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A B S T R A C T

Flexibility services enable distribution system operators to actively manage the grid for accommodating demand 
and generation growth while potentially reducing or delaying investments in grid reinforcements. This paper 
proposes a novel hybrid particle swarm optimization and linear programming methodology that analyzes explicit 
flexibility procurement as an alternative to conventional network reinforcements in electricity distribution 
network planning. The distribution system planning problem is decomposed into a master problem and an inner 
problem. Binary particle swarm optimization (BPSO) is used to determine the optimal investment decisions, 
binary variables, from a set of candidate grid reinforcements in the master problem. At the inner linear pro
gramming optimization problem, a market-based procurement of flexibility services is performed. The inner 
optimization problem obtains the total cost of flexibility and the volume of flexibility at each network bus 
required to defer or avoid part of the grid reinforcements. A real 500-bus medium voltage network is used to 
validate the proposed methodology. Results illustrate cost-effective network plans that combine flexibility pro
curement with network reinforcements. A sensitivity to the cost and availability of flexibility services is also 
conducted to calculate the thresholds where flexibility becomes an efficient alternative to reinforcing the 
network.

1. Introduction

Current annual grid investments in electricity networks are expected 
to triple by 2030 [1] to meet the United Nations’ goal of net zero carbon 
dioxide emissions by 2050 [2]. Additional network infrastructure will be 
required to integrate the increasing share of distributed renewable en
ergy generation into the power system as well as to enable the electri
fication of transportation, buildings, and industry [3]. At the same time, 
the digitalization of distribution networks (DNs) will allow for better 
controllability of distributed energy resources (DERs) [4], increasing the 
flexibility of the whole power system. In the context of power systems, 
flexibility can be viewed as the ability of market agents to regulate their 
demand or generation profiles in response to signals provided by system 
operators.

Distribution system operators (DSOs) can use this flexibility to 
enhance network planning and operation. The term “non-wire alterna
tive” (NWA) is commonly used to describe any system operator planning 
practice that is employed to defer or avoid the necessity for the con
struction or reinforcement of network elements (e.g., power lines, 

transformers, etc.). In Europe, most DSOs are subject to unbundling 
regulations that stipulate the separation of generation and distribution 
activities. Thus, European DSOs cannot own or operate DERs. The 
preferred NWA practice in Europe is the market-based procurement of 
flexibility services from DERs or aggregators [5]. Article 32 of the 
Directive (EU) 2019/944 mandates DSOs in the European Union to 
incorporate the procurement of flexibility services into their DN devel
opment plans to avoid costly network expansions or reinforcements and 
achieve an efficient and secure operation of DNs [6].

Several authors have developed models to evaluate the techno- 
economic feasibility of incorporating the flexibility provided by de
mand response (DR), distributed generation (DG), and energy storage 
systems (ESSs) into distribution network planning (DNP). A summary of 
the literature review is provided in TABLE 1, differentiating between 
implicit and explicit flexibility mechanisms [7]. Implicit flexibility is 
achieved by incentivizing prosumers and generators to shift load and 
generation to periods of lower energy or network costs. On the other 
hand, explicit flexibility mechanisms require a commitment from flexi
bility providers to temporarily change their consumption or generation 
when requested by the DSO. In TABLE 1, solution methods for DNP with 
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flexibility include mathematical programming, heuristics, or a combi
nation of both. TABLE 1 also reports the case study DN with the highest 
number of nodes analyzed in each reference (DN size).

Implicit demand-side flexibility can be provided in DR programs by 
customers who change their energy consumption in response to price 
signals or other incentives [8]. Considering the price elasticity of de
mand in DNP models influences the optimal network configuration and 

planning costs [9], as network investments can be reduced or deferred 
[10]. The potential reduction of investments achieved by lowering peak 
demand from thermal building loads through DR is analyzed in [11]. In 
addition, DR can reduce network losses and improve the system’s reli
ability [12]. The response of several DERs (shiftable loads, electric ve
hicles, ESS, and DG) can be integrated into a single DNP model to 
postpone or avoid investments in network reinforcements [13].

Other authors, such as [14], combine implicit flexibility provision in 
DNP with DER expansion planning, which studies the siting, sizing, and 
flexible operation of DERs. For example, [10] presents a bi-level DNP 
approach where the minimization of investment costs in the DN and DG 
(upper-level) is subject to the response of the customers to time-varying 
tariffs (lower-level). Incorporating investment decisions and operation 
strategies for ESSs can be used to reduce peak loading, DNP costs, and 
energy losses, as well as to enhance DN reliability and improve bus 
voltages [15–17]. However, these models may not be applicable in 
countries with an unbundled power system.

The unbundling of the power system is addressed in [18] by a tri- 
level model that differentiates agents involved in DNP, siting and 
sizing DG, and operating DG and the DN. Besides, [19] proposes a bi- 
level model in which distribution locational marginal prices (DLMP) 

Nomenclature

Indices and sets
i, j Indices of buses
l Indices of branches (i.e., lines and transformers)
n∊N Indices and set of candidate investments in network 

reinforcements
m Indices of particles in a population
t Indices of iterations

Parameters
c1 Local acceleration constant
c2 Global acceleration constant
CRn Equivalent annual cost of candidate network 

reinforcement n
CPCURT

j Distributed generation curtailment cost at bus j
CPDN

j ,CPUP
j Procurement cost of downward and upward flexible 

active power demand at bus j
CQDN

j , CQUP
j Procurement cost of downward and upward flexible 
reactive power demand at bus j

MVP
i,j , MVQ

i,j Sensitivity matrices relating active and reactive power 
injected at j to increments in bus i voltage

MVReinf
i,l Sensitivity matrix that relates reinforcing branch l to 

increments in bus i voltage
Pl Maximum active power flow in branch l
P*

l Active power flows at the operating point
PTDFl,j Power transfer distribution factors matrix indicating the 

incremental change of active power in branch l for an 
injection at bus j

Vi, Vi Upper and lower voltage limits at bus i
V*

i Voltage magnitude at the operating point
Vdevi Vector of bus voltage deviations from limits
vmax Limit to particles’ velocities
wmax Maximum inertia weight (first iteration)
wmin Minimum inertia weight (last iteration)
ΔPCURT

j Maximum capacity for distributed generation curtailment 
at bus j

ΔPDN
j ,ΔPUP

j Available capacity of downward and upward flexible 

active power demand at bus j
ΔQDN

j ,ΔQUP
j Available capacity of downward and upward flexible 
reactive power demand at bus j

KT,KV Penalties for deviations from thermal and voltage limits

Variables
creinf Equivalent annual cost of investments in network 

reinforcements
cflex Equivalent annual cost of procured flexibility
xinv Investment decision variables on network reinforcements
xn∊{0,1} Investment decision on candidate network reinforcement 

n
yflex Flexibility procurement decision variables
pl Active power flow in branch l
vi Voltage magnitude at bus i
αi,βi Deviations from the upper and lower voltage limits at bus i
γl Deviation from the thermal limit in branch l
δl Deviation of reversed power flow from the thermal limit in 

branch l
ΔpCURT

j Curtailment of distributed generation at bus j
ΔpDN

j , ΔpUP
j Procured volume of downward and upward flexible 
active power demand at bus j

ΔqDN
j , ΔqUP

j Procured volume of downward and upward flexible 
reactive power demand at bus j

φT,V Penalty term for deviations from grid limits
Il Magnitude of the current through branch l
nl Number of elements added in parallel when reinforcing 

branch l
Zl Magnitude of the impedance
ΔVi Increment in bus i voltage with respect to the operating 

point
ΔVdrop

l Reduction in voltage drop along a branch l that is 
reinforced with additional parallel elements

gbest Global-best solution for the population
pbest Own-best solution for the particle
st
m,n Position of m-th particle in n-th dimension at t

vt
m,n Velocity of m-th particle in n-th dimension at t

Table 1 
Literature review of approaches to integrate flexibility in DNP.

References Methods DN size Flexibility
MP Heur. No. of buses Implicit Explicit

[9–11,14,15,18–20] ✓ 54, 26, 10, 18, 18, 
86, 37,123

✓

[12,16,17] ✓ 25, 33, 281 ✓
[13] ✓ ✓ 134 ✓
[22–25] ✓ 21, 133, 

2762, 2762
✓

This paper ✓ ✓ 500 ✓

Methods: MP=Mathematical Programming, Heur. = Heuristic algorithms.
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incentivize private investments in flexible DERs to reduce network re
inforcements. Implicit flexibility as a NWA in a deregulated retail mar
ket is further explored by [20], which proposes a closed-loop scheduling 
mechanism to generate dynamic retail prices associated with the DN’s 
status. These models ([18–20]) have a higher degree of complexity since 
they model the interaction among several market agents as well as 
pricing mechanisms.

The main drawback of implicit flexibility is that market participants 
may not behave rationally and be willing to respond to price signals. In 
addition, end customers may receive multiple signals (e.g., market pri
ces and network charges) that may be contradictory. These uncertainties 
do not arise in explicit flexibility mechanisms where DSOs procure 
flexibility services from aggregators or DER owners. Contracting flexi
bility services simplifies the interaction between DSOs and flexibility 
providers. The DSO no longer needs to anticipate the response of other 
market players to incentives ([18–20]). It receives as input the offers of 
flexibility services characterized by their location, available capacity, 
and price [21]. Therefore, explicit flexibility requires a different type of 
DNP model.

In the literature, few authors have studied explicit flexibility in DNP. 
For instance, temporary demand disconnections to defer grid re
inforcements are analyzed in [22]. The price of the flexible capacity 
provided by DR customers, modeled as a constant parameter, is key for 
this flexibility service to result in an attractive alternative. In [23], the 
cost of explicit flexibility from DR includes customer and DN automation 
upgrades and an annual availability payment for the flexible capacity. 
The multi-stage and multi-scenario recursive algorithm proposed in [23]
evaluates the cost for the DSO of all combinations of potential in
terventions, including flexibility. However, populating the recursive 
function requires substantial initial computations (e.g., power flow 
calculations, Monte Carlo simulations, etc.) that scale exponentially 
with the DN’s size. Tabu search has been used by some of the authors of 
this paper to develop single-stage [24] and multi-stage [25] DNP tools 
for large DNs, such as the 2762 bus grid used in both papers as a case 
study, that include contracting DR flexibility as a planning alternative. 
However, DR flexibility is not procured through a market-based model. 
These models based on metaheuristics do not guarantee to find the 
global optimum, but they achieve good solutions in a reasonable time 
and can handle large DNs [24].

This paper proposes a single-stage deterministic approach that 
evaluates explicit procurement of flexibility as a NWA in DNP. A binary 
particle swarm optimization (BPSO) algorithm is used to determine the 
optimal investment decisions, binary variables, from a set of candidate 
grid reinforcements that minimize the sum of their cost and the pro
curement cost of flexibility obtained from the inner optimization prob
lem. For a given set of grid reinforcements, the inner linear 
programming (LP) optimization problem computes the volume of the 
flexibility services the DSO needs to procure at each bus to achieve a 
secure DN operation. The main contributions of this paper are:

• To improve existing methodologies based on heuristic algorithms for 
explicit flexibility services procurement in DNP [22–25], an inner 
linear programming optimization problem that models a market- 
based mechanism for procuring flexibility has been added.

• The proposed methodology combines the advantages of meta
heuristics, dealing with large-scale DNs, and mathematical pro
gramming, ensuring the optimal volume of flexibility is procured for 
any set of DN reinforcements.

• This paper also assesses the cost and availability thresholds of flex
ibility services that make them viable as a NWA in DNP. In the case 
study for a real 500-bus DN, these thresholds are examined with a 
sensitivity analysis.

The rest of the paper is organized as follows. Section 2 describes the 
proposed hybrid BPSO and LP algorithm for DNP with flexibility. Sec
tion 3 introduces the data inputs and assumptions of the case study. The 

results of this case study are discussed in Section 4. Finally, Section 5
concludes the paper.

2. Methodology

This paper proposes a single-stage deterministic DNP approach to 
evaluate the potential savings of deferring or avoiding future grid re
inforcements by procuring flexibility services. This hybrid approach, 
based on BPSO and LP, is selected over mixed integer linear program
ming (MILP) or second-order cone programming (SOCP) for two rea
sons. First, for each possible selection of grid reinforcements (i.e., for 
each particle in the BPSO algorithm), the procurement of flexibility 
services can be evaluated independently. Thus, in Fig. 1, the DNP 
problem is decomposed into an investment planning problem and a 
flexibility services procurement problem, enabling the use of specific 
algorithms for each problem. Second, the non-linearities in power flows, 
which introduce a significant degree of complexity into pure mathe
matical programming methods, can be effectively addressed in meta
heuristics through power flow evaluations as in [26]. Then, sensitivity 
factors are computed to represent the DN physical constraints when 
clearing the flexibility market. LP flexibility market formulations can 
provide reliable solutions in comparison to SOCP models [27] and have 
been preferred by European flexibility market demonstrators for their 
simplicity and scalability [28].

Although metaheuristics cannot guarantee convergence to the global 
optimum, they have been shown to be an effective tool for planning 
large DNs in practice [22–25]. The proposed hybrid approach improves 
pure heuristic models by introducing a market-based flexibility pro
curement mechanism. The proposed methodology is validated in Section 
4.1 for a test case distribution system.

Active DNP problems can be divided into two levels [29], in our case: 
investment planning (master problem) and flexibility service procure
ment (inner problem). The investment decisions (xinv) in the master 
problem (1)-(4) seek to minimize investments in DN reinforcements 
(creinf ) and flexibility procurement costs (cflex). The decision variables in 
the master problem are the investments in grid reinforcements. For any 
given set of investment decisions on grid reinforcements, the required 
flexibility services (yflex) to guarantee a secure operation within grid 
limits are procured in the inner problem (5)-(7). Then, the inner problem 
feeds back the optimal flexibility procurement results to evaluate the 
master problem, as illustrated in Fig. 1. 

Fig. 1. Decomposition of DNP model in master (BPSO) and inner (LP) opti
mization problems.
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min
xinv

F
(
xinv)+ cflex = creinf + cflex (1) 

s.t. G
(
xinv) = 0 (2) 

H
(
xinv) ≤ 0 (3) 

xinv ∈ {0,1} (4) 

cflex = min
yflex

f
(
yflex) (5) 

s.t. g
(
xinv, yflex) = 0 (6) 

h
(
xinv, yflex) ≤ 0 (7) 

A BPSO algorithm is used to solve the master planning problem that 
selects network reinforcements to minimize DN investment and flexi
bility procurement costs. The inner LP problem procures flexibility 
services via a market-based mechanism to minimize flexibility pro
curement costs for each particle, which represents a combination of DN 
reinforcements. In BPSO, the particles move over the search space 
guided by the individual and global best-known solutions (i.e., solutions 
with the lowest investment and flexibility services procurement cost) 
until the stopping criteria are met. Finally, this methodology has been 
developed for planning actual DNs; hence, the size of the search space is 
automatically reduced using technical criteria to identify and preselect a 
subset of candidate network reinforcements.

The inputs to the model are DN data, a catalog with technical and 
economic parameters for DN equipment (e.g., power lines and trans
formers), and the cost and available capacity of flexibility services at 
each node. The main outputs are the annualized cost of the required grid 
reinforcements and the procured flexibility to achieve a future operation 
that complies with grid limits. The results of this methodology can be 
compared with the annualized cost of grid reinforcements in a scenario 
with no flexible capacity available to quantify the savings in avoiding 
grid reinforcements by employing flexibility. Furthermore, it identifies 
the optimal location where grid reinforcements and flexibility services 
are needed.

2.1. Dimensionality reduction

The proposed methodology is designed to plan real large-scale DNs. 
A scalability analysis of the BPSO algorithm is carried out in TABLE 2. 
For a simple problem with a known solution, the number of decision 
variables is progressively increased, checking when the optimal solution 
is found. This pre-analysis reveals that the number of iterations and 
computation time required to reach convergence sharply increases with 
the number of decision variables, having a reasonable computation time 
until 100 variables.

The number of decision variables has been reduced to a subset of 
candidate network reinforcements applying technical criteria to achieve 
a computationally tractable solution. From a technical standpoint, there 
is no need to reinforce branches (i.e., lines and transformers) located in 
areas where grid limit violations are not anticipated. Consequently, only 

congested lines and clusters of buses that share similar voltage limit 
violations, designated as voltage clusters (VCLs), are considered. A 
depth-first search algorithm determines these VCLs for a planning sce
nario. This algorithm traverses the radial DN and examines the voltage 
magnitude for all buses downstream of a given bus. If all of them have 
undervoltage (or overvoltage) problems, they are clustered into the 
same VCL. The proposed methodology has the additional benefit of 
reducing the search space size and decoupling the number of decision 
variables from the DN size, as only preselected candidate investments 
are considered.

The particles for BPSO are defined as a vector of binary decision 
variables with a length equal to the total number of congested branches 
and voltage clusters previously identified. In this vector, a 1 in the entry 
of a power line means it must be reinforced, while a 1 in a VCL entry 
implies that voltage limit violations in its buses are solved using re
inforcements. For example, in Fig. 2, branches 2 and 3 are reinforced 
with parallel elements to increase their capacity, while voltage viola
tions at the buses in cluster 1 are solved with a heuristic algorithm (see 
Section 2.2) that determines which branches should be reinforced to 
reduce the voltage drop. The principal rationale for using a meta-heu
ristic, such as BPSO, and the heuristics for identifying potential grid 
investments is to facilitate the analysis of more complex problems. In 
Section 4.1, an exhaustive search in a small test case is conducted to 
verify that the use of BPSO and the simplifications made to reduce the 
number of decision variables (e.g., clustering of buses) do not signifi
cantly affect the quality of the solution.

2.2. Preselection of candidate network reinforcements

Two heuristics are used to determine candidate network re
inforcements. If the decision variable (Fig. 2) takes a value of 1, the 
violation in that branch or voltage cluster is solved using grid re
inforcements. When a branch exceeds its capacity limit, it is reinforced 
by investing in a new element with a higher power rating. On the other 
hand, solving voltage violations is not straightforward since reinforcing 
a branch to reduce its voltage drop affects the voltage of several nodes in 
the DN. Therefore, for each voltage cluster, the candidate branches to be 
reinforced are ranked by a KPI that measures the reduction in voltage 
deviations achieved by reinforcing that line [44]: 

KPI =
∑

i∈VCL

(

Vdevi − MVReinf
i,l •

(

1 −
1

nMAX
l

))

(8) 

where Vdev is the vector of voltage deviations over the limits at each bus 
i that belongs to the cluster (VCL), MVReinf is the sensitivity matrix that 
measures the impact of reinforcing branch l on the voltage of bus i (see 
Appendix A), and nMAX

l is the maximum number of equivalent parallel 
lines of branch l to reinforce. An engineering criterion forcing monotony 
of decreasing nominal ampacities is applied by providing an upper 
bound to nMAX

l so that the rated capacity of branch l can only be 
increased up to the capacity of its upstream branch.

2.3. Master problem

The objective of the master problem (9) is to select, from the pre- 
identified candidate investments for reinforcing the DN, the combina
tion that minimizes the sum of the annual costs of network re
inforcements and flexibility services. 

min
xn

creinf + cflex +φT,V (9) 

Table 2 
Scalability with Number of Variables.

Number 
of 
iterations

Computation 
time*

Maximum number of variables for which 
convergence to optimum was achieved

150 1.25 h 30
1500 12.5 h 100
15,000 125 h 130

* The computation time in this pre-analysis does not consider the parallelization 
of the BPSO algorithm. Simulations carried out on a PC with an 11th Gen Intel® 
Core® i7-1185G7 CPU at 3.00 GHz and 16 GB of RAM.

Fig. 2. Example of a particle with six binary decision variables.
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The first term of (9) is the annual cost of the investments in network 
reinforcements (xn), which are the master problem variables. This is 
modeled in (10), where the equivalent annual cost of the network re
inforcements (CRn) is obtained based on the catalog of new network 
elements that is provided as input. 

creinf =
∑

n
CRn⋅xn (10) 

The second term of (9) accounts for the annual procurement cost of 
flexibility (cflex). In (11), cflex depends on the procured volumes of flex
ibility services, which are not variables of the master problem, but 
instead determined by the inner optimization problem. Thus, in the 
master problem, (11) is evaluated based on the optimum values ob
tained after solving the inner optimization problem (13)-(26). 

cflex =
∑

j
(CPDN

j ΔpDN
j +CPUP

j ΔpUP
j +CQDN

j ΔqDN
j 

+CQUP
j ΔqUP

j +CPCURT
j ΔpCURT

j ) (11) 

The BPSO algorithm selects in the master problem the optimal 

investments in network reinforcements from the pre-identified candi
dates. Particle swarm optimization (PSO), introduced by Kennedy and 
Eberhart [30], is a widely used metaheuristic algorithm that performs 
optimization inspired by the social behavior of the movement of birds in 
a flock. The flowchart of the BPSO algorithm used to solve the master 
problem is shown in Fig. 3. More details on the BPSO algorithm 
implementation and its parameters are provided in Appendix B.

Basic versions of PSO algorithms cannot handle constrained prob
lems, and penalty functions are commonly added to avoid convergence 
to unfeasible solutions [31]. Given that feasible DN plans should verify 
thermal and voltage limits, the term φT,V is added in (9) to penalize 
unfeasible solutions based on the amount that grid limits are exceeded. 

φT,V = KV
∑

i
(αi + βi)+KT

∑

l
(γl + δl) (12) 

where αi and βi represent the deviations from the upper (Vi) and lower 
(Vi ) voltage limits. Similarly, γl and δl account for the surplus over the 
thermal limits (Pl) of the lines for normal and reversed active power 
flows, respectively. The factors KV and KT in (12) are sufficiently large 
numbers, so any feasible solution is always preferred over an unfeasible 
one.

2.4. Inner optimization problem

The inner optimization problem optimizes the capacity and location 
of flexibility services required to solve the congestion and voltage 
problems, which are not solved at the master problem through network 
reinforcements. The network configuration, given by the reinforcements 
selected by the master problem, is assumed to remain fixed in the inner 
optimization problem. In the inner optimization problem, the DSO can 
contract several flexibility services, characterized by their location 
(connected at the j-th bus), maximum flexible capacity available, and 
price [21]. The contracted volumes for each type of flexibility service at 
each node are the variables of the inner optimization problem, formu
lated as a LP problem. 

min
∑

j
(CPDN

j ΔpDN
j +CPUP

j ΔpUP
j +CQDN

j ΔqDN
j 

+CQUP
j ΔqUP

j +CPCURT
j ΔpCURT

j )+φT,V (13) 

s.t. 

0 ≤ ΔpUP
j ≤ ΔPUP

j ∀j (14) 

0 ≤ ΔpDN
j ≤ ΔPDN

j ∀j (15) 

0 ≤ ΔpCURT
j ≤ ΔPCURT

j ∀j (16) 

0 ≤ ΔqUP
j ≤ ΔQUP

j ∀j (17) 

0 ≤ ΔqDN
j ≤ ΔQDN

j ∀j (18) 

pl = P*
l +

∑

j
PTDFl,j⋅(− ΔpUP

j +ΔpDN
j 

− Δpcurt
j )∀l (19) 

vi = V*
i +

∑

j
MVP

i,j

(
− ΔpUP

j +ΔpDN
j − Δpcurt

j

)

+
∑

j
MVQ

i,j

(
− ΔqUP

j +ΔqDN
j

)
∀l (20) 

− Pl ≤ pl + γl∀l (21) 

Pl ≥ pl − δl∀l (22) 

Fig. 3. Flowchart of BPSO algorithm used to solve the master problem.
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Fig. 4. Location of the identified congested branches.

Fig. 5. Clusters of buses experiencing undervoltage conditions.
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Vi ≤ vi +αi∀i (23) 

Vi ≥ vi − βi∀i (24) 

αi ≥ 0, βi ≥ 0∀i (25) 

γl ≥ 0, δl ≥ 0∀l (26) 

The objective function of the inner problem (13) minimizes the 
annual procurement cost of the necessary flexibility services that ensure 
a safe operation of the DN. The procured volume of the flexibility ser
vices at each bus is bounded by the available capacity for flexibility 
services per bus (14)-(18).

The power flow equations have been linearized as (19)-(20) using 
two matrices that relate the increments in active and reactive power 
injections at the j-th bus with: i) the l-th branch flow and ii) the i-th bus 
voltage. The first, known as the (incremental) power transfer distribu
tion factors (PTDFs), gives the relative change in branch loading due to a 
change in the active power injection at a bus [32]. For the latter, two 
sensitivity matrices that are derived from the Jacobian matrix are used 
to model the effect in bus voltages of changes in active power injections 
(MVP) and reactive power injections (MVQ) [33]. Note that these sensi
tivity matrices depend on the operating point and more iterations 
updating the operating point may be needed to reduce the linearization 
error.1 The first iteration takes as the operating point the result of the 
preliminary power flow. Subsequently, the previous solution is used as 
the point for the linearization in the next iteration.

Finally, constraints (21)-(24) ensure that thermal and voltage limits 
are not exceeded. However, when the master problem selects too few 
network reinforcements, there may not be sufficient flexibility to solve 
all congestion and voltage problems. Thus, constraints (21)-(24) are 
implemented using slack and surplus variables to guarantee that the 
problem is always feasible, even when the available flexible capacity is 
insufficient to reach a secure DN operation. These deviations over the 
voltage and thermal limits are penalized in the objective function of the 
inner problem (13) using the same penalty function (φT,V) as in (12). 
Adding this penalty to inner optimization objective function makes de
viations from the thermal and voltage limits less desirable than pro
curing flexibility, avoiding all violations of grid limits that can be solved 
with the available flexibility offered to the DSO.

3. Case study

A case study of an actual 20 kV rural DN operated by i-DE in Spain is 
analyzed. The DN consists of 500 buses and 504 branches and is larger 
than the ones typically used in the literature. This DN is supplied 
through a high voltage/medium voltage (HV/MV) 20 MVA substation 
and contains 243 km of MV power lines. The DN is operated radially 
with five open branches, and only the MV network is modeled. It is 
assumed that there are no technical violations in low voltage (LV). 
Therefore, consumers and DG are represented as aggregated demand 
and generation connected at terminal MV nodes. The aggregated con
tracted power at the distribution transformers is 43 MW, and the 
installed capacity of DG is 7.36 MW.

A worst-case future peak demand planning scenario is built, 
considering that the demand for each consumer during peak hours is 60 
% of their current contracted power. Consequently, the aggregated peak 
demand is 26 MW. In this scenario, the power flow results in 14 over
loaded branches, colored in red in Fig. 4. Besides, the upper and lower 
voltage limits are defined as 1.05p.u. and 0.95p.u., respectively. Fig. 5
shows the buses with under-voltage conditions, which are grouped into 
4 voltage clusters. Thus, each BPSO particle has 18 binary decision 

variables for candidate investments in network reinforcements.
In addition, an equipment catalog for new network elements (i.e., 

power lines and transformers) is provided as input to the model. It is 
created using the reference CAPEX and OPEX values defined by the 
Spanish regulation [34]. The annualized cost of each asset in the catalog 
is calculated considering an expected life of 40 years [34] and a 5.58 % 
discount rate [35].

The procurement cost of flexibility services is more difficult to esti
mate since limited data from real-world implementations are available. 
Two factors are considered for estimating the annual procurement cost 
of flexibility services: i) the number of peak hours throughout the year 
when the activation of the service is required and ii) the unitary cost of 
contracting the flexibility for one hour. In the base case, it is assumed an 
annual procurement cost for active power demand flexibility (CPDN

j and 
CPUP

j ) of 2.34€/kW-yr. based on reports from recent tenders in the UK 
[36,37].2 Besides, customers providing these flexibility services can 
deviate up to 25 % from their peak consumption in the base case. Then, 
two sensitivities for the procurement cost and availability of flexibility 
are conducted to illustrate how they affect the total cost of the DN plans 
and the required investment decisions.

Although the formulation also allows for reactive power flexibility 
services, they are not considered in this case study for simplicity. The 
compensation price for DG curtailment is set to 150€/MWh,3 hence 
CPCURT

j takes a value of 8.55€/kW-yr. in the base case. Finally, the 
penalties for deviations from voltage and thermal limits (KV and KT) are 
set to 1 billion €/p.u and 1 billion €/MWh., so any solution that results in 
a secure operation of the DN is always preferred over unfeasible ones.

4. Results

4.1. 18-bus test distribution system

Two factors have been identified that could result in suboptimal 
solutions: firstly, the BPSO algorithm may converge to a local optimum, 
and secondly, errors may be introduced due to the simplifications made 
to reduce the number of decision variables, which is necessary to deal 
with large-scale problems. These include the clustering of buses 
described in Section 2.1 and the heuristics for preselecting candidate DN 
reinforcements presented in Section 2.2.

This section presents a validation of the proposed hybrid BPSO 
methodology against a recursive algorithm that evaluates all potential 
combinations of branch reinforcements and flexibility similar to the one 
in [23]. In essence, the recursive algorithm is a smart exhaustive search 
algorithm that does not evaluate infeasible investment options. The 
recursive algorithm presented in [23] has been adapted to procure 
flexibility through a market-based mechanism (inner LP optimization 
problem in Section 2.4.) instead of considering a set of DR interventions. 
As previously stated, the primary issue with the recursive algorithm is 

1 In the case study, a maximum linearization error of 10− 3p.u. is achieved for 
the bus voltages with two iterations.

2 Recent tenders in the UK have been reviewed to estimate the cost of flex
ibility services. Two factors are studied: the number of peak hours and the 
unitary procurement cost. First, according to UK Power Networks estimations in 
its 2021 flexibility services tender [36], the utilization hours of flexibility ser
vices for reducing peak demand are in the range of 5h – 150h with an average of 
57h. Then, the average unitary procurement cost of flexibility services for 
reducing peak demand is 41€/MWh, with a range from 10€/MWh to 600€/ 
MWh, in Scottish Power Energy Networks’ 2021 tender [37]. In the base case, it 
is considered that the simulated peak demand scenario is occurring 57h per 
year. Multiplying the number of utilization hours (57h) times the average 
unitary cost (41€/MWh) yields the annual procurement cost of 2.34€/kW-yr. 
used in the base case. The full ranges are considered later in the sensitivity to 
the flexibility cost.

3 This cost has been estimated assuming that it does not make sense to 
compensate the DG owner for the curtailment with a higher amount than the 
revenue they obtain from energy generation in the wholesale market.
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that its computational complexity increases exponentially with the 
number of nodes. Therefore, a small grid, the 18-bus test DN from [39], 
is used to validate the model against the recursive algorithm solution.

The initial configuration of the 18-bus test DN does not exhibit any 
congestion or under-voltage issues. A future planning scenario is con
structed with the assumption of a 20 % increase in demand, resulting in 
five overloads (on lines 2, 3, 4, 5, and 11) and six voltage limit violations 
(at buses 5, 6, 7, 8, 15, and 16). The remaining assumptions regarding 
the procurement cost and availability of flexibility services are consis
tent with those introduced in Section 3 for the 500-bus real MV grid case 
study. Fig. 6 illustrates the optimal planning decisions on network 
reinforcement and flexibility procurement for this scenario on the 18- 
bus test DN obtained with the proposed hybrid BPSO approach.

TABLE 3 compares the optimal solution achieved with the proposed 
hybrid BPSO approach and the recursive algorithm. If the monotonicity 
constraint, imposed in Section 2.2. to determine which lines should be 
reinforced for reducing the voltage drop along the feeder, is considered, 
both methodologies converge to the same solution.

Finally, Fig. 7 confirms that the combination of power line re
inforcements and procurement of flexibility services can maintain the 
voltage of all buses above the lower limit. Note that in the initial plan
ning scenario before any grid intervention is considered, there were six 
nodes with a voltage lower than 0.95, which are within the specified grid 
limits after applying the optimal solution achieved with the proposed 
methodology.

4.2. 500-bus actual Spanish distribution system

Following the successful verification of the hybrid BPSO approach 
within the previous test case, this section presents the results for the 500- 
bus actual Spanish DN described in Section 3. The proposed methodol
ogy is applied to obtain a cost-effective DN plan assuming, for the base 
case scenario, that a demand reduction of up to 25 % can be achieved in 
each load network bus. The annual procurement cost of active power 
demand reduction as a flexibility service is 2.34€/kW-yr. These results 

are compared to a reference DN plan with only traditional DN re
inforcements, which is also obtained by applying the proposed meth
odology with no flexible capacity. In this reference case, only the 
investments in transformers and power lines are optimized, selecting 
among the pre-identified candidates the minimum required re
inforcements to achieve a secure DN operation. In Fig. 8, the required 
DN reinforcements, highlighted in blue, are located at congested 
branches (see Fig. 4) or upstream branches to nodes with under-voltage 
problems (see Fig. 5). The total annualized cost of DN reinforcements is 
472,923 €/yr.

The proposed approach determines the flexibility that must be con
tracted at each bus to defer or avoid part of the investments in network 
reinforcements. The percentage of peak demand reduction required at 
each bus for the base case is shown based on the color bar of Fig. 9. 
However, the available flexibility is insufficient to solve all grid viola
tions cost-effectively. Thus, the optimal solution combines flexibility 
and network reinforcements (highlighted in blue in Fig. 9).

The branches where network reinforcements are avoided with flex
ibility are highlighted in magenta in Fig. 9. Flexibility is only procured at 
buses located downstream of these branches. A lower power flow 
through these lines reduces the voltage drop over the feeder, avoiding 
the need for network reinforcements to maintain the voltage of the buses 
in this area above the lower limit. TABLE 4 breaks down the savings in 
network reinforcements that result from incorporating flexibility into 
DNP. If peak demand were not reduced through DR, an additional 
parallel line would have been required for lines 438, 437, and 261 
(highlighted in magenta in Fig. 9).

The results are summarized in TABLE 5, comparing the annualized 
costs achieved for the base case with the proposed methodology and a 
traditional DNP approach with no flexibility provision. In the base case, 
923 kW of active power demand reduction is contracted (3.5% reduction 
of aggregate peak demand), allowing to reduce by 13.97 % the required 

Fig. 6. Peak demand reduction contracted at each bus and avoided network 
reinforcements for the 18-bus test distribution system.

Table 3 
Validation of proposed approach for the 18-bus test distribution system.

Flexibility 
[kW]

Flexibility cost 
[€/yr.]

Reinforced 
power lines

Reinforcement cost 
[€/yr.]

Total cost 
[€/yr.]

Execution time 
[s]

Recursive algorithm 
(with monotonicity constraint)

2,724 6,376 2, 3, 4 4,814 11,190 241

Hybrid BPSO 2,724 6,376 2, 3, 4 4,814 11,190 29

Fig. 7. Voltage drop along the MV feeders in the 18-bus test distribution sys
tem. The black lines show the initial condition without grid interventions. The 
blue lines show the improvement in voltage after grid reinforcement and flex
ibility procurement. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
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annualized investments in network reinforcements.

4.3. Sensitivity to the procurement cost of flexibility

This section presents a sensitivity analysis of the procurement cost of 
flexibility, which accounts for all the expenses the DSO faces to obtain 
and activate the required flexibility. This cost includes compensation for 
flexibility providers. In Fig. 10, a sensitivity analysis is carried out for 
the annual cost of flexibility in the range of 0.05€/kW-yr. to 100€/kW- 
yr. For the same amount of required flexible capacity, the total cost of 
flexibility services increases linearly as their annual fee increases. The 
DSO continues contracting the same volume of flexibility services until 
its yearly cost exceeds the annualized CAPEX and OPEX of new network 
reinforcements.

In Fig. 10, when annual fees exceed 71 €/kW-yr., it is no longer cost- 
effective to use flexibility as a NWA. Hence, the proposed methodology 
can effectively be used to find the threshold for the DSO to opt for 
flexibility or network reinforcements. Although the threshold of 71 
€/kW-yr. is specific to this network and planning scenario, this analysis 
can be replicated for other DNs and planning scenarios. Then, for a 
particular DNP scenario, the DSO should determine if the cost of flexi
bility is sufficient to implement DR programs. Note that this threshold 
has been obtained considering only the benefit of providing flexibility 
services for congestion and voltage management during hours of peak 
demand. Customers providing flexibility can also benefit from stacking 
several flexibility services (e.g., improvement of quality of service) or 
energy arbitrage, making flexibility provision more attractive.

Thus far, it has been assumed that the procurement cost of flexibility 
is identical across all buses. However, a major contribution of the 

proposed methodology is that it allows the DSO to select the most cost- 
effective offers of flexibility services available in the local market. 
Fig. 11 illustrates the flexibility procurement for the base case, including 
varying procurement costs of flexibility for each bus. It is assumed that 
the utilization of flexibility is 57 h per year, with activation costs 
randomly assigned to each bus, ranging from 25€/MWh to 100€/MWh. 
In Fig. 11, the numbers next to each bus represent the cost of flexibility, 
expressed in €/MWh for that bus. Note that, in Fig. 9, where the cost of 
flexibility services was identical across all buses, flexibility was procured 
at the optimal locations to minimize the voltage drop of the feeder, 
specifically at the buses at the end of the feeder. In contrast, in Fig. 11, 
the flexibility is contracted in buses situated further upstream on the 
feeder. Although these flexible units are located at less optimal loca
tions, they have offered their flexibility at a lower price. This results in a 
higher volume of flexibility contracted, amounting to 993 kW—7.58 % 
higher than in the base case. This analysis shows that the advantage of 
hybridizing BPSO with LP as the inner problem is that it ensures the 
contracting of least-cost offers of flexibility services for any given 
combination of grid reinforcements.

4.4. Sensitivity to the availability of flexibility

A sensitivity to the available flexible capacity is carried out in this 
section, considering different values for the maximum flexible peak 
demand reduction that can be shifted to off-peak hours. This maximum 
demand reduction potential is expressed relative to each bus’ demand 
and can vary from 0 % to 50 %. The upper plot in Fig. 12 illustrates that 
increasing the available flexible capacity reduces the cost of network 
reinforcements.

Fig. 8. Required network reinforcements when no flexibility is considered.
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However, enough available flexible capacity is required to avoid 
network reinforcements. In Fig. 12, when the potential for demand 
reduction at each node is lower than 14 %, no flexibility is contracted 
since the available flexible capacity is insufficient to avoid network re
inforcements. When the available flexible capacity ranges from 14 % to 
15 %, a 6.65 % reduction in network reinforcements’ costs is achieved. 
Furthermore, for available flexible capacities greater than 16 %, the 
annual savings on DN reinforcements ascent to 13.97 %.

The bottom plot in Fig. 12 shows the total procured flexible capacity 
required to achieve the reductions in network reinforcements. As the 
maximum demand reduction for each node increases from 16 % to 50 %, 
the total procured flexible capacity decreases. When more flexible ca
pacity is available, the required flexibility is less because it is procured at 
fewer and more optimal nodes with a higher contribution to reducing 

congestion and voltage problems.

4.5. Implementation of the model

The proposed methodology has been coded in MATLAB®, using 
MATPOWER [38] for the power flow analysis. The simulations have 
been carried out on a PC equipped with an 11th Gen Intel® Core® i7- 
1185G7 CPU at 3.00 GHz and 16 GB of RAM. The BPSO algorithm has 
been parallelized to take advantage of the CPU’s multi-core architecture 
by evaluating the fitness function for multiple particles in parallel. The 
computation time on 4 cores averaged 14.31 min for 10 particles in the 
population and a maximum of 150 iterations. Although BPSO does not 
guarantee to find the global optimum, it is observed that after 60 

Fig. 9. Peak demand reduction contracted at each bus and avoided network reinforcements for the base case.

Table 4 
Deferred/Avoided network reinforcements.

Line Length 
[km]

Additional parallel 
lines

Additional capacity 
[MVA]

Cost 
[€/yr.]

438 2.77 1 10.62 19,328
437 1.00 1 10.62 6,978
261 5.70 1 10.62 39,772
Total 66,078

Table 5 
Summary of the base case.

Flexibility 
[kW]

Flex. 
cost 
[€/yr.]

Reinf. 
cost 
[€/yr.]

Total 
cost 
[€/yr.]

Only traditional DN 
reinforcements

0 0 472,923 472,923

Base case 
(with flexibility)

923 2,157 406,845 409,002

Fig. 10. Sensitivity to the procurement cost of flexibility.
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iterations, the solution stabilizes and no further improvement of gbest is 
observed in the base case. The final solution ensures a secure operation 
of the DN with a 14 % reduction in total DNP costs. In future research, 
the complexity of the model and case study (e.g., larger DNs) can be 
increased given the measured computation times.

5. Conclusions

An innovative hybrid BPSO and LP approach for DNP, which con
siders flexibility services provided by DERs to defer or avoid network 
reinforcements, is presented in this paper. The master problem de
termines, from a set of preselected candidates, the investment decisions 

on DN reinforcements. In addition, the inner LP problem optimizes the 
volume and location of flexibility services that need to be procured by 
DSO. The combination of metaheuristics and mathematical program
ming, as well as the preselection of candidate network reinforcements, is 
effective in dealing with a large search space. As a result, the proposed 
approach can be used to plan real DNs, such as the 500-bus MV network 
analyzed in the case study.

The analyzed case study shows that flexibility could be a cost- 
effective alternative to defer or avoid part of the required network re
inforcements. For instance, in the base case, the total DNP costs decrease 
by 14 % when flexibility services provided by DR are contracted. The 
optimal co-planning of flexibility with network reinforcements is 
required since flexibility could not solve all grid limit violations cost- 
effectively on its own. Besides, the sensitivities show that explicit flex
ibility becomes an economical alternative to DN reinforcements when its 
procurement cost is competitive and sufficient flexible capacity is 
available. For this case study, procurement costs lower than 71€/kW-yr. 
and at least 14 % of flexible capacity available at each node make 
flexibility services attractive. These results are case-dependent, but this 
approach is valuable to assess the thresholds that make DSOs opt for 
flexibility in each DN and planning scenario.

The proposed single-stage and single-scenario model is valuable to 
optimize the necessary combination of flexibility procurement and DN 
reinforcements in real large-scale grids. Besides, this model could be 
used in future research as the building block of a new multi-stage and/or 
multi-scenario DNP tool for large-scale systems. To the authors’ 
knowledge, a multi-stage, multi-scenario DNP problem with flexibility 
for large-scale DNs has not yet been solved in the literature. Thus, this 
model could serve, for instance, as the basis for a pseudo-dynamic 
approach. Moreover, ESSs could also be added as a NWA that provides 
flexibility to the system.

Fig. 11. Flexibility procurement in a modified base case considering varying costs of downward active demand flexibility at each node. The numbers next to each bus 
represent the cost of flexibility, expressed in €/MWh for that bus.

Fig. 12. Sensitivity to the available flexible capacity for demand reduction.
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Appendix A. Sensitivity matrix bus voltage ¡ reinforcements

This section presents the derivation of a sensitivity matrix that relates the changes in bus voltages that result from reinforcing lines of the DN. When 
a line is reinforced by adding parallel elements, both the impedance (Zl) and the voltage drop of the line are reduced. The reduction in the voltage drop 
(ΔVdrop

l ) along a line l that is reinforced with nl identical parallel elements is: 

ΔVdrop
l = Zl⋅Il −

Zl

nl
⋅Il = Zl⋅Il⋅

(

1 −
1
nl

)

(27) 

This reduction of the voltage drop increases the voltage of the downstream nodes in a radial DN. The radial network’s topology is modeled with the 
transpose of the PTDF matrix, which identifies (with a 1) the downstream nodes of every branch. Then, the increments in voltages (ΔVi) of down
stream nodes, disregarding energy losses, are obtained as follows: 

ΔVi =
∑

l
− PTDFT

i,l⋅ΔVdrop
l (28) 

ΔVi =
∑

l
− PTDFT

i.l⋅Zl⋅Il⋅
(

1 −
1
nl

)

(29) 

ΔVi =
∑

l
MVReinf

i,l ⋅
(

1 −
1
nl

)

(30) 

where the elements of the sensitivity matrix MVReinf give the increment in the bus voltage at node i when the capacity of line l is increased with nl 
identical parallel elements. To compute the matrix, the magnitude of the current Il in p.u. is approximated to the magnitude of the apparent power in p. 
u. (i.e., voltages are assumed to remain close to 1p.u.).

Appendix B. BPSO algorithm and parameters

PSO considers a set of randomly initialized particles that move in the search space toward the optimum. The position of each particle m, at iteration 
t, in the n-th dimension (st

m,n) is defined by the n-th element in the vector of binary decision variables (xn). The fitness function is evaluated for all 
particles at each iteration t. All particles track their own-best solution (pbest) along with the global-best (gbest) solution from the swarm. This in
formation is used to update the velocity of the particles in (31). 

vt+1
m,n = w⋅vt

m,n + c1⋅rand()⋅
(

pbestm,n − st
m,n

)

+ c2⋅rand()⋅
(

gbestn − st
m,n

)
(31) 

The first term of (31) represents the inertia based on the weighting parameter w, which is linearly decreased from wmax at the first iteration to wmin 

Table 6 
Parameters for the BPSO algorithm.

Parameter Value Parameter Value

Population size 10 wmax 0.9
Maximum number of iterations 150 wmin 0.4
c1 2 vmax 6
c2 2

Table 7 
Sensitivity to BPSO Parameters.

Population 
size

Max. 
number 
Iterations

c1 c2 Global 
best 

solution 
[€/yr.]

Convergence 
(number of 
iterations)

Time per 
iteration 

[s]

60 150 2 2 409,002 103 28.05
30 150 2 2 409,002 99 20.54
10 150 2 2 409,002 60 5.93
8 150 2 2 409,002 120 5.62
5 150 2 2 409,221 121 5.24
10 150 1 2 409,002 103 5.85
10 150 2 2 409,002 60 5.93
10 150 2 1 409,002 125 5.91
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in the last iteration. The second and third terms indicate individual and swarm intelligence, respectively. The distances from the current position st
m,n to 

pbest and gbest are weighted by two acceleration coefficients (c1 and c2) and a random number that can take any value between 0 and 1. The velocities 
are limited to a maximum value (vmax) to control the exploration ability of the swarm [40]. The parameters of the BPSO algorithm, summarized in 
TABLE 6, are set to the standard values recommended in [40].

At each iteration, the velocities from (31) are used to determine the next position of the particles. In BPSO, velocities are seen as the probability of 
changing its position from 0 to 1 [41]. A transfer function maps the continuous velocity values to a probability of changing position. We use the (best- 
performing) v-shaped transfer function from [42]. The positions of the particles are updated until the stopping criterion (e.g., maximum number of 
iterations) is satisfied.

Moreover, a sensitivity analysis to the BPSO control parameters is provided in TABLE 7, which shows that the selected parameters in TABLE 6
achieve the best solution in the shortest time.

First, the effect of the population size is studied. A higher number of particles in the swarm allows to cover larger parts of the search space in each 
iteration but increases the computation time of every iteration. On the other hand, a small population size has less initial diversity, which can 
negatively impact the quality of the solution and the number of iterations required to reach convergence. If the population size is lower or equal to 5, 
the BPSO converges to a worse solution.

Besides, the effect of acceleration coefficients is also considered. Most applications set c1 equal to c2 [43]. If c1 is greater than c2, particles wander 
more attracted by their own-best positions. If c1 is lower than c2, premature converge to local optima may occur as particles are attracted by the global- 
best position. Although the optimal solution does not change, setting c1 equal to c2 achieves faster convergence.
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Explicit Demand Flexibility providing energy services. Electr Pow Syst Res 2022; 
209:107953. https://doi.org/10.1016/j.epsr.2022.107953.

[8] Siano P. Demand response and smart grids—A survey. Renew Sustain Energy Rev 
2014;30:461–78. https://doi.org/10.1016/J.RSER.2013.10.022.

[9] Gholizadeh-Roshanagh R, Zare K. Electric power distribution system expansion 
planning considering cost elasticity of demand. IET Gener Transm Distrib 2019;13: 
5229–36. https://doi.org/10.1049/IET-GTD.2018.6740.
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