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DE VULNERABILIDADES MEDIANTE AUMENTACIÓN
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Resumen

La detección automatizada de vulnerabilidades en el código fuente
es una tarea cŕıtica de ciberseguridad que afecta a la seguridad y
fiabilidad del software moderno. Las herramientas tradicionales de
análisis estático y dinámico a menudo no logran capturar estructuras
sintácticas complejas y lógicas semánticas sutiles. Los avances recientes
en aprendizaje automático, especialmente las Redes Neuronales Gráficas
(GNNs), muestran potencial para aprender relaciones estructurales y
semánticas en el código. Sin embargo, su rendimiento se ve limitado por
el desequilibrio de datos, el ruido en las etiquetas y las correlaciones
espurias—patrones que asocian erróneamente caracteŕısticas superficiales
con etiquetas de vulnerabilidad—lo que socava su capacidad de
generalización ante fallos del mundo real. Para abordar esto, este
trabajo presenta VISION (Vulnerability Identification and Spuriousness
mitigation via counterfactual augmentatION ), un marco unificado
para mejorar la robustez y la interpretabilidad en la detección de
vulnerabilidades. VISION aprovecha Modelos de Lenguaje de Gran
Escala (LLMs) para generar contraejemplos—funciones mı́nimamente
editadas con etiquetas de vulnerabilidad invertidas—proporcionando al
modelo contrastes significativos entre muestras reales y sintéticas. La
GNN Devign se emplea como arquitectura del modelo base, combinada
con un explainer para atribuciones detalladas en el grafo y un módulo de
visualización para análisis humano-en-el-bucle. Evaluado sobre CWE-20
(Improper Input Validation), VISION logra mejoras sustanciales en
precisión, generalización y calidad de las explicaciones, con avances
notables en precisión por pares y en el peor subgrupo. Además, se
proponen nuevas métricas de interpretabilidad y se publica el benchmark
CWE-20-CFA, con más de 27.000 ejemplos balanceados. En conjunto,
VISION ofrece un enfoque novedoso y eficaz para mitigar el aprendizaje
espurio y avanzar hacia una IA transparente y confiable para el desarrollo
de software seguro.

Introducción

Las vulnerabilidades de software se encuentran entre las debilidades más explotadas
en ciberseguridad, sirviendo a menudo como el principal punto de entrada

Resumen v



Mejorando la Robustez en la Detección de Vulnerabilidades mediante Aumentación Contrafactual

para los atacantes. Garantizar su detección temprana y precisa es vital para
proteger la integridad y funcionalidad de las infraestructuras digitales [1]. Los
enfoques tradicionales, como el análisis estático y dinámico del código, tienen
dificultades para abordar la complejidad sintáctica y semántica del software
moderno, lo que limita su escalabilidad y capacidad de generalización [2]. Como
respuesta, las Redes Neuronales Gráficas (GNNs) han surgido como una alternativa
prometedora. Al modelar el código fuente como grafos—capturando elementos como
árboles sintácticos, flujos de control y dependencias de datos—las GNNs pueden
aprender estructuras significativas del programa y respaldar la detección basada
en datos [3], [4]. Sistemas como Devign [5] han demostrado que las GNNs son
capaces de aprender caracteŕısticas semánticas complejas y superar a los métodos
tradicionales en tareas de predicción de vulnerabilidades.

A pesar de su potencial, los modelos basados en GNN se ven considerablemente
limitados por problemas en los datos de entrenamiento. Los conjuntos de datos de
referencia suelen presentar muestras duplicadas, etiquetas ruidosas o inconsistentes
y un fuerte desequilibrio entre clases [6], [7], [8]. Estos problemas con frecuencia
provocan que los modelos aprendan correlaciones espurias—asociaciones estad́ısticas
engañosas que no reflejan la semántica de seguridad subyacente [9], [10], [11]. Como
consecuencia, estos modelos pueden parecer efectivos durante la evaluación, pero
fracasan al generalizar sobre código real no visto. Además, sus procesos de decisión
suelen ser opacos, lo que dificulta entender qué aspectos de la entrada influyen en
sus predicciones. Sin una interpretabilidad clara, la fiabilidad y la confianza en
estos sistemas se ven limitadas, especialmente en contextos de seguridad cŕıticos.

Para abordar estos desaf́ıos, este trabajo presenta VISION (Vulnerability
Identification and Spuriousness mitigation via counterfactual augmentatION ), un
marco que busca mejorar tanto la robustez como la interpretabilidad en la detección
de vulnerabilidades. Este enfoque utiliza contraejemplos de código—funciones
que han sido mı́nimamente editadas para invertir su etiqueta de vulnerabilidad,
preservando la corrección sintáctica y semántica. Por ejemplo, transformar una
llamada de strcpy(dest, "fixed string") a strcpy(dest, user input)

introduce una vulnerabilidad al permitir una entrada no validada, a pesar de
que ambas ĺıneas sean estructuralmente similares. Estos ejemplos se generaron
mediante Modelos de Lenguaje de Gran Tamaño (LLMs), siguiendo una estrategia
de reescritura basada en prompts. El objetivo principal es exponer a la GNN a
variaciones semánticas sutiles, ayudando al modelo a centrarse en patrones de
seguridad significativos en lugar de artefactos espećıficos del conjunto de datos.

El modelo utilizado en VISION se basa en la arquitectura Devign [5], entrenada con
muestras emparejadas originales y contraejemplos para mejorar la discriminación
entre código seguro y vulnerable. Para aumentar la transparencia, el marco integra
el explainer Illuminati [12], que proporciona atribuciones basadas en grafos que
resaltan los elementos del código más influyentes. Esto se complementa con un
módulo de visualización que facilita el análisis humano.

VISION aborda una carencia clave en interpretabilidad para la detección
de vulnerabilidades. Mientras que herramientas como GNNExplainer [13]
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y CFExplainer [14] ofrecen atribuciones de caracteŕısticas y localización de
vulnerabilidades, no mitigan el aprendizaje espurio. En cambio, VISION unifica
aumentación de datos e interpretabilidad, mejorando el razonamiento del modelo
y ofreciendo a los profesionales una interfaz intuitiva para explorar y validar
resultados—apoyando aśı un flujo de trabajo de IA más transparente y confiable
para el desarrollo de software seguro [15].

La evaluación experimental se centra en la categoŕıa CWE-20 de la Common
Weakness Enumeration—Improper Input Validation—que se encuentra entre
los tipos de vulnerabilidades más frecuentes y peligrosos [16]. Los resultados
muestran una mejora significativa en el rendimiento predictivo y la capacidad de
generalización, con un aumento en la precisión de contraste por pares del 4.5% al
95.8% y en la precisión del peor subgrupo del 0.7% a más del 85%, lo que indica
una reducción sustancial del aprendizaje espurio.

Definición y Objetivos

Este proyecto se sitúa en la intersección entre la seguridad del software y la
inteligencia artificial explicable, con el objetivo de abordar limitaciones cŕıticas
en los actuales sistemas de detección de vulnerabilidades basados en aprendizaje
automático. Estos sistemas, especialmente aquellos basados en Redes Neuronales
Gráficas (GNNs), suelen sufrir de sobreajuste a correlaciones espurias provocadas
por ruido en los datos, desequilibrio de clases y similitudes estructurales entre
código benigno y vulnerable. Además, la falta de interpretabilidad en estos modelos
dificulta su adopción en entornos reales de ciberseguridad, donde la confianza y la
transparencia son esenciales.

El marco propuesto, VISION (Vulnerability Identification and Spuriousness
mitigation via counterfactual augmentatION ), está diseñado para mejorar
tanto la robustez como la explicabilidad en la detección de vulnerabilidades en
código basada en GNNs. Lo consigue mediante la generación e integración de
contraejemplos—funciones de código mı́nimamente editadas con etiquetas de
vulnerabilidad invertidas—para guiar al modelo hacia el aprendizaje de distinciones
de seguridad significativas. El marco también incorpora un módulo de visualización
para la interpretación del modelo, aprovechando atribuciones basadas en grafos que
permiten identificar regiones del código influyentes.

Objetivos del Proyecto

• Generar un conjunto de datos aumentado (CWE-20-CFA) centrado en la
vulnerabilidad CWE-20 mediante la implementación de una canalización de
generación de contraejemplos basada en prompts utilizando LLMs.

• Aplicar una metodoloǵıa de evaluación comparativa entrenando GNNs con
diferentes proporciones de ejemplos originales/contraejemplos (por ejemplo,
90/10, 50/50) y evaluándolos mediante métricas de precisión, contraste por
pares y robustez para analizar el impacto de la aumentación contrafactual.
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• Implementar un módulo de explicación basado en grafos que resalte
componentes influyentes del código utilizando un explainer post hoc con
puntuaciones de importancia a nivel de nodo, permitiendo la atribución visual
y facilitando la comprensión del modelo en entornos humano-en-el-bucle.

• Demostrar que el uso combinado de datos contrafactuales y técnicas de
explicación reduce el aprendizaje espurio, mejora la generalización y refuerza
la confianza en los sistemas de detección de vulnerabilidades.

Descripción del Marco de Trabajo

Esta sección presenta el marco VISION, que mejora la robustez y la interpretabilidad
en la detección de vulnerabilidades. Enfocado en CWE-20, utiliza contraejemplos
generados por LLMs para equilibrar los datos de entrenamiento y mejorar la
capacidad de generalización. Las muestras de código se convierten en Code Property
Graphs (CPGs) utilizando Joern y se vectorizan para el modelo Devign. Las
explicaciones se generan utilizando el explainer Illuminati, con un módulo interactivo
que permite un análisis cualitativo de atribuciones. La Figura S1 muestra la
arquitectura completa.

Selección del Conjunto de Datos: Vulnerabilidad CWE-20

Para evaluar el marco VISION en condiciones realistas, este trabajo utiliza
el conjunto de datos PrimeVul [6], un benchmark recientemente publicado y
rigurosamente curado para la detección de vulnerabilidades en código fuente.
PrimeVul ofrece etiquetas verificadas por humanos y estrictos estándares de
eliminación de duplicados, proporcionando una base fiable para el entrenamiento y
evaluación con menor ruido en las etiquetas y alta diversidad semántica.

Este proyecto se centra espećıficamente en la clase de vulnerabilidad CWE-20,
conocida como Validación Incorrecta de Entradas (Improper Input Validation) [16],
seleccionada según los siguientes criterios:

1. Claridad semántica. Estas vulnerabilidades suelen seguir patrones bien
definidos—como la ausencia de comprobaciones de ĺımites o buffers sin
validar—lo que las hace adecuadas tanto para el análisis automatizado como
manual.

2. Cantidad de datos suficiente. El conjunto de datos PrimeVul incluye
aproximadamente 14.000 instancias de CWE-20, lo que permite un
entrenamiento y evaluación robustos del modelo sin recurrir a sobre-muestreo
o datos sintéticos en exceso.

3. Impacto práctico. CWE-20 sigue siendo uno de los tipos de vulnerabilidad más
explotados, lo que resalta la importancia de su detección precisa en contextos
reales de seguridad del software [17].

Un ejemplo que ilustra CWE-20 (Figura S2) es la función validGlxScreen, que
valida si un ı́ndice de pantalla se encuentra dentro de los ĺımites válidos. Aunque
verifica los ĺımites superiores, no rechaza los valores negativos, lo que puede
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Figura S1: Resumen de la arquitectura del marco VISION. A partir del conjunto
de datos fuente original, la canalización de extremo a extremo incluye el filtrado

por CWE-20, la generación de contraejemplos para el balanceo de clases, la
construcción de CPGs, la extracción de embeddings, el entrenamiento del modelo y
la generación de explicaciones, todo ello apoyado por el módulo de visualización

para una interpretación comprensible.

provocar accesos fuera de rango. Este tipo de descuido ejemplifica la naturaleza
sutil pero cŕıtica de los fallos en la validación de entradas y motiva la necesidad de
mecanismos de detección precisos.

Generación y Aumentación con Contraejemplos

Un contraejemplo se define como una versión mı́nimamente modificada de una
función de código cuya etiqueta de vulnerabilidad se invierte con respecto a la
original. Estas modificaciones mantienen la corrección sintáctica y semántica, pero
alteran la condición de vulnerabilidad—transformando una muestra benigna en una
vulnerable o viceversa. Este enfoque se inspira en el razonamiento contrafactual
dentro de la inteligencia artificial explicable [18] y se basa en ideas del aprendizaje
contrastivo que exponen al modelo a ejemplos en la frontera de decisión [19], [20].
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1 validGlxScreen(ClientPtr client , int screen , __GLXscreen ** pGlxScreen , int *err) {

2 if (screen >= screenInfo.numScreens) {

3 client ->errorValue = screen;

4 *err = BadValue;

5 return FALSE;

6 }

7 *pGlxScreen = glxGetScreen(screenInfo.screens[screen]) ;

8
9 return TRUE;

10 }

Figura S2: Ejemplo de Improper Input Validation CWE-20. La función
validGlxScreen verifica que el ı́ndice screen no exceda el número de pantallas
disponibles, pero omite comprobar si el valor es negativo. Esta omisión puede
provocar accesos inválidos a arrays y ejemplifica una vulnerabilidad t́ıpica de

validación incorrecta de entradas.

En el contexto de este trabajo, los contraejemplos cumplen dos propósitos
fundamentales: equilibran el conjunto de datos entre clases y gúıan al modelo para
que reconozca diferencias semánticas sutiles indicativas de vulnerabilidades reales.
A diferencia de los métodos tradicionales de aumentación, que pueden introducir
ruido o patrones artificiales, los contraejemplos mantienen una alta fidelidad con
las estructuras de código originales, favoreciendo un entrenamiento estable y una
mejor generalización.

Los contraejemplos se generaron utilizando una estrategia de reescritura basada en
prompts mediante el modelo OpenAI GPT-4o-mini, utilizando prompts construidos
dinámicamente que incluyen el fragmento de código original, su etiqueta y
contexto del tipo CWE. Cada función fue modificada para invertir su etiqueta de
vulnerabilidad, introduciendo o eliminando una falla de tipo CWE-20. Un ejemplo
se muestra en la Figura S3, donde la inserción de una entrada de usuario no validada
en una función benigna da lugar a una vulnerabilidad realista.

Código original benigno: Sin vulnerabilidad CWE-20.

1 static int net_get_rate(struct wif *wi)

2 {

3 struct priv_net *pn = wi_priv(wi);

4
5 return net cmd(pn, NET GET RATE, NULL, 0);

6 }

Código de contraejemplo vulnerable a CWE-20: Entrada user input sin validar.

1 static int net_get_rate(struct wif *wi, int user input )

2 {

3 struct priv_net *pn = wi_priv(wi);

4
5 // Introduced vulnerability : accepting user input without validation

6 return net_cmd(pn, NET_GET_RATE , &user input , sizeof(user_input));

7 }

Figura S3: Ejemplo de un par de funciones contraejemplares. La función superior
es benigna y realiza una llamada segura a net cmd con un argumento fijo. La

versión inferior introduce una vulnerabilidad CWE-20 (Improper Input Validation)
al sustituir el argumento fijo por una entrada de usuario no validada (user input),
demostrando un cambio semántico mı́nimo que altera la etiqueta de seguridad.
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Para construir un conjunto de entrenamiento balanceado, se extrajeron 14.944
muestras CWE-20 del conjunto PrimeVul, que presentaba un fuerte desequilibrio
a favor de funciones benignas. A partir de ambas clases se generaron
contraejemplos, eliminando aquellas muestras problemáticas o inválidas. El
conjunto final—CWE-20-CFA—contiene 27.556 funciones: 13.778 originales y 13.778
contraejemplos, distribuidos equitativamente entre clases benignas y vulnerables (ver
Tabla S1).

Cuadro S1: Resumen del Filtrado y Balanceo del Conjunto de Datos CWE-20

Conjunto de Datos Benignos Vulnerables Total

PrimeVul 218,529 6,004 224,533
CWE-20 PrimeVul 14,473 471 14,944
CWE-20 CFA 13,778 13,778 27,556
– Original 13,349 429 13,778
– Counterfactual 429 13,349 13,778

Modelo Base para la Detección de Vulnerabilidades

El marco VISION implementa Devign [5] como la arquitectura base de Red Neuronal
de Grafos para la clasificación de vulnerabilidades. Devign está espećıficamente
diseñado para el análisis de código fuente y opera sobre Grafos de Propiedades del
Código (CPGs) [2], los cuales integran árboles de sintaxis abstracta (AST), grafos
de flujo de control (CFG) y de flujo de datos (DFG) en una representación unificada.

La arquitectura consta de tres componentes principales: (1) una capa de incrustación
de grafos que codifica caracteŕısticas de nodos y aristas en representaciones latentes;
(2) Unidades Recurrentes de Grafos con Puertas (GGRU) que propagan y agregan
información a través de la estructura del grafo; y (3) un módulo convolucional
que realiza la clasificación a nivel de grafo resumiendo las incrustaciones de nodos
aprendidas.

El modelo Devign fue originalmente evaluado en proyectos C de gran escala y
etiquetado manualmente (por ejemplo, Linux Kernel, QEMU, Wireshark, FFmpeg),
mostrando mejoras notables en el rendimiento respecto a métodos anteriores.
VISION adopta Devign como ĺınea base debido a su efectividad demostrada al
capturar patrones semánticos detallados para la clasificación de vulnerabilidades.

Módulo de Visualización

Para apoyar la interpretabilidad y el análisis humano, este proyecto integra un
módulo de visualización dedicado, diseñado para inspeccionar ejemplos individuales
de código fuente y explicar el comportamiento del modelo entrenado mediante
atribuciones de entrada. El módulo sirve para validar la hipótesis central de que la
aumentación basada en contraejemplos mejora no solo la precisión y la robustez,
sino también la alineación semántica de las explicaciones del modelo.
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Figura S4: Módulo de visualización integrado que muestra las predicciones del
modelo y las puntuaciones de explicación para una función benigna original

(arriba) y su contraejemplo vulnerable (abajo). Las puntuaciones de atribución se
visualizan a la derecha, con sombreado rojo que indica la importancia de cada

token. El módulo facilita una exploración intuitiva de los cambios en atribuciones,
revelando cómo la modificación contrafactual afecta tanto a la predicción como al

razonamiento del modelo.

El sistema se construye sobre el explicador Illuminati [12], que genera puntuaciones
de importancia a nivel de nodo extrayendo subgrafos mı́nimos y suficientes desde
el modelo GNN. Las predicciones se codifican visualmente: las clasificaciones
correctas se muestran en verde, mientras que las incorrectas aparecen en rojo,
proporcionando retroalimentación inmediata sobre el rendimiento del modelo para
el análisis humano.

Se ofrecen dos vistas sincronizadas para cada función: una visualización del código
fuente resaltado y un mapa de nodos basado en grafo. En ambas vistas se emplea
una escala de colores continua para indicar la importancia relativa de los tokens o
nodos, ayudando al usuario a identificar qué elementos fueron más influyentes en la
predicción del modelo.

Como se ilustra en la Figura S4, la visualización revela cómo vaŕıa el enfoque
del modelo entre variantes benignas y vulnerables de una función, apoyando una
comprensión más profunda de la lógica de decisión influida por la estructura
contrafactual.
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Experimentos y Resultados

Para evaluar la efectividad del marco VISION, se realizó una evaluación exhaustiva
sobre una serie de benchmarks de entrenamiento compuestos por diferentes
proporciones de funciones originales y contraejemplares. Todos los experimentos se
basaron en el conjunto de datos CWE-20-CFA y se diseñaron para medir no solo la
precisión predictiva, sino también la robustez frente a correlaciones espurias.

Se crearon múltiples configuraciones de benchmark, desde un 100% de datos
originales hasta un 100% de datos contraejemplares, en incrementos del 10%.
Cada configuración mantuvo constante el número de muestras de entrenamiento y
una distribución perfectamente balanceada entre clases (benignas vs. vulnerables).
Las particiones del conjunto de datos siguieron una proporción 80/10/10 para
entrenamiento, validación y prueba, conservando la integridad del emparejamiento
al asignar cada ID de función exclusivamente a una única partición. El conjunto de
prueba se mantuvo fijo en todas las evaluaciones para garantizar la consistencia e
incluyó tanto la versión original como la contraejemplar de cada función.

Se utilizaron métricas estándar—precisión, exactitud, exhaustividad y puntuación
F1—para evaluar el rendimiento general, mientras que métricas adicionales como
precisión por pares, precisión del peor subgrupo, análisis del espacio de embeddings
y puntuaciones basadas en atribuciones se emplearon para evaluar la robustez y la
capacidad de generalización. Los resultados muestran que el rendimiento mejora de
forma constante con la aumentación contrafactual, alcanzando su punto máximo en
torno a una proporción 50/50. La configuración con 100% de datos originales logró
una alta precisión, pero con una baja exhaustividad, lo que indica sobreajuste a
patrones superficiales del código. Por el contrario, la configuración con 0% de datos
originales (totalmente sintética) redujo notablemente el rendimiento, confirmando
que los ejemplos reales son esenciales para un entrenamiento efectivo. Estas
tendencias validan que una integración equilibrada de contraejemplos promueve un
aprendizaje más robusto y generalizable (ver Tabla S2).

Análisis de Robustez y Correlación Espuria

La precisión por pares (pair-wise accuracy) evalúa la capacidad del modelo para
distinguir entre funciones de código semánticamente similares con etiquetas de
vulnerabilidad opuestas—normalmente una original y su contraejemplo. Una
puntuación alta indica que el modelo es sensible a ediciones de código sutiles
pero significativas que alteran el estado de vulnerabilidad, en lugar de basarse
en patrones superficiales. La métrica se descompone en cuatro resultados: Par
Correcto (P-C), Par Vulnerable (P-V), Par Benigno (P-B) y Par Invertido (P-R).
Los modelos óptimos presentan valores altos en P-C y bajos en las otras tres
categoŕıas. Los resultados muestran que la proporción 50/50 entre originales y
contraejemplos alcanza la mayor precisión por contraste (95.79%), lo que confirma
que una aumentación balanceada ayuda al modelo a aprender distinciones relevantes
para la seguridad.

La Precisión del Peor Subgrupo (WGA, por sus siglas en inglés—Worst Group
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Cuadro S2: Evaluación integral a través de divisiones de entrenamiento sobre el
conjunto de prueba balanceado. La sección izquierda reporta precisión, exactitud,
exhaustividad y puntuación F1. La sección derecha evalúa robustez, generalización
y calidad de las explicaciones. Las métricas incluyen: P-C (ambas correctas), P-V
(ambas predichas como vulnerables), P-B (ambas predichas como benignas) y P-R
(predicciones invertidas); WGA (Precisión del Peor Subgrupo, $k=4$) refleja la
robustez frente a subgrupos. La Pureza del Vecindario mide la consistencia de

clases en el espacio de embeddings. La Varianza de Atribución Intra-clase (cuanto
menor, mejor) y la Distancia de Atribución Inter-clase (cuanto mayor, mejor)
evalúan la consistencia de las explicaciones y la separabilidad entre clases.

Split Acc Prec Rec F1 P-C P-V P-B P-R WGA4 Purity Intra-B Intra-V Inter-D

100/0 0.518 1.000 0.036 0.069 4.50 0.00 95.43 0.07 0.0073 0.707 0.01103 0.01027 0.00061

90/10 0.867 0.996 0.737 0.847 74.09 1.38 23.88 0.65 0.7052 0.907 0.01120 0.01035 0.00073

80/20 0.955 0.960 0.948 0.954 91.07 5.44 3.27 0.22 0.8757 0.953 0.01096 0.01046 0.00027

70/30 0.970 0.960 0.980 0.970 94.63 4.86 0.36 0.15 0.8757 0.962 0.01109 0.00995 0.00010

60/40 0.978 0.961 0.997 0.979 93.69 6.31 0.00 0.00 0.8703 0.967 0.01134 0.01030 0.00010

50/50 0.960 0.957 0.962 0.960 95.79 0.44 0.00 3.77 0.8555 0.944 0.01061 0.01030 0.00160

40/60 0.970 0.998 0.941 0.969 94.12 1.02 4.50 0.36 0.8092 0.966 0.01122 0.01036 0.00017

30/70 0.951 0.949 0.953 0.951 87.52 8.13 3.85 0.51 0.8266 0.941 0.01101 0.01010 0.00038

20/80 0.930 0.904 0.962 0.932 70.97 27.72 1.02 0.29 0.8497 0.929 0.01144 0.01036 0.00028

10/90 0.919 0.875 0.978 0.924 77.94 20.54 0.65 0.87 0.8152 0.910 0.01103 0.01046 0.00008

0/100 0.799 0.726 0.957 0.826 41.51 57.40 0.65 0.44 0.5030 0.856 0.01122 0.01007 0.00099

Accuracy) mide el rendimiento más débil del modelo entre subgrupos descubiertos
automáticamente mediante agrupamiento de embeddings latentes, basados en la
estructura del código y la clase. Refleja la robustez al indicar si el modelo se
sobreajusta a patrones dominantes mientras falla en regiones minoritarias o dif́ıciles
de generalizar. Los grupos se definen mediante K-means e intersecan con las
etiquetas reales; la WGA se calcula como la menor precisión de clasificación entre
los grupos suficientemente grandes. Los modelos entrenados con una aumentación
moderada de contraejemplos presentan los valores más altos y estables de WGA
(¿85%), lo que confirma que los contraejemplos mejoran la generalización en
subgrupos.

La Pureza de los vecinos (Neighborhood Purity) evalúa qué tan bien los embeddings
de grafos aprendidos se agrupan según las etiquetas reales de clase. Se calcula
mediante la consistencia de los k vecinos más cercanos (kNN) en el espacio latente
y sirve como indicador de si el modelo organiza las representaciones de manera
semántica o se basa en atajos espurios. La integración balanceada de contraejemplos
mejora la pureza, alcanzando su puntuación más alta en la configuración 60/40,
mientras que el modelo 100/0 muestra baja pureza debido a embeddings mal
estructurados. Visualizaciones mediante t-SNE confirman además que los modelos
con aumentación moderada generan una separación de clases más clara en el
espacio latente, lo que sugiere que los contraejemplos favorecen un aprendizaje de
representaciones más significativo (ver Figura S5).

Las métricas basadas en atribuciones evalúan la consistencia de las explicaciones
y la separabilidad entre clases. La varianza intra-clase mide cuán similares son
las atribuciones del explicador entre muestras de la misma clase—una menor
varianza implica un razonamiento más consistente. La distancia inter-clase
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Figura S5: Proyecciones t-SNE de los embeddings de grafos para los benchmarks
100/0 (izquierda), 50/50 (centro) y 30/70 (derecha). Los puntos verdes representan

muestras benignas, y los puntos rojos representan muestras vulnerables. Estas
visualizaciones ilustran cómo las diferentes proporciones de

originales/contraejemplos influyen en la distribución espacial y la separación de las
clases de vulnerabilidad.

cuantifica cuán distintas son las atribuciones promedio entre muestras benignas
y vulnerables—valores más altos sugieren fronteras conceptuales más claras. Los
resultados indican que la varianza intra-clase se mantiene relativamente estable,
mientras que la distancia inter-clase alcanza el máximo en el benchmark 50/50.

La Dependencia entre Puntuaciones de Nodos (Node Score Dependency) analiza
la influencia entre nodos en las explicaciones generadas por GNN, midiendo cómo
cambian las puntuaciones de importancia de un nodo al eliminar otro. Esto genera
una matriz de dependencia que revela entrelazamientos en las atribuciones. En
los modelos entrenados sin contraejemplos (100/0), se observa un enfoque espurio
sobre tokens irrelevantes, mientras que los nodos realmente relevantes permanecen
sin influencia. En contraste, el modelo 50/50 exhibe dependencias estructuradas
entre componentes que inducen vulnerabilidades, reflejando un razonamiento más
preciso y consciente del contexto (ver Figura S6). Esta métrica ofrece información
tanto sobre la interpretabilidad como sobre la robustez del modelo al identificar
trayectorias de razonamiento frágiles o basadas en atajos.

Conclusiones

Este trabajo presenta VISION, un marco para la detección de vulnerabilidades en
código fuente que mejora la robustez y la interpretabilidad mediante aumentación
de datos contrafactuales. Al generar modificaciones de código semánticamente
válidas que invierten las etiquetas de vulnerabilidad, el marco expone a las Redes
Neuronales Gráficas a patrones sutiles pero significativos, reduciendo la dependencia
de correlaciones espurias. Para reforzar la interpretabilidad, VISION incorpora
explicaciones basadas en grafos a través de atribuciones a nivel de nodo e incluye
un módulo interactivo de visualización para facilitar el análisis humano.

La evaluación a lo largo de múltiples benchmarks demuestra que la aumentación
contrafactual conduce a mejoras consistentes en precisión, robustez y calidad de
las explicaciones. En particular, el marco alcanza una alta precisión por pares y
en el peor subgrupo, generando espacios de embedding y patrones de atribución
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Figura S6: Mapas de calor de la Dependencia entre Puntuaciones de Nodos para la
misma función vulnerable bajo dos reǵımenes de entrenamiento: Izquierda:
Benchmark 100/0 y Derecha: Benchmark 50/50. Cada mapa muestra cómo

enmascarar un nodo (filas) afecta las puntuaciones de atribución de los demás
(columnas). El rojo indica un aumento en la influencia; el azul indica una

disminución en la importancia. El modelo 100/0 exhibe un enfoque elevado en
nodos de contexto espurio, mientras que el modelo 50/50 muestra una alineación

de atribuciones más significativa.

más estructurados semánticamente. Estos resultados validan VISION como una
estrategia eficaz para mitigar el aprendizaje basado en atajos.

No obstante, dos limitaciones restringen actualmente la generalidad del marco.
Primero, los experimentos se limitan a una única clase de vulnerabilidad—CWE-20
(Validación Incorrecta de Entradas)—lo cual puede limitar su aplicabilidad a otros
contextos de seguridad. Segundo, el uso de contraejemplos generados por modelos
de lenguaje puede introducir en ocasiones ediciones poco realistas.

El trabajo futuro se centrará en extender VISION a clases adicionales de
vulnerabilidad y en explorar estrategias alternativas para la generación de
contraejemplos, como el uso de verificación formal. También se investigarán métodos
para evaluar y reforzar la corrección semántica de los contraejemplos, con el objetivo
de facilitar una adopción más amplia de este marco para la construcción de sistemas
de IA robustos y transparentes en ciberseguridad.

xvi Resumen



Improving Robustness in Vulnerability Detection via Counterfactual Augmentation

Bibliograf́ıa

[1] Boris Chernis and Rakesh Verma. 2018.Machine Learning Methods for Software
Vulnerability Detection. In Proceedings of the Fourth ACM International
Workshop on Security and Privacy Analytics (IWSPA ’18), ACM, New York,
NY, USA, pp. 31–39. DOI: 10.1145/3180445.3180453.

[2] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and Discovering Vulnerabilities with Code Property Graphs. In Proceedings of
the 2014 IEEE Symposium on Security and Privacy (S&P), IEEE, pp. 590–604.
DOI: 10.1109/SP.2014.44.

[3] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. 2009. The Graph Neural Network Model.
IEEE Transactions on Neural Networks, 20(1): 61–80. DOI:
10.1109/TNN.2008.2005605.

[4] Jingjing Wang, Minhuan Huang, Yuanping Nie, Xiaohui Kuang,
Xiang Li, and Wenjing Zhong. 2023. Fine-Grained Source Code
Vulnerability Detection via Graph Neural Networks. Available at:
https://openreview.net/forum?id=S5RYm-9Q4o.

[5] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang
Liu. 2019. Devign: Effective Vulnerability Identification by Learning
Comprehensive Program Semantics via Graph Neural Networks. arXiv preprint
arXiv:1909.03496 [cs.SE].

[6] Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun
Chen, Basel Alomair, David Wagner, Baishakhi Ray, and Yizheng Chen. 2024.
Vulnerability Detection with Code Language Models: How Far Are We? arXiv
preprint arXiv:2403.18624 [cs.SE].

[7] Yuejun Guo and Seifeddine Bettaieb. 2023. An Investigation of Quality Issues
in Vulnerability Detection Datasets. In Proceedings of the 2023 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), IEEE, pp.
29–33. DOI: 10.1109/EuroSPW59978.2023.00008.

[8] Roland Croft, M. Ali Babar, and Mehdi Kholoosi. 2023. Data Quality for
Software Vulnerability Datasets. arXiv preprint arXiv:2301.05456 [cs.SE].

[9] Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, and Aidong Zhang.
2024. Spurious Correlations in Machine Learning: A Survey. arXiv preprint
arXiv:2402.12715 [cs.LG].

Bibliograf́ıa xvii

https://doi.org/10.1145/3180445.3180453
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/TNN.2008.2005605
https://openreview.net/forum?id=S5RYm-9Q4o
https://arxiv.org/abs/1909.03496
https://arxiv.org/abs/2403.18624
https://doi.org/10.1109/EuroSPW59978.2023.00008
https://arxiv.org/abs/2301.05456
https://arxiv.org/abs/2402.12715


Mejorando la Robustez en la Detección de Vulnerabilidades mediante Aumentación Contrafactual

[10] Samuel J. Bell and Skyler Wang. 2024. The Multiple Dimensions of
Spuriousness in Machine Learning. arXiv preprint arXiv:2411.04696 [cs.LG].

[11] David Steinmann, Felix Divo, Maurice Kraus, Antonia Wüst, Lukas Struppek,
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Abstract

Automated source code vulnerability detection is a critical cybersecurity
task that impacts the safety and reliability of modern software.
Traditional static and dynamic analysis tools often fail to capture complex
syntactic structures and subtle semantic logic. Recent advances in
machine learning, especially Graph Neural Networks (GNNs), show
promise in learning structural and semantic code relationships. However,
their performance is limited by data imbalance, label noise, and spurious
correlations—patterns that wrongly associate superficial features with
vulnerability labels—undermining generalization to real-world flaws. To
address this, this work introduces VISION (Vulnerability Identification
and Spuriousness mitigation via counterfactual augmentatION), a
unified framework for improving robustness and interpretability in
vulnerability detection. VISION leverages Large Language Models
(LLMs) to generate counterfactual examples—minimally edited functions
with flipped vulnerability labels—providing the model with meaningful
contrasts between real and synthetic samples. The Devign GNN
serves as the architecture for the base model, paired with an
explainer for fine-grained graph attributions and a visualization module
for human-in-the-loop analysis. Evaluated on CWE-20 (Improper
Input Validation), VISION achieves substantial gains in accuracy,
generalization, and explanation quality, with notable improvements in
pair-wise and worst-group accuracy. Additionally, new interpretability
metrics are proposed and the CWE-20-CFA dataset benchmark is
released, featuring over 27,000 balanced examples. Overall, VISION
offers a novel and effective approach to mitigating spurious learning and
advancing transparent, trustworthy AI for secure software development.

Introduction

Software vulnerabilities are among the most exploited weaknesses in cybersecurity,
often serving as the primary entry point for attackers. Ensuring their early
and precise detection is vital to protect the integrity and functionality of digital
infrastructures [1]. Traditional approaches such as static and dynamic code
analysis struggle with the syntactic and semantic complexity of modern software,
limiting their scalability and generalization [2]. In response, Graph Neural
Networks (GNNs) have emerged as a powerful alternative. By modeling source
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code as graphs—capturing elements like syntax trees, control flow, and data
dependencies—GNNs can learn meaningful program structures and support
data-driven detection [3], [4]. Systems such as Devign [5] have demonstrated that
GNNs are capable of learning rich semantic features and outperforming traditional
methods in vulnerability prediction tasks.

Despite their promise, GNN-based models are significantly hindered by issues in
training data. Benchmark datasets often suffer from duplicated samples, noisy
or inconsistent labels, and strong class imbalance [6], [7], [8]. These problems
frequently result in models learning spurious correlations—misleading statistical
associations that do not reflect the underlying security semantics [9], [10], [11]. As
a result, such models may appear effective during evaluation but fail to generalize
to unseen, real-world code. Moreover, their decision processes often remain opaque,
making it unclear what aspects of the input influence their predictions. Without
clear interpretability, the reliability and trustworthiness of these systems are
limited, especially in high-stakes security contexts.

To address these challenges, this work introduces VISION (Vulnerability
Identification and Spuriousness mitigation via counterfactual augmentatION), a
framework that aims to improve both robustness and interpretability in vulnerability
detection. This approach uses counterfactual code examples—functions that have
been minimally edited to flip their vulnerability label while preserving syntactic
and semantic correctness. For instance, transforming a call from strcpy(dest,

"fixed string") to strcpy(dest, user input) introduces a vulnerability by
allowing unvalidated input, despite the two lines being structurally similar. These
examples were generated using Large Language Models (LLMs), following a
prompt-based rewriting strategy. The main goal is to expose the GNN to subtle
semantic variations, helping it focus on meaningful security patterns rather than
dataset-specific artifacts.

The model used in VISION is based on the Devign architecture [5], which is trained
on paired original and counterfactual samples to improve discrimination between
secure and vulnerable code. To enhance transparency, the framework integrates the
Illuminati explainer [12], which provides graph-based attributions highlighting the
most influential code elements. This is further supported by a visualization module
that facilitates human-in-the-loop analysis.

VISION addresses a key gap in explainability for vulnerability detection. While
tools like GNNExplainer [13] and CFExplainer [14] provide feature attributions
and vulnerability localization, they do not mitigate spurious learning. In
contrast, VISION unifies data augmentation and interpretability, improving model
reasoning and offering practitioners an intuitive interface to explore and validate
outputs—supporting a more transparent and trustworthy AI pipeline for secure
software development [15].

The experimental evaluation focuses on the Common Weakness Enumeration
CWE-20 category—Improper Input Validation—which is among the most frequent
and dangerous types of vulnerabilities [16]. Results show significantly improved
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predictive performance and generalization, with pairwise contrast accuracy rising
from 4.5% to 95.8% and worst-group accuracy from 0.7% to over 85%, indicating a
substantial reduction in spurious learning.

Definition and Objectives

This project is situated at the intersection of software security and explainable
artificial intelligence, with the goal of addressing critical limitations in current
machine learning-based vulnerability detection systems. These systems, particularly
those based on Graph Neural Networks (GNNs), often suffer from overfitting to
spurious correlations caused by dataset noise, imbalance, and structural similarity
between benign and vulnerable code. Additionally, the lack of interpretability in
such models hinders their adoption in real-world cybersecurity settings, where trust
and transparency are essential.

The proposed framework, VISION (Vulnerability Identification and Spuriousness
mitigation via counterfactual augmentatION), is designed to enhance both the
robustness and explainability of GNN-based code vulnerability detection. It does
so by generating and integrating counterfactual examples—minimally edited code
functions with flipped vulnerability labels—to guide the model toward learning
meaningful security distinctions. The framework also incorporates a visualization
module for model interpretation, leveraging graph-based attributions to identify
influential code regions.

Project Objectives

• Generate an augmented dataset (CWE-20-CFA) focused on the CWE-20
vulnerability by implementing a prompt-based counterfactual generation
pipeline using LLMs.

• Apply a benchmarking methodology by training GNNs on varying
original/counterfactual splits (e.g., 90/10, 50/50) and evaluating them using
accuracy, pairwise contrast, and robustness metrics to assess the impact of
counterfactual augmentation.

• Implement a graph-based explanation module that highlights influential code
components using a post hoc explainer with node-level importance scores,
enabling visual attribution and supporting human-in-the-loop understanding
of model predictions.

• Demonstrate that the combined use of counterfactual data and explanation
techniques reduces spurious learning, improves generalization, and enhances
the trustworthiness of vulnerability detection systems.

Description of the Framework

This section introduces the VISION framework, which improves robustness
and interpretability in vulnerability detection. Focused on CWE-20, it uses
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LLM-generated counterfactuals to balance training data and boost generalization.
Code samples are converted into Code Property Graphs (CPGs) via Joern and
embedded for the Devign model. Explanations are generated using the Illuminati
explainer, with an interactive module supporting qualitative attribution analysis.
Figure E1 shows the full architecture.

Figure E1: Overview of the VISION framework architecture. Starting from the
original source dataset, the end-to-end pipeline includes CWE-20 filtering,
counterfactual generation for class balancing, CPG construction, embedding
extraction, model training, and explanation generation supported by the

visualization module for interpretability.

Dataset selection: CWE-20 Vulnerability

To evaluate the VISION framework under realistic conditions, this work utilizes
the PrimeVul dataset [6], a recently released and rigorously curated benchmark for
vulnerability detection in source code. PrimeVul offers human-verified labels and
strong de-duplication standards, providing a reliable foundation for training and
evaluation with reduced label noise and high semantic diversity.
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This project focuses specifically on the CWE-20 vulnerability class, known as
Improper Input Validation [16], selected based on the following criteria:

1. Semantic clarity. These vulnerabilities often follow well-defined patterns—such
as missing boundary checks or unchecked buffers—making them suitable for
both automated and manual analysis.

2. Sufficient data. The PrimeVul dataset includes approximately 14,000 CWE-20
instances, allowing robust model training and evaluation without relying on
over-sampling or excessive synthetic data.

3. Practical impact. CWE-20 remains one of the most frequently exploited
vulnerability types, highlighting the importance of accurate detection in
real-world software security [17].

An example illustrating CWE-20 (Figure E2) is the function validGlxScreen, which
validates whether a given screen index is within bounds. Although it checks for upper
limits, it fails to reject negative indices, leading to potential out-of-bounds access.
This type of oversight exemplifies the subtle but critical nature of input validation
flaws and motivates the need for precise detection mechanisms.

1 validGlxScreen(ClientPtr client , int screen , __GLXscreen ** pGlxScreen , int *err) {

2 if (screen >= screenInfo.numScreens) {

3 client ->errorValue = screen;

4 *err = BadValue;

5 return FALSE;

6 }

7 *pGlxScreen = glxGetScreen(screenInfo.screens[screen]) ;

8
9 return TRUE;

10 }

Figure E2: CWE-20 Improper Input Validation example. The validGlxScreen
function verifies that the screen index does not exceed the number of available

screens but neglects to check for negative values. This oversight can lead to invalid
array access and exemplifies a typical improper input validation vulnerability.

Counterfactual Generation and Augmentation

A counterfactual is defined as a minimally modified version of a code function
whose vulnerability label is reversed relative to the original. These modifications
preserve syntactic and semantic correctness while altering the vulnerability
condition—transforming a benign sample into a vulnerable one or vice versa. This
approach is inspired by counterfactual reasoning in explainable AI [18] and builds
on ideas from contrastive learning that expose models to near-boundary examples
[19], [20].

In the context of this work, counterfactual examples serve two key purposes: they
balance the dataset across classes and guide the model to recognize subtle semantic
differences indicative of real vulnerabilities. Unlike traditional augmentation
methods that may introduce noise patterns, counterfactuals maintain high fidelity
to real-world code structures, supporting stable training and generalization.
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Counterfactuals were generated using a prompt-based rewriting strategy via the
OpenAI GPT-4o-mini model, leveraging dynamically constructed prompts that
include the original code snippet, its label, and CWE-type context. Each function
was modified to flip its vulnerability label, either introducing or removing a CWE-20
flaw. An example is shown in Figure E3, where the insertion of non-validated user
input in a benign function creates a realistic vulnerability.

Original benign code: No CWE-20 issue.

1 static int net_get_rate(struct wif *wi)

2 {

3 struct priv_net *pn = wi_priv(wi);

4
5 return net cmd(pn, NET GET RATE, NULL, 0);

6 }

Vulnerable counterfactual example: Unvalidated user input introducing a CWE-20 flaw.

1 static int net_get_rate(struct wif *wi, int user input )

2 {

3 struct priv_net *pn = wi_priv(wi);

4
5 // Introduced vulnerability : accepting user input without validation

6 return net_cmd(pn, NET_GET_RATE , &user input , sizeof(user_input));

7 }

Figure E3: Example of a counterfactual code pair. The top function is benign,
safely calling net cmd with a fixed argument. The bottom version introduces a
CWE-20 (Improper Input Validation) vulnerability by substituting the fixed
argument with unchecked user input (user input), demonstrating a minimal

semantic change that alters the security label.

To construct a balanced training dataset, 14,944 CWE-20 samples were extracted
from the PrimeVul dataset, with a strong imbalance toward benign samples.
Counterfactuals were then generated from both classes, with problematic or invalid
samples removed. The final dataset—CWE-20-CFA—contains 27,556 functions:
13,778 originals and 13,778 counterfactuals, evenly distributed between benign and
vulnerable classes (see Table E1).

Table E1: CWE-20 Dataset Filtering and Balancing Summary

Dataset Stage Benign Vulnerable Total

PrimeVul 218,529 6,004 224,533
CWE-20 PrimeVul 14,473 471 14,944
CWE-20 CFA 13,778 13,778 27,556
– Original 13,349 429 13,778
– Counterfactual 429 13,349 13,778

Base Model for Vulnerability Detection

The VISION framework implements Devign [5] as the base Graph Neural Network
architecture for vulnerability classification. Devign is specifically tailored for source
code analysis and operates on Code Property Graphs (CPGs) [2], which integrate
abstract syntax trees (AST), control flow graphs (CFG), and data flow graphs
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(DFG) into a unified representation.

The architecture comprises three main components: (1) a graph embedding
layer that encodes node and edge features into latent representations; (2) Gated
Graph Recurrent Units (GGRU) that propagate and aggregate information across
the graph structure; and (3) a convolutional module that performs graph-level
classification by summarizing learned node embeddings.

The Devign model was originally evaluated on large-scale, manually labeled
C projects (e.g., Linux Kernel, QEMU, Wireshark, FFmpeg), showing notable
performance gains over prior methods. VISION adopts Devign as its baseline due
to its demonstrated effectiveness in capturing fine-grained semantic patterns for
vulnerability classification.

Visualization Module

To support interpretability and human-in-the-loop analysis, this project integrates
a dedicated visualization module designed to inspect individual source code
examples and explain the behavior of the trained model through input attributions.
The module serves to validate the core hypothesis that counterfactual-based
augmentation improves not only accuracy and robustness but also the semantic
alignment of model explanations.

The system is built on top of the Illuminati explainer [12], which generates
node-level importance scores by extracting minimal and sufficient subgraphs from
the GNN model. Predictions are visually encoded: correct classifications are shown
in green, while misclassifications appear in red, providing immediate feedback on
model performance for human analysis.

Two synchronized views are provided for each function: a highlighted source code
display and a graph-based node map. In both views, a continuous color scale is
used to indicate the relative importance of tokens or nodes, helping users identify
which elements the model considered most influential during prediction.

As illustrated in Figure E4, the visualization reveals how the model’s focus shifts
between benign and vulnerable function variants, supporting a deeper understanding
of decision logic influenced by counterfactual structure.

Experiments and Results

To assess the effectiveness of the VISION framework, a comprehensive evaluation
was conducted across a series of training benchmarks composed of varying
proportions of original and counterfactual functions. All experiments were based
on the CWE-20-CFA dataset and aimed to measure not only predictive accuracy
but also robustness to spurious correlations.

Multiple benchmark configurations were created ranging from 100% original to
100% counterfactual data in 10% increments. Each configuration maintained a
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Figure E4: Integrated visualization module displaying model predictions and
explanation scores for an original benign function (top) and its vulnerable

counterfactual (bottom). Attribution scores are visualized on the right, with red
shading indicating token importance. The module facilitates intuitive exploration
of attribution changes, revealing how the counterfactual modification impacts both

the model’s prediction and its reasoning.

constant number of training samples and a perfectly balanced class distribution
(benign vs. vulnerable). Dataset splits followed an 80/10/10 ratio for training,
validation, and testing, with pairing integrity preserved by assigning each function
ID exclusively to one split. The test set remained fixed across all evaluations to
ensure consistency and included both the original and counterfactual versions of
each function.

Standard metrics—accuracy, precision, recall, and F1-score—were used to evaluate
overall performance, while additional metrics such as pairwise accuracy, worst-group
accuracy, embedding space analysis, and attribution-based scores were employed to
assess robustness and generalization. Results show that performance consistently
improves with counterfactual augmentation, peaking around a 50/50 split. The
100% original configuration achieved high precision but suffered from poor recall,
indicating overfitting to superficial code patterns. Conversely, the 0% original
(fully synthetic) setup degraded performance, confirming that real examples are
essential for effective training. These trends validate that a balanced integration of
counterfactuals promotes more robust and generalizable learning (see Table E2).
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Table E2: Comprehensive evaluation across training splits on the balanced test set.
The left section reports accuracy, precision, recall, and F1-score. The right section
evaluates robustness, generalization, and explanation quality. Metrics include: P-C
(both correct), P-V (both predicted vulnerable), P-B (both predicted benign), and
P-R (flipped predictions); WGA (Worst-Group Accuracy, k=4) reflects subgroup
robustness. Neighborhood Purity measures class consistency in embedding space.

Intra-class Attribution Variance (lower is better) and Inter-class Attribution
Distance (higher is better) evaluate explanation consistency and class separability.

Split Acc Prec Rec F1 P-C P-V P-B P-R WGA4 Purity Intra-B Intra-V Inter-D

100/0 0.518 1.000 0.036 0.069 4.50 0.00 95.43 0.07 0.0073 0.707 0.01103 0.01027 0.00061

90/10 0.867 0.996 0.737 0.847 74.09 1.38 23.88 0.65 0.7052 0.907 0.01120 0.01035 0.00073

80/20 0.955 0.960 0.948 0.954 91.07 5.44 3.27 0.22 0.8757 0.953 0.01096 0.01046 0.00027

70/30 0.970 0.960 0.980 0.970 94.63 4.86 0.36 0.15 0.8757 0.962 0.01109 0.00995 0.00010

60/40 0.978 0.961 0.997 0.979 93.69 6.31 0.00 0.00 0.8703 0.967 0.01134 0.01030 0.00010

50/50 0.960 0.957 0.962 0.960 95.79 0.44 0.00 3.77 0.8555 0.944 0.01061 0.01030 0.00160

40/60 0.970 0.998 0.941 0.969 94.12 1.02 4.50 0.36 0.8092 0.966 0.01122 0.01036 0.00017

30/70 0.951 0.949 0.953 0.951 87.52 8.13 3.85 0.51 0.8266 0.941 0.01101 0.01010 0.00038

20/80 0.930 0.904 0.962 0.932 70.97 27.72 1.02 0.29 0.8497 0.929 0.01144 0.01036 0.00028

10/90 0.919 0.875 0.978 0.924 77.94 20.54 0.65 0.87 0.8152 0.910 0.01103 0.01046 0.00008

0/100 0.799 0.726 0.957 0.826 41.51 57.40 0.65 0.44 0.5030 0.856 0.01122 0.01007 0.00099

Robustness and Spurious Correlation Analysis

Pair-wise accuracy evaluates a model’s ability to distinguish between semantically
similar code functions with opposite vulnerability labels—typically an original
and its counterfactual. A high score indicates that the model is sensitive to
subtle, meaningful code edits that alter vulnerability status, rather than relying on
superficial patterns. The metric is decomposed into four outcomes: Pair-Correct
(P-C), Pair-Vulnerable (P-V), Pair-Benign (P-B), and Pair-Reversed (P-R).
Optimal models exhibit high P-C and low values in the other three categories.
Results show that the 50/50 original/counterfactual split achieves the highest
contrast accuracy (95.79%), confirming that balanced augmentation best supports
the model in learning security-relevant distinctions.

Worst-Group Accuracy (WGA) measures a model’s weakest performance across
automatically discovered subgroups formed by clustering latent embeddings based
on code structure and class. It reflects robustness by indicating whether the model
overfits to dominant patterns while failing on minority or harder-to-generalize
regions. Groups are defined using K-means and intersected with ground-truth
labels; WGA is computed as the lowest classification accuracy among sufficiently
large groups. Models trained with moderate counterfactual augmentation exhibit
the highest and most stable WGA values (¿85%), confirming that counterfactuals
enhance subgroup generalization.

Neighborhood Purity assesses how well the learned graph embeddings cluster
according to true class labels. It is computed using k-nearest neighbor (kNN)
consistency in latent space and serves as an indicator of whether the model
organizes representations semantically or relies on shortcut features. Balanced
counterfactual integration improves purity, with the 60/40 configuration achieving
the highest score, while the 100/0 model shows low purity due to poorly
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structured embeddings. Visualizations via t-SNE further confirm that moderately
augmented models produce clearer class separation in latent space, suggesting that
counterfactuals support more meaningful representation learning (see Figure E5).

Figure E5: t-SNE projections of graph embeddings for benchmarks 100/0 (left),
50/50 (center), and 30/70 (right). Green points represent benign samples, and red
points represent vulnerable samples. These visualizations illustrate how different
original/counterfactual splits influence the spatial distribution and separation of

vulnerability classes.

The attribution-based metrics evaluate explanation consistency and class
separability. Intra-class variance measures how similar the explainer attributions
are across samples of the same class—lower variance implies consistent reasoning.
Inter-class distance quantifies how distinct the average attribution vectors are
between benign and vulnerable samples—higher values suggest clearer conceptual
boundaries. Results indicate that intra-class variance remains relatively stable,
while inter-class distance peaks in the 50/50 benchmark.

Node Score Dependency analyzes inter-node influence in GNN-based explanations
by measuring how importance scores of one node change when another is removed.
This yields a dependency matrix that reveals attribution entanglements. In models
trained without counterfactuals (100/0), spurious focus is observed on irrelevant
tokens, while truly relevant nodes remain uninfluential. In contrast, the 50/50
model exhibits structured dependencies among vulnerability-inducing components,
reflecting more accurate and context-aware reasoning (see Figure E6). This metric
offers insights into both interpretability and model robustness by identifying fragile
or shortcut-driven reasoning paths.

Conclusions

This work presents VISION, a framework for source code vulnerability detection
that enhances robustness and interpretability through counterfactual data
augmentation. By generating semantically valid code modifications that invert
vulnerability labels, the framework exposes Graph Neural Networks to subtle
but meaningful patterns, reducing reliance on spurious correlations. To further
enhance interpretability, VISION incorporates graph-based explanations through
node-level attributions and includes an interactive visualization module to support
human-in-the-loop analysis.
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Figure E6: Node Score Dependency heatmaps for the same vulnerable function
under two training regimes: Left: Benchmark 100/0 and Right: Benchmark 50/50.
Each heatmap shows how masking one node (rows) affects the attribution scores of

others (columns). Red indicates increased influence; blue indicates reduced
importance. The 100/0 model exhibits high focus on spurious context nodes, while

50/50 shows more meaningful attribution alignment.

The evaluation across multiple benchmarks demonstrates that counterfactual
augmentation leads to consistent gains in accuracy, robustness, and explanation
quality. Notably, the framework achieves high pairwise accuracy and worst-group
accuracy, producing more semantically structured embedding spaces and attribution
patterns. These outcomes validate VISION as an effective strategy for mitigating
shortcut learning.

However, two limitations currently constrain the generality of the framework. First,
the experiments are limited to a single vulnerability class—CWE-20 (Improper
Input Validation)—which may restrict applicability to broader security contexts.
Second, the use of LLM-generated counterfactuals may occasionally introduce
unrealistic or semantically noisy edits.

Future work will focus on extending VISION to additional vulnerability classes
and exploring alternative counterfactual generation strategies, such as relying on
formal verification. Further efforts will also explore methods to evaluate and enforce
semantic correctness of counterfactuals, enabling broader adoption of this framework
for building robust and transparent AI systems in cybersecurity.

xxx Summary



Improving Robustness in Vulnerability Detection via Counterfactual Augmentation

Bibliography

[1] Boris Chernis and Rakesh Verma. 2018.Machine Learning Methods for Software
Vulnerability Detection. In Proceedings of the Fourth ACM International
Workshop on Security and Privacy Analytics (IWSPA ’18), ACM, New York,
NY, USA, pp. 31–39. DOI: 10.1145/3180445.3180453.

[2] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and Discovering Vulnerabilities with Code Property Graphs. In Proceedings of
the 2014 IEEE Symposium on Security and Privacy (S&P), IEEE, pp. 590–604.
DOI: 10.1109/SP.2014.44.

[3] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. 2009. The Graph Neural Network Model.
IEEE Transactions on Neural Networks, 20(1): 61–80. DOI:
10.1109/TNN.2008.2005605.

[4] Jingjing Wang, Minhuan Huang, Yuanping Nie, Xiaohui Kuang,
Xiang Li, and Wenjing Zhong. 2023. Fine-Grained Source Code
Vulnerability Detection via Graph Neural Networks. Available at:
https://openreview.net/forum?id=S5RYm-9Q4o.

[5] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang
Liu. 2019. Devign: Effective Vulnerability Identification by Learning
Comprehensive Program Semantics via Graph Neural Networks. arXiv preprint
arXiv:1909.03496 [cs.SE].

[6] Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim, Chawin Sitawarin, Xinyun
Chen, Basel Alomair, David Wagner, Baishakhi Ray, and Yizheng Chen. 2024.
Vulnerability Detection with Code Language Models: How Far Are We? arXiv
preprint arXiv:2403.18624 [cs.SE].

[7] Yuejun Guo and Seifeddine Bettaieb. 2023. An Investigation of Quality Issues
in Vulnerability Detection Datasets. In Proceedings of the 2023 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), IEEE, pp.
29–33. DOI: 10.1109/EuroSPW59978.2023.00008.

[8] Roland Croft, M. Ali Babar, and Mehdi Kholoosi. 2023. Data Quality for
Software Vulnerability Datasets. arXiv preprint arXiv:2301.05456 [cs.SE].

[9] Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, and Aidong Zhang.
2024. Spurious Correlations in Machine Learning: A Survey. arXiv preprint
arXiv:2402.12715 [cs.LG].

Bibliography xxxi

https://doi.org/10.1145/3180445.3180453
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1109/TNN.2008.2005605
https://openreview.net/forum?id=S5RYm-9Q4o
https://arxiv.org/abs/1909.03496
https://arxiv.org/abs/2403.18624
https://doi.org/10.1109/EuroSPW59978.2023.00008
https://arxiv.org/abs/2301.05456
https://arxiv.org/abs/2402.12715


Improving Robustness in Vulnerability Detection via Counterfactual Augmentation

[10] Samuel J. Bell and Skyler Wang. 2024. The Multiple Dimensions of
Spuriousness in Machine Learning. arXiv preprint arXiv:2411.04696 [cs.LG].

[11] David Steinmann, Felix Divo, Maurice Kraus, Antonia Wüst, Lukas Struppek,
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Chapter 1

Introduction

1.1 Motivation

This research aims to enhance software vulnerability detection by addressing two
critical limitations of current machine learning models: lack of robustness and
limited interpretability. In particular, the goal is to improve model reliability
and robustness through counterexample-based data augmentation and to increase
transparency via graph-based explanations. These contributions are designed not
only to support software developers and security analysts but also to promote
broader trust in the use of artificial intelligence for critical cybersecurity tasks.

From a societal perspective, the implications of this work are substantial. Software
systems underpin nearly every aspect of modern life—from healthcare and finance to
infrastructure and communication. As digital services grow in complexity and scale,
the cost of undetected vulnerabilities becomes increasingly severe. High-profile
incidents of software exploitation have demonstrated that even minor flaws can
lead to massive breaches, financial damage, or systemic failures. Ensuring that
machine learning systems can detect such vulnerabilities reliably—and explain their
decisions—is essential for the safety and trustworthiness of digital infrastructure.

Technically, the field of AI-driven vulnerability detection has shown promising
progress with the use of Graph Neural Networks (GNNs), which learn patterns from
structured representations of code. However, these models are often sensitive to
spurious correlations, overfitting on superficial code features that do not generalize
beyond the training data. At the same time, they typically function as opaque
“black boxes,” providing little visibility into the reasoning behind their predictions.
This undermines their reliability in high-stakes environments and limits their utility
for practitioners who need to understand and validate security alerts.

By combining counterfactual data augmentation—which exposes models to
semantically meaningful label-inverting examples—with graph-based explainability
techniques, this project addresses both limitations in a unified way. The outcome
is a model that not only performs better under diverse conditions but also provides
interpretable insights into its predictions, helping bridge the gap between automated
detection and human decision-making in secure software development.
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1.2 Background: The Challenge of Source Code

Security

As software systems continue to expand in scale and complexity, ensuring their
security has become a central concern in both industry and research. A primary
threat vector in this domain is the presence of vulnerabilities in source code, which
can be exploited to compromise system integrity, escalate privileges, exfiltrate data,
or disable services. Detecting such vulnerabilities early in the development cycle is
crucial to minimizing security risks and reducing remediation costs.

Traditional approaches to vulnerability detection—such as static analysis, dynamic
analysis, and symbolic execution—rely heavily on manually crafted rules or
predefined security patterns. While these methods have been widely adopted in
development pipelines, they often suffer from limited scalability, high false-positive
rates, and difficulty in generalizing to previously unseen vulnerabilities [Din+24].
Moreover, they tend to operate on surface-level syntactic structures, lacking the
deeper semantic understanding required to capture complex code behaviors and
subtle security flaws.

To address these limitations, recent research has explored the use of machine
learning, and more specifically, Graph Neural Networks (GNNs) [Sca+09], as a
powerful alternative. GNNs are well-suited for this task because source code can
naturally be represented as Code Property Graphs (CPGs) [Yam+14], such as
Abstract Syntax Trees (ASTs), Control Flow Graphs (CFGs), and Data Flow
Graphs (DFGs). These structures encode relationships between code tokens, control
paths, and variable interactions—enabling models to reason about code behavior in
a more holistic and context-aware manner (see Figure 1.1).

Figure 1.1: Overview of a typical Graph Neural Network (GNN) architecture,
illustrating the main components such as input graphs, GNN layers, pooling,

activation functions, and embedding generation. Adapted from [WP21].

Chapter 1. Introduction 7



Improving Robustness in Vulnerability Detection via Counterfactual Augmentation

Despite their potential, GNN-based models for vulnerability detection face several
key challenges:

• Robustness: Public vulnerability datasets often contain noisy labels,
imbalanced class distributions, and duplicated or near-duplicate functions.
These issues can cause models to learn superficial correlations—e.g.,
associating vulnerability with specific variable names or patterns—rather than
true semantic indicators of unsafe behavior. As a result, models may achieve
high accuracy on benchmark datasets but fail to generalize to real-world
codebases.

• Lack of Explainability: Like many deep learning models, GNNs typically
behave as black boxes, offering little insight into why a particular piece of
code is classified as vulnerable. This lack of transparency limits their practical
applicability in security workflows, where human analysts need to understand
and verify model outputs before taking action.

• Dataset Limitations: High-quality labeled datasets are scarce, and those that
exist often contain class imbalance, inconsistent labeling, and insufficient
coverage of real-world code patterns. This restricts the training and evaluation
of models, especially in security contexts where even small biases can lead to
critical errors.

Overcoming these challenges requires not only algorithmic innovation but also
a deeper integration between robust learning strategies and interpretability
techniques. This project contributes to that effort by proposing a framework that
jointly improves both model robustness and transparency—laying the groundwork
for more reliable and trustworthy vulnerability detection systems.

1.3 Proposed Solution

To address the challenges outlined in the previous section, this work
proposes VISION (Vulnerability Identification and Spuriousness mitigation
via counterfactual augmentatION )—a unified framework designed to improve both
the robustness and interpretability of GNN-based vulnerability detectors. VISION
introduces a novel data augmentation strategy based on counterfactual examples,
enabling the model to learn from subtle, meaningful changes in source code that
directly impact its vulnerability status. This encourages the detection of true
vulnerability patterns while reducing the model’s reliance on superficial or spurious
features.

The central idea of VISION is to generate paired code samples that are minimally
different in syntax but opposite in label—transforming, for example, a benign
function into a vulnerable one by introducing an input validation flaw, or vice
versa. These counterfactuals are generated automatically using a prompt-based
rewriting strategy powered by large language models (LLMs). Each prompt includes
the function’s original source code and metadata such as its vulnerability label
and CWE type, guiding the model to apply controlled, semantically consistent edits.

8 Chapter 1. Introduction



Improving Robustness in Vulnerability Detection via Counterfactual Augmentation

Vulnerable code (CWE-416: Use After Free): unguarded free of rc urb

1 static void snd_usb_mixer_free(struct usb_mixer_interface *mixer){

2 kfree(mixer ->id_elems);

3 if (mixer ->urb) {

4 kfree(mixer ->urb ->transfer_buffer);

5 usb_free_urb(mixer ->urb);

6 }

7 usb free urb(mixer->rc urb); // unguarded free causes null pointer deref

8 kfree(mixer ->rc_setup_packet);

9 kfree(mixer);

10 }

Counterfactual fix: guard on rc urb before free

1 static void snd_usb_mixer_free(struct usb_mixer_interface *mixer){

2 kfree(mixer ->id_elems);

3 // only free rc_urb if it was ever allocated

4 if ( mixer->rc urb ) {

5 usb free urb(mixer->rc urb);

6 }

7 kfree(mixer ->rc_setup_packet);

8 kfree(mixer);

9 }

Figure 1.2: Top: vulnerable snippet with an unguarded call to
usb free urb(mixer->rc urb) (CWE-416). Bottom: minimal counterfactual

insertion of if (mixer->rc urb) removes the bug. This demonstrates a spurious
correlation risk: if the training examples share a pattern, the model may learn to

flag that it as “vulnerable,” rather than recognizing the true root cause.

A compelling example of the spurious correlation phenomenon is shown in
Figure 1.2. The top listing contains a genuine CWE-416 (Use After Free)
vulnerability due to an unguarded call to usb free urb(mixer->rc urb). The
bottom listing is a benign variant that introduces a simple null-check before the
same call. Despite the clear semantic difference, a model trained without proper
counterfactuals might still flag the safe version as vulnerable—if it has learned to
associate the mere presence of usb free urb with buggy behavior. This highlights
a core weakness in current learning-based detectors: they often rely on superficial
code patterns instead of understanding the true security implications of control
flow and logic. Counterfactual augmentation directly addresses this by presenting
the model with paired examples that differ minimally in syntax but substantially
in semantics.

To support this approach, a new benchmark dataset is introduced: CWE-20-CFA.
It is derived from PrimeVul [Din+24], a high-quality vulnerability dataset, by
filtering all examples labeled with CWE-20 (Improper Input Validation) [MIT25]—a
common and high-impact vulnerability category. The original data exhibited a
significant class imbalance (with benign samples vastly outnumbering vulnerable
ones), which was resolved through the counterfactual augmentation process. The
final dataset contains 27,556 samples, evenly split between benign and vulnerable
classes, and includes both original functions and their validated counterfactual
counterparts.

The VISION framework leverages the Devign architecture [Zho+19], a GNN model
well-suited for vulnerability detection in source code, as its predictive core. Code
samples are first converted into CPGs using the Joern [Whi25] analysis tool,
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which combines abstract syntax, control flow, and data flow representations. These
graphs are then encoded into embeddings and passed through the GNN for training.

Beyond classification, VISION also integrates the Illuminati [HJH23] explainer to
provide graph-based attributions—highlighting the most influential code nodes
and tokens that drive model decisions. An interactive visualization module
complements this functionality by allowing human analysts to inspect, compare,
and verify predictions at both the source code and graph levels. An example of
the visualization interface is shown in Figure 1.3, where node attributions are
rendered over both the original and counterfactual function graphs. This allows
users to visually inspect which regions of the code contributed most to the model’s
prediction, improving interpretability and trust in the system.

Figure 1.3: Screenshot of the VISION visualization module. The interface shows
the original function (top) and its counterfactual (bottom), with graph-based node
attributions highlighted. Red nodes indicate high importance for the vulnerability
prediction. This tool enables human-in-the-loop analysis by linking predictions

with semantically relevant code structures.

The effectiveness of VISION was validated through a series of experiments
using benchmark splits with varying ratios of original and counterfactual data.
Results demonstrate substantial improvements in both predictive performance
and explanation quality. Notably, pairwise accuracy increases from 4.5% to
95.8%, and worst-group accuracy rises from 0.7% to over 85%—highlighting the
impact of counterfactual augmentation in reducing shortcut learning and enhancing
generalization.
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1.4 Conclusions

This chapter has introduced the motivation, background, and central objectives of
this research, situating the problem of vulnerability detection within both a societal
and technical context. As software continues to underpin critical infrastructures and
digital services, the importance of developing robust and interpretable vulnerability
detection systems becomes increasingly evident. Traditional detection tools fall
short when faced with the scale, semantic diversity, and subtlety of modern
codebases—often relying on rigid heuristics or superficial patterns that fail to
generalize.

To address these limitations, this work proposes VISION, a unified framework that
enhances the performance and transparency of Graph Neural Network (GNN)-based
vulnerability detection. By integrating counterfactual data augmentation with
graph-based explanation techniques, the framework encourages models to focus
on truly discriminative features while providing interpretable insights into their
decisions. The use of large language models to generate minimal label-flipping edits
allows for a systematic augmentation process that exposes the model to subtle
semantic boundaries, helping to reduce spurious correlations.

To summarize, the key contributions of this work are:

• A novel counterfactual augmentation strategy that uses Large Language
Models (LLMs) to improve robustness by presenting models with paired code
examples that differ minimally in syntax but meaningfully in vulnerability
semantics.

• Empirical validation on a realistic and challenging benchmark focused on
CWE-20 vulnerabilities, demonstrating significant improvements in robustness
and generalization without requiring external data sources.

• The construction of a new benchmark dataset CWE-20-CFA, created by
augmenting existing CWE-20 samples with validated counterfactuals, enabling
more balanced and insightful training and evaluation.

• An interactive visualization module based on graph-based explanations,
allowing users to qualitatively assess model behavior and observe attribution
patterns aligned with semantic vulnerability cues.

The following chapters delve into the technical details, prior literature,
implementation, and evaluation of the VISION framework.chapter 2 presents the
related work in vulnerability detection and explainable machine learning; chapter 3
describes the design and methodology behind VISION; chapter 4 details the
experimental setup and results; and chapter 5 concludes the thesis with a reflection
on limitations and future directions.
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Chapter 2

Related Work

The task of detecting vulnerabilities in source code intersects multiple areas
of research, including software security, machine learning, graph representation
learning, and explainable AI. This chapter reviews the key developments and
ongoing challenges across these domains, highlighting the limitations of traditional
analysis tools, the growing role of deep learning—especially Graph Neural
Networks (GNNs) [Sca+09]—and the emerging importance of interpretability and
robustness. Special attention is given to recent advancements in data augmentation,
counterfactual reasoning, and benchmark design, which inform the design of the
VISION framework.

2.1 Vulnerability Detection in Source Code

Detecting software vulnerabilities has long been a central goal in cybersecurity, as
flaws in source code can be exploited to compromise systems, access sensitive data,
or disrupt services. Over time, a wide range of approaches has emerged, from
rule-based static and dynamic analysis tools to more recent learning-based methods.
This section reviews the evolution of vulnerability detection techniques, highlighting
the strengths and limitations of traditional tools, and tracing the shift toward
data-driven approaches that leverage classical machine learning, deep learning, and
transformer-based models.

2.1.1 Static and Dynamic Analysis Tools

Traditional approaches to software vulnerability detection have long relied on static
and dynamic analysis techniques. These methods form the foundational layer of
software security assessment, each offering distinct advantages and facing specific
limitations.

Static Analysis

Static analysis involves examining source code without executing it, aiming
to identify potential vulnerabilities, coding errors, and deviations from coding
standards early in the development lifecycle. Tools such as SonarQube, Cppcheck,
and CodeSonar are widely used in the industry for this purpose [Jha25]. These tools
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can detect issues like buffer overflows, null pointer dereferences, and use-after-free
errors by analyzing the code’s structure and syntax.

Dynamic Analysis

Dynamic analysis, in contrast, involves evaluating a program during its execution.
This approach can uncover vulnerabilities that manifest only at runtime, such
as memory leaks, race conditions, and improper input validation. Dynamic
Application Security Testing (DAST) tools simulate real-world attack scenarios to
identify potential security flaws in running applications [OWA25].

While dynamic analysis provides valuable insights into a program’s behavior under
actual operating conditions, it has its limitations. It can only assess code paths
that are executed during testing, potentially missing vulnerabilities in untested
paths. Moreover, setting up a realistic testing environment can be complex and
resource-intensive, and dynamic analysis may not be feasible in early development
stages where the application is not yet fully functional.

Complementary Use and Limitations

Both static and dynamic analysis tools are essential in a comprehensive security
strategy, offering complementary insights. Static analysis is effective for early
detection of potential issues, while dynamic analysis provides a deeper understanding
of runtime behavior. However, neither approach is foolproof. Static analysis may
miss context-dependent vulnerabilities, and dynamic analysis may not achieve
complete code coverage. Furthermore, both methods can generate false positives
and negatives, necessitating manual review and validation.

These limitations underscore the need for more advanced techniques in vulnerability
detection. Machine learning and, more recently, deep learning approaches have
emerged to address these challenges by learning complex patterns from large
codebases, aiming to improve detection accuracy and reduce false positives.

2.1.2 Classical Machine Learning Approaches

As a response to the limitations of static and dynamic analysis, classical machine
learning (ML) techniques began to emerge in the early 2000s as a promising
alternative for automated vulnerability detection [CV18; Ala+25]. These methods
aimed to move beyond hand-crafted rules by learning patterns from labeled examples
of vulnerable and non-vulnerable code.
Most classical ML approaches rely on manually extracted features such as token
frequencies, control structures, or syntactic patterns derived from abstract syntax
trees (ASTs) or control flow graphs (CFGs). For example, support vector machines
(SVMs), decision trees, and logistic regression models have been trained on
token-level features to predict the likelihood of a code snippet being vulnerable.
Vulture [Neu+07] used import frequency analysis to predict vulnerable components
(see Figure 2.1), while other works explored the use of n-gram models and
bag-of-words representations to capture local syntax patterns [Mou+24].
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Figure 2.1: Overview of the vulnerable code detection process described in the
Vulture paper [Neu+07]. A software repository is used to train a token vocabulary
and embeddings (e.g., Word2Vec). Source code is then transformed into token
vectors and combined with architecture metrics to feed a supervised classifier,

which is trained with in-domain or cross-domain vulnerability labels.

These techniques brought scalability and automation to the vulnerability detection
process but were still fundamentally constrained by the quality of feature
engineering. Their ability to generalize across different projects, languages, or
vulnerability types was limited, and they often struggled to model the complex,
structured nature of code semantics. Additionally, most classical ML methods
treated code as flat text or sequences, lacking awareness of hierarchical structures
and long-range dependencies critical to understanding real-world vulnerabilities.

Despite these limitations, classical ML approaches laid the groundwork for deeper
integration of data-driven techniques in software security and opened the door to
the adoption of more expressive models, such as deep neural networks and, later,
graph-based architectures.

2.1.3 Deep Learning and Neural Models

The introduction of deep learning into the field of software vulnerability detection
marked a significant shift toward models capable of automatic feature extraction
and greater representational power. Unlike classical machine learning methods,
deep learning models can learn complex patterns from raw or lightly preprocessed
code without requiring manually engineered features. This flexibility enables the
capture of deeper semantic relationships and long-range dependencies, which are
critical for identifying subtle and context-dependent vulnerabilities.

Early applications of deep learning in this area focused on sequential representations
of code, often using models originally developed for natural language processing
(NLP). Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
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networks were used to model the token sequences of code functions, capturing
sequential dependencies in variable usage, API calls, and control structures. Ziems
and Wu (2021), for example, applied LSTMs to learn sequential patterns indicative
of vulnerabilities across large codebases [ZW21].

Convolutional Neural Networks (CNNs) were also adapted for code analysis,
particularly for their ability to detect local syntactic or structural patterns.
VulCNN [Wu+22] demonstrated that convolutional architectures could efficiently
learn vulnerability patterns in function-level source code, drawing analogies between
token arrangements in code and spatial arrangements in image data. An overview
of the VulCNN architecture is illustrated in Figure 2.2.

Figure 2.2: Overview of the VulCNN pipeline [Wu+22]. It consists of four stages:
(1) extraction of a program dependency graph from source code, (2) sentence-level
embedding of code lines as graph nodes, (3) generation of an image by weighting
vectors using centrality metrics, and (4) CNN-based vulnerability classification.

With the advent of pretrained transformer models, such as CodeBERT [Fen+20]
and GraphCodeBERT [Guo+21], deep learning for code analysis took another
leap forward. These models leveraged vast corpora of code to learn high-quality
embeddings via masked language modeling, fine-tuned later for tasks such as
function classification, defect prediction, or vulnerability detection. Their strength
lies in modeling global context and token relationships through self-attention
mechanisms, allowing them to understand complex code logic and dependencies
beyond what RNNs or CNNs could capture.

Despite these advances, deep learning models—especially sequence-based ones—still
face important limitations. Treating code purely as text or sequences neglects
the graph-structured nature of programming languages, such as syntax hierarchies
and data/control flow relationships. Moreover, deep models often suffer from low
interpretability and are prone to overfitting on dataset-specific patterns, especially
when trained on imbalanced or noisy benchmarks. These challenges paved the
way for Graph Neural Networks (GNNs), which naturally align with the structural
properties of source code and are increasingly adopted in vulnerability detection
research.
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2.1.4 Transformer-Based Models for Code

Transformer-based models have significantly advanced the field of software analysis
by enabling pretraining on large-scale code corpora and learning contextual
representations that capture both syntax and semantics. Initially developed for
natural language processing, transformers leverage self-attention mechanisms
to model global dependencies across sequences. In the software domain, these
capabilities translate well to capturing long-range interactions in code, such as
dependencies between variable definitions and usage, or relationships between
function calls and control structures.

CodeBERT [Fen+20] was among the first pretrained models to adapt the BERT
architecture for source code. It was trained on a large multilingual corpus of
programming and natural language pairs, enabling joint modeling of documentation
and implementation. CodeBERT demonstrated strong performance on a range
of tasks, including function classification, code search, and defect prediction, and
quickly became a widely used foundation model in the code intelligence community.

Building on this, GraphCodeBERT [Guo+21] introduced an improved architecture
that incorporates data flow graphs (DFGs) during pretraining (see Figure 2.3),
thereby explicitly encoding program semantics. This extension improved the
model’s ability to reason about code behavior, such as how variables propagate
through a function, leading to performance gains on tasks that require deeper
semantic understanding.

Figure 2.3: Pre-training process of GraphCodeBERT [Guo+21]. The model takes
source code paired with comments and corresponding data flow as input. It is

trained using masked language modeling along with two structure-aware tasks: (1)
predicting the origin variable of a use (orange arrows), and (2) predicting data flow

edges between variables (blue arrows).

Other models, such as PLBART [Ahm+21], CodeT5 [Wan+21], and
CodeGen [Nij+23], further explore multi-task learning and generative capabilities
by combining code summarization, translation, and generation with defect and
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vulnerability detection. These models benefit from massive pretraining on code
repositories like GitHub and show generalization across languages and tasks.

Large Language Models (LLMs) have also been directly applied to cross-language
and general-purpose vulnerability detection, showing competitive or superior
performance in recent studies [SAE24; ZZL24]
Despite their success, transformer-based models face limitations when applied to
vulnerability detection. Most notably, they still treat source code as linear sequences
of tokens, which can obscure the rich structural dependencies. Additionally, they
often lack explicit explainability and can overfit to statistical patterns that are
not semantically meaningful. As a result, researchers have increasingly turned
to graph-based models, which offer a more faithful representation of program
structure and can be extended with explanation techniques to improve trust and
interpretability in high-stakes security contexts.

2.2 Graph Neural Networks for Code

Representation

As programming languages are inherently structured and hierarchical, source code
can be naturally represented as graphs—capturing not only the syntax but also
the flow of control and data. Graph Neural Networks (GNNs) [Sca+09] have
emerged as a powerful tool for leveraging this structure, enabling models to
reason about relationships between code elements in a way that goes beyond
token-level or sequential representations. This section reviews the fundamental
graph representations used in software analysis and explores GNN architectures that
have been successfully applied to code understanding and vulnerability detection.

2.2.1 Source Code as Graphs

Programming languages, by design, follow strict syntactic and semantic rules,
making source code a naturally structured input. Over decades, the fields of
program analysis and compiler design have developed multiple intermediate
representations to reason about the structure, behavior, and properties of code.
These representations not only support optimization and debugging but also serve
as a foundation for machine learning models applied to software security.

1 void foo()

2 {

3 int x = source ();

4 if (x < MAX)

5 {

6 int y = 2 * x;

7 sink(y);

8 }

9 }

Figure 2.4: Illustrative code snippet used for Code Property Graph (CPG)
explanation. Adapted from [Yam+14].

This section focuses on three core representations—Abstract Syntax Trees (ASTs),
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Control Flow Graphs (CFGs), and Program Dependence Graphs (PDGs)—which
are fundamental to graph-based vulnerability detection. A running code example is
depicted in Figure 2.4.

Figure 2.5: Illustration of three core code representations for a sample function:
(a) Abstract Syntax Tree (AST) captures syntactic structure, (b) Control Flow
Graph (CFG) models execution order and branching, (c) Program Dependence
Graph (PDG) encodes data and control dependencies. Adapted from [Yam+14].

Abstract Syntax Trees (ASTs)

Abstract Syntax Trees are the earliest and most syntactic representation of source
code, generated directly from parsing. ASTs encode the hierarchical nesting of
statements and expressions but abstract away surface-level syntactic elements like
punctuation or keywords. In an AST, internal nodes represent operators (e.g.,
assignments, function calls) while leaves correspond to variables, constants, or
function names.

As seen in Figure 2.4(a), the AST for the code snippet structurally organizes
the assignment, predicate, and function call statements, capturing how program
constructs are composed. ASTs are useful for syntax-based pattern matching
and code transformations but are limited when deeper analysis—such as variable
influence or execution paths—is required. Notably, they do not capture control flow
or data dependencies between different parts of the program.

Control Flow Graphs (CFGs)

Control Flow Graphs model the execution order of a program by representing
statements and predicates as nodes, with directed edges indicating the possible
paths the program may take during runtime. Predicate nodes include branching
based on true or false evaluations, enabling explicit modeling of conditional and
loop structures.

Figure 2.4(b) shows the CFG of the same example code. It captures whether the
call to sink(y) is conditionally executed, depending on the value of x. CFGs are
particularly useful in program understanding, reverse engineering, and vulnerability
detection tasks that depend on execution semantics. However, CFGs do not express
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how data moves through the program, making them insufficient alone for reasoning
about vulnerabilities such as taint propagation or improper data use.

Program Dependence Graphs (PDGs)

Program Dependence Graphs, introduced by Ferrante et al. [FOW87], unify both
control and data dependencies within a single representation. PDGs contain two
edge types: data dependencies, which connect definitions and uses of variables,
and control dependencies, which represent how predicate outcomes influence the
execution of statements.

Figure 2.4(c) illustrates how PDGs explicitly encode the influence of x on y and
the dependency of sink(y) on the condition x < MAX. Unlike CFGs, PDGs do not
preserve execution order but allow reasoning over semantic dependencies, making
them ideal for tasks such as slicing, taint analysis, and vulnerability detection.

Together, ASTs, CFGs, and PDGs form the structural foundation of modern
graph-based learning methods for source code. Their combination—often realized
in Code Property Graphs (CPGs)—enables rich, multi-view representations that
support robust and interpretable learning.

2.2.2 GNN Architectures for Code

Graph Neural Networks (GNNs) [Sca+09] have emerged as a powerful class of
models capable of learning from relational and structured data. In the context
of source code analysis, GNNs are particularly well-suited due to their ability to
process program representations—such as Abstract Syntax Trees (ASTs), Control
Flow Graphs (CFGs), and Data Flow Graphs (DFGs)—where nodes represent
code elements and edges represent syntactic or semantic relationships. These
networks enable deep learning models to reason over both local and global code
structures—something that traditional sequential models like RNNs or CNNs
struggle to achieve.

GNN Fundamentals in Code Analysis

At a high level, GNNs operate by iteratively propagating information across
a graph structure. Each node aggregates features from its neighbors using a
message-passing mechanism, gradually updating its own representation through
multiple layers. This paradigm is naturally applicable to program graphs, where
the goal is to compute meaningful embeddings for functions, code blocks, or entire
graphs that reflect vulnerability-relevant semantics.

Early applications of GNNs to code analysis focused on tasks such as code
summarization, variable misuse detection, and program classification [Li+18].
These tasks benefit from the GNN’s ability to model both short- and long-range
dependencies among code elements, particularly when working with heterogeneous
graphs composed of multiple edge types and semantic roles.
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2.2.3 Devign: A GNN Model for Vulnerability Detection

A landmark in this field is Devign [Zho+19], a GNN-based model specifically
designed for source code vulnerability detection. Devign introduced a graph-centric
approach that captures both syntax and semantic features by operating over Code
Property Graphs (CPGs). These graphs combine multiple views of code—including
ASTs, CFGs, and DFGs—into a unified graph representation, thereby providing a
comprehensive view of program structure.

Architecture

Devign’s architecture consists of three core components (see Figure 2.6:

• Graph Embedding Layer: This layer encodes code tokens and edge types
into continuous vector representations. The input graph, derived from a CPG,
includes multiple edge types representing different code relationships (e.g.,
AST CHILD, CFG NEXT, DFG READS), which are embedded and processed jointly.

• Gated Graph Recurrent Unit (GGRU): This component is responsible
for propagating information through the graph. It captures the flow of
semantics between code elements via gated recurrent message-passing, allowing
node embeddings to evolve based on their neighbors. The GGRU structure is
particularly effective for modeling long-range dependencies and cyclic graphs
found in real-world code.

• Graph-level Convolution and Pooling: After message passing, Devign
uses global pooling to summarize node representations into a fixed-size vector.
This embedding is passed through dense layers for binary classification, where
the output predicts whether a given function is vulnerable or benign.

Figure 2.6: Overview of the Devign model architecture as proposed by Zhou et
al. [Zho+19]. The model processes graph representations of source code through
an embedding layer, gated graph recurrent units (GGRU), and a global pooling
mechanism to produce vulnerability predictions. Multiple graph views such as

AST, CFG, and DFG are unified in the input graph.

Results and Achievements of the Devign Model

Devign represents a significant advancement in automated vulnerability
identification by leveraging graph neural networks (GNNs) to learn from
comprehensive program semantics. Evaluated on a large-scale, manually labeled
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dataset consisting of real-world open-source C projects—including FFmpeg, QEMU,
Wireshark, and the Linux Kernel—Devign demonstrated substantial improvements
over prior state-of-the-art models. Specifically, it achieved an average of 10.51%
higher accuracy and 8.68% higher F1 score compared to baseline approaches such
as CNNs, RNNs, and traditional machine learning models. The introduction
of Devign’s novel Conv module further contributed to performance, yielding an
additional average gain of 4.66% in accuracy and 6.37% in F1 score, underscoring
its effectiveness in extracting vulnerability-relevant features from graph-structured
code representations.

Beyond outperforming deep learning and static analysis baselines, Devign proved
robust across a variety of settings. It maintained strong results even on imbalanced
datasets that mirror real-world conditions, surpassing well-known static analyzers
by an average of 27.99% in F1 score. Moreover, Devign showed practical utility
in identifying newly disclosed vulnerabilities: when tested on 40 recent CVEs from
the evaluated projects, it achieved an average accuracy of 74.11%, indicating its
potential for discovering zero-day vulnerabilities in complex, real-world codebases.
These achievements have established Devign as a foundational architecture in
the field, inspiring subsequent research on GNN-based vulnerability detection and
setting a new benchmark for effectiveness and generalizability in machine learning
for software security.

Advantages and Limitations of Devign

One of Devign’s key advantages is its capacity to integrate multiple views of code
in a single representation, offering a richer signal for vulnerability classification.
Its design aligns well with the underlying structure of programming languages
and does not require manual feature engineering, making it broadly applicable to
diverse codebases.

However, Devign also exhibits some limitations. The model is highly dependent on
the quality and structure of the input graphs, which in turn depend on the accuracy
of static analysis tools such as Joern. Furthermore, as a conventional GNN, it
can suffer from oversmoothing—where node embeddings become indistinguishable
in deeper networks—and may overfit to dataset-specific spurious patterns if not
properly regularized or trained on diverse data. Another limitation is the lack
of native interpretability, which makes it challenging to understand which code
components contribute most to the model’s predictions.

2.2.4 Strengths and Limitations of GNNs in Security Tasks

Among their advantages, GNNs offer context-aware learning, as node embeddings
are iteratively updated through message passing, allowing each node to gather
information from its neighbors. This mechanism is particularly useful in code
analysis, where vulnerabilities are often determined by dependencies between
variables, control branches, and function calls scattered throughout a program.
GNNs can also handle heterogeneous graphs with diverse edge types, making them
adaptable to richly structured inputs like Code Property Graphs (CPGs). As a
result, they outperform traditional sequential models (e.g., RNNs or CNNs) on
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tasks where structure and interaction matter, such as vulnerability detection, clone
detection, and program classification.

GNNs have demonstrated success in various security-related tasks, such as
predicting vulnerabilities, detecting malware variants, and classifying buggy
code snippets [Zho+19; Li+18]. Studies have shown that GNN-based models
can outperform traditional neural networks when the input is graph-structured,
achieving better generalization and capturing more complex patterns of code
behavior.

Nevertheless, GNNs exhibit several important limitations in security-sensitive
applications. A key challenge is their susceptibility to spurious correlations,
where models learn to associate irrelevant features—such as naming conventions
or formatting artifacts—with vulnerability labels due to patterns in biased or
duplicated training data. This issue is particularly pronounced in noisy or
imbalanced datasets, where models may overfit to superficial characteristics instead
of learning true vulnerability semantics [Din+24]. Spurious correlations can lead to
brittle generalization, especially when evaluating on out-of-distribution samples.

GNNs are also known to suffer from oversmoothing, where node representations
converge to similar values after multiple layers of message passing. In the context
of source code, this effect can cause semantically distinct code regions to become
indistinguishable in latent space, impairing the model’s ability to differentiate
fine-grained program behaviors. This can limit performance on longer functions or
deeply nested structures, where contextual precision is critical.

A further concern is the lack of interpretability. GNNs often behave as
black boxes, making it difficult to understand which parts of a program led to
a particular vulnerability prediction. While various explanation methods have
been proposed—such as GNNExplainer [Yin+19], PGM-Explainer [VT20], and
SHAP [LL17]-based adaptations—the field of explainable GNNs remains relatively
nascent in the context of software security.

Finally, robustness is an increasingly important area of concern. Recent studies
show that GNNs are vulnerable to structural perturbations, where small changes
in the graph (e.g., adding or deleting edges or nodes) can significantly alter the
model’s prediction (adversarial attacks). This poses a threat in security contexts,
where adversaries may craft code snippets that evade detection by exploiting
the model’s structural weaknesses. Wu et al. [Wu+25] conducted a large-scale
empirical study on this topic, highlighting the lack of theoretical understanding
around GNN robustness and proposing a set of evaluation metrics and design
principles to guide future development. Their work emphasizes that current defenses
against adversarial attacks are often empirical and dataset-specific, with limited
generalizability. Robustness, therefore, remains a pressing challenge for deploying
GNNs in real-world security systems, especially where adversarial resilience is
essential.

These strengths and limitations suggest that while GNNs are a powerful tool
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for modeling program semantics, they must be applied thoughtfully—often
in combination with data quality improvements, augmentation strategies, and
explanation techniques—to fulfill their potential in practical vulnerability detection
scenarios.

2.3 Challenges in Learning-Based Vulnerability

Detection

Despite promising advances in applying machine learning to software vulnerability
detection, several critical challenges continue to hinder the effectiveness and
reliability of current models. These challenges arise from the inherent complexity
of programming languages, the limitations of available datasets, and the opaque
nature of deep learning models. In particular, issues such as data quality, class
imbalance, label noise, spurious correlations, and lack of model interpretability limit
both performance and trustworthiness in real-world scenarios. Addressing these
problems is essential to transition from theoretical success to practical deployment
in cybersecurity tools. The following subsections detail the most pressing technical
and methodological obstacles facing the field.

2.3.1 Dataset Quality and Label Noise

One of the most persistent obstacles in learning-based vulnerability detection is the
limited quality of available datasets. Most benchmark datasets used in this domain
suffer from a combination of issues: label noise, data duplication, class imbalance,
and limited diversity of examples. These deficiencies directly influence the model’s
ability to generalize to real-world scenarios and are often the root cause behind
brittle behavior and inflated performance metrics.

Label noise remains a pervasive concern. This issue arises when examples
are incorrectly annotated—e.g., benign code fragments labeled as vulnerable
or vice versa. This can happen due to limitations in static analysis tools used
for annotation, misunderstandings of the vulnerability context, or reliance on
coarse-grained rules during dataset construction. For instance, Croft et al. (2023)
reported that mislabeling rates in public datasets can range from 20% to over
70% [CBK23], severely affecting model learning and evaluation reliability. In some
cases, such noise may stem from automated labeling based on commit messages,
flawed use of static analysis tools, or ambiguous definitions of what constitutes a
vulnerability [Din+24]. High levels of label noise can lead to models that learn
incorrect associations, reducing their ability to distinguish truly vulnerable patterns
from benign ones.

Duplication is another critical issue. Dataset duplication rates can range from 17%
to as high as 99%, leading to overfitting and memorization of superficial patterns
rather than learning generalized representations [GB23]. This also undermines
model evaluation, as duplicated or near-duplicated samples may appear across both
training and test splits, inflating reported performance metrics and masking the
model’s true generalization capacity.
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Class imbalance further compounds these issues. In most real-world repositories,
vulnerable functions are rare compared to benign ones. Consequently, datasets often
reflect this skew, leading to imbalanced training data where models become biased
toward predicting the majority class. This results in poor recall for vulnerable
cases, which are typically the most critical to detect.

A related challenge is the semantic similarity and variation between vulnerable and
benign examples. In some datasets, the differences between classes are minimal
or subtle, such as a missing null-check or an off-by-one error. When inter-class
examples (e.g., vulnerable vs. benign) are too similar, models struggle to detect the
subtle distinctions that determine vulnerability. Conversely, excessive intra-class
variation can confuse the learning process by introducing noise and making patterns
harder to identify [Liu+22].

In response to these challenges, newer datasets have been developed to improve
data quality. PrimeVul [Din+24] incorporates stricter deduplication protocols
and manual validation to reduce label noise and improve dataset reliability.
DiverseVul [Che+23] addresses semantic coverage by introducing linguistic and
structural diversity across examples, enhancing the model’s ability to generalize
across coding styles and contexts. Despite these advances, high-quality, balanced,
and diverse datasets remain scarce, especially for many individual CWE classes,
posing a substantial obstacle to advancing robust vulnerability detection models.

2.3.2 Spurious Correlations and Shortcut Learning

A major challenge in machine learning-based vulnerability detection lies in the
model’s tendency to exploit spurious correlations—superficial patterns in the
training data that correlate with target labels but do not reflect true causal
relationships (see Figure 2.7). This phenomenon, also known as shortcut learning,
results in models that appear accurate on in-distribution benchmarks but fail to
generalize to new or slightly altered code contexts [Sag+20].

Figure 2.7: The Waterbirds dataset demonstrates spurious correlation: most
waterbirds appear on water backgrounds and most landbirds on land backgrounds.
A model may learn to associate the background with the bird type, rather than

focusing on the bird itself. Image from [Qia+25].
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In the context of source code, spurious correlations often emerge from biases in
the dataset construction process. For instance, duplicated vulnerable samples
with specific variable names, function signatures, or even formatting styles
can lead models to associate those features with vulnerabilities. Rather than
learning semantic indicators of faulty logic or missing validations, the model
learns to recognize stylistic artifacts that are coincidentally frequent among
vulnerable examples. This behavior undermines the core goal of vulnerability
detection—understanding the underlying program behavior that leads to insecure
execution.

Figure 2.8 highlights an example of spurious correlation through two semantically
similar functions. In the upper (benign) function, the variable mode is safely assigned
from an internal configuration source (aa g profile mode). In contrast, the lower
(vulnerable) function uses a user-provided mode value directly in a sprintf() call
without proper bounds checking. A model trained predominantly on benign patterns
like the former may incorrectly associate the presence of mode with safe behavior,
overlooking its insecure usage when derived from untrusted input.

Original benign code: No CWE-20 issue.

1 static int net_get_rate(struct wif *wi)

2 {

3 struct priv_net *pn = wi_priv(wi);

4
5 return net cmd(pn, NET GET RATE, NULL, 0);

6 }

Vulnerable counterexample: Unvalidated user input introducing a CWE-20 flaw

1 static int net_get_rate(struct wif *wi, int user input )

2 {

3 struct priv_net *pn = wi_priv(wi);

4
5 // Introduced vulnerability : accepting user input without validation

6 return net cmd(pn, NET GET RATE, &user input, sizeof(user input));

7 }

Figure 2.8: Illustration of spurious correlation in source code. The upper (benign)
function assigns a trusted internal value to mode, while the lower (vulnerable)

function uses unchecked user input. Without the counterexample, a model may
wrongly associate the variable mode with safe behavior overlooking its unsafe usage.

Such risks are especially pronounced in scenarios involving minimal differences
between classes. For example, a vulnerable function and its benign variant might
differ only by a single null-check or input sanitization condition—like the example
depicted in Figure 2.8. A model trained on biased data might still label both as
vulnerable if it has learned to overfit on tokens like function names or constants.
This behavior not only produces false positives but also damages trust in the
system’s reliability.

Recent studies on machine learning spuriousness [Ye+24; BW24; Ste+24] have
underscored how widespread this issue is, even in high-performing models. These
studies argue that statistical correlations learned from data are not sufficient for
robust decision-making, particularly when spurious features are easier to learn than
the underlying semantics. In vulnerability detection, this is especially dangerous, as
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overfitting to syntactic patterns can render models brittle and unfit for real-world
deployment.

Addressing this issue requires both improved data practices and more principled
model training. Strategies that enrich the semantic content of training data
are gaining attention for encouraging models to focus on true vulnerability
semantics. Similarly, training-time interventions (e.g., loss regularization or
adversarial training) can encourage the model to learn more robust features.
However, detecting and quantifying spuriousness remains a difficult task, and most
existing approaches lack a rigorous framework to identify when models are exploiting
shortcuts.

2.3.3 Data Augmentation Strategies for Source Code

Data augmentation has become an increasingly important strategy in machine
learning for addressing data scarcity, improving generalization, and mitigating class
imbalance. In the context of source code vulnerability detection, augmentation
techniques aim to produce new training examples while preserving both the
syntactic validity and semantic meaning of the original functions. This requirement
is particularly challenging in source code settings, where minor modifications can
introduce compilation errors or unintentionally change program behavior.

Several augmentation methods have been recently proposed to enhance
learning-based vulnerability detection. CodeGraphSMOTE [Gan+23] is one
prominent strategy which adapts the classical SMOTE technique to structured
graph representations. It performs interpolation in the latent embedding space
of graph neural networks (GNNs), effectively synthesizing new samples that lie
between existing vulnerable and benign examples. While this method balances the
dataset, it does so at a high level of abstraction, making it harder to interpret or
control the semantic fidelity of the resulting samples.

Another family of approaches focuses on transformation-based augmentation,
which modifies the source code directly through label-preserving transformations.
These include renaming identifiers, altering loop structures, reordering independent
statements, and substituting equivalent logic constructs. Such transformations
aim to increase the structural diversity of the training data while maintaining
the original labels [Liu+24]. However, their effectiveness depends on the coverage
and diversity of transformation templates, and they do not create challenging
contrastive examples that could push the model to learn finer-grained semantics.

More recently, LLM-based code synthesis has emerged as a powerful augmentation
tool. For example, VulScribeR [Dan+24] leverages large language models (LLMs)
to generate synthetic vulnerable code samples based on real-world vulnerability
patterns. These approaches benefit from the generative capacity of LLMs and can
produce diverse examples at scale. Nonetheless, they typically rely on predefined
vulnerability prompts and lack guarantees about semantic contrast or proximity
to real-world decision boundaries. The Figure 2.9 depicts the overview of the
VulScribeR Augmentation approach.
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Figure 2.9: Overview of the VulScribeR augmentation system [Dan+24]. The
architecture includes four key components: a Retriever (used by the Injection and

Extension strategies) to fetch example pairs, a Formulator that instantiates
prompt templates for each strategy (Mutation, Injection, or Extension), a

Generator that uses an LLM to produce candidate vulnerable samples, and a
Verifier that filters outputs using a fuzzy C parser (Joern) to eliminate syntactic
errors. The system balances diversity and realism, providing scalable LLM-based

augmentation for vulnerability datasets.

In contrast to the above, counterfactual data augmentation remains relatively
underexplored in source code analysis. This technique involves making minimal
and targeted edits to existing functions such that the vulnerability label flips—e.g.,
by removing an input validation check or introducing a tainted data flow.
Counterfactuals serve as semantically meaningful near-neighbors on opposite sides of
the decision boundary, providing stronger learning signals for classification models.
Importantly, they allow researchers to test a model’s sensitivity to small but
security-relevant changes and help mitigate shortcut learning. Despite its promise,
few works have systematically incorporated counterfactual examples in training
pipelines for vulnerability detection, leaving this as an open area of research.

2.3.4 Lack of Model Interpretability

Interpretability remains a persistent barrier to the adoption of machine learning
systems for vulnerability detection. While models such as Graph Neural Networks
(GNNs) and Transformers can achieve high performance, they often operate
as black boxes—offering predictions without insight into the reasoning behind
them. In a critical domain such as cybersecurity, this opacity undermines trust,
limits feedback, and complicates debugging, especially when misclassifications occur.

To address this, several explanation methods have been developed. Model-agnostic
techniques like LIME [RSG16] and SHAP [LL17] are widely used to estimate
feature contributions by perturbing inputs and analyzing changes in output. These
tools have proven valuable in many domains, but their granularity and abstraction
level are often too coarse for reasoning over structured code graphs or semantics.

Definition of Counterfactuals

In machine learning, a counterfactual refers to a minimally modified version of
an input instance that results in a different model prediction. Counterfactuals
are designed to answer ”what-if” questions by identifying the smallest changes
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necessary to flip a model’s output—thereby revealing which aspects of the input
are most influential in the decision-making process [Ver+22].

Formally, for a model f(·), given an input x with prediction f(x) = y, a
counterfactual x′ satisfies f(x′) = y′ where y′ ̸= y, and the difference ∆(x, x′) is
minimal under some task-relevant similarity constraint. In the context of source
code, a counterfactual could involve inserting a missing input check, modifying a
control condition, or altering a data flow in a way that changes the vulnerability
label while maintaining syntactic validity.

Counterfactuals are particularly valuable in explainability, as they provide
concrete examples of how and why decisions change. They are also
increasingly used to improve model robustness by exposing models to
decision-boundary-adjacent examples during training, helping to prevent reliance
on spurious or non-generalizable features [WMR18].

Explainability in Source Code and Graph-Based Models

In code analysis, domain-specific solutions have emerged. IVDetect [LWN21]
employs program dependency graphs to trace vulnerabilities back to influential
operations and data flows. Similarly, CFExplainer [Chu+24] applies counterfactual
reasoning, generating minimally modified inputs to expose decision boundaries.
These approaches bring greater semantic clarity to explanations but still face
challenges in scalability and applicability across architectures. Figure 2.10 depicts
the factual reasoning and what-if analysis capabilities (top) of CFExplainer, along
with a detailed architectural overview of its core components (bottom).
For graph-based models like GNNs, dedicated explanation techniques have been
introduced. GNNExplainer[Yin+19] highlights relevant nodes and edges that
influence predictions by optimizing for mutual information between subgraphs and
output classes. PGM-Explainer[VT20] goes a step further by modeling causal
relationships in predictions using probabilistic graphical models. These methods
yield interpretable substructures but often involve computationally expensive post
hoc optimization and can be unstable across different inputs. Figure 2.11 illustrates
the architecture of PGM-Explainer, which explains GNN predictions through
probabilistic graphical models (PGMs) by combining data generation, variable
selection, and structure learning.

More recently, Illuminati [HJH23] was introduced as a domain-specific GNN
explainer tailored for cybersecurity tasks. It identifies the most influential nodes,
edges, and attributes in a prediction and produces minimal, sufficient subgraphs
that clarify the model’s internal decision logic. Illuminati combines scalability
with precision and is well-suited for structured code analysis. However, it operates
purely in a post hoc fashion—revealing the reasoning behind decisions without
influencing or improving model training. Furthermore, like most explainers, it does
not directly address the issue of spurious correlations or shortcut learning, which
can corrupt attribution quality even when visualizations are provided.

Despite these advances, interpretability methods still fall short of delivering
explanations that are both faithful to the model and actionable for practitioners.
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Figure 2.10: CFExplainer, a counterfactual reasoning-based explainer for
GNN-based vulnerability detection. Top: Comparison between factual reasoning

and counterfactual what-if analysis, illustrating how CFExplainer identifies
minimal perturbations that alter predictions. Bottom: Architectural overview
showing the three main components—code graph perturbation via edge masks,
counterfactual reasoning framework, and explanation generation. Adapted from

the original paper [Chu+24].

Figure 2.11: Architecture of PGM-Explainer [VT20], a probabilistic graphical
model-based explainer for GNNs. The framework includes three main steps: (1)
data generation through graph perturbations and prediction logging, (2) variable
selection to filter out irrelevant features, and (3) structure learning to build a

compact PGM that captures the dependencies underlying the prediction. Adapted
from the original paper.

In the context of software security, effective explanation tools must illuminate
semantically meaningful code patterns, align with developer expectations, and
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expose vulnerabilities in logic—not just artifacts in the dataset. Bridging this gap
remains a critical direction for future research.

2.3.5 Generalization and Robustness

Ensuring that vulnerability detection models generalize effectively to unseen or
adversarially altered code is crucial for real-world deployment. Generalization
extends beyond fitting training data—it encompasses handling code variations,
diverse coding styles, platform-specific idioms, and maliciously crafted
perturbations. Incomplete representation of these factors in the training data
can result in models that overfit to superficial patterns, suffering dramatic
performance drops on real-world or adversarial examples.

Recent studies in graph learning have highlighted this vulnerability demonstrate
that GNNs trained on highly regular graphs lack diversity and exhibit poor
generalization across structural patterns. Moreover, [Wu+25] a large-scale
empirical analysis was conducted across architectures and datasets, finding that
GNN robustness hinges critically on graph-structure diversity and model capacity;
notably, adversarial perturbations exhibit asymmetric transferability between
models.

Adversarial attacks against GNNs come in various forms: feature perturbations,
insertion of malicious nodes or edges (”injection attacks”), and subtle graph
modifications (“modification attacks”). These can severely degrade model
performance, even when perturbations are imperceptible. Defense mechanisms
have emerged—such as GNNGuard [ZZ20], which prunes suspicious edges based on
feature similarity, and Hamiltonian Neural Flow architectures that enforce stability
constraints to resist topological manipulations.

Recent work exploring structural sparsification and coarsening has shown mixed
effects: sparsification can improve robustness against certain attacks, though
coarsening may amplify vulnerability to others. Certification-based approaches,
like GCORN [Abb+24], link model robustness to orthonormal constraints on
weight matrices, offering provable guarantees against node feature attacks. These
strategies highlight a shift towards combining empirical defense with formal
robustness measures.

In the context of vulnerability detection, such generalization needs translate to
resilience against code variants, injection of malicious patterns, or deletion/editing of
validation logic. Ensuring that models do not rely on dataset artifacts but genuinely
learn semantic causal features is critical. Integrating adversarial training, structural
regularization, and certification methods—as seen in robust GNN research—can
enhance real-world viability.
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Chapter 3

VISION Framework

To address the limitations observed in current vulnerability detection models—such
as lack of robustness, susceptibility to spurious correlations, and poor
interpretability—this work proposes a unified framework named VISION
(Vulnerability Identification and Spuriousness Mitigation via Counterfactual
Augmentation). VISION is designed to improve the reliability and transparency
of Graph Neural Network-based detectors by systematically incorporating
counterfactual data during training and enabling post hoc graph-based
explainability. The framework integrates state-of-the-art tools for code graph
generation, explanation, and visualization, and is empirically validated on a
large-scale dataset focused on CWE-20 (Improper Input Validation) vulnerabilities.
This chapter provides a detailed description of the core components of the
framework, from data preparation and augmentation to model training and
interpretability modules.

3.1 Overview of the VISION Pipeline

This section introduces the overall architecture of the proposed VISION framework
(Vulnerability Identification and Spuriousness Mitigation via Counterfactual
Augmentation), which is designed to enhance both the robustness and
interpretability of machine learning-based systems for software vulnerability
detection. The framework is motivated by key shortcomings in current approaches,
such as their overreliance on superficial patterns, poor generalization to real-world
code, and the limited transparency of Graph Neural Network (GNN) predictions.
To overcome these challenges, VISION systematically augments training data with
counterfactual examples and embeds explainability mechanisms into its architecture.

The pipeline begins with the PrimeVul dataset [Din+24], a recent large-scale and
high-quality resource for source code vulnerability detection. From this dataset,
only instances labeled under the CWE-20 vulnerability category—Improper
Input Validation [MIT25]—are extracted. This class is particularly relevant due
to its real-world significance, well-defined semantics, and availability of thousands
of instances. After filtering, the resulting subset is used as the foundation for
constructing a balanced and semantically controlled training corpus.

To improve model generalization and reduce reliance on dataset artifacts, VISION
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incorporates counterfactual data augmentation. These counterfactuals are
defined as minimally modified versions of code samples that preserve syntactic
correctness while reversing their vulnerability label. For instance, a safe function
can be turned vulnerable by removing an input validation check, and vice versa.
This augmentation is achieved through prompt-based interaction with a Large
Language Model (LLM), specifically GPT-4o-mini, which rewrites functions
according to dynamically generated instructions. After generation, each pair
of original and counterfactual samples is rigorously filtered and validated to
ensure label consistency and code integrity. The final curated set forms the
CWE-20-CFA benchmark , composed of both original and counterfactual code
samples balanced across classes.

Once the dataset is prepared, each function is parsed using Joern [Whi25], a
static analysis tool that constructs Code Property Graphs (CPGs) by combining
structural representations such as abstract syntax trees (ASTs), control flow graphs
(CFGs), and data flow graphs (DFGs) [Yam+14]. The resulting graphs capture
semantic and syntactic properties of code and serve as the input format for the
GNN model.

For vulnerability prediction, VISION builds on the Devign architecture [Zho+19],
a GNN specifically tailored for analyzing code graphs. Devign employs gated graph
recurrent layers to iteratively propagate information across the graph, followed
by convolutional layers for classification. Each function, now represented as a
graph with node and edge embeddings, is passed through the model to predict its
vulnerability status. Training is conducted on datasets composed of paired original
and counterfactual examples, allowing the model to learn subtle differences that
truly define vulnerabilities rather than spurious cues.

Beyond prediction, interpretability plays a central role in the VISION framework.
To this end, the model is integrated with Illuminati [HJH23], a domain-specific
explainer for GNNs in cybersecurity. Illuminati identifies the most influential
subgraphs responsible for a model’s prediction, providing insight into the
decision-making process. These subgraph-based attributions allow for a detailed
understanding of how the model arrives at a particular classification and help verify
whether predictions are based on semantically meaningful evidence.

Finally, VISION incorporates an interactive visualization module that enables
human-in-the-loop analysis. This interface highlights both code and graph
elements using color-coded importance scores derived from the Illuminati explainer.
Users can interactively explore which code statements were most influential,
how the model’s attention shifts across different training settings, and whether
key vulnerability-inducing components were correctly identified. This module is
particularly valuable for debugging, auditing model behavior, and building trust in
real-world security applications.

A full depiction of the VISION architecture is shown in Figure 3.1, illustrating the
end-to-end flow from raw data to prediction and explanation.

32 Chapter 3. VISION Framework



Improving Robustness in Vulnerability Detection via Counterfactual Augmentation

Figure 3.1: Beginning with the original PrimeVul dataset, the framework outlines
a complete pipeline: filtering for CWE-20 samples, generating counterfactuals for
class balancing, constructing graphs using Joern-generated CPGs, extracting

embeddings, training the Devign model, and ultimately generating explanations
with Illuminati, complemented by a visualization module for interpretability.

3.2 Dataset Selection and Preparation: CWE-20

Vulnerability

A fundamental component of the VISION framework is the use of a high-quality,
semantically diverse, and well-labeled dataset to ensure the effectiveness of the
proposed training and evaluation strategy. To this end, the dataset used in this
work is derived from PrimeVul [Din+24], a recent benchmark collection specifically
curated for training vulnerability detection models on source code. PrimeVul
provides a robust foundation for this research due to its combination of real-world
code examples, reduced label noise, and structurally diverse vulnerability patterns.

3.2.1 PrimeVul Dataset for Vulnerability Detection

The PrimeVul dataset was designed to overcome many of the known limitations
in earlier vulnerability detection benchmarks, such as duplicated code, mislabeled
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samples, and poor structural variation. These deficiencies are widely documented
in the literature and are known to contribute to overfitting, spurious correlations,
and unreliable generalization [CBK23; GB23]. PrimeVul addresses these issues by
applying rigorous de-duplication techniques, human-in-the-loop label verification,
and stricter filtering rules that aim to retain only well-formed and semantically
meaningful code samples.

In total, PrimeVul contains over 224,000 functions extracted from real-world,
open-source C and C++ projects, each labeled for one or more Common Weakness
Enumeration (CWE) classes. For the scope of this work, the dataset is filtered
to include only those examples corresponding to CWE-20: Improper Input
Validation [MIT25]. This vulnerability type, consistently ranked among the most
critical software weaknesses by organizations like MITRE and NIST [MIT22],
is particularly suitable for experimentation due to its semantic clarity, practical
relevance, and availability within PrimeVul. An overview of this filtering process is
illustrated in Figure 3.2.

Figure 3.2: Overview of the CWE-20 dataset filtering process. Starting from the
complete PrimeVul dataset, a subset selection stage filters only the samples labeled
with CWE-20 (Improper Input Validation). This targeted extraction produces the

focused training corpus used throughout the VISION framework, balancing
semantic clarity, real-world relevance, and data availability for counterfactual

generation and GNN training.

3.2.2 Motivation for Focusing on CWE-20

The decision to focus exclusively on CWE-20 vulnerabilities in this research is driven
by three main considerations:

• Clarity of Semantics: CWE-20 vulnerabilities are characterized by the
absence or failure of input validation mechanisms—such as bounds checking,
null verification, or type sanitization. These issues frequently manifest through
concrete, well-understood patterns, including unchecked user inputs passed to
sensitive APIs. This clarity makes CWE-20 particularly appropriate for tasks
such as counterfactual generation, where meaningful, minimal modifications
must invert the vulnerability label.
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• Data Availability: The PrimeVul dataset includes approximately 15k
CWE-20 samples. These comprise both benign (non-vulnerable) and
vulnerable examples, with sufficient quantity and structural variation to
support model training, statistical evaluation, and counterfactual pairing.
Importantly, this volume of data permits the construction of balanced training
sets without excessive upsampling or synthetic over-generation, ensuring more
realistic learning conditions.

• Real-World Relevance: Improper Input Validation is one of the most
commonly exploited classes of vulnerabilities, as evidenced by its inclusion in
the CWE Top 25 Most Dangerous Software Weaknesses [MIT22]. Real-world
security incidents frequently involve input vectors that are malformed,
unchecked, or manipulated, making this vulnerability class highly impactful
for applied machine learning-based detection systems.

CWE-20 in Practice: An Illustrative Example

To concretely illustrate the kind of issues CWE-20 encompasses, consider the code
snippet shown in Figure 3.3. The function validGlxScreen takes an integer index
screen and returns a pointer to a corresponding screen resource. In the current
implementation, it checks whether the screen index is greater than or equal to the
number of available screens but fails to verify whether the index is negative. This
omission creates an opportunity for invalid memory access, as a negative index could
result in an illegal array dereference or pointer arithmetic error.

1 validGlxScreen(ClientPtr client , int screen , __GLXscreen ** pGlxScreen , int *err) {

2 if (screen >= screenInfo.numScreens) {

3 client ->errorValue = screen;

4 *err = BadValue;

5 return FALSE;

6 }

7 *pGlxScreen = glxGetScreen(screenInfo.screens[screen]) ;

8
9 return TRUE;

10 }

Figure 3.3: The validGlxScreen function ensures that the screen index does not
exceed the number of available screens but fails to check for negative values. This
can result in invalid array access and illustrates an improper input validation flaw.

3.2.3 Filtering and Preprocessing

To prepare the dataset for integration with the VISION pipeline, a focused subset
of the PrimeVul data is extracted. The filtering process involves:

• Selecting only functions labeled with CWE-20.

• Removing duplicate entries based on function hash and structural similarity.

• Standardizing the format of code samples to ensure compatibility with
downstream tools such as Joern.

• Retaining only complete functions with well-formed syntax.
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The resulting subset comprises 14,944 CWE-20-labeled samples, divided into
approximately 14,473 benign examples and 471 vulnerable ones (see Table 3.1).
This stark imbalance reflects the naturally skewed distribution of vulnerabilities in
software but poses a challenge for training robust models. To address this, the
next section describes how this base dataset is augmented through the generation
of synthetic counterfactuals to construct a fully balanced training corpus referred to
as CWE-20-CFA.

Table 3.1: PrimeVul Dataset CWE-20 Vulnerability Filtering

Dataset Stage Benign Vulnerable Total

PrimeVul 218,529 6,004 224,533
CWE-20 Filtered 14,473 471 14,944

3.3 Counterfactual Generation and Dataset

Augmentation

To reduce dataset bias and spurious correlations, this work introduces a
counterfactual data augmentation strategy that helps the model focus on truly
security-relevant signals. The approach involves generating minimally different
function pairs with opposite vulnerability labels, encouraging the model to learn
subtle semantic distinctions between secure and insecure code.

This counterfactual generation process is summarized visually in Figure 3.4. Each
function in the CWE-20 subset is passed through the LLM, which outputs a
semantically aligned version with the opposite label. By pairing original and
counterfactual functions and consolidating them into a balanced dataset, the
CWE-20-CFA corpus enhances the model’s ability to learn from meaningful
variations, rather than relying on superficial cues or dataset artifacts.

Figure 3.4: Overview of the counterfactual generation and dataset augmentation
process. Starting from the CWE-20 subset of PrimeVul, original code samples are
sent to the OpenAI API, which generates minimally modified counterparts with
flipped vulnerability labels. The resulting original–counterfactual pairs form the
CWE-20-CFA dataset, used to train models that are more robust to spurious

correlations and better equipped to learn decision-relevant patterns.
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3.3.1 Formal Definition of Code Counterfactuals

In the context of vulnerability detection, a counterfactual is defined as a
minimally edited version of a code function such that its vulnerability label is
flipped—transforming a benign function into a vulnerable one or vice versa—while
preserving its syntactic and semantic integrity. The goal is to ensure that both the
original and counterfactual remain valid, compilable, and realistic representations
of functional source code.

This definition draws from counterfactual explanations in machine
learning [WMR18], where explanations take the form of nearest neighbors on
the opposite side of a decision boundary. The concept also aligns with contrastive
learning frameworks [KHL20; RMP21], where the presence of fine-grained semantic
differences is critical for robust learning.

Formally, let f(·) be a trained vulnerability classifier operating on code graphs.
Given a graph G = (V,E), with node set V = {v1, . . . , vN} and edge set
E = {(vi, vj)}, suppose f(G) = y and f(G′) = yc such that y ̸= yc. A
counterfactual mapping e : G → G′ is one that introduces a minimal change in the
structure or content of G such that the model’s output is flipped.

Counterfactuals offer two key benefits for improving the effectiveness of vulnerability
detection systems.

• Counterfactuals enable dataset balancing by generating semantically paired
examples for both vulnerable and benign classes. For every original function,
a corresponding counterexample is created by introducing or removing a
vulnerability with minimal semantic modification. This ensures a more even
class distribution, which is particularly valuable in domains like software
security where vulnerable samples are often scarce.

• Counterfactuals introduce fine-grained, security-relevant changes that
help models learn subtle distinctions associated with real vulnerabilities.
By exposing the model to function pairs that differ only in critical
vulnerability-inducing elements, counterfactuals force it to focus on meaningful
patterns rather than superficial cues—improving generalization.

In contrast to traditional augmentation techniques, such as token shuffling or
generic code transformations, counterfactuals preserve the original structure and
style of real-world code while introducing deliberate, interpretable shifts at the
decision boundary. This maintains the fidelity of the training data and enhances
the model’s ability to detect nuanced vulnerabilities in practice.

Unlike traditional augmentation techniques—such as token shuffling or code
transformations—counterfactuals retain fidelity to natural programming styles
while introducing meaningful decision-boundary shifts.

An example of such a counterfactual transformation is shown in Figure 3.5. The
upper function represents a benign implementation in which the variable mode is
securely assigned from an internal configuration parameter before being passed to
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sprintf(). In contrast, the counterfactual version accepts mode as an external input
and omits validation checks, introducing a CWE-20 vulnerability. This minimal but
semantically impactful modification highlights the essence of counterfactuals in code:
maintaining high structural similarity while altering security semantics to help the
model learn truly discriminative features.

Original benign code: No CWE-20 issue.

1 static int param_get_mode(char *buffer , struct kernel_param *kp)

2 {

3 if (! capable(CAP_MAC_ADMIN))

4 return -EPERM;

5 if (! apparmor_enabled)

6 return -EINVAL;

7 int mode = aa g profile mode ; // Potentially spurious statement

8 return sprintf(buffer , "\%s", profile\_mode\_names[mode]);

9 }

Vulnerable counterexample: Unvalidated mode input introducing a CWE-20 flaw

1 static int param_get_mode(char *buffer , struct kernel_param *kp, int mode )

2 {

3 if (! capable(CAP_MAC_ADMIN))

4 return -EPERM;

5 if (! apparmor_enabled)

6 return -EINVAL;

7 // Introduce a vulnerability by not checking the bounds of mode

8 return sprintf(buffer , "%s", profile_mode_names[ mode ]);

9 }

Figure 3.5: Illustration of a counterfactual code pair. The upper function is the
original benign version, where the mode variable is safely assigned from an internal
source. The lower function represents the counterfactual vulnerable variant, in

which mode is passed as an unvalidated external input to sprintf(), introducing a
CWE-20 (Improper Input Validation) flaw.

3.3.2 Counterfactual Generation Strategy

To create these counterfactuals at scale, a prompt-based rewriting strategy is
adopted using GPT-4o-mini via the OpenAI API. The approach consists of
generating a prompt that describes the vulnerability context and instructs the
model to rewrite a function to either introduce or remove a CWE-20 vulnerability.
This process is fully automated and allows the framework to create semantically
controlled, label-inverting examples with minimal human supervision.

The prompt is dynamically assembled for each sample. If the original function
is benign, the instruction asks the model to inject a CWE-20 vulnerability by
removing a validation check or introducing unsafe input usage. If the function is
already vulnerable, the instruction asks for a secure version of the same logic by
adding proper validation mechanisms.

Each generated counterfactual is subject to post-processing and filtering. This
includes:

• Syntax validation using a C parser (e.g., via Joern).

• Deduplication.
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• Manual spot checks on a small subset to verify semantic coherence.

This results in the CWE-20-CFA dataset, composed of balanced pairs of original
and counterfactual examples. These examples are used to train the Devign model in
a way that emphasizes decision-critical variations rather than spurious correlations.

Prompt Template

To generate high-quality counterfactuals, this project employs a prompt-based
rewriting strategy leveraging a lightweight LLM (GPT-4o-mini) via the OpenAI
API. Each counterfactual is created by sending the original source code and its
label as input to a dynamically crafted prompt.

1 def generate_counterexample(example: pd.Series) -> pd.Series:

2 """

3 Use OpenAI API to generate a modified version of input_code .

4 If the target_label is 1 ( vulnerable ), request a benign version.

5 If the target_label is 0 (benign), introduce a vulnerability .

6 """

7 cwe = example.cwe[0] # First Vulnerability (e.g. CWE -20)

8
9 prompt_template = f"""

10 The following is a {’ vulnerable ’ if example.target == 1 \

11 else ’benign ’} C function.

12
13 Please {’remove the vulnerability to make it safe ’ if example.target == 1 \

14 else f’introduce a security vulnerability (cwe: {cwe }) ’}.

15
16 Original function:

17 ‘‘‘c

18 {example.func}

19 ‘‘‘

20
21 Modified function:

22 """

23
24 try:

25 response = openai_client.chat.completions.create(

26 model="gpt -4o-mini",

27 messages =[{"role": "user", "content": prompt_template }],

28 stream=False ,

29 temperature =0.7

30 )

31 # Get response content

32 response_content = response.choices [0]. message.content

33 # Extract function code

34 if "‘‘‘" in response_content:

35 ce_func = response_content.split("‘‘‘")[1]. strip ()

36
37 if ce_func.startswith("c\n"):

38 ce_func = ce_func [2:]

39 # Create pandas series

40 ce = pd.Series(data=[ce_func , 0 if example.target else 1, cwe , \

41 example.func], index=["func", "target", "cwe", "orig_func"])

42
43 return ce

44
45 except Exception as e:

46 print("Error:", e)

47
48 return None

Figure 3.6: Python function for constructing the prompt template used in
counterfactual generation. Depending on the original label, the function

dynamically instructs the LLM to either introduce or eliminate a vulnerability in
the C function, explicitly referencing its CWE class.
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The prompt instructs the LLM to either introduce or eliminate a vulnerability
depending on the original label. Specifically, if the original sample is labeled as
vulnerable, the model is asked to modify it into a safe (benign) variant. Conversely,
for benign samples, the prompt requests the injection of a vulnerability matching
the original CWE class—in this case, CWE-20.

This template ensures both syntactic realism and semantic relevance in the
generated code. It maintains a natural-language formulation while using clear
delimiters (e.g., triple backticks for code blocks) to preserve formatting. The entire
counterfactual generation process is automated using a function like the one shown
in Figure 3.6, which builds the prompt string based on the input function and its
associated label. This flexible format allows tailoring prompts to any CWE class
and can be extended to other vulnerability types in future work.

Once the prompt is constructed, it is sent to the OpenAI API using the GPT-4o-mini
model, with a temperature parameter set to 0.7 to allow for controlled variability
in the generated outputs. The model’s response is parsed to extract the modified
function code, ensuring that it is properly delimited and stripped of formatting
artifacts. If the transformation is successful, a new pandas.Series is returned
containing the counterfactual function, its updated label, CWE class, and a reference
to the original code. Error handling is also integrated to catch and report any issues
with API calls or malformed responses, ensuring robustness and reliability during
large-scale generation.

3.3.3 CWE-20-CFA: Balanced Augmented Dataset

The result of the filtering, augmentation, and validation process is the construction
of the CWE-20-CFA benchmark—a balanced, semantically controlled dataset
composed of original and counterfactual examples. Each class contains an equal
number of functions, and both sides are symmetrically structured to capture
meaningful differences in vulnerability semantics. Table 3.2 summarizes the dataset
composition across key stages of transformation.

Table 3.2: Final statistics of the CWE-20-CFA dataset used in this work. Original
functions from the PrimeVul CWE-20 subset were augmented with validated
counterfactuals to ensure balance and structural alignment across classes.

Dataset Stage Benign Vulnerable Total

PrimeVul (All CWEs 218,529 6,004 224,533
CWE-20 Filtered Subset 14,473 471 14,944
CWE-20 CFA 13,778 13,778 27,556
– Original 13,349 429 13,778
– Counterfactual 429 13,349 13,778
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3.3.4 Preprocessing: Code Graph Construction and
Embedding

To transform raw source code into structured inputs for GNN-based vulnerability
detection, this work implements a multi-stage preprocessing pipeline. The process
involves generating Code Property Graphs (CPGs) from source code using the Joern
framework, followed by graph parsing and embedding using a Word2Vec-based
encoder to produce node feature representations and graph connectivity suitable
for model input. The full preprocessing pipeline is illustrated in Figure 3.7, showing
the transformation from raw source code to fully embedded graph inputs for model
training.

Figure 3.7: Overview of the preprocessing pipeline for the CWE-20-CFA dataset.
The process begins with raw source code from the counterfactually augmented
dataset, which is parsed by Joern to generate Code Property Graphs (CPGs).

These graphs are then embedded using Word2Vec-trained token vectors to produce
node-level representations. The resulting graphs, encoded with semantic and

structural features, form the preprocessed dataset ready for GNN-based
vulnerability classification.

Joern-Based CPG Extraction

Joern [Whi25] is a static analysis tool that constructs CPGs by combining multiple
program representations, including abstract syntax trees (AST), control flow graphs
(CFG), and data dependency graphs (DDG) into a unified graph format. Each
counterfactual or original code function is saved as a C source file and parsed into
a binary CPG using joern-parse. The CPG is then processed by a custom Joern
script, graph-for-funcs.sc, that extracts function-level subgraphs and serializes
them as JSON files. This modular interface allows automated parsing, conversion,
and cleanup for large-scale datasets with retry logic to handle occasional parsing
failures.

Graph Parsing and Node Filtering

Once extracted, the CPG JSON files are processed to extract relevant graph
structures. The parser filters out irrelevant or noisy nodes (e.g., comments, unknown
types), retaining those with valid code, line numbers, and semantic labels. The
remaining nodes are ordered by their source line and column numbers to preserve
execution structure. This process ensures consistency across training examples and
supports graph neural models that rely on relative node positioning. The core logic
for generating CPGs from source functions using Joern is summarized in Figure 3.8.
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1 ...

2 # Subtask 1: Code Parsing

3 source_file_path = os.path.join(PATHS["source"], f"{index}.c")

4 with open(source_file_path , ’w’) as f:

5 f.write(example.func)

6
7 # Parsing function to .bin

8 cpg_file = joern_parse(JOERN_CLI_DIR , source_file_path , PATHS[’cpg’], \

9 f"{index}_cpg")

10
11 # Subtask 2: Create CPG graphs JSON file

12 json_file = joern_create(JOERN_CLI_DIR , PATHS[’cpg’], PATHS[’cpg’], cpg_file)

13
14 # Subtask 3: Get CPG object from JSON

15 graphs = json_process(PATHS[’cpg’], json_file)

16 cpg = graphs [0][1] # Extract CPG

17 example["cpg"] = cpg

18 example.to_pickle(os.path.join(PATHS[’cpg’], f"{index}_cpg.pkl"))

19
20 # Remove unused files

21 os.remove(os.path.join(PATHS[’cpg’],f"{index}_cpg.bin"))

22 os.remove(os.path.join(PATHS[’cpg’],f"{index}_cpg.json"))

23 os.remove(os.path.join(PATHS[’cpg’],f"{index}_cpg.pkl"))

24 os.remove(os.path.join(PATHS[’source ’],f"{index}.c"))

25
26 # Add example to the dataset

27 dataset = pd.concat ([dataset , example.to_frame ().T])

28 ...

Figure 3.8: Code snippet for generating and processing Code Property Graphs
(CPGs) using Joern. Each function is saved as a source file, parsed into a binary
graph, exported to JSON, and stored before cleanup (Full code in Figure C3).

Tokenization and Word2Vec Embedding

To embed each node into a fixed-size feature vector, the code associated with each
node is tokenized using a custom tokenizer that removes literals, comments, and
special characters. Tokens are mapped to vectors using aWord2Vec model trained on
the entire dataset’s code corpus. Each node’s embedding is constructed by averaging
its token vectors and concatenating them with the node type to capture both syntax
and semantics. Tokens not found in the vocabulary are assigned zero vectors. The
model also stores a mapping from each node ID to its original source code tokens and
vectorized representation for later inspection. The embedding loop that processes
CPGs into fully structured graph inputs for model training is shown in Figure 3.9.

Edge Construction and Graph Assembly

Graph connectivity is derived using only specific edge types (typically AST or
DFG) to focus the model on syntactic or semantic structure. Each node’s local
connections are indexed and stored in a COO-style adjacency format. The resulting
structure includes the edge index, node features (x), and target label (y), packed
into a torch geometric.data.Data object compatible with PyTorch Geometric.

This pipeline ensures that each function—original or counterfactual—is represented
as a fully encoded input graph with rich semantic and structural information,
enabling effective learning of subtle vulnerability patterns. Intermediate artifacts,
such as CPGs and embeddings, are cached periodically for reusability and robustness
against processing errors.
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1 ...

2 for index , row_series in dataset_df.copy().iterrows ():

3
4 row_df = row_series.to_frame ().T

5
6 # Function Tokenization

7 tokenized_func_df = tokenize(row_df)

8 func_tokens = tokenized_func_df.tokens

9
10 # Build and Train Word2Vec Model

11 w2vmodel.build_vocab(corpus_iterable=func_tokens , update=not w2v_init)

12 w2vmodel.train(func_tokens , total_examples=w2vmodel.corpus_count , epochs =1)

13
14 # Embed CPG to node representation and convert to graph

15 row_df [["nodes", "nodes_by_line_map"]] = row_df.apply( \

16 process_cpg_to_nodes_row , axis =1)

17 row_df = row_df.loc[row_df.nodes.map(len) > 0] # Filter out empty graphs

18
19 row_df [["input", "code_embedding_mapping"]] = row_df.apply(

20 lambda row: process_nodes_to_input_row(row , w2vmodel), axis =1)

21
22 progress.update(main_task , advance =1)

23 i += 1

24
25 output_df = row_df if not df_init else pd.concat ([output_df , row_df ])

26 df_init = True if not df_init else df_init

27
28 if w2v_init:

29 w2v_init = False

30
31 if i % EXAMPLES_PER_SAVE == 0:

32 output_df.to_pickle(output_path)

33 w2vmodel.save(’tmp/dataset/w2v/w2vmodel.wv’)

34 print(f"Saved dataset at {output_path}")

35
36 # Final save

37 w2vmodel.save(’tmp/dataset/w2v/w2vmodel.wv’)

38 output_df.to_pickle(output_path)

39 print(f"Final dataset saved at {output_path}")

40 ...

Figure 3.9: Code snippet for transforming extracted CPGs into input graph
embeddings. Functions are tokenized, Word2Vec embeddings are trained, and the
resulting graphs are assembled and saved for training (Full code in Figure C7).

3.4 Base Model for Vulnerability Detection

To accurately detect vulnerabilities in real-world software code, a model must
be capable of reasoning over both local and global semantic relationships,
handling diverse structural patterns, and generalizing beyond superficial syntax.
Graph-based learning has emerged as a promising approach to this challenge,
particularly through Graph Neural Networks (GNNs) [Sca+09] that operate on
structured representations of source code. Within this landscape, Devign [Zho+19]
stands out as a foundational GNN model specifically designed for vulnerability
detection in C/C++ source code.

VISION adopts Devign as its base model due to its effectiveness, interpretability, and
alignment with the types of code graphs generated by the Joern toolchain [Whi25].
Devign has demonstrated consistent improvements over traditional deep learning
models such as CNNs and RNNs, particularly when applied to datasets containing
rich control flow and data dependency structures. By directly operating on Code
Property Graphs (CPGs) [Yam+14], Devign is able to leverage a combination of
program views to extract meaningful features for classification.
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The primary strength of Devign lies in its ability to model graph-structured inputs
and to learn representations that capture code semantics across multiple abstraction
levels. The prediction pipeline is illustrated in Figure 3.10, showing how Devign
processes graph-structured inputs to output binary vulnerability predictions.

Figure 3.10: Vulnerability detection phase of the VISION framework.
Preprocessed inputs from the CWE-20-CFA dataset are used to train and evaluate

the Devign model. After training, the model classifies each graph as either
vulnerable or benign,

3.4.1 Devign Model Architecture

The architecture of Devign consists of three main components, each contributing to
a different stage of the graph learning process (see Figure 2.6):

1. Graph Embedding Layer: This module transforms nodes and edges of a
code graph into continuous vector representations. Each node—representing
a code token or symbol—is initialized with a learned embedding that captures
its syntactic type and lexical identity. Edge types (e.g., AST CHILD, DFG READS,
CFG NEXT) are also encoded, allowing the model to preserve the semantics of
different graph relations. The resulting graph is a heterogeneous structure
enriched with token-level and structural embeddings, which are passed
downstream for processing.

2. Gated Graph Recurrent Unit (GGRU) Layers: Devign employs gated
message passing inspired by Gated Recurrent Units (GRUs) to iteratively
propagate information across nodes. At each layer, node embeddings are
updated by aggregating messages from neighbors using trainable gating
functions. This allows the model to capture long-range dependencies in the
graph, making it robust to variations in function length and complexity. The
use of GGRUs also addresses issues such as oversmoothing and vanishing
gradients, which commonly affect deeper graph architectures.

3. Graph-Level Convolutional Module: Once the node embeddings have
been enriched through several rounds of message passing, Devign applies global
pooling and convolutional operations to summarize the graph into a single
vector. This representation captures the overall structural and semantic profile
of the function. A final fully connected layer maps the graph-level embedding
to a binary output indicating whether the function is vulnerable or benign.
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The implementation of the Devign architecture is shown in Figure 3.11.

1 class Devign(nn.Module):

2
3 def __init__(self , gated_graph_conv_args , conv_args , emb_size: int):

4 super(Devign , self).__init__ ()

5
6 # Gate Graph Convolution Layer

7 self.ggc = GatedGraphConv (** gated_graph_conv_args)

8
9 # Convolutional layers

10 self.conv1d_1 = nn.Conv1d (** conv_args["conv1d_1"])

11 self.bn1 = nn.BatchNorm1d(conv_args["conv1d_1"][’out_channels ’])

12 self.conv1d_2 = nn.Conv1d (** conv_args["conv1d_2"])

13 self.bn2 = nn.BatchNorm1d(conv_args["conv1d_2"][’out_channels ’])

14
15 # Activation layers

16 self.relu1 = nn.LeakyReLU ()

17
18 # Fully connected layers

19 fc1_size = gated_graph_conv_args["out_channels"] + emb_size

20 fc1_size = self.get_conv_mp_out_size(fc1_size , conv_args["conv1d_2"], \

21 [conv_args["maxpool1d_1"], conv_args["maxpool1d_2"]])

22 fc2_size = gated_graph_conv_args["out_channels"]

23 fc2_size = self.get_conv_mp_out_size(fc2_size , conv_args["conv1d_2"], \

24 [conv_args["maxpool1d_2"], conv_args["maxpool1d_2"]])

25 self.fc1 = nn.Linear(in_features=fc1_size , out_features =1)

26 self.fc2 = nn.Linear(in_features=fc2_size , out_features =1)

27
28 # Max pooling

29 self.mp_1 = nn.MaxPool1d (** conv_args["maxpool1d_1"])

30 self.mp_2 = nn.MaxPool1d (** conv_args["maxpool1d_2"])

31
32 self.count_parameters ()

33
34 def forward(self , data) -> torch.Tensor:

35 x, edge_index = data.x, data.edge_index

36
37 # Gated Graph Convolution

38 hidden = self.ggc(x, edge_index)

39
40 # Concat GGC output with input embeddings

41 concat = torch.cat([hidden , x], 1)

42 concat_size = hidden.shape [1] + x.shape [1]

43 concat = concat.view(-1, self.conv1d_1.in_channels , concat_size)

44
45 # Path Z

46 Z = self.mp_1(self.relu1(self.bn1(self.conv1d_1(concat))))

47 Z = self.mp_2(self.bn2(self.conv1d_2(Z)))

48
49 # Path Y

50 hidden = hidden.view(-1, self.conv1d_1.in_channels , hidden.shape [1])

51 Y = self.mp_1(self.relu1(self.bn1(self.conv1d_1(hidden))))

52 Y = self.mp_2(self.bn2(self.conv1d_2(Y)))

53
54 # Flatten

55 Z = Z.view(-1, Z.shape [1] * Z.shape [-1])

56 Y = Y.view(-1, Y.shape [1] * Y.shape [-1])

57
58 # Final interaction

59 res = self.fc1(Z) * self.fc2(Y)

60
61 # Output

62 sig = torch.sigmoid(torch.flatten(res))

63 return sig

Figure 3.11: Definition of the Devign class and forward method. The model
combines gated graph convolution with sequential convolutional layers, pooling,

and fully connected prediction heads.
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3.4.2 Integration with the VISION Framework

Within the VISION pipeline, Devign serves as the core classifier tasked
with distinguishing between benign and vulnerable code samples. Each
function—whether an original example from the PrimeVul CWE-20 subset or
a generated counterfactual—is first transformed into a code property graph
(CPG), embedded, and formatted into a graph data structure as described in
subsection 3.3.4. These structured inputs are then fed into the Devign architecture,
which processes them through its graph embedding and convolutional layers to
produce a vulnerability prediction.

The integration is seamless: the graph inputs created from the preprocessing
stage (containing node features and edge indices) are directly compatible with the
PyTorch Geometric implementation of Devign. This modularity allows for flexible
experimentation across different data splits, class ratios, and augmentation levels.

3.4.3 Training on Original and Counterfactual Pairs

A key component of VISION is the use of counterfactual training pairs. Unlike
conventional training, where each example is treated independently, the training
in VISION implicitly encodes contrastive information: by learning from both a
function and its counterfactual counterpart, the model is encouraged to focus on
discriminative features—those responsible for flipping the vulnerability label.
This setting is particularly effective in mitigating shortcut learning and overfitting to
dataset-specific patterns. For example, two samples might share identical structure
except for the inclusion of a single validation check; the model, when trained on both,
is guided to assign importance to that precise difference. This forces the GNN to rely
on semantically meaningful code constructs, such as control conditions, argument
sanitization, or tainted data flows.

3.4.4 Loss Function and Optimization

Devign is trained using a binary classification loss function (typically binary
cross-entropy), optimized using standard gradient descent techniques (e.g., Adam).
The final classification layer outputs a scalar between 0 and 1, interpreted as the
probability of vulnerability. Ground-truth labels are derived directly from the
CWE-20-CFA dataset, with 0 representing benign and 1 representing vulnerable
examples.

Formally, the loss for a batch of n samples is computed as:

L = − 1

n

n∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

where yi is the true label and ŷi is the model’s predicted probability for the i-th
input graph.

To ensure stability, early stopping and learning rate scheduling are employed. Each
model variant (per dataset split) is trained independently, allowing for comparative
analysis of how the training distribution affects model performance.
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3.5 Explanation Module

While accurate vulnerability detection is essential, understanding why a model
classifies code as vulnerable is equally critical—especially in high-stakes software
security contexts. The Explanation Module in the VISION framework addresses this
need by integrating post hoc interpretability tools that reveal which components of a
source code graph contribute most to a model’s decision. This module enhances both
transparency and trust in the system’s predictions and supports human-in-the-loop
analysis by developers or auditors. Building upon the Devign model’s node-level
output structure, the explanation module leverages graph-based attribution
techniques to highlight influential subgraphs, enabling semantic inspection of both
benign and vulnerable predictions.

3.5.1 Motivation and Role of Explainability

While high predictive accuracy is a central goal in machine learning, it is not
sufficient in safety-critical domains such as cybersecurity. In the context of software
vulnerability detection, simply labeling a piece of code as vulnerable or benign is
not enough—particularly when the consequences of that label may affect system
reliability, code audits, compliance, or security patching. What is equally important
is understanding the rationale behind the model’s decision, especially when the
input space is as complex and structurally rich as source code [Mou+24].

Graph Neural Networks (GNNs), though powerful, behave as inherently opaque
models. Their layered message-passing operations and high-dimensional embeddings
offer limited human interpretability. As a result, they often function as black-box
classifiers [WMR18], even when trained on well-structured representations such
as Code Property Graphs (CPGs). This lack of transparency poses significant
challenges in real-world applications, where developers, auditors, or security
analysts must validate model outputs, verify false positives, or understand the
model’s weaknesses.

Explainability, therefore, plays a dual role in the VISION framework. On
one hand, it promotes trust by revealing which parts of the code graph most
influenced the model’s prediction. On the other, it supports model debugging
and improvement by helping developers detect spurious correlations or unintended
shortcuts learned during training. This is particularly critical in the presence of
counterfactual examples: when two code functions differ minimally but receive
opposite classifications, explanations can help determine whether the model is truly
focusing on the semantically meaningful difference between them.

Additionally, explainability contributes to regulatory compliance and responsible
AI practices. In high-assurance settings, being able to justify a model’s output
is a prerequisite for deployment. By embedding interpretability as a core
module, VISION aligns with broader goals of AI transparency, verifiability, and
human-centered oversight [Sha+22].

In the next subsections, the explanation technique used in VISION is detailed, the
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types of attributions produced, and how these integrate with the underlying base
model for graph-based vulnerability detection.

3.5.2 Explanation Technique: Illuminati Explainer

To address the challenge of explaining GNN-based predictions in the cybersecurity
domain, the VISION framework incorporates Illuminati [HJH23], a domain-specific
explainer designed for graph-structured data. Illuminati focuses on generating
faithful, fine-grained attributions over the elements of a graph—specifically nodes,
edges, and node features—providing interpretable subgraphs that highlight the
regions most responsible for a prediction.

Illuminati builds upon the general concept of mask-based explanation. It
introduces a learnable mask over the input graph that selectively highlights a subset
of nodes and edges while preserving the model’s prediction. The optimization
objective is to maximize fidelity (i.e., the explanation should lead to the same
prediction as the full graph) while minimizing the number of elements included,
resulting in a sparse, semantically meaningful explanation.

Formally, given a graph G = (V,E), a GNN model f , and a prediction y = f(G),
Illuminati learns a mask M over the nodes, edges, and features such that the masked
graph GM satisfies:

f(GM) ≈ f(G) and |GM | ≪ |G|

The mask M is trained using a differentiable loss function that penalizes both
prediction divergence and mask size, thereby striking a balance between faithfulness
and interpretability. The resulting explanation is a soft subgraph that can be
thresholded or visualized to show which parts of the code graph are most influential
to the model’s decision.

The full explanation workflow of Illuminati is illustrated in Figure 3.12, highlighting
how edge and feature attribution are used to generate interpretable node-level
subgraphs.

Figure 3.12: Workflow of the ILLUMINATI explanation framework. Given an
input graph and a pre-trained GNN, the explainer first learns importance scores
for edges and node attributes. These scores are then used to compute node-level
attributions. Finally, the resulting subgraph explanation is derived by removing
components with low attribution, yielding a concise and interpretable explanation

of the model’s decision. Adapted from [HJH23].
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A key strength of Illuminati lies in its domain awareness. Unlike generic
explainers, it is specifically designed to support graph structures common in
software analysis, such as Code Property Graphs (CPGs). These CPGs include
heterogeneous edge types (e.g., AST, CFG, DFG), making it critical that the
explainer respects both syntax and data/control flow semantics.

In addition to fidelity and compactness, the method is model-agnostic and can
be applied to a wide range of GNN architectures, including the Devign model
used in our framework. Illuminati supports both graph-level and node-level
predictions, making it well-suited to the task of code vulnerability detection,
where the explanation must capture structural cues such as control flows or data
dependencies.

Illuminati was evaluated in its original paper using tasks such as malware detection
and intrusion detection, showing high-quality explanations with significantly
improved Intersection-over-Union (IoU) scores compared to prior explainers like
PGExplainer [Luo+20] and GNNExplainer [Yin+19]. Figure 3.13 shows a
comparative explanation of a vulnerability case adapted from the original paper,
highlighting the advantages of Illuminati in capturing both node and feature
relevance.

Figure 3.13: Explaining a sample code predicted as vulnerable using different
explanation methods. (a) shows the source code containing a CWE-415 double free
vulnerability. (b) depicts the attributed control and data flow graph used as model
input, along with a pre-trained GNN. (c) presents the output of three explanation
methods. GNNExplainer highlights edge relevance but cannot distinguish token
context; PGM-Explainer identifies relevant nodes without attributing features;
Illuminati identifies both key nodes and discriminative token-level features,

offering a more precise explanation. Adapted from [HJH23].

In the context of VISION, Illuminati operates on the graphs generated during
preprocessing, allowing explanations to be derived not only for original functions
but also for their counterfactual counterparts. This enables an explanation-driven
contrastive analysis, where differences in model behavior across paired inputs can
be directly visualized and interpreted. Such capability is particularly valuable for
inspecting whether the model correctly attends to the minimal vulnerability-flipping
edits introduced during augmentation. This also helps expose reliance on potentially
spurious code patterns and strengthens the trustworthiness of predictions.
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Overall, Illuminati provides a principled and model-faithful way to open the black
box of GNN predictions, enhancing the interpretability and auditability of the entire
detection pipeline.

3.5.3 Attribution Modes and Interpretation

Illuminati produces rich, fine-grained attributions over the input graph components
to explain the predictions of a Graph Neural Network (GNN). These attributions
quantify how much each part of the graph—nodes, edges, and features—contributes
to the final prediction. In the VISION framework, this attribution process enables
the model to highlight precisely which parts of the code graph are responsible for
classifying a function as vulnerable or benign.

Node, Edge, and Feature Attribution

Illuminati first learns the importance masks over nodes, edges, and node features,
each offering a distinct perspective on model behavior:

• Node Attribution assigns a score to each node representing its influence
on the prediction. Higher values indicate nodes that, if removed, would
significantly affect the model output.

• Edge Attribution reveals which connections between nodes are structurally
or semantically important (e.g., function calls, data dependencies).

• Feature Attribution identifies which specific code-level tokens or types (e.g.,
malloc, free, NULL) within a node’s representation are decisive in the model’s
reasoning.

By combining these modes, the explainer not only isolates important statements but
also clarifies why they matter in the specific context of the prediction.

Subgraph-Based Interpretations

To support human understanding and semantic clarity, the raw attribution scores
are used to construct interpretable subgraphs. These subgraphs summarize the
influential parts of the input and are classified into three main categories:

• Positive Subgraph: A positive subgraph is constructed by incrementally
adding the most important nodes until the model’s prediction aligns with the
ground truth. This reveals which key components are sufficient to support a
correct prediction.

• Negative Subgraph: A minimal set of nodes that, formed by progressively
removing the least important nodes until the model’s prediction flips. This
highlights which components are essential for the prediction and reveals
the model’s sensitivity to the absence of specific, seemingly unimportant
structures.

• Optimal Subgraph: A compact explanation that balances fidelity and
interpretability by selecting nodes and edges that maximize prediction
retention while minimizing complexity.
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These explanation types allow analysts to inspect the prediction from both additive
and subtractive perspectives—what contributes most to the prediction, and what
can be removed before it changes.

Interpretability Through Attribution Scores

Each graph element is assigned a continuous score between 0 and 1, indicating
its relevance to the prediction. These scores are typically visualized using color
gradients or ranked lists (explored in detail in section 3.6), but they can also be
interpreted by thresholding or aggregating scores across graph layers.

For example, in a CWE-20 vulnerability involving a missing input check, a node
representing the unchecked parameter may receive a high attribution score, while
surrounding control statements receive much lower values. This provides targeted
insight into the exact vulnerability trigger.

These attribution modes form the conceptual bridge between the Devign classifier
and the human-readable explanations provided by the VISION framework. The
next section describes how this integration is realized technically and how the
explainability module interacts with Devign’s outputs.

3.5.4 Illustrative Example: Subgraph-Based
Interpretations

To better understand how the Illuminati explanation module works in practice, this
section presents a complete, illustrative walkthrough of the subgraph-based
explanation modes applied to a simple function vulnerable to CWE-20:
Improper Input Validation. The goal is to demonstrate how different types
of subgraphs—positive, negative, and optimal—can be derived from attribution
scores and used to support the interpretation of the model’s predictions.

Explanation Setup

Figure 3.14 shows the function being analyzed. It copies user input into a local
buffer using strcpy, but only after checking that the input is not NULL. Despite
the presence of this validation, the use of strcpy without additional length checks
constitutes an input validation weakness. This makes the function a canonical
example of CWE-20.

Illuminati assigns an importance score to each node in the function’s code graph,
reflecting its relative contribution to the vulnerability prediction made by the Devign
model. The most important nodes—specifically the sink operation (strcpy) and the
input validation condition—receive the highest scores. These scores are summarized
in the accompanying attribution table and visualized in a graph structure.
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1 void process(char *input) {

2 char buffer [100];

3 if (input != NULL) {

4 strcpy(buffer , input);

5 printf("Processed input .\n");

6 }

7 printf("Function done.\n");

8 }

(a) Source Code

Node ID Node Code Fragment Node Importance Score

1 void process(char *input) 0.85
2 char buffer[100]; 0.32
3 if (input != NULL) 0.74
4 strcpy(buffer, input); 0.92
5 printf("Processed input."); 0.08
7 printf("Function done."); 0.10

(b) Node Importance Scores

(c) Node Graph Representation

Figure 3.14: Explanation of a vulnerable CWE-20 function using the Illuminati
framework. (a) Source code for the function; (b) statement-level node importance
scores; and (c) graph representation. The high-importance node triggering the

vulnerability is highlighted in red.

Interpreting Subgraphs

Figure 3.15 visualizes each of these subgraph types. The nodes are shaded to reflect
their relative attribution scores, and their inclusion is selected based on how they
affect the model’s output confidence.

Figure 3.15: Example of different explanation subgraphs for a code function: (a)
Positive subgraph, (b) Negative subgraph and (c) Optimal subgraph. Highlighted

nodes reflect increasing attribution scores.
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Model Confidence Evaluation

To quantify the fidelity of each subgraph, Table 3.3 reports the confidence scores
produced by the Devign model when evaluating each version of the graph. As
expected, the full graph produces the highest confidence, while subgraphs yield
slightly lower confidence but still retain the correct label in most cases. The optimal
subgraph achieves nearly equivalent confidence while using significantly fewer nodes.

Table 3.3: Confidence scores obtained when evaluating different subgraphs
generated by the Illuminati explainer on a vulnerable CWE-20 code example. The

full graph includes all statements; the positive subgraph is the minimal set
required to preserve the prediction; the negative subgraph is the smallest subset
whose removal causes the label to flip; the optimal subgraph balances fidelity and

compactness.

Subgraph Type Included Nodes Confidence

Full Graph 1-7 0.98
Positive Subgraph 1, 4 0.87
Negative Subgraph 1, 3, 4 0.92
Optimal Subgraph 1, 2, 3, 4 0.95

3.5.5 Integration with Base Model

The integration of the Illuminati explainer into the VISION framework is enabled
by the architectural properties of the base model (Devign). Since Devign operates
on Code Property Graphs (CPGs) and produces node-level embeddings through
gated message passing, it naturally supports fine-grained attribution analysis over
both node and edge components—exactly the interface required by Illuminati.
As illustrated in Figure 3.16, the explainability module operates after prediction
to provide semantic insight into the model’s decision, enabling both node-level
attribution and subgraph extraction.

Figure 3.16: Overview of the Explainability Module within the VISION
framework. Once the Devign model generates predictions over the preprocessed
CWE-20-CFA dataset, the Illuminati explainer is used to derive meaningful

explanations. It produces relevance scorings over graph components and extracts
minimal subgraphs that highlight the key elements responsible for the

classification, enabling transparent and interpretable vulnerability analysis.
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Illuminati functions as a post-hoc explainer: it does not alter the architecture or
training of Devign. Instead, once the Devign model is trained and capable of
producing vulnerability predictions for graph-structured inputs, Illuminati is applied
to analyze individual predictions. Specifically, it takes as input:

• The original input graph G = (V,E) , including node features and edges.

• The prediction f(G) made by Devign.

• The internal structure of the model (e.g., GNN layers and message passing
dynamics) to enable gradient-based mask optimization.

This modular design ensures seamless compatibility between the explanation
module and any Devign instance trained on the CWE-20-CFA dataset. No
architectural changes or retraining are necessary. The explainer operates directly
on the torch geometric.data.Data objects passed to Devign, making use of node
embeddings, graph connectivity, and gradient information.

Another key strength of this integration lies in its ability to support contrastive
explanations. Since the VISION framework includes both original and
counterfactual versions of each code function, explanations can be generated
for both. This allows for direct comparison of attribution maps across paired
samples with opposite labels—an important capability for verifying whether the
model is attending to the intended vulnerability-inducing change introduced during
augmentation.

Moreover, because the node ordering and feature vectors are preserved from
preprocessing, the attribution results are easily interpretable in terms of the
original source code tokens. This tight linkage between data representation, model
prediction, and explanation makes the Devign–Illuminati pairing especially effective
for use in the software vulnerability detection domain.

3.6 Visualization module

To bridge the gap between model predictions and human interpretability, this
project includes a dedicated visualization module that presents the internal
decision-making process of the vulnerability detector in a clear, interactive, and
interpretable way. The module enables detailed inspection of individual code
examples by overlaying attribution-based explanations—produced by the Illuminati
explainer—onto both the source code and its corresponding graph structure. Its
main purpose is to qualitatively validate whether the learned attributions reflect
semantically meaningful structures and whether the improvements introduced by
counterfactual data augmentation translate into more interpretable and trustworthy
model behaviors. While this interface is not the core algorithmic innovation of the
framework, it plays a crucial role in human-in-the-loop evaluation, debugging, and
explanation validation.
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3.6.1 Overview and Purpose

The visualization module developed in this project serves as a critical interpretability
layer for understanding the behavior of the vulnerability detection model. While
the core contributions of the VISION framework lie in its robust training pipeline
and graph-based explanation techniques, this module acts as a practical interface
for exploring how model predictions are made and how explanation scores evolve
across examples.

Its primary purpose is to support human-in-the-loop analysis, allowing
researchers and practitioners to verify whether the model attends to semantically
meaningful patterns in the code. In particular, the module helps assess whether the
improvements in generalization and robustness—introduced through counterfactual
data augmentation—are reflected in more accurate and focused attribution maps.

The visual interface integrates multiple components of the framework: the trained
Devign model, the Illuminati explainer, and a rendering engine that overlays
importance scores on both the original source code and the graph representation.
This integration enables the user to simultaneously inspect:

• The model’s predicted label and confidence,

• The token-level attribution map, and

• The graph-level explanation structure.

Through this interface, the visualization module not only aids in qualitative
validation of the model’s decisions, but also supports broader experimentation, such
as comparing explanation patterns across different training configurations (e.g.,
with and without counterfactuals), or between original and counterfactual versions
of the same function.

Although not a standalone contribution, the module has proven invaluable for
confirming key hypotheses throughout the research: that better robustness leads
to better explainability, and that these improvements can be intuitively observed
through well-aligned, human-interpretable attributions.

3.6.2 Interface Design and Functionality

The visualization module is designed to offer a clean, dual-perspective view
of model predictions and their explanations, combining natural source code
structure with graph-based reasoning. Its interface is modular and composed
of synchronized panels that allow users to interpret attribution scores from multiple
angles. This helps ensure that explanations are not only accurate from the model’s
perspective but also intuitive for human analysis.

The visualization module was implemented using the Gradio Python
library [Gra25], which offers a lightweight yet powerful interface to interact with
machine learning models. The module runs locally on localhost:127.0.0.1:7068,
but it also allows connections from external devices within the same network,
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enabling collaborative and remote usage.

At first glance, the interface provides a clean layout with clearly separated functional
zones (Figure 3.17). On the left-hand side, the user finds a large text box labeled
Input Source Code, which serves as the main display for the function being
analyzed. The user can interact with this section in two ways:

• Pressing the Random button loads a randomly selected source code example
from the dataset.

• Alternatively, the user can load a specific example by entering its unique
identifier (referred to as Example ID) into the corresponding text field and
then pressing the Select button.

Each source code example in the system is indexed using a consistent ID shared
across the original and counterfactual versions, which allows for aligned comparisons
and navigation.

Once an example is loaded, the Submit button initiates a full pipeline execution:
the example is passed through the trained model, explanations are computed, and
visual outputs are rendered. To reset the session or clear previous outputs, the
Clear button can be used to instantly wipe the interface.

Figure 3.17: Initial view of the VISION visualization interface, implemented in
Gradio. On the left, users can display code by either selecting a random example
or providing an Example ID. Once loaded, pressing Submit runs the example

through the model and generates explanations. The Clear button resets the view.

After submission, the right-hand panel of the interface becomes active and displays:

• The model’s predicted label under Prediction Details.

• A tab-based layout offering three visualization modes: Source Code, Node
Graph, and Subgraph Explanation.

• A dropdown menu to toggle between different types of graph visualizations
(e.g., AST, CPG).
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Source Code View: Attribution-Aligned Text Highlighting

Once a source code example is submitted, the Source Code tab displays a visually
annotated version of the input function. Each token in the function is colored
using a heatmap gradient that reflects its attribution score, as computed by the
Illuminati explainer. This allows users to quickly assess which code fragments the
model deemed most influential in forming its prediction.

As shown in Figure 3.18, the source code on the left corresponds to the raw function
input. On the right side, the same code is presented with attribution highlights.
Tokens with higher importance appear in more intense red or purple shades, while
neutral or low-importance regions remain uncolored or lightly shaded.

Figure 3.18: Source Code view for an original benign example. The interface
highlights the most influential tokens based on node-level attribution scores. In
this case, the model correctly predicts a benign label, with explanation heatmaps

focusing on control flow and input-related conditions.

In this specific example, the function is labeled as benign, and the model correctly
classifies it as such. The highlights emphasize conditional statements like if

(!capable(...)) and if (!apparmor enabled), as well as the final return line
involving sprintf(...). These elements reflect key security-related checks and
data flow operations—suggesting that the model has learned to identify critical
validation structures.

This view is especially useful for identifying whether the model’s reasoning aligns
with human intuition. In robust models, benign examples typically show attribution
spread across validation logic, while vulnerable examples often highlight unsafe sink
operations (e.g., strcpy, unchecked input usage). This alignment becomes a key
element for trusting the model in practical applications like secure code review.

Graph View and Subgraph Interpretation

In addition to the token-highlighted source code, the visualization module offers
a graph-level representation of the function under analysis. This view is available
in the Node Graph and Subgraph Explanation tabs and visualizes the Code
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Property Graph (CPG) as a node-edge structure enhanced with importance scores.
Each node corresponds to a program element (e.g., statements, variables), and
edges represent syntactic or semantic relations such as control or data dependencies.

Figure 3.19 illustrates the three main components shown in this part of the interface:

• (a) Full Node Graph: Every node is color-coded based on the attribution
score output by the Illuminati explainer. The warmer the color (toward red),
the more influential the node is in the model’s decision. This allows users to
visually assess how explanations are spatially distributed across the graph.

• (b) Score Distribution Histogram: A histogram showing the distribution
of node attribution scores provides a compact summary of how influence is
allocated. This can help spot whether the model relies heavily on a few
dominant nodes or spreads its decision basis across several factors.

• (c) Positive Subgraph: A reduced version of the graph consisting only of
the top-attribution nodes necessary to recover the correct prediction. This
subgraph offers a compact and interpretable summary, isolating the critical
decision-making region of the model.

(a) Full Node Graph (b) Node Score Distribution (c) Positive Subgraph

Figure 3.19: Different views of the graph-level explanation interface. (a) Full node
graph visualization with attribution-based coloring. (b) Distribution of node

importance scores from the Illuminati explainer. (c) Positive subgraph showing the
minimal set of highly influential nodes sufficient to recover the correct prediction.

This tri-panel design reinforces the interpretability by:

1. Linking attribution heatmaps directly to the graph structure.

2. Quantifying influence distribution via summary plots.

3. Showing how smaller explanatory subgraphs can preserve fidelity to the full
model prediction.

Additionally, the interface allows users to toggle between various graph perspectives
using the Choose Graph Type dropdown. Available views include: AST (Abstract
Syntax Tree), CFG (Control Flow Graph), Full Code Property Graph, Positive
Subgraph, Negative Subgraph and Optimal Subgraph.
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Original vs Counterfactual Exploration

A key feature of the VISION interface is its seamless support for comparing
the behavior of the model on original and counterfactual examples. This
functionality enables users to interactively explore how subtle semantic changes
impact both the model’s predictions and the resulting attribution patterns.

Users can toggle between the two versions of a code sample via the tabbed
header at the top of the input display panel, labeled Original Source Code and
Counterexample Source Code. When this second tab is selected, all subsequent
interface actions—such as selecting a random example, entering an ID, or submitting
for explanation—are applied directly to the counterfactual variant. The Figure 3.20
shows the source code view for the counterfactual example.

Figure 3.20: Counterexample source code view of the VISION visualization
interface, implemented using Gradio. The interface allows seamless switching

between original and counterfactual examples via tabs. In this view, a CWE-20
counterfactual is selected and submitted for analysis. The right panel displays the
model prediction and highlights token-level attributions using a color scale that
reflects node importance. This enables direct comparison between functionally

related variants, improving transparency and interpretability.

Similarly, switching back to the original tab automatically restores the original
version of the function, allowing quick back-and-forth inspection. The example ID
remains consistent across both views, since counterfactuals are paired with their
originals using shared identifiers. This design allows users to maintain context
when analyzing the semantic and structural differences between both variants of
the same function.

Figure 3.21 illustrates this functionality by displaying both the original benign
example (top) and its minimally modified vulnerable counterfactual (bottom). The
visualization panel highlights attribution differences and prediction shifts, providing
concrete visual evidence of how counterfactual-based augmentation strengthens the
model’s semantic understanding.
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(a) Original Source Code View – The benign example is correctly identified,
with key validated checks highlighted.

(b) Counterexample Source Code View – The augmented vulnerable version
omits validation and triggers the vulnerability detection.

Figure 3.21: Comparison of original and counterfactual examples within the
VISION Visualization Interface. Users can easily switch between the two views
using the tab selector above the source code input. The interface supports full
interaction for either view—including random selection, ID-based lookup, and

explanation generation—making it a practical and intuitive tool for exploring how
small code changes affect model behavior and attribution.

3.7 Summary of Innovations

This final section concludes the technical description of the VISION framework
by revisiting its core innovations. Throughout the chapter, each module
has been detailed independently—from dataset generation to explainability and
visualization—but here the emphasis shifts to the overall contribution of the
framework as a cohesive and impactful research solution.

The VISION framework brings together a set of carefully designed components
to address critical limitations in GNN-based source code vulnerability
detection, particularly those related to data quality, spurious correlations, and
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explainability. Each module—dataset construction, model training, explanation,
and visualization—has been developed to work both independently and cohesively
within a unified architecture. This section summarizes the major innovations
introduced throughout this chapter and reflects on their collective impact.

Motivation and Challenges addressed

Traditional approaches to vulnerability detection using Graph Neural Networks
have demonstrated potential but remain hindered by unreliable datasets, superficial
feature learning, and limited interpretability. Models trained on noisy or imbalanced
data often overfit to irrelevant patterns, reducing generalization. Moreover, the
lack of transparent reasoning limits adoption in security-critical applications, where
understanding the basis of a decision is as important as the prediction itself.

Key Contributions

To overcome these challenges, the VISION framework introduces several key
innovations:

• Counterfactual Data Augmentation via LLMs. A novel strategy that
generates semantically valid, minimally modified code variants using Large
Language Models. These counterfactuals flip the vulnerability label of original
examples and expose the model to meaningful variation, mitigating shortcut
learning.

• CWE-20-CFA Benchmark. An augmented benchmark dataset specifically
targeting the CWE-20 vulnerability class. Comprising over 27,000 samples,
including carefully validated counterfactuals, CWE-20-CFA enables robust
training and evaluation under balanced and realistic conditions.

• Robust and Interpretable Detection. A Devign-based GNN classifier
is trained using the augmented data to enhance resilience against spurious
features. The integration of the Illuminati explainer further enables
fine-grained, subgraph-level attributions that clarify the internal reasoning of
the model.

• Interactive Visualization Module. A lightweight but powerful interface
was developed to support human-in-the-loop model inspection. It allows
users to visualize node importance, graph structures, and contrast original
vs counterfactual predictions, offering insights into how the model’s behavior
evolves with data augmentation.

Impact Overview

Together, these contributions deliver a scalable, extensible, and interpretable
approach to secure software analysis using machine learning. VISION not only
improves predictive performance and robustness but also contributes practical tools
and benchmarks that support reproducibility and further research. By combining
augmentation, explanation, and visualization, this framework demonstrates how
thoughtful design can significantly enhance the trustworthiness of AI models in
critical cybersecurity domains.
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Chapter 4

Experimental Evaluation

To validate the effectiveness of the VISION framework, an extensive experimental
evaluation is performed, analyzing model performance across multiple data
augmentation configurations. The evaluation encompasses both conventional
classification metrics and diagnostic indicators centered on robustness and
interpretability. Specifically, the experimental design aims to assess whether
counterfactual data augmentation mitigates spurious correlations, improves
generalization, and enhances the semantic alignment of explanations in GNN-based
vulnerability detection.

Performance is measured across a series of training benchmarks derived from
the CWE-20-CFA dataset, using a consistent and balanced test set to ensure
fair comparison. In addition to standard predictive metrics—accuracy,
precision, recall, and F1-score—the evaluation includes robustness indicators such
as pairwise accuracy, worst-group accuracy, and latent embedding analysis, as
well as explanation-focused metrics including intra-class attribution variance,
inter-class attribution distance, and a novel node score dependency measure.

4.1 Experimental Setup

4.1.1 Benchmark Construction and Splitting Strategy

To assess the impact of counterfactual data augmentation, a suite of benchmark
datasets was derived from the CWE-20-CFA corpus introduced in 3.3.3. Each
benchmark is configured with a fixed number of training samples and a constant 1:1
class balance (benign vs. vulnerable). However, the composition of original versus
counterfactual examples varies across configurations, ranging from 100% original
to 100% counterfactual, in 10% increments. This allows a controlled analysis of the
contribution of each data type.

The splitting process begins with the partitioning of the CWE-20-CFA dataset using
unique function identifiers to avoid overlap between related samples. A stratified
80/10/10 train-validation-test split is applied over the ID pool, ensuring that each
original–counterfactual pair resides exclusively in one of the splits. To maintain
fairness and comparability, the test set is held constant across all configurations
and consists of perfectly paired examples (i.e., each original is matched with its
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counterfactual), balanced across the two classes. The code fragment in Figure 4.1
outlines the process for building these datasets from a balanced CWE-20-CFA pool.

1 # Load processed datasets

2 print("Data Loading")

3 dataset_df = pd.read_pickle(’datasets/PrimeVul/CWE -20 _CFA.pkl’)

4
5 # Step 1: Create balanced train/val/test split

6 train_df , val_df , test_df = group_train_val_test_split(

7 dataset_df , test_size =0.1, val_size =0.1, random_state=SEED)

8
9 # Step 2: Fix the test set (used for all splits)

10 fixed_test_df = test_df.copy()

11 test_dataset = DevignDataset(fixed_test_df)

12 test_loader = test_dataset.get_loader(PROCESS["batch_size"], shuffle=False)

13
14 # Step 3: Build benchmarks

15 benchmark_datasets = {}

16 benchmark_splits = [(100-i, i) for i in range(0, 110, 10)]

17
18 for orig_pct , adv_pct in benchmark_splits:

19 key = f’{orig_pct}_{adv_pct}’

20 benchmark_train_df = create_balanced_symmetric_benchmark_split(

21 train_df , orig_frac=orig_pct /100, size=len(train_df), random_state=SEED)

22 benchmark_valid_df = create_balanced_symmetric_benchmark_split(

23 val_df , orig_frac=orig_pct /100, size=len(val_df), random_state=SEED)

24
25 benchmark_datasets[key] = {

26 ’train’: benchmark_train_df ,

27 ’valid’: benchmark_valid_df

28 }

Figure 4.1: Code for generating benchmark datasets with controlled ratios of
original and counterfactual examples using the CWE-20-CFA corpus. This enables
fine-grained evaluation of robustness and generalization by training under different
augmentation regimes. The test set remains unchanged across all benchmarks.

Within each training split, examples are randomly sampled to match the desired
original-to-counterfactual ratio. When needed, per-class upsampling is applied to
ensure balance and equal sample counts across splits. Importantly, this methodology
ensures that observed performance changes across configurations reflect differences
in data composition, not volume or label imbalance. Figure 4.2 presents the
benchmark configurations, highlighting the proportion of original, counterfactual,
and upsampled examples in each case.

4.1.2 Preprocessing Pipeline and Feature Construction

The input to the base model consists of attributed graphs constructed from source
code functions via Code Property Graphs (CPGs)n [Yam+14]. Each function,
whether original or counterfactual, is parsed into its corresponding CPG using
Joern [Whi25]. These graphs integrate multiple code representations, including
ASTs, CFGs, and DFGs, enabling a comprehensive structural and semantic analysis
of the function’s behavior.

Once parsed, nodes in the CPG are ordered, filtered, and tokenized. Each node
is then represented as a concatenation of its type and averaged token embedding.
Edges are constructed based on AST relationships, resulting in input graphs suitable
for the GNN architecture. This preprocessing is applied consistently across all
datasets.
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Figure 4.2: Benchmark dataset distribution by class (benign vs. vulnerable) and
data source (original vs. counterfactual). Each bar stack shows the number of

examples for benign and vulnerable samples (including the upsampled ones), and
the split between original, counterfactual

4.1.3 Model Architecture and Training Configuration

All experiments are conducted using the Devign architecture [Zho+19], introduced
in section 3.4. Each benchmark configuration is trained separately under an identical
hyperparameter setup to ensure valid comparison and eliminate confounding effects
due to training variability.

Table 4.1: Training hyperparameters used for all experiments with Devign. These
settings are held constant across benchmarks to ensure a fair comparison.

Hyperparameter Value

Optimizer Adam
Learning Rate 5e-4
Batch Size 32
Epochs 100
Early Stopping (F1) 10
Weight Decay 1e-5
Loss λ 1e-6

The full list of training hyperparameters is presented in Table 4.1. These include the
optimizer, learning rate, batch size, and early stopping criterion based on validation
F1-score. A relatively small weight decay and loss lambda were employed to prevent
over-regularization and allow the model to converge stably across diverse data splits.
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Model architecture parameters used for all experiments. Includes the gated graph convolution
configuration and convolutional layers of Devign.

1 DEVIGN = {

2 "learning_rate" : 5e-4,

3 "weight_decay" : 1e-0,

4 "loss_lambda" : 1e-6,

5 "model": {

6 "gated_graph_conv_args": {

7 "out_channels" : 200,

8 "num_layers" : 6,

9 "aggr" : "add",

10 "bias": True},

11 "conv_args": {

12 "conv1d_1" : {

13 "in_channels": 205,

14 "out_channels": 50,

15 "kernel_size": 3,

16 "padding" : 1

17 },

18 "conv1d_2" : {

19 "in_channels": 50,

20 "out_channels": 20,

21 "kernel_size": 1,

22 "padding" : 1

23 },

24 "maxpool1d_1" : {

25 "kernel_size" : 3,

26 "stride" : 2

27 },

28 "maxpool1d_2" : {

29 "kernel_size" : 2,

30 "stride" : 2

31 }

32 },

33 "emb_size" : 101

34 }

35 }

Training hyperparameters including number of epochs, early stopping criteria, and batch
configuration. Used consistently across all benchmark evaluations.

1 PROCESS = {

2 "epochs" : 100,

3 "patience" : 10,

4 "batch_size" : 32,

5 "dataset_ratio" : 0.2,

6 "shuffle" : False

7 }

Figure 4.3: Configuration setup used for all benchmark evaluations. Top: Devign
model architecture including Gated Graph Convolution and 1D convolutional layer
parameters. Bottom: Training loop parameters including number of epochs, batch

size, and early stopping. These were kept consistent across all original /
counterfactual dataset splits to ensure fair comparison.

In addition to high-level training parameters, the full Devign
configuration—including the architecture of the Gated Graph Convolution
(GGC) and 1D convolutional layers—is shown in Figure 4.3. This Python
dictionary represents the actual configuration used in the pipeline implementation,
ensuring reproducibility and offering visibility into the architectural design.

The model training process is repeated independently for each benchmark
configuration to ensure isolated evaluation. As shown in Figure 4.4, for every
original/counterfactual ratio, a new instance of the Devign model is initialized
and trained using a binary classification objective. The loop incorporates loss
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1 ...

2 for key , benchmark_df in benchmark_datasets.items():

3 # For each benchmark obtain train and validation splits:

4 train_dataset = DevignDataset(benchmark_df[’train’])

5 val_dataset = DevignDataset(benchmark_df[’valid’])

6
7 # Data Loaders

8 train_loader = train_dataset.get_loader(PROCESS["batch_size"], \

9 shuffle=False , use_sampler=False)

10 val_loader = val_dataset.get_loader(PROCESS["batch_size"], \

11 shuffle=False , use_sampler=False)

12
13 # Model

14 model = Devign (...)

15
16 # Loss Function

17 loss_fc = lambda o, t: F.binary_cross_entropy_with_logits(o, t) + \

18 F.l1_loss(o, t) * loss_lambda

19
20 # Optimizer

21 optimizer = optim.Adam(model.parameters (), lr=learning_rate , \

22 weight_decay=weight_decay)

23
24 # Use learning rate scheduler

25 scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer , \

26 mode=’max’, patience=5, factor =0.5)

27 ...

28 for epoch in range(PROCESS[’epochs ’]):

29 ...

30 # Set model to training mode

31 model.train ()

32
33 for i, batch in enumerate(tqdm(train_loader)):

34 input = batch["input"].to(DEVICE) # Move batch to GPU

35 logit = model(input) # Forward pass

36
37 # Compute loss

38 loss = loss_fc(logit , input.y)

39
40 # Reset gradients

41 optimizer.zero_grad ()

42
43 # Backpropagation

44 loss.backward ()

45
46 # Gradient clipping

47 nn.utils.clip_grad_norm_(model.parameters (), max_norm =5.0)

48
49 # Perform parameter update

50 optimizer.step()

51
52 # Apply threshold to determine binary predictions

53 preds = (logit >= THRESHOLD).float ().cpu().numpy ()

54 acc = binary_accuracy(torch.tensor(preds), input.y.cpu())

55 ...

56
57 ...

58 # Evaluate on validation set

59 val_metrics = eval_model(model , val_loader , threshold=THRESHOLD)

60 ...

Figure 4.4: Training loop used to train the Devign model across different
augmentation benchmarks. Includes optimization, regularization, and per-epoch
validation. Each configuration is handled independently to ensure integrity.

regularization via an L1 term, gradient clipping for stability, and dynamic learning
rate adjustment using ReduceLROnPlateau. During each epoch, model performance
is evaluated on a dedicated validation set, and training proceeds with early stopping
based on validation F1-score.
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This setup guarantees fairness and comparability between training regimes
and supports robust convergence monitoring. The pipeline is optimized for
reproducibility, with consistent random seed control, fixed test splits, and no data
leakage between training and evaluation.

4.1.4 Evaluation Protocol

To comprehensively assess the effectiveness of the VISION framework, a diverse set
of evaluation metrics is employed, covering both conventional predictive performance
and explanation-oriented criteria. These metrics are grouped into four categories:

Conventional Metrics

Standard classification metrics are used to evaluate predictive performance on the
fixed, balanced test set:

• Accuracy: The proportion of correctly classified samples out of the total
number of examples. While high accuracy is desirable, it can be misleading in
imbalanced datasets—hence its interpretation is supported by other metrics.

• Precision: The proportion of predicted vulnerable samples that are actually
vulnerable. A high precision indicates that the model avoids false positives
(i.e., it does not incorrectly label benign code as vulnerable).

• Recall: The proportion of actual vulnerable samples that are correctly
predicted. A high recall indicates that the model detects most of the truly
vulnerable cases, avoiding false negatives.

• F1-Score: The harmonic mean of precision and recall. This metric
balances both aspects, providing a robust summary of classification quality.
High F1-scores signal strong, reliable performance, especially important in
security-critical tasks where both false positives and false negatives are
problematic.

Robustness Metrics

These metrics evaluate how well the model generalizes to challenging examples and
avoids overfitting to spurious or superficial patterns.

• Pair-Wise Accuracy (PWA): This metric quantifies how effectively the
model distinguishes between original functions and their minimally modified
counterfactual counterparts:

– P-C (Pair-Correct): Percentage of pairs where the model correctly
classifies both original and counterfactual samples with opposite labels.
Higher is better, indicating good sensitivity to subtle but meaningful code
changes.

– P-V (Pair-Vulnerable): Percentage of pairs where both samples are
incorrectly classified as vulnerable. Lower is better, as it suggests
overgeneralization or excessive pessimism.
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– P-B (Pair-Benign): Percentage where both are wrongly predicted benign.
Also lower is better, as it indicates the model may overlook critical
security flaws.

– P-R (Pair-Reversed): Percentage where the original and counterfactual
predictions are flipped compared to their true labels. Lower values
indicate more reliable decision boundaries.

• Worst-Group Accuracy (WGA): Measures the classification performance
on the most challenging subgroup within the data. Subgroups are
automatically defined via K-means clustering over learned embeddings,
intersected with class labels. A higher WGA reflects better generalization
and reduced vulnerability to rare or structurally unique patterns. It is
especially important for identifying brittle models that perform poorly on
underrepresented but critical edge cases.

• Neighborhood Purity: Evaluates the clustering quality of the learned
embedding space. For each function, its k-nearest neighbors (in latent
space) are identified, and purity is measured as the proportion of neighbors
with the same class. Higher scores imply stronger semantic coherence in
the representation space, indicating that the model has learned to organize
functions based on true vulnerability semantics rather than coincidental
structural similarities.

Explanation Metrics

To assess how and why the model makes its predictions, a set of attribution-based
metrics is used:

• Intra-Class Attribution Variance: Measures how consistent the
explanation patterns are across different samples within the same class. It
is computed as the variance of node-level importance scores among samples
labeled either benign or vulnerable. Lower variance is desirable—it suggests
that the model applies similar reasoning across similar functions, indicating
more stable and generalizable interpretability.

• Inter-Class Attribution Distance: Measures the average distance between
the explanation vectors of benign and vulnerable samples. Higher values
indicate that the model distinguishes between the classes using clearly different
reasoning patterns, which is a sign of good class separability in terms of
explanatory behavior.

• Node Score Dependency (Proposed): A new metric introduced in
this work to assess inter-node influence in explanation scores. For each
node, it measures how masking that node affects the importance of the
others, yielding a matrix of node interdependencies. This allows detection of
spurious dependencies—e.g., when unimportant context nodes unduly affect
the model’s reasoning. Semantically meaningful influence patterns support
robust and interpretable modeling.
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Visualization-Aided Analysis

Beyond quantitative metrics, model behavior is inspected qualitatively using the
visualization module introduced in section 3.6. Visual comparisons of attribution
maps, node graphs, and subgraph-based explanations allow direct observation of the
model’s attention and help verify whether its reasoning aligns with security-relevant
code structures. This mode of evaluation is particularly useful in diagnosing failure
cases and validating improvements introduced by counterfactual augmentation.

4.2 Performance Across Benchmarks

This section presents the classification performance of the detection model across
different benchmark configurations composed of varying proportions of original and
counterfactual code examples. Each configuration is trained independently using
the setup described in section 4.1, and all are evaluated against the same fixed,
balanced test set to ensure a fair and consistent comparison.

4.2.1 Analysis of Standard Metrics

To establish a foundational understanding of model behavior across training
configurations, the conventional classification metrics—accuracy, precision, recall,
and F1-score—are evaluated using a fixed, balanced test set. These metrics provide
insights into the raw predictive capabilities of the model trained with different
combinations of original and counterfactual data, as presented in Table 4.2.

Table 4.2: Performance of standard metrics (Accuracy, Precision, Recall, and
F1-score) across original/counterfactual training splits on the balanced test.

Split Accuracy Precision Recall F1-score

100/0 0.518 1.000 0.036 0.069
90/10 0.867 0.996 0.737 0.847
80/20 0.955 0.960 0.948 0.954
70/30 0.970 0.960 0.980 0.970
60/40 0.978 0.961 0.997 0.979
50/50 0.960 0.957 0.962 0.960
40/60 0.970 0.998 0.941 0.969
30/70 0.951 0.949 0.953 0.951
20/80 0.930 0.904 0.962 0.932
10/90 0.919 0.875 0.978 0.924
0/100 0.799 0.726 0.957 0.826

The results reveal a clear trend: models trained solely on original examples (100/0)
suffer from extreme imbalance in their predictive behavior. While the 100/0
configuration yields perfect precision (1.000), it performs poorly in terms of recall
(0.036) and F1-score (0.069). This indicates that the model has learned to identify
benign code with high confidence but fails to detect vulnerable cases, a hallmark of
overfitting to superficial patterns common in original data.
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Introducing even a small proportion of counterfactual data (e.g., 10% in the 90/10
split) substantially improves the model’s generalization. Precision remains high
(0.996), while recall increases to 0.737—yielding a significantly improved F1-score
of 0.847. This early gain suggests that counterfactuals effectively sharpen the
model’s discriminatory ability.

The strongest overall results are observed in the range of balanced
benchmarks—specifically, those with roughly equal proportions of original
and counterfactual data (e.g., 50/50, 60/40). In this region, the model achieves its
highest F1-score (0.979) and recall (0.997), while maintaining a competitive
accuracy of 0.978. These outcomes reflect a model that effectively captures the
semantic nuances of both benign and vulnerable code without bias, particularly
enhancing the detection of hard-to-classify vulnerable samples.

Additionally, precision reaches a peak of 0.998 for the 40/60 split, indicating
that incorporating counterfactuals does not increase false positives. However,
beyond this optimal range—especially when training is skewed heavily toward
synthetic counterfactuals—the model begins to suffer. For instance, the 0/100
benchmark exhibits a substantial drop in precision (0.726) and accuracy
(0.799), suggesting a loss of grounding in authentic patterns and an increased
tendency to overgeneralize.

These results highlight a key trade-off: while counterfactual data can significantly
improve generalization and predictive balance, over-reliance on synthetic examples
introduces performance degradation. Taken together, the analysis supports that
balanced benchmarks (e.g., 50/50, 60/40) offer the most reliable performance,
mitigating spurious correlations while preserving high-quality vulnerability
detection.

4.2.2 Overfitting, Generalization, and Learning Stability

Beyond static test set metrics, dynamic training behavior provides critical insights
into model generalization and overfitting tendencies. This section investigates how
training trajectories evolve under different benchmark configurations, focusing on
two representative cases: a balanced configuration (e.g., 50/50) and an extreme
synthetic-heavy setting (0/100).

Figure 4.5 compares the training and validation accuracy curves of both
configurations over training epochs. Each model is saved at the epoch where
it reaches the highest validation F1-score, following the early stopping strategy
outlined in section 4.1.

On the left, the balanced configuration demonstrates stable and synchronized
convergence. Training and validation accuracy curves closely track one another,
with minimal divergence throughout training. This indicates strong generalization,
where the model learns patterns that translate well to unseen data. The smooth
convergence suggests that counterfactual and original examples complement each
other, enhancing the model’s ability to capture robust decision boundaries.
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Figure 4.5: Comparison of training and validation accuracy curves for two
benchmark configurations: (Left) Balanced training (50/50), and (Right) Fully

synthetic training (0/100). While the 50/50 model maintains stable and
converging curves, the 0/100 model overfits rapidly and exhibits degrading

validation performance over time.

In contrast, the right-hand plot shows the synthetic-only configuration (0/100).
Here, the model rapidly achieves near-perfect training accuracy, suggesting strong
memorization. However, the validation accuracy curve shows significant fluctuations
and a noticeable degradation trend as training progresses. This instability is a
clear symptom of overfitting: the model learns to exploit superficial artifacts in
the synthetic data that do not generalize to the more diverse test set. While early
stopping helps prevent the most severe deterioration, the gap between training and
validation accuracy highlights a brittleness in learning, rooted in the absence of
authentic examples.

These observations affirm that a moderated counterfactual integration strategy—as
seen in the balanced benchmarks—not only improves final evaluation metrics (as
shown in Table 4.2) but also contributes to more stable, generalizable, and efficient
training dynamics. The inclusion of real examples appears essential for maintaining
grounding and avoiding shortcut learning, while the presence of counterfactuals
encourages better semantic differentiation.

4.2.3 Optimal Performance Identification

After analyzing individual performance metrics and training behaviors across
all augmentation benchmarks, this section aims to identify which configuration
yields the most favorable balance between detection capability and model stability.
The goal is not simply to maximize a single metric, but to select a configuration
that maintains strong generalization, minimizes overfitting, and achieves balanced
classification across benign and vulnerable code.

To facilitate this comparison, Figure 4.6 presents a scatter plot of test set accuracy
versus recall for all benchmark configurations. Each point represents a model trained
with a different original-to-counterfactual ratio. The figure captures the trade-off
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between these two critical dimensions of performance.

Figure 4.6: Comparative scatter plot of accuracy (x-axis) vs. recall (y-axis) on the
test set for all original/counterfactual training splits. Balanced configurations
(e.g., 50/50, 60/40) achieve both high accuracy and recall, while extreme

configurations (100/0 and 0/100) suffer from overfitting or reduced precision.

On the left side of the plot, the 100/0 configuration is clearly isolated. It achieves
perfect precision, but its recall is drastically limited—confirming its tendency to
overfit to superficial patterns found in the original data. Conversely, the 0/100
configuration achieves very high recall (0.957), suggesting that it is extremely
sensitive to vulnerability patterns. However, this comes at the cost of lower
precision (0.726) and reduced accuracy (0.799), highlighting the risk of false
positives and diminished reliability.

The most compelling region of the plot lies in the top-right quadrant, where
multiple configurations cluster with both high accuracy (above 0.95) and recall
(above 0.94). Among these, balanced configurations (e.g., 50/50 and 60/40)
consistently occupy the frontier of optimality. The 60/40 configuration achieves the
best F1-score (0.979), while the 50/50 model reaches the highest recall–accuracy
tradeoff balance. These configurations strike the ideal compromise: the model is
neither overly conservative (as in 100/0), nor excessively sensitive (as in 0/100),
but demonstrates discriminative power grounded in semantically relevant features.

In practical terms, this reinforces a key insight: counterfactuals, when used in
moderation, provide sufficient variability to reduce shortcut learning and foster
generalization—without overwhelming the training signal with synthetic artifacts.
It is this diversity and subtle contrast that ultimately leads to optimal decision
boundaries.
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4.3 Robustness and Spurious Correlation

Analysis

Beyond predictive performance, the reliability of a vulnerability detection
model hinges on its robustness to subtle variations and its ability to avoid
spurious correlations. In the context of source code, spurious learning
often occurs when a model associates vulnerability labels with superficial or
dataset-specific patterns—such as fixed tokens or benign code idioms—rather than
core semantic signals that indicate real security flaws. This section investigates
how counterfactual-based augmentation influences model behavior under such
conditions, through a suite of dedicated robustness and interpretability diagnostics.

To this end, a comprehensive set of metrics is examined, including pair-wise
accuracy, which evaluates sensitivity to minor yet label-reversing changes;
worst-group accuracy, which measures subgroup-level performance; and
neighborhood purity, reflecting the class consistency in latent representation
space. In addition, attribution-based diagnostics are explored, including
intra-class variance, inter-class attribution distance, and the newly
introduced node score dependency metric. These indicators provide deeper
insight into how models reason, how consistent their explanations are, and how
resilient they remain to structural perturbations or shortcut behaviors.

The results are presented in Table 4.3 and discussed across the following subsections,
focusing on how different levels of counterfactual integration affect model robustness,
generalization, and attribution alignment.

Table 4.3: A comprehensive evaluation is conducted across various training splits,
assessing model robustness, generalization, and explanation quality. Metrics
include: Pair-wise Agreement—P-C (correct contrast), P-V (both predicted

vulnerable), P-B (both predicted benign), and P-R (reversed predictions). Higher
P-C and lower P-V/P-B/P-R scores reflect stronger discriminatory ability.

Worst-Group Accuracy (WGA, k=2–7) captures robustness across subgroups, with
higher values indicating better performance under distributional shifts.

Neighborhood Purity measures class consistency in the learned embedding
space—higher values imply stronger semantic separation. Attribution-based
metrics include Intra-class Attribution Variance (lower is better, indicating
explanation consistency within classes) and Inter-class Attribution Distance

(higher is better, showing clear distinction between classes).

Split Acc Prec Rec F1 P-C P-V P-B P-R WGA4 Purity Intra-B Intra-V Inter-D

100/0 0.518 1.000 0.036 0.069 4.50 0.00 95.43 0.07 0.0073 0.707 0.01103 0.01027 0.00061

90/10 0.867 0.996 0.737 0.847 74.09 1.38 23.88 0.65 0.7052 0.907 0.01120 0.01035 0.00073

80/20 0.955 0.960 0.948 0.954 91.07 5.44 3.27 0.22 0.8757 0.953 0.01096 0.01046 0.00027

70/30 0.970 0.960 0.980 0.970 94.63 4.86 0.36 0.15 0.8757 0.962 0.01109 0.00995 0.00010

60/40 0.978 0.961 0.997 0.979 93.69 6.31 0.00 0.00 0.8703 0.967 0.01134 0.01030 0.00010

50/50 0.960 0.957 0.962 0.960 95.79 0.44 0.00 3.77 0.8555 0.944 0.01061 0.01030 0.00160

40/60 0.970 0.998 0.941 0.969 94.12 1.02 4.50 0.36 0.8092 0.966 0.01122 0.01036 0.00017

30/70 0.951 0.949 0.953 0.951 87.52 8.13 3.85 0.51 0.8266 0.941 0.01101 0.01010 0.00038

20/80 0.930 0.904 0.962 0.932 70.97 27.72 1.02 0.29 0.8497 0.929 0.01144 0.01036 0.00028

10/90 0.919 0.875 0.978 0.924 77.94 20.54 0.65 0.87 0.8152 0.910 0.01103 0.01046 0.00008

0/100 0.799 0.726 0.957 0.826 41.51 57.40 0.65 0.44 0.5030 0.856 0.01122 0.01007 0.00099
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4.3.1 Spuriousness in Source Code

In machine learning for code vulnerability detection, spurious correlations arise
when models learn to rely on superficial patterns that are statistically—but not
semantically—correlated with vulnerability labels. These misleading patterns
are particularly common in code due to repetitive syntax, reused variables, and
standard idioms that appear across both benign and vulnerable examples. When
such features are mistakenly learned as discriminative signals, models fail to
generalize and instead rely on dataset-specific shortcuts.

The CWE-20 vulnerability class, which concerns improper input validation, is
especially susceptible to this issue. For example, a model may associate the presence
of certain variable names or safe usage patterns with benign behavior, without
understanding the origin or security context of those variables. This is dangerous
in practice, as the same function may be safe or unsafe depending on where inputs
originate and how they are validated.

Figure 4.7 demonstrates this phenomenon with a concrete code example. The top
listing shows a benign implementation of param get mode, where the mode variable
is assigned internally from a trusted source (aa g profile mode). This usage is safe
and complies with CWE-20, as there is no reliance on unvalidated external input.
However, a model exposed only to this structure might erroneously learn that any
appearance of mode in the sprintf() call is safe.

Original benign code: No CWE-20 issue.

1 static int param_get_mode(char *buffer , struct kernel_param *kp)

2 {

3 if (! capable(CAP_MAC_ADMIN))

4 return -EPERM;

5 if (! apparmor_enabled)

6 return -EINVAL;

7 int mode = aa g profile mode ; // Potentially spurious statement

8 return sprintf(buffer , "\%s", profile\_mode\_names[ mode ]);

9 }

Vulnerable counterexample: Unvalidated mode input introducing a CWE-20 flaw

1 static int param_get_mode(char *buffer , struct kernel_param *kp, int mode )

2 {

3 if (! capable(CAP_MAC_ADMIN))

4 return -EPERM;

5 if (! apparmor_enabled)

6 return -EINVAL;

7 // Introduce a vulnerability by not checking the bounds of mode

8 return sprintf(buffer , "%s", profile_mode_names[ mode ]);

9 }

Figure 4.7: Illustration of spurious correlation in source code. The upper (benign)
function assigns a safe internal value to mode, while the lower (vulnerable) version
takes mode as unchecked user input. Without sufficient counterfactuals, a model
may incorrectly associate the presence of the mode variable with safe behavior,

failing to recognize its misuse in the vulnerable case.

The bottom listing introduces a minimal change that flips the label to vulnerable:
the mode variable is now passed as an argument to the function—meaning it
may come from an external, potentially untrusted source—and is directly used
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in a memory access operation without bounds checking. While this change is
semantically critical from a security standpoint, it is syntactically subtle. Without
sufficient contrastive data, a model may still associate mode with benign behavior
and fail to flag this version as vulnerable.

This example illustrates how models can learn spurious associations unless exposed
to carefully controlled counterfactuals. Training on both versions enables the
model to distinguish semantic intent, rather than memorizing token-level patterns.
The VISION framework leverages this principle by systematically generating such
counterfactual pairs to minimize shortcut learning.

4.3.2 Pair-Wise Accuracy (PWA)

Pair-wise accuracy, introduced in [Din+24], is a diagnostic metric specifically
tailored to evaluate model sensitivity to minimal but semantically meaningful
changes in source code. It is particularly relevant when analyzing models trained
on datasets augmented with counterfactual examples, as it measures the model’s
ability to distinguish between nearly identical functions that differ only in their
vulnerability label.

Each pair consists of two functions: the original (either benign or vulnerable)
and its corresponding counterfactual (whose label is flipped through a minimally
invasive edit). Ideally, a robust model should correctly classify both functions,
attributing the change in prediction to the introduced semantic modification rather
than superficial features. In contrast, a model affected by shortcut learning or
spurious correlations may fail to detect the meaningful distinction.

The pair-wise metric decomposes into four components:

• P-C (Correct Contrast): Proportion of pairs for which one function is
correctly classified as vulnerable and the other as benign, matching their
respective ground-truth labels. Higher is better, as it reflects accurate
differentiation between subtle label-flipping edits.

• P-V (Both Vulnerable): Proportion of pairs where both functions are
incorrectly predicted as vulnerable. Lower is better, since this indicates the
model is not overgeneralizing vulnerability cues.

• P-B (Both Benign): Proportion of pairs where both functions are incorrectly
predicted as benign. Lower is better, as high values suggest the model is
missing critical vulnerability indicators.

• P-R (Reversed): Proportion of pairs where both predictions are flipped with
respect to their ground-truth labels. Lower is better, because it highlights
prediction inconsistency and unreliable learning behavior.

A high P-C and low values for P-V, P-B, and P-R indicate effective contrastive
understanding and low susceptibility to spurious patterns.
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Evaluation Results

Table 4.4 reports the pair-wise classification outcomes across all benchmark
configurations. The highest P-C value is observed for the 50/50 benchmark,
with 95.79% of all pairs correctly classified in contrast to one another. This result
underscores the effectiveness of balanced augmentation in encouraging semantic
sensitivity.

On the other hand, extreme splits such as 100/0 and 0/100 show clear signs of poor
contrastive learning. The 100/0 model, trained exclusively on original examples,
achieves a P-C of only 4.50% and mistakenly predicts both functions as benign
in over 95% of cases (P-B = 95.43%). Similarly, the 0/100 model incorrectly
predicts both examples as vulnerable 57.4% of the time (P-V = 57.40%). These
patterns suggest reliance on dataset-specific artifacts rather than true semantic
understanding.

The results further show that balanced counterfactual inclusion (e.g., 50/50)
consistently improves P-C values and suppresses P-V/P-B confusion. Notably,
P-R scores remain low in most cases, indicating that label reversal is rare, and
misclassifications tend to cluster in one direction.

Table 4.4: Pair-wise classification breakdown for each original/counterfactual split.
High P-C and low P-V, P-B, and P-R indicate successful semantic discrimination

between original and counterfactual examples.

Split P-C (%) P-V (%) P-B (%) P-R (%)

100/0 4.50 0.00 95.43 0.07
90/10 74.09 1.38 23.88 0.65
80/20 91.07 5.44 3.27 0.22
70/30 94.63 4.86 0.36 0.15
60/40 93.69 6.31 0.00 0.00
50/50 95.79 0.44 0.00 3.77
40/60 94.12 1.02 4.50 0.36
30/70 87.52 8.13 3.85 0.51
20/80 70.97 27.72 1.02 0.29
10/90 77.94 20.54 0.65 0.87
0/100 41.51 57.40 0.65 0.44

4.3.3 Worst-Group Accuracy (WGA)

Robust models should maintain performance not only on average, but also across
all types of inputs—including the most challenging or underrepresented subgroups.
Worst-Group Accuracy (WGA) is a robustness metric designed to capture
the weakest point of a model’s performance across such latent subpopulations. It
evaluates whether the model generalizes well across diverse structural and semantic
patterns, and whether its learning is biased toward dominant data modes [Idr+22].
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Since explicit spurious or confounding attributes are not available in this setting,
WGA is computed using an unsupervised strategy. After training, code embeddings
are extracted for all test samples, and K-means clustering is applied to partition
the data into latent groups based on learned structure. Each group is defined as the
intersection of a cluster ID and a ground-truth class label (benign or vulnerable).
Small groups with fewer than 1% of the total dataset are discarded to ensure
statistical stability. WGA is then defined as the minimum classification accuracy
over the remaining groups.

Formally, given a dataset D = {(xi, yi)}Ni=1 and a trained model f , latent groups
are defined via unsupervised clustering. Let gi ∈ G denote the group assignment
of sample xi, determined by the intersection of its K-means cluster ID and its true
label yi.

For each group g ∈ G such that |g| > 0.01N , the accuracy is computed as:

Acc(g) =
1

|g|
∑
i∈g

⊮ [f(xi) = yi]

Then, the Worst-Group Accuracy (WGA) is defined as:

WGA = min
g∈G, |g|>0.01N

Acc(g)

Higher values of WGA indicate stronger worst-case performance, suggesting that
the model avoids overfitting to specific patterns or relying on brittle heuristics.
Conversely, a low WGA value implies that at least one group is poorly served by
the model, likely due to spurious correlations or insufficient training diversity.

Evaluation Results

As reported in Table 4.3, the model trained solely on original examples (100/0)
exhibits extremely poor performance in worst-group accuracy (WGA), with values
remaining below 2% across all clustering granularities (k = 2 to k = 7) This
indicates a high degree of overfitting to superficial dataset artifacts, leading to
brittleness when generalizing to structurally diverse subgroups.

In contrast, models trained using balanced splits—such as 60/40 and
50/50—demonstrate a more stable WGA profile across different values of k
While their top scores might not always be the highest for individual k settings,
the decrease in WGA from k = 2 to k = 7 is significantly more moderate compared
to other configurations. This consistency suggests that balanced data composition
fosters more uniform performance across latent subgroups, reducing susceptibility
to hidden biases and dataset shortcuts.

Meanwhile, benchmarks heavily skewed toward synthetic examples (e.g., 0/100)
again show degraded WGA, with all values falling below 0.54. This reinforces that
while counterfactuals enhance robustness, excessive reliance on them may lead to
incomplete generalization due to reduced exposure to real-world variability.
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Table 4.5: Worst-Group Accuracy (WGA) across training benchmarks for different
clustering granularities k = 2 to k = 7. Higher values indicate stronger robustness

across latent subgroups.

Split WGA2 WGA3 WGA4 WGA5 WGA6 WGA7

100/0 0.0171 0.0096 0.0073 0.0067 0.0058 0.0067
90/10 0.7309 0.7156 0.7052 0.7126 0.5909 0.5952
80/20 0.9115 0.8828 0.8757 0.8512 0.8444 0.8205
70/30 0.9056 0.8745 0.8757 0.8595 0.8444 0.8205
60/40 0.9056 0.8745 0.8703 0.8512 0.8444 0.8205
50/50 0.8991 0.8667 0.8555 0.8087 0.7955 0.8095
40/60 0.8471 0.8089 0.8092 0.7739 0.7955 0.8067
30/70 0.8777 0.8400 0.8266 0.7739 0.7727 0.7857
20/80 0.8820 0.8622 0.8497 0.8174 0.8182 0.8333
10/90 0.8584 0.8350 0.8152 0.8265 0.8149 0.8099
0/100 0.5398 0.4983 0.5030 0.4966 0.4754 0.4742

The WGA analysis highlights the importance of balanced augmentation
strategies. Models trained with a proportionate mix of original and counterfactual
data achieve more reliable and subgroup-fair predictions, exhibiting resilience to
overfitting and shortcut learning across varying structural complexities.

4.3.4 Neighborhood Analysis in Embedding Space

One of the key goals of counterfactual augmentation is to steer the model toward
learning semantically meaningful representations. To evaluate this, graph-level
embeddings are visualized using t-SNE projections, allowing qualitative comparison
of the learned latent space under different training splits. Six benchmark
configurations are presented in Figure 4.8, ranging from fully original to fully
synthetic, including several intermediate configurations with varying degrees of
balance.

Evaluation Results

As visible in Figure 4.8, the fully original (100/0) and fully synthetic (0/100)
models show the least structured class separation. Embeddings for benign and
vulnerable samples are heavily entangled, suggesting that the model has failed to
internalize meaningful vulnerability signals. This aligns with earlier performance
results, where these extreme configurations suffered from overfitting or underfitting.

In contrast, well-balanced training sets (e.g., 50/50, 70/30) result in far more
structured latent spaces. Classes form distinct, separable clusters, indicating
that the model has learned to represent benign and vulnerable samples with clear
semantic differences. Intermediate splits such as 30/70 and 90/10 show partial
structure, with varying degrees of cluster overlap.

These visual trends are quantitatively supported by the neighborhood purity values
summarized in Table 4.6. Higher purity scores reflect stronger class consistency in
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(a) 100/0 Benchmark (b) 90/10 Benchmark (c) 70/30 Benchmark

(d) 50/50 Benchmark (e) 30/70 Benchmark (f) 0/100 Benchmark

Figure 4.8: t-SNE projections of graph-level embeddings from models trained on
different benchmarks. Green dots represent benign samples and red dots denote
vulnerable samples. Balanced training configurations (e.g., 50/50, 70/30) produce
clearer separation between classes, while extremes like 100/0 and 0/100 result in

overlapping clusters and less structured embedding spaces.

the learned embedding space. Balanced configurations such as 60/40 and 70/30 yield
the most consistent clustering, confirming that counterfactual augmentation leads to
more semantically aligned latent representations. In contrast, extreme settings such
as 100/0 and 0/100 result in lower purity scores, highlighting the role of balance in
promoting structured embedding separation.

Table 4.6: Neighborhood Purity scores for each benchmark configuration. Higher
values indicate better class-consistent clustering in the embedding space. Balanced

configurations (e.g., 60/40, 50/50, 40/60) achieve the highest purity.

Split Neighborhood Purity

100/0 0.707
90/10 0.907
80/20 0.953
70/30 0.962
60/40 0.967
50/50 0.944
40/60 0.966
30/70 0.941
20/80 0.929
10/90 0.910
0/100 0.856
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4.3.5 Intra-Class Attribution Variance and Inter-Class
Attribution Distance

While traditional evaluation metrics assess a model’s predictive performance, they
offer limited insight into how a model arrives at its decisions. To address this gap,
two attribution-based metrics are introduced: Intra-Class Attribution Variance
and Inter-Class Attribution Distance. These are derived from node-level
explanation vectors produced by the Illuminati explainer and provide a deeper view
into the consistency and semantic structure of learned model reasoning.

Intra-Class Attribution Variance

This metric quantifies how consistent a model’s explanations are across examples
belonging to the same class. For each class (benign and vulnerable), attribution
vectors are collected from all samples, and their statistical variance is computed. A
lower variance value suggests that the model attributes its predictions to similar
structural patterns across different examples—an indicator of stable, generalizable
reasoning. Conversely, high intra-class variance may reflect reliance on spurious,
input-specific signals that do not generalize well.

Lower values are desirable. They indicate that the model is internally coherent and
bases decisions on consistent, semantically grounded cues rather than superficial or
sample-specific artifacts.

Inter-Class Attribution Distance

This metric evaluates how different the average attribution patterns are between
classes (benign and vulnerable). The mean attribution vector for each class is
computed, and the Euclidean distance between these vectors is measured. A higher
inter-class distance suggests that the model distinguishes vulnerabilities using
clearly different structural cues, rather than blurring class boundaries.

Higher values are desirable. A large separation between classes indicates that the
model captures distinctive vulnerability signatures rather than learning ambiguous
or overlapping representations.

Evaluation Results

The results for both metrics are presented in Table 4.7. Intra-class attribution
variance remains relatively low across all benchmarks, with little fluctuation,
indicating that the model tends to apply consistent reasoning within each class
regardless of the data composition.

However, the inter-class attribution distance varies more noticeably and peaks at
the balanced 50/50 configuration (0.00160), which demonstrates the highest
semantic separation between benign and vulnerable explanations. This reinforces
earlier findings that balanced augmentation not only improves prediction quality
but also enhances the clarity and reliability of model interpretations.
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In contrast, extreme splits—such as 100/0 or 0/100—exhibit reduced class
separation, likely due to overfitting (in the case of original-only data) or lack of
semantic grounding (in the case of synthetic-only data).

Table 4.7: Attribution-based explanation metrics for each benchmark. Intra-Class
Variance is computed separately for benign (Intra-Class Ben. Var.) and vulnerable
(Intra-Class Vul. Var.) classes. Inter-Class Attribution Distance (Inter-Class Dist.)
reflects how distinct the average attribution patterns are between classes. Lower

intra-class variance and higher inter-class distance are desirable.

Split Intra-Class Ben. Var. Intra-Class Vul. Var. Inter-Class Dist.

100/0 0.01103 0.01027 0.00061
90/10 0.01120 0.01035 0.00073
80/20 0.01096 0.01046 0.00027
70/30 0.01109 0.00995 0.00010
60/40 0.01134 0.01030 0.00010
50/50 0.01061 0.01030 0.00160
40/60 0.01122 0.01036 0.00017
30/70 0.01101 0.01010 0.00038
20/80 0.01144 0.01036 0.00028
10/90 0.01103 0.01046 0.00008
0/100 0.01122 0.01007 0.00099

4.3.6 Node Score Dependency

To complement the robustness and interpretability evaluation metrics, this work
introduces Node Score Dependency, a novel analysis designed to reveal the
relational structure of attributions in graph-based vulnerability detection. Unlike
conventional attribution methods that assess node importance in isolation, this
metric captures how the perceived relevance of one node is affected by the presence
or absence of others. It provides a deeper view into the interaction dynamics
between graph components and exposes potential shortcut behaviors or
structural fragility within the model’s explanation process.

Formally, for a graph composed of n nodes, let scoreorigj denote the attribution score
of node j in the unaltered graph. For each node i, a modified graph is created by
masking or removing node i, and the attribution scores are recomputed using a post
hoc explainer. The absolute difference between the original and modified scores of
node j defines the dependency metric:

Mi,j =
∣∣∣scoreorigj − score

(i-removed)
j

∣∣∣
This yields a square matrix M ∈ Rn×n, where Mi,j quantifies the influence of
node i on the attribution of node j. Diagonal entries Mi,i reflect each node’s
self-dependence, while off-diagonal values characterize cross-node attribution
sensitivity.
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1 static int param_get_mode(char *buffer , struct kernel_param *kp, (int mode)

2 {

3 if (! capable(CAP_MAC_ADMIN))

4 return -EPERM;

5 if (! apparmor_enabled)

6 return -EINVAL;

7 // Introduce a vulnerability by not checking the bounds of mode

8 return sprintf(buffer , "%s", profile_mode_names[mode)]);

9 }

Figure 4.9: Code example for Node Score Dependency Analysis. This
vulnerable function is used to evaluate how the removal of individual nodes affects
the attribution scores of others. The unvalidated mode parameter introduces a
CWE-20 flaw, making it suitable for analyzing attribution dependency and

interaction patterns across code components.

To ground the attribution dynamics in a concrete context, this analysis focuses on
the vulnerable counterexample introduced in Figure 4.9. This function illustrates
a CWE-20 vulnerability where the variable mode—originating from an untrusted
source—is directly passed to sprintf() without validation. It represents a typical
scenario where spurious correlations may arise if the model learns to associate
the mere presence of common variables (e.g., mode) with benign behavior, instead
of identifying the security-critical misuse patterns. This example serves as the
basis for evaluating attribution shifts and inter-node dependencies across training
regimes using the proposed Node Score Dependency metric.

The heatmaps in Figure 4.10 illustrate this concept through a comparative analysis
of two trained models on the same vulnerable example (see Figure 4.7)—one trained
on 100% original data and the other on a balanced 50/50 mixture of original and
counterfactual examples. Each cell’s color intensity represents the magnitude of
attribution change, with red indicating stronger influence and blue denoting weaker
or null effect.

The 100/0 model shows a concentrated attribution dependency centered around the
node corresponding to EPERM, a standard error return value. Despite its contextual
significance in the example, this node is not directly indicative of a CWE-20
vulnerability. Its prominence in the dependency map suggests that the model may
have latched onto superficial features, likely due to repeated occurrences in the
training data. In contrast, semantically critical elements such as the user-controlled
variable mode and its usage within profile mode names[mode] exhibit little to no
influence, revealing a lack of semantic grounding.

Conversely, the dependency structure of the 50/50 model displays a more diffuse
and context-aware interaction pattern. Nodes associated with improper input
validation—such as mode and profile mode names—exert notable influence over
other components in the graph. The dependency matrix highlights how attribution
propagates through semantically relevant control and data flow pathways, indicating
improved model comprehension of vulnerability-inducing structures. This alignment
with control flow (e.g., if statements and return branches) supports the notion that
balanced counterfactual augmentation encourages more faithful and generalizable
reasoning.
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(a) 100/0 Model Node Dependency Map

(b) 50/50 Model Node Dependency Map

Figure 4.10: Node Score Dependency heatmaps for the same vulnerable function
under two training regimes. (a) 100/0 benchmark, where dependencies are

narrowly concentrated on superficial nodes. (b) 50/50 benchmark, which exhibits
semantically meaningful and distributed dependency patterns. Each cell shows
how removing one node (rows) affects the attribution of another (columns). Red

denotes strong influence; blue indicates minimal or no effect.
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These findings highlight the utility of Node Score Dependency as an
interpretability-aware diagnostic. By exposing how explanation signals propagate
across graph components, this metric reveals the internal logic—or lack
thereof—behind a model’s predictions. When applied across training regimes, it
confirms that a balanced integration of counterfactual examples fosters models that
are both structurally robust and semantically aligned. As a result, Node Score
Dependency offers a valuable lens into explanation quality, enabling researchers
and practitioners to identify spurious dependencies, diagnose shortcut behaviors,
and validate attribution coherence in GNN-based vulnerability detection systems.

4.3.7 Summary of Robustness and Spuriousness Findings

The analyses conducted in this section provide strong empirical and interpretive
support for the hypothesis that counterfactual data augmentation mitigates
shortcut learning and enhances model robustness in the context of source code
vulnerability detection.

Across all evaluated robustness metrics, models trained with balanced
compositions of original and counterfactual examples (e.g., 50/50 and 60/40)
consistently outperform extreme configurations. Pair-wise accuracy reveals
that these balanced models are better at distinguishing semantically subtle
vulnerabilities, while avoiding prediction inconsistencies caused by superficial
patterns. Worst-group accuracy further confirms this robustness, with balanced
models maintaining higher and more stable performance across latent subgroups
derived from unsupervised clustering.

In terms of representation quality, neighborhood purity results and t-SNE
projections show that models trained with moderate counterfactual integration
develop more semantically structured and class-consistent embedding spaces.
These embeddings reflect a better internal organization of vulnerability
patterns, rather than reliance on dataset-specific idiosyncrasies.

At the explanation level, attribution-based metrics—including intra-class attribution
variance and inter-class attribution distance—demonstrate that balanced training
leads to more consistent and discriminative reasoning patterns. The novel
Node Score Dependency analysis offers additional interpretive depth, highlighting
how counterfactual training helps the model internalize meaningful inter-node
interactions and reduces reliance on spurious context nodes.

Collectively, these results underscore the effectiveness of the proposed counterfactual
augmentation strategy in addressing key challenges in GNN-based vulnerability
detection. By exposing models to semantically minimal but security-relevant
variations, the approach not only boosts predictive accuracy but also fosters
more robust, generalizable, and interpretable learning behavior.
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Chapter 5

Conclusions

This final section synthesizes the key findings of the study, outlines the primary
contributions made by the VISION framework, and reflects on the broader
implications of the results. While the proposed approach demonstrates significant
improvements in robustness, explanation quality, and generalization, it is not
without limitations. Accordingly, this section also discusses the scope of the current
work and presents several promising directions for future research.

5.1 Achievements and Summary of Contributions

This work introduced VISION, a framework for enhancing robustness and
interpretability in source code vulnerability detection via counterfactual data
augmentation. The primary objective was to mitigate spurious correlations and
improve model generalization in Graph Neural Network (GNN)-based systems by
incorporating semantically meaningful perturbations into the training process.

The key achievements and contributions of this work can be summarized as follows:

Counterfactual Data Augmentation Strategy

A novel augmentation pipeline was developed to generate minimally modified
counterfactual examples that invert vulnerability labels while preserving semantic
validity. This strategy successfully exposed models to subtle but critical variations
in input structure, fostering learning that prioritizes semantically grounded
vulnerability patterns over dataset-specific artifacts.

CWE-20-CFA Benchmark Suite

An extensive benchmark was constructed using CWE-20 examples, enabling
systematic evaluation across varying degrees of counterfactual integration. The
benchmark allows fine-grained analysis of how original and synthetic data
compositions affect model behavior, robustness, and explanation quality.

Empirical Gains in Predictive and Robustness Metrics

Models trained with balanced compositions of original and counterfactual examples
exhibited substantial improvements in standard metrics (accuracy, precision, recall,
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F1), and advanced robustness diagnostics such as Pair-Wise Accuracy and
Worst-Group Accuracy (WGA). These results demonstrate the framework’s
ability to reduce overfitting and enhance reliability under diverse conditions.

Attribution Consistency and Explanation Quality

VISION not only improved predictive performance but also enhanced the
semantic structure of explanations. This was evidenced by favorable scores in
Intra-Class Attribution Variance, Inter-Class Attribution Distance, and Node Score
Dependency—novel metrics introduced in this work to evaluate the fidelity and
discriminability of model reasoning.

Visualization Module for Qualitative Analysis

An interactive, Gradio-based visualization interface was designed to inspect
code-level predictions and explanations. The tool provides side-by-side comparison
of original and counterfactual examples, attribution highlights on both code and
graph views, and subgraph analysis modes, facilitating human-in-the-loop model
interpretation and debugging.

Figure 5.1: The visualization interface provides a human-in-the-loop environment
for interpreting model decisions. It enables users to inspect predictions, highlight

node-level attributions on both code and graph views, and analyze positive,
negative, and optimal subgraphs. This interpretability support is critical for

understanding model behavior and verifying explanation reliability in real-world
scenarios.

Together, these contributions validate VISION as an effective, generalizable, and
explainable approach to secure software analysis using Graph Neural Networks. The
proposed framework not only improves predictive outcomes but also delivers deeper
insight into model decision-making—crucial for the deployment of trustworthy
vulnerability detection systems.
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5.2 Limitations

While the proposed VISION framework demonstrates substantial improvements in
robustness, generalization, and interpretability for vulnerability detection, several
limitations must be acknowledged:

I. Single Vulnerability Class Focus: This work concentrates exclusively on
CWE-20 (Improper Input Validation). Although this class is highly impactful
and frequent in real-world applications, the conclusions drawn may not fully
generalize to other vulnerability types such as buffer overflows or authorization
issues. Further validation on a broader vulnerability spectrum is necessary to
assess transferability.

II. Manual Inspection of Synthetic Examples: The framework relies on
a large number of LLM-generated counterfactual examples—nearly 15,000
in total. Due to the scale, full manual verification is infeasible. A small
sample of 50 examples was manually reviewed to validate generation quality.
However, more rigorous, scalable verification techniques are required to ensure
the semantic correctness and utility of all generated counterfactuals.

III. Binary Classification Limitation: The current version of VISION supports
only binary classification (i.e., benign vs. vulnerable). Many real-world
vulnerability scenarios involve multi-class or multi-label settings, such as
detecting multiple CWE types within the same function. Extending the
framework to these more complex classification tasks would significantly
broaden its utility.

IV. Model-Specific Implementation: The framework is implemented using the
Devign model and the Illuminati explainer. While these choices are justified
by their relevance and performance, the extent to which VISION generalizes
across other GNN architectures or explanation techniques remains untested.

V. Visualization Scalability: Although the visualization module is effective
for qualitative inspection, its utility may degrade when applied to very
large codebases or dense graph structures. Enhancing layout algorithms and
interactive controls would be necessary for broader usability.
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5.3 Future Work

Building on the current capabilities and limitations of the VISION framework,
several promising directions can guide future research and development:

I. Extension to Broader Vulnerability Classes: Expanding the
counterfactual data augmentation strategy to cover a wider range of CWE
categories would allow testing the framework’s robustness and generalizability
across different types of software vulnerabilities. This includes more complex
security flaws such as buffer overflows, injection vulnerabilities, or access
control errors.

II. Advanced Counterfactual Generation Techniques: Future efforts
may incorporate adversarial and probabilistic counterfactuals to diversify
the training distribution further. These approaches could generate more
challenging or boundary-pushing examples that increase model robustness and
improve semantic discrimination.

III. Automated Validation via Static or Dynamic Analysis Tools: To
reduce the reliance on manual inspection of LLM-generated examples, program
analysis tools (e.g., static analyzers, symbolic execution engines) could
be integrated into the generation pipeline. These tools would assist in
automatically verifying that counterfactuals maintain syntax correctness and
introduce meaningful security modifications.

IV. Multi-class and Multi-label Vulnerability Classification: Future
work could generalize the framework to handle multi-class or multi-label
vulnerability detection. This would reflect more realistic software security
scenarios, where functions may exhibit multiple overlapping flaws or belong to
distinct vulnerability families.

V. Explanation-Guided Robust Training: Incorporating explanation
feedback into the training process may help prioritize semantically meaningful
features during model optimization. This explanation-aware training approach
could reduce shortcut learning further and encourage more human-aligned
reasoning.

VI. Visualization of Control Flow and Temporal Dependencies:
Expanding the visualization interface to support dynamic aspects—such as
control-flow paths, taint propagation, or temporal execution traces—would
enrich user understanding and support more comprehensive code audits and
debugging.

Pursuing these future directions can significantly strengthen the technical foundation
and practical utility of the VISION framework. Each proposal aligns with its core
goals—enhancing robustness, reducing spuriousness, and improving interpretability.
Expanding to broader vulnerability types, integrating validation tools, and
incorporating explanation-guided training would make VISION more versatile and
impactful. These advancements are essential steps toward building trustworthy,
AI-assisted systems for secure software development.
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Appendix A

Sustainable Development Goals

In 2015, United Nations member countries established a set of global objectives to
promote human and technological development worldwide, resulting in the creation
of a common agenda for 2030 that defines 17 Sustainable Development Goals. In
alignment with this initiative, this project aims to contribute significantly to the
following SDGs.

Figure A.1: Sustainable Development Goals (SDGs) aligned with this project:
Industry, Innovation and Infrastructure (Goal 9), Peace, Justice and Strong
Institutions (Goal 16), Quality Education (Goal 4), and Decent Work and

Economic Growth (Goal 8).

• Goal 4 - Quality Education: The framework and methodology developed
in this research offer valuable educational insights into the intersections of
cybersecurity, explainable AI, and robust machine learning. The project
facilitates deeper understanding of model behavior through visualization
and interpretability tools, making it a useful resource for training the next
generation of AI practitioners and security researchers.
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• Goal 8 - Decent Work and Economic Growth: By improving
the robustness and reliability of vulnerability detection tools, the project
encourages responsible software development practices. The ability to identify
true vulnerabilities, rather than spurious or misleading ones, leads to more
secure software releases and efficient resource usage, reducing the cost and
environmental impact associated with debugging, patching, and system
failures.

• Goal 9 – Industry, Innovation and Infrastructure: The project
promotes innovation in software security by advancing methods for automated
vulnerability detection using machine learning, particularly Graph Neural
Networks. By introducing counterfactual data augmentation, the work
contributes to more reliable and interpretable AI systems. This supports the
development of resilient digital infrastructure and fosters innovation in secure
software engineering practices.

• Goal 16 - Peace, Justice, and Strong Institutions: Cybersecurity
is a cornerstone of modern institutions, and this project enhances the
trustworthiness of digital systems by mitigating spurious correlations in
vulnerability detection models. Through robust and explainable AI tools,
the work supports justice and transparency in automated code analysis,
contributing to the protection of critical infrastructure and institutional
integrity.
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Appendix B

Resources

Aligned with the methodology and objectives outlined previously, the following
hardware and software resources have been employed to implement, train,
and evaluate the VISION framework. These tools provided a reliable and
scalable technical foundation to conduct experiments in vulnerability detection and
explainability using Graph Neural Networks.

Hardware

• GPU: Two NVIDIA RTX A4500 GPUs, each with 20GB memory, CUDA
version 12.2, and driver version 535.183.01, were used to accelerate model
training and evaluation, particularly for graph-based deep learning tasks.

Software

• Python (v3.9): The primary programming language, chosen for its robust
ecosystem in scientific computing and machine learning.

• PyTorch and PyTorch Geometric: Core frameworks for implementing
and training GNN models such as Devign, with support for efficient graph
operations and batch processing.

• Illuminati Framework: Used for post hoc GNN explanation and extended
with a custom visualization module to support human-in-the-loop analysis.

• Joern: A static code analysis tool used to convert source code into Code
Property Graphs (CPGs), enabling structural input for GNN processing.

• OpenAI API: Leveraged to generate high-quality counterfactual code
examples, forming the basis of the augmentation strategy.

• NetworkX and Matplotlib: Visualization libraries employed to render
graph structures and model attribution scores.

• Visual Studio Code: Used as the main development environment, offering
integration with Git, linting tools, and debugging utilities.

• GitHub: Used for version control and collaboration, ensuring reproducibility
and structured code management.
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• Virtual Environment Tools (e.g., venv): Used to isolate dependencies
and ensure reproducible experiments.

Datasets

• PrimeVul: A publicly available, high-quality benchmark for software
vulnerability detection.

• CWE-20-CFA: A custom-constructed dataset introduced in this work,
derived from PrimeVul and augmented with validated counterfactuals.
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Appendix C

Supplementary Code Listings

1 def joern_parse(joern_cli_path , input_path , output_path , file_name):

2 """

3 Parses source code files into Joern ’s intermediate representation

4 (Coded Property Graph - CPG).

5
6 This function runs the ‘joern -parse ‘ command -line tool to convert source code

7 into a binary CPG file , which is later used for code analysis in Joern. The

8 function executes the command using ‘subprocess .run ‘ and returns the

9 generated binary file ’s name.

10
11 Parameters :

12 - joern_cli_path (str): Path to the Joern CLI installation directory.

13 - input_path (str): Path to the directory containing the source code.

14 - output_path (str): Path where the parsed CPG binary file should be saved.

15 - file_name (str): Base name for the output binary file (without extension).

16
17 Returns:

18 - str: The name of the generated binary file.

19 """

20 out_file = file_name + ".bin"

21 # Subprocess calling

22 joern_parse_call = subprocess.run(["./" + os.path.join(joern_cli_path , \

23 "joern -parse"), input_path , "--out", os.path.join(output_path , \

24 out_file)], tdout=subprocess.PIPE , text=True , check=True)

25
26 return out_file

Figure C1: Code snippet for joern parse function
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1 def joern_create(joern_path , in_path , out_path , cpg_file):

2 """

3 Executes a Joern script to extract function -level code property graphs (CPGs)

4 and saves the results as a JSON file using direct communication with the

5 process.

6
7 Instead of writing the script to a file , this function sends commands directly

8 to the Joern process via ‘stdin ‘. It:

9 - Loads a previously generated CPG binary file.

10 - Runs a predefined Joern script (‘graph -for -funcs.sc ‘) to extract \

11 function -level graph data.

12 - Exports the results to a JSON file.

13
14 Parameters :

15 - joern_path (str): Path to the Joern CLI installation directory.

16 - in_path (str): Path where the input CPG binary file is located.

17 - out_path (str): Directory where the generated JSON file should be stored.

18 - cpg_file (str): Name of the CPG binary file (e.g., "example.bin ").

19
20 Returns:

21 - str: The name of the generated JSON file.

22 """

23
24 # Generate JSON output file name

25 json_file = f"{cpg_file.split(’.’)[0]}. json"

26
27 # Path for temporary script with commands

28 if not os.path.exists("tmp"):

29 os.mkdir("tmp")

30
31 commands_script__path = os.path.abspath("tmp/joern_temp_script.sc")

32
33 # Paths for script execution

34 graph_script_path = os.path.abspath("joern/graph -for -funcs.sc")

35 json_out = os.path.join(os.path.abspath(out_path), json_file)

36
37 # Write commands to the script file

38 with open(commands_script__path , ’w’) as script_file:

39 # Import CPG project

40 script_file.write(f’importCpg ("{os.path.abspath(in_path)}/{ cpg_file }")\n’)

41 # Generate json graph

42 script_file.write(f’cpg.runScript ("{ graph_script_path }").toString () |> \

43 "{ json_out }"\n’)

44 # Delete project

45 script_file.write(f’delete ("{ cpg_file }")\n’)

46
47 # Set environment variables to avoid interactive mode

48 env = os.environ.copy()

49 env["JOERN_INTERACTIVE"] = "false"

50
51 # Run Joern process and communicate via stdin (forcing non - interactive mode)

52 joern_process = subprocess.Popen(

53 [os.path.join(joern_path , "joern"), "--script", commands_script__path],

54 stdin=subprocess.PIPE ,

55 stdout=subprocess.PIPE ,

56 stderr=subprocess.PIPE ,

57 text=True ,

58 env=env , # Pass modified environment variables

59 bufsize=1, # Enable line -buffering

60 )

61
62 # Send script commands to the process and close stdin

63 outs , errs = joern_process.communicate(timeout =60)

64
65 # Print any output or errors

66 # if outs:

67 # print(f"Outs: {outs }")

68 # if errs:

69 # print(f"Errs: {errs }")

70
71 return json_file

Figure C2: Code snippet for joern create function
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1 def process_dataset(df: pd.DataFrame , output_path: str):

2 # Load existing dataset if it exists; otherwise , create an empty DataFrame

3 if os.path.exists(output_path):

4 dataset = pd.read_csv(output_path , index_col =0)

5 print(f"Loaded existing dataset with {len(dataset)} examples.")

6 else:

7 dataset = pd.DataFrame(columns =[’func’, ’target ’, ’cwe’, ’cpg’])

8
9 with Progress () as progress:

10 # Main Task (Total Work)

11 main_task = progress.add_task(

12 f"[magenta]Generating input examples dataset (0/{ len(df)})...",

13 total=len(df),

14 bar_style="magenta"

15 )

16 # Create Sub -Task Once (Reused)

17 secondary_task = progress.add_task(

18 "[cyan]Example ...",

19 total=4,

20 bar_style="cyan"

21 )

22 i = 0

23 for index , example in df.iterrows ():

24 # for index , example in df.iterrows ():

25 # Check if this example has already been processed .

26 matches = (dataset[dataset[’func’] == example[’func’]]).index.tolist ()

27 if matches:

28 idx_match = matches [0]

29 progress.update(main_task , advance=1,

30 description=f"[magenta]Skipping already processed example ({i}/{len(df)})...")

31 if index != idx_match:

32 dataset.loc[index] = dataset.loc[dataset.index == idx_match ].iloc [0]. copy()

33 dataset = dataset.drop(index=idx_match)

34 i += 1

35 continue

36
37 retry_attempts = 0

38 success = False

39
40 while retry_attempts < MAX_RETRIES and not success:

41 try:

42 progress.update(secondary_task , completed=0, description=f"[cyan]Generating example ... \

43 (Attempt {retry_attempts +1})")

44
45 # Subtask 2: Code Parsing

46 progress.update(secondary_task , advance=1, description=f"[cyan]Parsing source code ...")

47
48 # Save func as C file

49 source_file_path = os.path.join(PATHS["source"], f"{index}.c")

50 with open(source_file_path , ’w’) as f:

51 f.write(example.func)

52
53 # Parsing function to .bin

54 cpg_file = joern_parse(JOERN_CLI_DIR , source_file_path , PATHS[’cpg’], f"{index}_cpg")

55
56 # Subtask 3: Create CPG graphs JSON file

57 progress.update(secondary_task , advance=1, description=f"[cyan]Creating CPG with Joern ...")

58 json_file = joern_create(JOERN_CLI_DIR , PATHS[’cpg’], PATHS[’cpg’], cpg_file)

59
60 # Subtask 4: Get CPG obj from JSON

61 progress.update(secondary_task , advance=1, description=f"[cyan]Processing CPG ...")

62 graphs = json_process(PATHS[’cpg’], json_file)

63 cpg = graphs [0][1] # Get the CPG from graphs

64 example["cpg"] = cpg

65 example.to_pickle(os.path.join(PATHS[’cpg’], f"{index}_cpg.pkl"))

66 progress.update(secondary_task , description=f"[green]CPG Completed.")

67
68 # Remove unused files

69 os.remove(os.path.join(PATHS[’cpg’],f"{index}_cpg.bin"))

70 os.remove(os.path.join(PATHS[’cpg’],f"{index}_cpg.json"))

71 os.remove(os.path.join(PATHS[’cpg’],f"{index}_cpg.pkl"))

72 os.remove(os.path.join(PATHS[’source ’],f"{index}.c"))

73
74 # Add example

75 dataset = pd.concat ([dataset , example.to_frame ().T])

76 success = True

77
78 except Exception as e:

79 retry_attempts += 1

80 progress.update(secondary_task , description=f"[red]Error occurred! \

81 Retrying ({ retry_attempts }/{ MAX_RETRIES })...")

82
83 if retry_attempts == MAX_RETRIES:

84 print(f"[ERROR] Failed to process example {index} after {MAX_RETRIES} attempts: {e}")

85
86 example["cpg"] = None

87 dataset = pd.concat ([dataset , example.to_frame ().T])

88
89 # Update main task progress

90 progress.update(main_task , advance=1, \

91 description=f"[magenta]Generating dataset ({i+1}/{ len(df)})...")

92 i += 1

93 # Mark as successful and exit retry loop

94 success = True

95
96 # Save dataset (every 10 data points)

97 if not i % 100:

98 dataset.to_csv(output_path)

99 print(f"Saved dataset at {output_path}")

Figure C3: Code snippet for process dataset function
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1 def nodes_to_input(nodes , target , nodes_dim , keyed_vectors , edge_type):

2
3 nodes_embedding = NodesEmbedding(nodes_dim , keyed_vectors)

4 graphs_embedding = GraphsEmbedding(edge_type)

5 label = torch.tensor ([ target ]).float ()

6
7 x, code_embedding_mapping = nodes_embedding(nodes)

8 edge_index=graphs_embedding(nodes)

9
10 return Data(x=x, edge_index=edge_index , y=label), \

11 code_embedding_mapping

Figure C4: Code snippet for nodes to input function

1 def process_cpg_to_nodes_row(row):

2 cpg = eval(row.cpg)

3 ordered_nodes , nodes_by_line_map = parse_to_nodes(cpg , NODES_DIM)

4 return pd.Series ({"nodes": ordered_nodes , \

5 "nodes_by_line_map": nodes_by_line_map })

Figure C5: Code snippet for process cpg to nodes row function

1 def process_nodes_to_input_row(row , w2vmodel):

2 input_series , code_embedding_mapping = nodes_to_input(row.nodes , \

3 row.target , NODES_DIM , w2vmodel.wv, EDGE_TYPE)

4 return pd.Series ({"input": input_series , \

5 "code_embedding_mapping": code_embedding_mapping })

Figure C6: Code snippet for process nodes to input row function
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1 for dataset in args.dataset:

2
3 print(f"\nGenerating Input from CPG")

4 print("-----------------------------------------")

5
6 dataset_path = "datasets/dataset/dataset_CWE -20. pkl"

7 output_path = "datasets/dataset/dataset_CWE -20 _input.pkl"

8
9 if os.path.exists(output_path):

10 dataset_df = pd.read_pickle(dataset_path)

11 output_df = pd.read_pickle(output_path)

12 df_init = True

13
14 dataset_df = dataset_df [~ dataset_df.index.isin(output_df.index)]

15
16 else:

17 df_init = False

18 dataset_df = pd.read_pickle(dataset_path)

19
20 total_examples = len(dataset_df)

21
22 # Model initialization

23 w2vmodel = Word2Vec (** WORD2VEC_ARGS)

24
25 # Setup rich progress bar

26 with Progress(

27 TextColumn("[bold magenta]Processing {task.fields[dataset ]} ({task.completed }/{ task.total})..."),

28 BarColumn (),

29 TextColumn("[bold cyan]{task.percentage :>3.1f}%"),

30 TimeRemainingColumn (),

31 ) as progress:

32
33 main_task = progress.add_task(f"[magenta]Processing {dataset.upper()} dataset",

34 total=total_examples , dataset=dataset.upper () ,)

35
36 w2v_init = True

37 i = 0

38 for index , row_series in dataset_df.copy().iterrows ():

39
40 row_df = row_series.to_frame ().T

41 # Function Tokenization

42 tokenized_func_df = tokenize(row_df)

43 func_tokens = tokenized_func_df.tokens

44
45 # Build and Train Word2Vec Model

46 w2vmodel.build_vocab(corpus_iterable=func_tokens , update=not w2v_init)

47 w2vmodel.train(func_tokens , total_examples=w2vmodel.corpus_count , epochs =1)

48
49 # Embed cpg to node representation and pass to graph data structure

50 row_df [["nodes", "nodes_by_line_map"]] = row_df.apply(process_cpg_to_nodes_row , axis =1)

51
52 # remove rows with no nodes

53 row_df = row_df.loc[row_df.nodes.map(len) > 0]

54
55 # Apply the function and create both "input" and "map" columns

56 row_df [["input", "code_embedding_mapping"]] = row_df.apply(lambda row: \

57 process_nodes_to_input_row(row , w2vmodel), axis =1)

58
59 progress.update(main_task , advance =1)

60 i += 1

61
62 if not df_init:

63 output_df = row_df

64 df_init = True

65 else:

66 output_df = pd.concat ([output_df , row_df ])

67
68 if w2v_init:

69 w2v_init = False

70
71 if i % EXAMPLES_PER_SAVE == 0:

72 output_df.to_pickle(output_path)

73 print(f"Saved dataset at {output_path}")

74 # Save Word2Vec model

75 w2vmodel.save(’tmp/dataset/w2v/w2vmodel.wv’)

76
77 w2vmodel.save(’tmp/dataset/w2v/w2vmodel.wv’)

78 output_df.to_pickle(output_path)

79 print(f"Final dataset saved at {output_path}")

Figure C7: Code snippet for process cpg to input function
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1 class IlluminatiExplainer(nn.Module):

2
3 coeffs = {

4 ’edge_size ’: 0.005,

5 ’edge_reduction ’: ’sum’,

6 ’node_feat_size ’: 1.0,

7 ’node_feat_reduction ’: ’mean’,

8 ’edge_ent ’: 1.0,

9 ’node_feat_ent ’: 0.1,

10 ’mask_l1 ’: 0.001, # L1 regularization coefficient for sparsity

11 ’mask_var ’: 0.001 , # Variance regularization coefficient

12 }

13
14 def __init__(self , model , epochs: int = 50, lr: float = 0.01, agg1="max", \

15 agg2="max", num_hops: int = None , device: str = "cpu", seed: int = SEED):

16
17 super(IlluminatiExplainer , self).__init__ ()

18 self.model = model

19 self.epochs = epochs

20 self.lr = lr

21 self.__num_hops__ = num_hops

22 self.device = device

23 self.seed = seed

24 # self.drop = nn.Dropout(p=0.2)

25 self.drop = nn.Identity ()

26 self.model.to(device)

27
28 # Additional learnable scaling parameters for the mask scores:

29 # Temperature scaling for edge masks

30 self.temp_edge = nn.Parameter(torch.tensor (1.0))

31 # Temperature scaling for node feature masks

32 self.temp_node = nn.Parameter(torch.tensor (1.0))

33 # Power transform for edge masks

34 self.power_edge = nn.Parameter(torch.tensor (1.0))

35 # Power transform for node masks

36 self.power_node = nn.Parameter(torch.tensor (1.0))

37
38 # Define aggregation functions

39 if agg1 == "mean":

40 self.agg1 = torch.mean

41 elif agg1 == "min":

42 self.agg1 = torch.min

43 elif agg1 == "max":

44 self.agg1 = torch.max

45 elif agg1 == "sum":

46 self.agg1 = torch.sum

47 else:

48 self.agg1 = self.custom_agg # use custom if no standard option fits

49
50 if agg2 == "mean":

51 self.agg2 = torch.mean

52 elif agg2 == "min":

53 self.agg2 = torch.min

54 elif agg2 == "max":

55 self.agg2 = torch.max

56 elif agg2 == "sum":

57 self.agg2 = torch.sum

58 else:

59 self.agg2 = self.custom_agg

Figure C8: Code snippet for IlluminatiExplainer class (Illuminati explainer
implementation
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1 def __set_masks__(self , data , node: bool = True , synchronize: bool = True , \

2 edge_mask=None):

3 # Set the seed for reproducibility

4 self.__set_seed__(data)

5 (N, F), E = data.x.size(), data.edge_index.size (1)

6 num_nodes = N

7
8 if edge_mask is not None:

9 for module in self.model.modules ():

10 if isinstance(module , MessagePassing):

11 module.__explain__ = True

12 module.__edge_mask__ = edge_mask

13 return

14
15 std = 0.1

16 node_feat_mask = torch.randn(1, F, generator=self.gen , device=self.device) \

17 * std if not node else torch.randn(N, F, generator=self.gen , \

18 device=self.device) * std

19 edge_mask = torch.randn(E, generator=self.gen , device=self.device) * std

20 std = torch.nn.init.calculate_gain(’relu’) * sqrt (2.0 / (2 * N))

21 edge_mask = torch.randn(E, generator=self.gen , device=self.device) * std

22 if not node and self.self_loop_mask is not None:

23 edge_mask[self.self_loop_mask] = torch.ones(num_nodes)

24 if node and synchronize:

25 node_feat_mask = torch.mean(node_feat_mask , dim=-1, keepdim=True)

26 self.node_feat_mask = nn.Parameter(node_feat_mask)

27 self.edge_mask = edge_mask

28
29 for module in self.model.modules ():

30 if isinstance(module , MessagePassing):

31 module.__explain__ = True

32 module.__edge_mask__ = self.edge_mask

Figure C9: Code snippet for set masks IlluminatiExplainer function
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1 def explain_graph(self , data , loss_fc , node: bool = True , synchronize: bool = False):

2 self.model.eval()

3 self.__clear_masks__ ()

4 (N, F), E = data.x.size(), data.edge_index.size (1)

5
6 # Get prediction WITHOUT torch.no_grad () to allow gradients

7 out = self.model(data.to(self.device))

8 pred_label = out.detach () # Retain real -valued prediction for explanation

9
10 self.__get_indices__(data)

11 self.__set_masks__(data , node=node , synchronize=synchronize)

12 optimizer = torch.optim.Adam([self.node_feat_mask , self.edge_mask],

13 lr=self.lr)

14
15 for epoch in range(self.epochs):

16 optimizer.zero_grad ()

17 node_feat_mask = self.__refine_mask__(self.node_feat_mask , beta=(epoch + 1) / self.epochs) if node \

18 else self.node_feat_mask.sigmoid ()

19 h = data.x * node_feat_mask

20 data_tmp = Data(x=h, edge_index=data.edge_index , batch=torch.zeros(N, dtype=torch.long))

21 edge_mask = self.__refine_mask__(self.edge_mask , beta=( epoch + 1) / self.epochs) if node \

22 else self.edge_mask.sigmoid ()

23 self.__set_masks__(data_tmp , edge_mask=edge_mask)

24 out = self.model(data_tmp.to(self.device))

25 loss = self.__loss__(out , pred_label , loss_fc)

26 loss.backward ()

27 optimizer.step()

28
29 node_feat_mask = self.__refine_mask__(self.node_feat_mask , training=False) if node \

30 else self.node_feat_mask.sigmoid ()

31 edge_mask = self.__refine_mask__(self.edge_mask , training=False) if node \

32 else self.edge_mask.sigmoid ()

33 node_mask = torch.zeros(node_feat_mask.shape [0])

34
35 if node:

36 node_feat_msg = torch.sum(node_feat_mask * data.x, dim=-1).view(-1)

37 x = data.x.clone ()

38 x[x > 0.] = 1.

39 node_feat_mask = node_feat_mask * x

40 for n in range(N):

41 idx = torch.nonzero(x[n])

42 node_feat_msg[n] = self.custom_agg(node_feat_mask[n, idx])

43 for n in range(N):

44 if self.out_degree[n] > 0 or self.in_degree[n] > 0:

45 out_masks = torch.zeros (1)

46 if self.out_degree[n] > 0:

47 out_masks = edge_mask[self.out_edge_mask[n]]

48 node_mask_out = out_masks * node_feat_msg[n]

49 node_mask_out = self.agg1(node_mask_out)

50 in_masks = edge_mask[self.self_loop_mask[n]] if self.self_loop_mask is not None \

51 else torch.zeros (1)

52 node_mask_in = in_masks * node_feat_msg[n]

53 if self.in_degree[n] > 0:

54 in_nodes = data.edge_index [0, self.in_edge_mask[n]]

55 in_masks = edge_mask[self.in_edge_mask[n]]

56 if self.self_loop_mask is not None:

57 in_masks = torch.cat(( in_masks.view(-1), edge_mask[self.self_loop_mask[n]]. view(-1)))

58 node_mask_in = in_masks * node_feat_msg[in_nodes]

59 node_mask_in = self.agg1(node_mask_in)

60 node_mask[n] = self.agg2(torch.cat(( node_mask_in.view(-1), node_mask_out.view(-1))))

61 else:

62 node_mask = torch.zeros(N)

63 for n in range(N):

64 out_max = torch.tensor(0, dtype=torch.float)

65 in_max = torch.tensor(0, dtype=torch.float)

66 if self.out_degree[n] > 0:

67 out_max = torch.max(edge_mask[self.out_edge_mask[n]])

68 if self.in_degree[n] > 0:

69 in_max = torch.max(edge_mask[self.in_edge_mask[n]])

70 node_mask[n] = torch.max(out_max , in_max)

71
72 node_mask = self.scores_scaling_transform(node_mask)

73 self.__clear_masks__ ()

74 return node_feat_mask , edge_mask , node_mask

Figure C10: Code snippet for explain graph function
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1 def minimal_subgraph_by_adding(self , data , node_importance , model , threshold =0.5):

2 """

3 Greedily adds nodes (starting with the highest scoring) until the subgraph

4 produces a prediction equal to the full graph ’s target prediction .

5 In the returned submask (of shape [num_nodes ]), the selected nodes are assigned

6 their respective importance values (and zero elsewhere). In any case at least one node is returned.

7
8 Parameters :

9 data: The original graph Data object.

10 node_importance : A tensor with importance scores for each node.

11 model: The trained GNN model.

12 threshold : Threshold for binary predictions .

13
14 Returns:

15 A tuple (submask , selected_nodes , confidence_score , ep) where:

16 - submask is a tensor of shape [ num_nodes] with the node importance values at

17 the selected indices and zeros elsewhere.

18 - selected_nodes is the list of indices in the candidate subgraph.

19 - confidence_score is the final raw model output on the masked graph.

20 - ep is 1 if the candidate ’s prediction matches the original target and 0 otherwise .

21 """

22 data = data.to(self.device)

23 model.eval()

24 with torch.no_grad ():

25 output = model(data)

26 if output.dim() > 1:

27 target_label = output.argmax(dim=1) [0]. item()

28 else:

29 target_label = (output > threshold).long().item()

30
31 sorted_indices = torch.argsort(node_importance , descending=True).tolist ()

32 selected_nodes = []

33 confidence_score = None

34 ep = 0 # essentialness : 1 if candidate prediction matches target , 0 otherwise.

35
36 for idx in sorted_indices:

37 if idx in selected_nodes:

38 continue

39 selected_nodes.append(idx)

40 masked_data = self.mask_nodes_in_data(data , selected_nodes)

41 with torch.no_grad ():

42 confidence_score = model(masked_data).cpu()

43 if confidence_score.dim() > 1:

44 pred = confidence_score.argmax(dim =1) [0]. item()

45 else:

46 pred = (confidence_score > threshold).long().item()

47 if pred == target_label:

48 ep = 1

49 break

50
51 # Ensure at least one node is selected.

52 if len(selected_nodes) == 0:

53 selected_nodes = [sorted_indices [0]]

54 masked_data = self.mask_nodes_in_data(data , selected_nodes)

55 with torch.no_grad ():

56 confidence_score = model(masked_data).cpu()

57 if confidence_score.dim() > 1:

58 pred = confidence_score.argmax(dim =1) [0]. item()

59 else:

60 pred = (confidence_score > threshold).long().item()

61 ep = 1 if pred == target_label else 0

62
63 submask = torch.zeros(data.x.size (0))

64 submask[selected_nodes] = node_importance[selected_nodes]

65
66 return submask , selected_nodes , confidence_score , ep

Figure C11: Code snippet for minimal subgraph by adding function
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