multi Head Attention.
https://medium. com/@aditya.p22/understanding-1lms-9e5486ce36a9.
Accessed: 2025-08-22. 2025.

[40] Gianluca Guidi et al. “Environmental Burden of United States Data Cen-
ters in the Artificial Intelligence Era”. In: arXiv preprint arXiv:2411.09786
(2024). DOI: 10.48550/arXiv.2411.09786. URL: https://arxiv.org/abs/
2411.09786.

[41] Ang Li et al. “Evaluating Modern GPU Interconnect: PCle, NVLink, NV-
SLI, NVSwitch and GPUDirect”. In: arXiv preprint arXiv:1903.04611 (2019).
URL: https://arxiv.org/abs/1903.04611.

141

https://arxiv.org/abs/2405.10205
https://arxiv.org/abs/2405.10205
https://arxiv.org/abs/2405.10205
https://web.stanford.edu/~jurafsky/slp3/slides/transformer24aug.pdf
https://web.stanford.edu/~jurafsky/slp3/slides/transformer24aug.pdf
https://www.datatechnotes.com/2025/06/tokenization-in-llms-bpe-and-wordpiece.html
https://www.datatechnotes.com/2025/06/tokenization-in-llms-bpe-and-wordpiece.html
https://www.datatechnotes.com/2025/06/tokenization-in-llms-bpe-and-wordpiece.html
https://arxiv.org/abs/2305.17026
https://arxiv.org/abs/2305.17026
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2104.08698
https://arxiv.org/abs/2104.08698
https://medium.com/autonomous-agents/simplifying-transformer-blocks-a-detailed-mathematical-explanation-c422d3e3ef8f
https://medium.com/autonomous-agents/simplifying-transformer-blocks-a-detailed-mathematical-explanation-c422d3e3ef8f
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse
https://medium.com/@adityathiruvengadam/transformer-architecture-attention-is-all-you-need-aeccd9f50d09
https://medium.com/@adityathiruvengadam/transformer-architecture-attention-is-all-you-need-aeccd9f50d09
https://medium.com/@aditya.p22/understanding-llms-9e5486ce36a9
https://doi.org/10.48550/arXiv.2411.09786
https://arxiv.org/abs/2411.09786
https://arxiv.org/abs/2411.09786
https://arxiv.org/abs/1903.04611

Bibliography

[42]

[43]

|44]

[45]

|46]

[47]

48]

49]

[50]

[51]

Meta Engineering. RoCE Network: Distributed Al Training at Scale. https:
//engineering. fb.com/2024/08/05/data-center-engineering/roce-
network -distributed-ai-training-at-scale/. Accessed: 2025-08-22.
Aug. 2024.

Adithya Gangidi et al. “RDMA over Ethernet for Distributed Al Training
at Meta Scale”. In: Proceedings of the ACM SIGCOMM 2024 Conference
(SIGCOMM ’24). Sydney, NSW, Australia: Association for Computing Ma-
chinery, 2024, pp. 57-70. DOI: 10.1145/3651890 . 3672233. URL: https:
//doi.org/10.1145/3651890.3672233.

Wikipedia contributors. InfiniBand. https://en.wikipedia.org/wiki/
InfiniBand. Accessed: 2025-08-22. 2025.

NVIDIA. NVIDIA DGX B200. https://www.nvidia.com/en-us/data-
center/dgx-b200/. Product page. States “up to 15x” inference performance
vs DGX H100. Accessed: 2025-08-22. 2025.

NVIDIA. NVIDIA Blackwell Platform Arrives to Power a New Era of Com-
puting. https://nvidianews . nvidia. com/ news/nvidia- blackwell -
platform-arrives-to-power-a-new-era-of-computing. Press release.
Confirms GB200/Grace-Blackwell naming and “up to 30x” LLM inference
for GB200 NVL72 vs the same number of H100 GPUs. Accessed: 2025-08-
22. Mar. 2024.

Seifeur. How Many GPUs Are Needed to Train GPT-/¢ https://seifeur.
com/how-many-gpus-are-needed-to-train-gpt-4/. Accessed: 2025-08-22.
n.d.

Zak Killian. Configuring 100K NVIDIA H200/H100 GPUs Usually Takes
Years But Musk Did It In 19 Days. https://hothardware.com/news/musk-
colossus-19-days. Accessed: 2025-08-22. 2024.

Data from the Trenches. Quantization in LLMs: Why does it matter? Ac-
cessed: 2025-08-22. 2024. URL: https://medium. com/data- from- the -
trenches/quantization-in-1lms-why-does-it-matter-7c32d2513c9e.

Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. 2019. arXiv: 1810.04805 [cs.CL]. URL: https:
//arxiv.org/abs/1810.04805.

Neptune Al. Transformers Key-Value Caching: How it Works and Why it
Matters. Accessed: 2025-08-22. 2024. URL: https: //neptune. ai/blog/
transformers-key-value-caching.

142

https://engineering.fb.com/2024/08/05/data-center-engineering/roce-network-distributed-ai-training-at-scale/
https://engineering.fb.com/2024/08/05/data-center-engineering/roce-network-distributed-ai-training-at-scale/
https://engineering.fb.com/2024/08/05/data-center-engineering/roce-network-distributed-ai-training-at-scale/
https://doi.org/10.1145/3651890.3672233
https://doi.org/10.1145/3651890.3672233
https://doi.org/10.1145/3651890.3672233
https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/InfiniBand
https://www.nvidia.com/en-us/data-center/dgx-b200/
https://www.nvidia.com/en-us/data-center/dgx-b200/
https://nvidianews.nvidia.com/news/nvidia-blackwell-platform-arrives-to-power-a-new-era-of-computing
https://nvidianews.nvidia.com/news/nvidia-blackwell-platform-arrives-to-power-a-new-era-of-computing
https://seifeur.com/how-many-gpus-are-needed-to-train-gpt-4/
https://seifeur.com/how-many-gpus-are-needed-to-train-gpt-4/
https://hothardware.com/news/musk-colossus-19-days
https://hothardware.com/news/musk-colossus-19-days
https://medium.com/data-from-the-trenches/quantization-in-llms-why-does-it-matter-7c32d2513c9e
https://medium.com/data-from-the-trenches/quantization-in-llms-why-does-it-matter-7c32d2513c9e
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://neptune.ai/blog/transformers-key-value-caching
https://neptune.ai/blog/transformers-key-value-caching

Bibliography

[52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]
62]

[63]

Sailakkshmi Allada. Understanding the Two Key Stages of LLM Inference:
Prefill and Decode. Accessed: 2025-08-22. 2024. URL: https://medium.com/
@sailakkshmiallada / understanding - the - two - key - stages - of - 11m-
inference-prefill-and-decode-29ec2b468114.

PyTorch. PyTorch. https://pytorch.org/. Accessed: 2025-08-22. 2025.

Subhabrata Mukherjee et al. Orca: Progressive Learning from Complex Fx-
planation Traces of GPT-/. 2023. arXiv: 2306.02707 [cs.CL]. URL: https:
//arxiv.org/abs/2306.02707.

Woosuk Kwon et al. Efficient Memory Management for Large Language
Model Serving with PagedAttention. 2023. arXiv: 2309.06180 [cs.LG]. URL:
https://arxiv.org/abs/2309.06180.

Ramya Prabhu et al. vAttention: Dynamic Memory Management for Serv-
ing LLMs without PagedAttention. 2025. arXiv: 2405.04437 [cs.LG]. URL:
https://arxiv.org/abs/2405.04437.

Tri Dao et al. FlashAttention: Fast and Memory-Efficient Exact Attention
with 10-Awareness. 2022. arXiv: 2205.14135 [cs.LG]. URL: https://arxiv.
org/abs/2205.14135.

Bin Lin et al. Infinite-LLM: Efficient LLM Service for Long Context with
DistAttention and Distributed KVCache. 2024. arXiv: 2401.02669 [cs.DC].
URL: https://arxiv.org/abs/2401.02669.

Ruoyu Qin et al. Mooncake: A KVCache-centric Disaggregated Architecture
for LLM Serving. 2024. arXiv: 2407 .00079 [cs.DC]. URL: https://arxiv.
org/abs/2407.00079.

vLLM Contributors. vLLM. https://github.com/vllm-project/vllm.
GitHub repository. Accessed: 2025-08-22. 2025.

NVIDIA. TensorRT-LLM. https://github.com/NVIDIA/TensorRT-LLM.
GitHub repository. Accessed: 2025-08-22. 2025.

SGLang Contributors. SGLang. https://github.com/sgl-project/sglang.
GitHub repository. Accessed: 2025-08-22. 2025.

NVIDIA. Introducing NVIDIA Dynamo: A Low-Latency Distributed Infer-
ence Framework for Scaling Reasoning AI Models. https: //developer .
nvidia.com/blog/introducing-nvidia-dynamo-a-low-latency-distributed-
inference- framework - for-scaling - reasoning-ai-models/. Accessed:
2025-08-24. 2024.

143

https://medium.com/@sailakkshmiallada/understanding-the-two-key-stages-of-llm-inference-prefill-and-decode-29ec2b468114
https://medium.com/@sailakkshmiallada/understanding-the-two-key-stages-of-llm-inference-prefill-and-decode-29ec2b468114
https://medium.com/@sailakkshmiallada/understanding-the-two-key-stages-of-llm-inference-prefill-and-decode-29ec2b468114
https://pytorch.org/
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2306.02707
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2405.04437
https://arxiv.org/abs/2405.04437
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2401.02669
https://arxiv.org/abs/2401.02669
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2407.00079
https://arxiv.org/abs/2407.00079
https://github.com/vllm-project/vllm
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/sgl-project/sglang
https://developer.nvidia.com/blog/introducing-nvidia-dynamo-a-low-latency-distributed-inference-framework-for-scaling-reasoning-ai-models/
https://developer.nvidia.com/blog/introducing-nvidia-dynamo-a-low-latency-distributed-inference-framework-for-scaling-reasoning-ai-models/
https://developer.nvidia.com/blog/introducing-nvidia-dynamo-a-low-latency-distributed-inference-framework-for-scaling-reasoning-ai-models/

Appendix A

Alignment with the Sustainable
Development Goals

This chapter outlines how the present Bachelor’s Thesis aligns with the Sustainable
Development Goals (SDGs).

The Sustainable Development Goals (SDGs) are a collection of 17 global goals
set by the United Nations in 2015, intended to be achieved by 2030. These goals
represent an urgent call of action by all countries, and aim to tackle three in-
terconnected dimensions: social, economic, and environmental. Each of those
dimensions, encompases a set of objectives to ensure prosperity and the well-being
of the planet.

144

(@) SUSTAINABLE (™ &,
& DEVELOPMENT \J%ws® ALS

NO GOOD HEALTH
POVERTY AND WELL-BEING

QUALITY GENDER CLEAN WATER

EDUCATION EQUALITY AND SANITATION

el

DECENT WORK AND INDUSTRY, INNOVATION
ECONOMIC GROWTH AND INFRASTRUCTURE

RESPONSIBLE
CONSUMPTION
AND PRODUCTION

1 REDUCED
INEQUALITIES

13 CLIMATE 1 LIFE 16 PEACE, JUSTICE PARTNERSHIPS
ACTION BELOW WATER AND STRONG

FOR THE GOALS
INSTITUTIONS

zz@

Figure A.1: Sustainable Development Goals (SDG)

Analyzing the purpose of each of the seventeen goals, it has been concluded that
the three most closely related to the purpose of developing this project are:

SDGY9: Industry, Innovation, and Infrastructure

The SDG 9 focuses on promoting sustainable industrialization, innovation, and
building resilient infrastructure to foster technological advancement and inclusive
economic growth.

In the context of this project, there has been a direct contribution towards achiev-
ing this goal. By analyzing the technological infrastructure performance of large-
scale artificial intelligence inference systems and researching optimization strate-
gies tailored to specific workloads, the project facilitates more efficient resource
utilization, advances innovation in Al technologies, and supports the development
of scalable, robust technological infrastructure.

SDG 12: Responsible Consumption and Production

This project also contributes to SDG 12 by analyzing resource utilization, such
as computational power and memory usage, in large-scale large language model
inference systems. By benchmarking these systems and identifying performance
bottlenecks, the project explores ways to enhance resource efficiency, and such
improvements can lead to reduced energy consumption and minimized waste of

145

computational resources, therefore promoting more responsible, sustainable, and
environmentally-friendly technological practices.

SDG 13: Climate Action

Artificial intelligence infrastructures, particularly those used for training and in-
ference of large models, carry a significant environmental cost due to their high
energy demands. The analysis of hardware performance conducted in this project
contributes to efforts aimed at minimizing the waste of computational resources.
By promoting more efficient and purposeful use of these resources, the project
directly supports the reduction of energy consumption and, consequently, the en-
vironmental footprint of large-scale Al systems.

146

	Introduction
	Description of Technologies
	NVIDIA H100 NVL
	vLLM Inference Engine
	Hugging Face
	Prometheus
	Python
	Pandas
	Matplotlib

	State of the Art
	Stages in the Life Cycle of an LLM
	Distributed Training
	Production-Grade Inference

	Transformer Architecture
	Why transformers have led the AI boom
	Architectural breakdown of Transformers
	The Attention Mechanism

	From Theory to Execution: Infrastructure behind LLMs
	Data Centers
	GPU Memory and Hardware Constraints
	Quantization

	Scaling for Real-World Inference
	Inference SLOs
	Parallelism Strategies
	The Quadratic Complexity in the Attention Mechanism

	KV Caching and the Rise of Memory Bottlenecks
	KV Caching
	Memory Optimization Techniques
	Inference Engines

	Project Definition
	Motivation
	Objectives
	Methology
	Planning
	Economic Study
	Cost Structure of Infrastructure Providers
	Revenue Structure for Infrastructure Providers
	Profit Structure for Infrastructure Providers

	Implemented System
	Benchmark Selection
	Concurrency-Related Benchmarks
	Sequence Length-Related Benchmarks
	Intra-node Scaling-Related Benchmarks

	Pipeline Orchestration
	Purpose and Motivation
	High-Level End-to-End Flow
	Architectural Decisions
	Benefits of This Approach

	Workload Generation
	Purpose and Role in the Benchmarking Pipeline
	Model Access and Request Handling
	Fundamental Benchmarking Unit: Single Request Flow
	Parameterization for Flexibility and Reproducibility
	Benchmark Configuration Parameters
	Structured Output and Result Logging

	Hardware Telemetry Collection
	Purpose and Role in the Benchmarking Pipeline
	Data Source and Collection Method
	Metric Parsing and Storage
	Output Organization
	Architectural Choices and Implications

	Metric Analysis and Visualization Subsytem
	Purpose and Role in the Benchmarking Pipeline
	Input Data Preparation
	Metric Selection and Filtering
	Visualization and Output Storage
	Abstraction Benefits

	Analysis and Interpretation of Results
	Analysis of Concurrency-Driven Performance Scaling
	Analysis of GPU-Memory Saturation Across Concurrency Levels
	Analysis of Queue Formation Triggered by KV-Cache Ceiling
	Analysis of KV-Cache Saturation Effects on Aggregate Throughput
	Analysis of Peak Throughput under Varying Concurrency
	Analysis of Latency Degradation Under Increasing Concurrency
	Analysis of Model Size on Concurrency Limits

	Analysis of Prompt and Generation Sequence Lengths on Inference Latency
	 Prefill Only

	Analysis of Intra-Node Scaling Effects on Inference Performance
	Applied Recommendations Informed by Empirical Findings

	Conclusions
	Achieved Objectives
	Future Work

	Bibliography
	 Alignment with the Sustainable Development Goals

		2025-08-25T22:33:59+0200
	71216314B ATILANO RAMIRO FERNÁNDEZ-PACHECO

		2025-08-26T00:15:14+0200
	GONZALEZ MORAN, LAURA (FIRMA)

