
DiffSim2Real: Deploying Quadrupedal Locomotion
Policies Purely Trained in Differentiable Simulation

Joshua Bagajo∗,1, Clemens Schwarke∗,1, Victor Klemm1, Ignat Georgiev2,3,
Jean-Pierre Sleiman1,3, Jesus Tordesillas1,4, Animesh Garg2, and Marco Hutter1

Abstract— Differentiable simulators provide analytic gradi-
ents, enabling more sample-efficient learning algorithms and
paving the way for data intensive learning tasks such as learning
from images. In this work, we demonstrate that locomotion
policies trained with analytic gradients from a differentiable
simulator can be successfully transferred to the real world.
Typically, simulators that offer informative gradients lack the
physical accuracy needed for sim-to-real transfer, and vice-
versa. A key factor in our success is a smooth contact model
that combines informative gradients with physical accuracy,
ensuring effective transfer of learned behaviors. To the best of
our knowledge, this is the first time a real quadrupedal robot
is able to locomote after training exclusively in a differentiable
simulation.

I. INTRODUCTION AND APPROACH

The majority of Reinforcement Learning (RL) algorithms
rely on Zeroth-order Gradient (ZoG) estimates during opti-
mization, allowing the use of conventional physics simulators
that are typically non-differentiable. However, differentiable
simulators offer analytically computed First-order Gradients
(FoGs), with lower variance [1], [2], [3] and therefore
improved sample efficiency and asymptotic policy perfor-
mance [4], [5]. Thus, leveraging FoGs offers the potential
to learn from pixels [6] or to learn policies for systems
with many degrees of freedom [7]. Unfortunately, contact
interactions are often simulated in a discontinuous manner,
making FoG-based optimization challenging. Some simu-
lators address this by using soft contact models, which
are continuous and smooth but less physically accurate
for typical locomotion problems compared to discontinuous
hard contact models [8]. Additionally, penalty-based soft
contact models often require smaller time steps and thus
increase computational demand and lengthen gradient chains.
Consequently, learning the contact-rich task of quadrupedal
locomotion and transferring the learned behavior to the real
world with either hard or penalty-based contact has not yet
succeeded [9], [10], [11]. Instead, we adopt an analytically
smooth contact model, introduced in our previous work [9],
that provides a smoothed optimization surface while main-
taining physical accuracy, combining the advantages of hard
and soft contact. The contact model draws inspiration from
the role of stochasticity in current learning frameworks, a
key factor in the success of RL [12], [13]. We then employ

∗Shared 1st authorship. 1Robotic Systems Lab, ETH Zürich, Switzerland.
2Georgia Institute of Technology, United States. 3The AI Institute, United
States. 4Institute for Research in Technology, ICAI School of Engineering,
Comillas Pontifical University, Spain.
CoRL 2024 Workshop ’Differentiable Optimization Everywhere’

Fig. 1: A quadrupedal robot learning to walk on flat terrain
in a differentiable simulation. Policies trained with a hard
contact model follow unreasonable foothold patterns and do
not learn to locomote robustly. Training with a soft contact
model results in stable locomotive gaits but the learned
behaviors do not transfer to real hardware. Policies trained
with an analytically smooth contact model exhibit effective
and stable locomotive gaits and transfer to the real world.
Video: https://youtu.be/2wZmmUyqUQM.

the Short-Horizon Actor-Critic (SHAC) algorithm [7] that
leverages FoGs to enhance learning efficiency over purely
ZoG-based algorithms such as Proximal Policy Optimization
(PPO) [14]. Finally, we demonstrate that locomotion policies
learned with this approach successfully transfer to the real
world.

Previous attempts were confined to simulation. The first
locomotion policy purely trained in a differentiable simulator
was presented in [11], but exhibited undesirable behaviors
like front flips. Table I summarizes relevant simulators and
their approaches to differentiation and contact modeling.
Nimble [15] implements symbolic differentiation and solves
a sparse Linear Complementarity Problem (LCP) to resolve
contact, while DiffTaichi [16] uses impulse-based methods
to avoid differentiating the LCP of contact. Warp [17] and

https://youtu.be/2wZmmUyqUQM


Brax [10] leverage GPU acceleration for fast rigid-body
simulations and support multiple contact models. Dojo [18]
emphasizes physical accuracy but is limited by slower execu-
tion and lacks parallelism. At the time of writing, none of the
current simulators offer parallelization combined with accu-
rate dynamics and informative gradients to learn transferable
locomotion behaviors. A sim-to-real transfer for quadrupedal
locomotion policies learned using FoGs was only achieved
with a second non-differentiable simulator to ensure accurate
physics [19]. In this work, we extended Warp with custom
physics to benefit from GPU parallelization.

TABLE I: Differentiable Rigid-Body Simulators

Name Differentiation Contact Modeling Device

Nimble [15] Symbolic LCP CPU
DiffTaichi [16] Automatic Impulse-based GPU
Warp [17] Automatic XPBD [20], Soft GPU
Brax [10] Automatic MuJoCo [21], PBD [22] GPU
Dojo [18] Symbolic NCP CPU

II. CONTACT SIMULATION

Our simulation is based on Moreau’s time stepping
scheme [23]. However, the Gauss-Seidel algorithm used to
compute contact forces is slightly modified from implemen-
tations such as [24] to smooth the originally hard contact
model. Contact forces are scaled by a sigmoid function that
depends on the distance between potentially contacting bod-
ies. For more details on the simulation, we refer to [9]. The
analytically smooth contact model has several advantages
over hard and soft contact models. First, it smooths the
discontinuities of hard contact. While stochastic smoothing
would have similar effects on the dynamics, gradients would
still remain uninformative FoGs as explained in Fig. 2.
Second, the contact model remains stable for larger simula-
tion time steps compared to traditional soft contact models.
Lastly, the similarity to stochastically smoothed dynamics
suggests that the hard contact case is implicitly within the
domain of the analytically smooth contact model, promising
successful transfer to hard contact or the real world.

III. SIM-TO-REAL TRANSFER

To transfer locomotion policies learned in our differen-
tiable simulation to ANYbotics’ ANYmal D robot, we first
align our learning setup with [25], [26], which have demon-
strated successful sim-to-real transfer. To test the validity
of the dynamics of our simulation, we train policies with
PPO in our simulator and transfer them to IsaacSim, a
hard contact simulation used in [25], [26]. After ensuring
that the learned behaviors successfully transfer, we progress
to training policies with SHAC, making use of the FoGs
computed by the simulator. However, the learning setup
designed for PPO does not immediately lead to the desired
behaviors with our method. Instead, our method requires a
simplified inertia model (only diagonal inertia components
with lower magnitudes) to find a reasonable locomotion
policy. The reward formulation needs adaptation as well. We

Fig. 2: The normal contact force (left) and its gradient (right)
with respect to the penetration depth between two contacting
bodies. Hard contact (blue) exhibits a discontinuity at d = 0.
Its analytical gradient is zero almost everywhere. Soft contact
(orange) is continuous but does not accurately model stiff
contact without becoming unstable because the normal force
is unbounded. Stochastically smoothing hard contact (cyan)
removes the discontinuity, but the FoG gradient remains zero
and thus uninformative. Analytically smoothing hard contact
(green) induces similar effects on the dynamics as stochastic
smoothing, with the advantage of an informative FoG.

find that combining rewards from [9] with rewards from [26]
that allow for differentiation results in successful learning.

Key elements for sim-to-real transfer, according to [26],
are domain randomization and the integration of a learned
actuator model. Initially, we adopt the domain random-
ization method from [26], though the required extent of
randomization for our approach remains to be determined.
While domain randomization helps to close the sim-to-
real gap and smooths out local minima in the learning
objective, we observe that higher levels of randomization
lead to slower convergence during training. Incorporating
an actuator model, which typically contains a history or
memory architecture, would significantly increase the com-
plexity of the computational graph. Instead, we implement
a PD-controller with velocity-based torque saturation, us-
ing system identification-derived parameters [27]. This ap-
proach provides efficient gradient propagation and achieves
performance comparable to the learned actuator model in
the relevant actuation domain, without adding unnecessary
complexity to the computational graph.

IV. RESULTS AND LIMITATIONS

In previous work [9], we found that common soft and
hard contact models do not lead to transferable locomotion
policies, as shown in Fig. 1. Our introduction of analytic
smoothing enabled smooth gaits that successfully transferred
to hard contact simulation. In this work, we further show that
policies learned in a differentiable simulator also transfer
effectively to real-world environments. However, learning
locomotion with FoGs is sensitive to physical parameters and
the reward function, and our approach has not yet surpassed
state-of-the-art RL policies in terms of locomotion behav-
ior. Nevertheless, learning with SHAC requires significantly
fewer samples—over an order of magnitude less—compared
to PPO. Although we presented a proof of concept in this
preliminary work, an in-depth analysis will be necessary in
future research. Furthermore, we plan to introduce roughness
to the terrain to enhance the locomotion behavior, as the
current flat terrain limits stepping height and robustness.



REFERENCES

[1] S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih, “Monte carlo
gradient estimation in machine learning,” Journal of Machine Learning
Research, vol. 21, no. 132, pp. 1–62, 2020.

[2] N. Wiedemann, V. Wüest, A. Loquercio, M. Müller, D. Floreano,
and D. Scaramuzza, “Training efficient controllers via analytic policy
gradient,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2023, pp. 1349–1356.

[3] Y. Zhang, Y. Hu, Y. Song, D. Zou, and W. Lin, “Back to newton’s
laws: Learning vision-based agile flight via differentiable physics,”
arXiv preprint arXiv:2407.10648, 2024.

[4] H. J. Suh, M. Simchowitz, K. Zhang, and R. Tedrake, “Do dif-
ferentiable simulators give better policy gradients?” in International
Conference on Machine Learning. PMLR, 2022, pp. 20 668–20 696.

[5] I. Georgiev, K. Srinivasan, J. Xu, E. Heiden, and A. Garg, “Adaptive
horizon actor-critic for policy learning in contact-rich differentiable
simulation,” arXiv preprint arXiv:2405.17784, 2024.

[6] J. Y. Luo, Y. Song, V. Klemm, F. Shi, D. Scaramuzza, and M. Hutter,
“Residual policy learning for perceptive quadruped control using
differentiable simulation,” arXiv preprint arXiv:2410.03076, 2024.

[7] J. Xu, V. Makoviychuk, Y. Narang, F. Ramos, W. Matusik, A. Garg,
and M. Macklin, “Accelerated policy learning with parallel differen-
tiable simulation,” in International Conference on Learning Represen-
tations, 2021.

[8] C. Gehring, R. Diethelm, R. Siegwart, G. Nützi, and R. Leine, “An
evaluation of moreau’s time-stepping scheme for the simulation of a
legged robot,” in IDETC/CIE 2014, no. DETC2014-34374, 2014.

[9] C. Schwarke, V. Klemm, J. Tordesillas, J.-P. Sleiman, and M. Hut-
ter, “Learning quadrupedal locomotion via differentiable simulation,”
arXiv preprint arXiv:2404.02887, 2024.

[10] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and
O. Bachem, “Brax-a differentiable physics engine for large scale rigid
body simulation,” in Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

[11] J. Degrave, M. Hermans, J. Dambre, and F. Wyffels, “A differentiable
physics engine for deep learning in robotics,” Frontiers in Neuro-
robotics, vol. 13, no. March, pp. 1–9, 2019.

[12] H. J. T. Suh, T. Pang, and R. Tedrake, “Bundled Gradients Through
Contact Via Randomized Smoothing,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 4000–4007, 2022.

[13] T. Pang, H. J. Suh, L. Yang, and R. Tedrake, “Global Planning for
Contact-Rich Manipulation via Local Smoothing of Quasi-Dynamic
Contact Models,” IEEE Transactions on Robotics, pp. 1–20, 2023.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv e-prints, 2017.

[15] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu, “Fast and
Feature-Complete Differentiable Physics for Articulated Rigid Bodies
with Contact,” Robotics: Science and Systems, 2021.

[16] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley,
and F. Durand, “Difftaichi: Differentiable programming for physical
simulation,” in ICLR, 2019.

[17] M. Macklin, “Warp: A high-performance python framework for gpu
simulation and graphics,” https://github.com/nvidia/warp, March 2022,
.NVIDIA GPU Technology Conference (GTC).

[18] T. A. Howell, S. Le Cleac’h, J. Z. Kolter, M. Schwager, and Z. Manch-
ester, “Dojo: A differentiable simulator for robotics,” arXiv preprint
arXiv:2203.00806, vol. 9, 2022.

[19] Y. Song, S. Kim, and D. Scaramuzza, “Learning quadruped locomotion
using differentiable simulation,” arXiv preprint arXiv:2403.14864,
2024.

[20] M. Macklin, M. Müller, and N. Chentanez, “Xpbd: position-based
simulation of compliant constrained dynamics,” in Proceedings of the
9th International Conference on Motion in Games, 2016, pp. 49–54.

[21] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 5026–5033, 2012.

[22] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based
dynamics,” Journal of Visual Communication and Image Representa-
tion, vol. 18, no. 2, pp. 109–118, 2007.

[23] J. J. Moreau, “Unilateral contact and dry friction in finite freedom
dynamics,” in Nonsmooth mechanics and Applications. Springer,
1988, pp. 1–82.

[24] J. Carius, R. Ranftl, V. Koltun, and M. Hutter, “Trajectory optimization
with implicit hard contacts,” IEEE Robotics and Automation Letters,
vol. 3, no. 4, pp. 3316–3323, 2018.

[25] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan,
R. Singh, Y. Guo, H. Mazhar, A. Mandlekar, B. Babich, G. State,
M. Hutter, and A. Garg, “Orbit: A Unified Simulation Framework
for Interactive Robot Learning Environments,” IEEE Robotics and
Automation Letters, vol. 8, no. 6, p. 3740–3747, Jun. 2023. [Online].
Available: http://dx.doi.org/10.1109/LRA.2023.3270034

[26] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conference on Robot Learning. PMLR, 2022, pp. 91–100.

[27] F. Bjelonic, F. Tischhauser, and M. Hutter, “Towards bridging the gap:
Scalable sim-to-real transfer for legged locomotion,” 2024, unpub-
lished.

https://github.com/nvidia/warp
http://dx.doi.org/10.1109/LRA.2023.3270034

	Introduction and Approach
	Contact Simulation
	Sim-to-Real Transfer
	Results and Limitations
	References

