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PROJECT SUMMARY

A methodological framework has been developed and validated to assess the market potential of
battery energy storage systems (BESS) in Spain, analyzing their participation in the Automatic
Frequency Restoration Reserve (aFRR) market and in the Day-Ahead Market.
In the aFRR market, a backtest was conducted to establish a benchmark against a deterministic
strategy. This analysis enabled a comparison of heuristic and adaptive strategies, assessing both
their effectiveness and operability through economic parameters (revenues) and technical param-
eters (cycles per day). Additionally, a sensitivity analysis was performed to evaluate the model’s
robustness to variations in key parameters, and the regulatory and economic implications for
BESS adoption in the Spanish power system are discussed.

A regression analysis over the past six years was carried out to identify the most relevant revenue
drivers in the Day-Ahead market. The model’s revenues were calculated using the characteristics
of a representative battery provided by Centrica and Day-Ahead market prices. Variables such
as generation from different technologies, installed capacity, and gas operating costs were also
analyzed.

Keywords: BESS, aFRR, Day-Ahead, arbitrage, energy storage, Spain, grid flexibility, ca-
pacity reserve, demand-side management, energy optimization, price curves, market volatility,
optimization algorithms, stochastic models, renewables integration, dynamic pricing, power bal-
ancing, battery longevity, cost–benefit analysis, electricity regulation

Results

In aFRR, energy-only strategies capture approximately 70% of the revenue of the deterministic
benchmark while reducing cycles per day. Capacity-based strategies capture only around 30
The sensitivity analysis demonstrates that, across all strategies, a larger battery capacity signif-
icantly increases flexibility in energy auctions.
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Strategy Annual Revenue (EUR/MW-year) Avg. Cycles/Day

Deterministic benchmark (energy only) 270,064 4.18
Deterministic benchmark (energy + capacity) 646,752 5.34
Energy-only participation (no premium) 177,812 4.70
Energy-only participation (best premium 94/37) 190,464 2.04
Constant capacity best case p = 1MW 219,084 3.00
Best constant capacity and premiums in previous 3 days 223,596 2.10
Best previous capacity shape 219,596 2.95

Table 1: Summary of annual revenues and operational metrics by trading strategy in the aFRR
market (2 h battery).

In the Day-Ahead market, gas operating cost was the main revenue driver before 2022 and after
2024, while its effect was neutralized in 2022 and 2023 due to the gas price cap.

Breaking down by seasons, we observe:
Spring: Onshore wind capacity is the strongest positive driver (due to high winds in April),
while hydro capacity carries a small negative coefficient, indicating that spring runoff smooths
price swings.
Summer: Solar share leads as the main positive driver—midday spreads peak under intense
sun—whereas abundant hydro and wind generation dampen those spreads, reflected in their
negative coefficients.
Autumn and Winter: Hydro capacity has a pronounced negative effect on spreads (thanks to
autumn–winter inflows), while renewables share remains a positive driver because low solar and
variable wind extend and deepen peak spreads.

Conclusions

In conclusion, the developed methodological framework has proven to be a robust tool for as-
sessing the market potential of BESS in Spain. It enables comparison of different participation
strategies in aFRR—evaluating revenues and cycles per day—and identification of key revenue
drivers in the Day-Ahead market through regression analysis. The aFRR backtest validated that
adaptive strategies can capture up to 70% of the deterministic benchmark, and the sensitivity
analysis confirmed that increased battery capacity significantly enhances operational flexibility.
Meanwhile, the Day-Ahead regression study revealed the critical role of gas operating cost in
different periods and the impact of seasonal variables (wind, solar, and hydro) on price dynam-
ics. Together, these findings provide a comprehensive view of the opportunities and limitations
of energy storage systems, offering practical recommendations to optimize BESS operation and
inform future regulatory and investment decisions.
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TÍTULO DEL TFG: Marco metodológico para evaluar
y modelar el potencial de mercado de sistemas de alma-
cenamiento de energía con baterías (BESS) en España.
Autor: Marta Mencía Aguado
Director: Renaud Bruneliere, Haris Ziras
Entidad Colaboradora: Centrica Energy

RESUMEN DEL PROYECTO

Se ha desarrollado y validado un marco metodológico para evaluar el potencial de mercado de
sistemas de almacenamiento de energía con baterías (BESS) en España, analizando su partic-
ipación en el Mercado de Reserva Automática de Frecuencia (aFRR) y en el Mercado Diario
(Day-Ahead).

En el caso de aFRR, se ha realizado un backtest con el objetivo de establecer un benchmark frente
a una estrategia determinista. Este análisis ha permitido comparar las estrategias heurísticas y
adaptativas, evaluando tanto su eficacia como su operatividad mediante parámetros económicos
(ingresos) y técnicos (ciclos diarios). Además, se realizó un análisis de sensibilidad para evaluar
la robustez del modelo ante variaciones de los parámetros clave y se discuten las implicaciones
regulatorias y económicas para la adopción de BESS en el sistema eléctrico español

Se ha llevado a cabo un análisis de regresión con datos de los últimos seis años para identificar
los impulsores de ingresos más relevantes. Asimismo, se examinó detalladamente cómo varía la
influencia de dichos factores según las distintas estaciones del año y los meses. Los ingresos del
modelo se calcularon utilizando las características de una batería representativa proporcionada
por Centrica y los precios del mercado Day-Ahead. Además, se analizaron variables como la pro-
ducción de las diferentes tecnologías de generación, la capacidad instalada y los costes operativos
de gas, entre otros.

Palabras clave: BESS, aFRR, Day-Ahead, arbitraje, almacenamiento energético, España, flex-
ibilidad de la red, reserva de potencia, gestión de la demanda, optimización energética, curvas
de precios, volatilidad de mercado, algoritmos de optimización, modelos estocásticos, integración
de renovables, tarificación dinámica, balance de potencia, durabilidad de baterías, análisis coste-
beneficio, regulación eléctrica

Resultados

En aFRR, las estrategias de energía capturan aproximadamente el 70 % de los ingresos de la es-
trategia determinista, reduciendo al mismo tiempo los ciclos diarios. Por su parte, las estrategias
basadas en capacidad apenas alcanzan alrededor del 30 % del ingreso determinista y también
limitan el número de ciclos por día.
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El análisis de sensibilidad muestra que, en todas las estrategias, disponer de una batería de mayor
capacidad incrementa la flexibilidad en las subastas de energía.

Strategy Annual Revenue (EUR/MW-year) Avg. Cycles/Day

Deterministic benchmark (energy only) 270,064 4.18
Deterministic benchmark (energy + capacity) 646,752 5.34
Energy-only participation (no premium) 177,812 4.70
Energy-only participation (best premium 94/37) 190,464 2.04
Constant Capacity best case p=1MW 219,084 3.00
Best Constant Capacity and Premiums in the previous 3 days 223,596 2.10
Best Previous Capacity Shape 219,596 2.95

Table 2: Summary of annual revenues and operational metrics by trading strategy in the aFRR
market (2h Battery).

En el mercado Day-Ahead, el coste de funcionamiento del gas (gas running cost) fue el principal
impulsor de ingresos antes de 2022 y a partir de 2024, mientras que durante 2022 y 2023 su efecto
quedó neutralizado por el tope en el precio del gas.

Al desglosar por estaciones, observamos:

Primavera: La capacidad eólica terrestre es el impulsor positivo más fuerte (debido a los vien-
tos elevados de abril), mientras que la capacidad hidroeléctrica muestra un pequeño coeficiente
negativo, lo que indica que el deshielo primaveral atenúa las variaciones de precios.

Verano: La proporción de energía solar lidera como impulsor positivo —las diferencias de
precio alcanzan su punto máximo al mediodía por el intenso sol—, mientras que la abundancia
de generación hidroeléctrica y eólica reduce esos diferenciales, reflejándose en sus coeficientes
negativos.

Otoño e Invierno: La capacidad hidroeléctrica ejerce un fuerte efecto negativo sobre los
diferenciales (gracias al aporte de lluvias y escorrentías otoño-invernales), mientras que la cuota
de renovables permanece como impulsor positivo, ya que la baja generación solar y la variabilidad
eólica extienden y acentúan los picos de precio.

Conclusiones

Como conclusión, el marco metodológico desarrollado ha demostrado ser una herramienta robusta
para evaluar el potencial de mercado de los BESS en España, permitiendo comparar distintas
estrategias de participación en aFRR —y sus resultados en ingresos y ciclos diarios—, así como
identificar mediante regresión los principales impulsores de ingresos en el mercado Day-Ahead. El
backtest en aFRR validó que las estrategias adaptativas pueden capturar hasta el 70% del bench-
mark determinista, mientras que el análisis de sensibilidad confirmó que aumentar la capacidad
de la batería mejora significativamente la flexibilidad operativa. Por otra parte, el estudio de
regresión para Day-Ahead reveló el papel clave del coste del gas en diferentes períodos y de las
variables estacionales (eólica, solar e hidroeléctrica) en la dinámica de precios. En conjunto,
estos resultados ofrecen una visión integral de las oportunidades y limitaciones de los sistemas
de almacenamiento, aportando recomendaciones prácticas para optimizar la operación de BESS
y guiar futuras decisiones regulatorias y de inversión.
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1 Introduction

The expansion and integration of renewable energies replacing fossil fuels is one of the measures of
the framework designed to achieve climate neutrality and amend Regulations (EC) No 401/2009
and (EU) 2018/1999 ("European Climate Law"), drafted by the European Parliament and the
European Council with the support of EU stakeholders and policymakers.[1].

This framework aligns with "The Green Deal" of the European Commission, which includes a
series of proposals aimed at EU climate, energy, transport, and tax policies to reduce net green-
house gas emissions by at least 55% by 2030 compared to 1990 levels [2]. The REPowerEU
Plan from the European Commission is accelerating the green transition and promoting massive
investment in renewable energy [3]. Since November 2023, the Renewable Energy Directive has
entered into force, with the aim of supporting the share of renewables in the total energy con-
sumption of the EU, increasing the binding target for 2030 to 42.5%, with the ambition to reach
45% [4].

During 2024, the increase in global renewable installed capacity accounted for 585 GW. An
annual increase rate of 15.1% lead by solar technology followed by hydroelectric energy [5]. Nev-
ertheless, flexibility issues arise due to the intermittency of renewable energies. The scalability of
them in the desired future energy mix brings with it the opportunity for other types of technol-
ogy to give that stability to the grid and ensure the supply of demand.[6]. In addition, negative
prices, market saturation and congestion pose major challenges to the development of renewable
energy.[7].

The development of new storage systems and the diversification of portfolios will mitigate the
negative sides from the renewable energy technologies. In the case of Li-ion BESS, it seems to
be a very convenient solution as prices have significantly decreased over the past decades. Ac-
cording to the International Renewable Energy Agency (IRENA), battery storage project costs
dropped by 89% between 2010 and 2023. [8] Additionally, this technology allows a wide range
of applications as operational strategies, feasibility assessments, and control algorithms.[6]

This thesis assesses the suitability of a Battery Energy Storage System (BESS) in two markets
using two distinct approaches. In the automatic Frequency Restoration Reserve (aFRR) mar-
ket, a perfect-foresight benchmark is established against which various trading strategies are
compared, and a sensitivity analysis is conducted. In the Day-Ahead (DAH) market, a linear
regression analysis is performed to identify the key revenue drivers for a BESS from 2019 to date.
The objectives are further detailed in Section 3.
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2 Literature Review

2.1 Electricity Market Structure in Europe

The liberalization of the European Electricity Market started with the Directive 96/92 [9]. The
regulation has suffered different reforms second included the Directive 2003/54 and Regulation
1228/2003 [10] trying to achieve a single and integrated European electricity [11] that would en-
hance supply security, lowers prices through competition, improve efficiency, support renewable
energy integration, and protect vulnerable consumers.

As electricity is a non-storable good, it has to be consumed by the time it is produced. The
wholesale markets are organized in different types of markets: energy markets and Ancillary Ser-
vices markets [12]. This separation promotes the efficiency of the systems by adequately pricing
the different activities. The current trading time frames of the internal electricity markets are
divided into Forward markets, Day-Ahead Market, Intraday market, Balancing market and the
Continuous day after market. A temporal scheme can be seen in Figure 1. The Transmission
System Operators (TSOs) are the responsible entity to guarantee the efficient performance of
the Electricity markets [13].

The forward market allows market participants to stabilize their future cash flows and hedge their
positions. Therefore they can secure their businesses against the risks of market volatility. [14].
Currently, the European electricity forward market is facing some issues such as insufficient liq-
uidity, accessibility, competition and transparency as well as concentrated market power. ACER
(Agency for the Cooperation of Energy Regulators) proposes changes to improve EU electricity
forward markets.[15]

In the Day-Ahead Market, the suppliers submit their bids at their marginal price one day be-
fore the actual delivery. The market is in charge of matching the bids of supply and demand
and set the electricity price. In order to improve the market liquidity and originate less volatile
electricity prices, in the EU the Single Day-ahead Coupling (SDAC) was confirmed. [1]. As a
solution, the MCO Plan approved by all EU National Regulatory Authorities on 26 June 2017
confirms the adoption of the "Price Coupling of Regions" (PCR) project. EUPHEMIA (acronym
for Pan-European Hybrid Electricity Market Integration Algorithm) has been used to allocate
the electricity prices across Europe, maximizing the overall economic surplus and increasing the
transparency of the computation of prices and flows. [16].

The Intraday Market electricity is traded within the delivery day. It allows the adjustments real-
time, to meet actual demand and supply conditions throughout the day. XBID (Cross-Border
Intraday) is a solution that enables continuous trading of electricity across multiple European
countries through a common IT system, enhancing the efficiency and integration of the European
Intraday market. [13]
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Figure 1: Market Structure [13]

The balancing markets actions and processes through which transmission system operators
(TSOs) continuously ensure the maintenance of system frequency within a predefined stabil-
ity range, as well as compliance with the amount of reserves needed with respect to the required
quality. [17]. The different services offered by the TSO are the active power ancillary services,
load–frequency control (LFC) and reactive power ancillary services (voltage control). [12]. The
TSO is the entity responsible of securing the energy supply and operation of the Power Systems
Services. Ancillary Services are separated from the energy production, even though it is provided
by the generator. It can be mandatory or remunerated under market driven mechanisms.

European TSOs use different processes and products to balance the system and restore the
frequency within acceptable ranges.[17]

• FCR Frequency containment reserve . The power reserves to maintain system fre-
quency after the occurrence of an imbalance. It is in charge of stabilise the frequency
after the disturbance at a steady-state value within the permissible maximum frequency
deviation by a joint action of FCR within the whole synchronous area.

• Frequency restoration reserves with automatic activation (aFRR) and manual
activation (mFRR).The active power reserves that restores the frequency towards a set
point and replaces the activated FCR. The frequency restoration process is triggered by
the disturbed LFC (load-frequency control) area.

• Replacement reserves (RR) The active power reserves available to restore or support
the required level of FRR in case of possible additional system imbalances. This replace-
ment reserve is activated in the disturbed LFC area.
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Figure 2: Balancing mechanism [17]

2.2 Focus on the Spanish Market

The Spanish market operates through a sequence of markets. Each day is divided into 24 hourly
periods. The daily energy market is the first market to be settled where most of the energy is
cleared. When the daily market is cleared the System Operator performs the congestion manage-
ment analysis that might modify the generation dispatch.In the congestion management market,
the generators solve technical constraints and are dispatched according to the bids submitted to
the congestion management market. [12]

When the network constraints are solved, the secondary reserve market is executed. Conse-
quently, there are six intra-daily markets. It can be stated that in Spain, only the first intra-daily
market is significant in terms of energy dealed. The rest of the markets are normally used to fix
operative mismatches or infeasibles schedules. [12].

Primary control is the automatic delivery of power to a generating unit due to frequency devi-
ations. Because measuring and assessing quality is highly challenging, the primary control has
been established as a mandatory, non-remunerable AS. When there is a system disturbance, the
primary control can prevent significant frequency fluctuations.However, it does not restore the
system frequency to its scheduled value, resulting in a frequency deviation in the system’s steady
state. The purpose of secondary control (AGC, automatic generation control) is to return the
system frequency to its scheduled value.Primary regulation requirements stipulate that genera-
tor groups must allow a droop in their regulators to vary their load by 1.5% of nominal power. [18]
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The secondary control operation in Spain relies on the results of an hourly secondary reserve
market, where the generating units submit bids for up- and down-reserves (in MW) along with
their associated prices (€/MW). The bids are sorted by price and the cheapest are accepted
until the total reserve margin required by the system operator is met, which is determined by
various criteria, including UCTE (Union for the Coordination of Transmission of Electricity)
recommendations. UCTE recommends an up reserve value close to 6

√
Pmax (where Pmax is

the maximum forecast hourly demand) for transition hours, while the down reserve can range
from 50% to 100% of the required up reserve based on the system conditions. [12]

Tertiary control, also known as manual frequency restoration reserve (mFRR), is an active power
ancillary service activated to restore the secondary reserve used during automatic generation con-
trol (AGC) operations. In the Spanish electricity system, a specific tertiary reserve market has
been established, which is only called and cleared if the secondary reserve margins are exhausted
[12].

Generators are responsible for providing tertiary control services. The bids submitted to the
tertiary market must consist of the active power variations (increases or decreases) that gen-
erating units are capable of executing within 15 minutes and maintaining for at least 2 hours
[18]. Each day, after the secondary reserve market is cleared, the system operator defines a
minimum required amount of tertiary reserve. This value is calculated hourly and is equal to the
rated power of the largest unit in the system plus 2% of the forecasted demand for each hour [18].

All generating units must offer their total available tertiary reserve, complying with the afore-
mentioned criteria. If the total reserve offered does not meet the system requirements, the system
operator will connect additional generating units to ensure compliance. Only the tertiary energy
actually delivered by the activated units is remunerated, based on the energy price submitted
in the bid [12]. Recent studies have also evaluated the technical viability and increasing role of
renewable sources, particularly wind farms, in participating in the tertiary reserve market under
favorable grid conditions [19].

The balancing service, also referred to as the deviation management market, is executed when
significant differences between forecasted and real-time generation or demand are expected, typ-
ically due to large unit outages or demand forecast errors. The balancing market is activated by
the system operator for those hours not covered by the intraday markets, specifically when the
expected imbalance exceeds 300 MWh [12].

Participation in this market is limited to generating units and pumped-storage facilities. These
resources are rescheduled to correct the imbalance, and only the dispatched energy is remuner-
ated. Due to its corrective nature and limited scope, this market does not rely on strategic
bidding like the day-ahead or tertiary markets. Instead, it serves as a final layer of operational
adjustment to preserve system reliability. As highlighted by [20], the current market design
presents challenges for the full participation of intermittent renewable generators in balancing
services, although regulatory and technical improvements are progressively being introduced to
enhance their contribution.
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2.3 Battery Energy Storage Systems (BESS) Market Overview and Practical
Applications

2.3.1 Battery Technologies and Characteristics

The physical nature of electricity requires that supply and demand remain balanced at all times.
Currently, this balance is generally maintained by flexible fossil fuel-powered generators. [21].
Nevertheless, to reduce carbon emissions, these must be replaced by low-carbon alternatives.
Each country opts for different candidates for substitution such as wind, solar photovoltaic and
nuclear energy, depending on resource availability, cost and societal preferences. These sources,
however, are either variable (wind and solar PV depend on weather) or inflexible (nuclear is typ-
ically operated at a constant output for economic and safety reasons). As shown in 3 from [22],
when flexible assets are removed, demand is not fully met at all times, showing how flexibility is
essential. The four main options to provide flexibility in the electricity system are: flexible power
generation, electricity network interconnection, demand-side response, and electricity storage.

Figure 3: Spanish Supply and Demands Curve Subtracting the flexible Installed Capacity 13
May 2025

Energy storage is commonly classified into five categories: chemical, thermal, mechanical,electrical,
and electrochemical. The first four categories refer to the form in which energy is stored. The
final category classifies battery technologies based on the electrochemical reactions that take
place within them. Energy is stored as the electrochemical potential between two materials that
could react to form a new one. The net chemical energy of forming the new material (Gibbs free
energy) is balanced by the electrostatic energy between the two separated materials.

The dominant concepts are sealed and flow batteries. In sealed batteries, electrodes constitute
the active material separated by an ion-conducting electrolyte. All components are in a con-
fined battery cell. In flow batteries, the active material is not the electrode itself but two liquid
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electrolytes that can be circulated and stored outside of the system.4 Figure 3.6 shows both
concepts with the examples of lithium-iodine (sealed) and vanadium flow batteries. [23] Varia-
tions are based on electrode chemistry/structure and design Cathode chemistry: lithium cobalt
oxide (LCO), lithium manganese oxide (LMO), nickel manganese cobalt (NMC), nickel cobalt
aluminium (NCA), lithium iron phosphate (LFP)

2.3.2 Batteries in the Grid Converters

The shift towards renewable energy sources such as wind and solar has led to a significant reduc-
tion in conventional synchronous generators within power systems. These traditional generators
inherently provide rotational inertia, which helps dampen frequency deviations during distur-
bances. With their displacement, maintaining system stability becomes increasingly challenging,
especially in terms of inertia and frequency response.

Battery Energy Storage Systems (BESS) are emerging as key assets in addressing these chal-
lenges. Although BESS do not provide physical inertia by default, they can emulate inertia
through advanced control strategies such as Virtual Synchronous Machine (VSM), droop control,
or synthetic inertia methods. These approaches enable inverters to mimic the inertial response
of rotating machines by rapidly adjusting power output in response to frequency deviations [24].
Some of the grid converters that use batteries are written in A.1

Several studies have demonstrated that BESS can provide frequency containment and regula-
tion services faster and more accurately than traditional generators [25]. Furthermore, they
can support voltage stability by injecting or absorbing reactive power through grid-connected
converters [26]. However, wide-scale integration of these devices requires advanced coordination
among multiple systems, high-speed communication infrastructure, and harmonized regulatory
frameworks [27].

A growing area of discussion is the compensation for inertia-like services. Germany, for instance,
is opening its power system to BESS participation in inertia services and is considering grid fee
reforms to reflect the added system value these technologies provide [28]. This trend points to
the importance of developing new market products that reward fast-response assets for their role
in grid stabilization.

From a technical standpoint, grid converters interfacing batteries with the power system oper-
ate at very short time scales, enabling services such as Fast Frequency Response (FFR), fault
ride-through, and voltage support. Predictive control algorithms and robust energy management
systems are essential to maximize the operational flexibility and stability support provided by
BESS. Moreover, their effectiveness can be significantly enhanced through coordinated control
strategies across transmission and distribution levels [25].

2.3.3 Market Participation and Revenue Streams

As has already been mentioned, storage systems are essential for future systems with intermittent
renewable energy sources [6]. By the end of 2023, BESS capacity in Europe reached 35.9 GWh,
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with a projection for 260 GWh of battery storage by 2028.[29].

From all the uses that BESS may offer in the electric system, the markets in which the battery
might be participating will direct the strategy used like arbitrage and ancillary services, such as
frequency response and voltage support [30]. Arbitrage is exploiting temporal price differentials,
buying electricity when prices are low (usually during off-peak hours) and selling it when prices
are high (typically during peak demand periods). The most typical strategies of arbitrage are:
Long-term arbitrage, mirror arbitrage, back-to-back arbitrage and static and moving average
arbitrage. [31]

Each market in which Battery Energy Storage Systems (BESS) can participate has its own char-
acteristics, benefits, and revenue opportunities. In the Day-Ahead (DAH) market, the most
common strategy is arbitrage, which involves purchasing electricity when prices are low and
selling it when prices are high. This market offers high liquidity, facilitating the buying and
selling of energy. In the intraday market, there is a greater opportunity to capture price spreads,
and positions can be realigned more easily in real-time markets. [32] The Frequency Contain-
ment Reserve (FCR) market offers higher revenues per band and activation. The decoupling of
upward and downward bids has improved efficiency in this market. Utilizing batteries in the
Manual Frequency Restoration Reserve (mFRR) and Replacement Reserve (RR) markets allows
for optimization of battery use in more flexible markets. [33] [34]

Because BESS can choose whether or not to provide a service at a specific cost, it will only
be used if the market price for the service is sufficient to cover both the marginal costs and
operational cost of the battery. [6] The operational strategies of BESS will be designed to assess
the potential of European markets, taking into account the specific characteristics of each one.
This project will aim to adapt these strategies to the unique features of each market.

2.3.4 Key Revenue Drivers for Battery Energy Storage Systems

Revenue depends on market design, operational constraints, and technical specifications of the
asset. It will primarily depend on the different markets (Day-Ahead, Intraday, ancillary), as each
offers distinct revenue streams. Understanding these drivers is key to assessing BESS economic
potential in varied markets. [35]

• Energy Prices & Volatility
Prices are key to capturing maximum possible revenue, and each market has its own par-
ticularities. Intra-day and inter-hour spreads enable “buy low, sell high.” Day-Ahead and
Intraday markets have different volatility profiles from which we can benefit. Similarly,
each region under analysis presents different patterns, with frequent price spikes leveraging
higher arbitrage revenue. [35], [36]

• Battery Duration & Efficiency
Battery characteristics both enable and limit how price spreads can be captured. The
energy-to-power ratio sets how many hours of discharge are available. Longer-duration
batteries capture more value, offering greater operational flexibility. Additionally, higher
round-trip efficiency increases net profit per cycle, as there are fewer conversion losses and
therefore more energy can be sold in the market. [36], [37]
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• Cycle Life & Degradation Cost
High-frequency cycling accelerates capacity fade. In the case of Spain, degradation costs
(€/MWh) must stay below thresholds (15–50 €/MWh) for long-term viability. Operational
strategies must therefore balance revenue maximization with battery preservation. [37], [38]

• Ancillary Services Participation
BESS can participate in frequency regulation markets (FCR, aFRR) and capacity reserves.
Payments in these markets tend to be more stable and sometimes higher per MW than in
pure arbitrage. Service “stacking” (combining multiple products) maximizes total revenue.
[39], [40]

• Gas & CO2 Prices
In marginal cost-based markets, electricity is priced off fuel costs, since the marginal tech-
nology on the merit order curve sets the market price. This typically occurs when renewable
prices are low and demand is high. Fuel prices also depend heavily on international events
(e.g., wars or chokepoint closures such as the Strait of Hormuz). The emission factor (kg
CO2/kWh) adds a CO2 price component:

Running Cost =
Fuel Price
Efficiency

+ Emission Factor × CO2 Price

Fuel and CO2 price swings drive spreads and volatility, impacting revenue. [41], [42]

• Market Saturation & Competitive Dynamics
The growing capacity of all flexibility-providing technologies leads to a “crowding” effect:
increasing BESS capacity erodes price spreads. To remain competitive in arbitrage, in-
creased competition requires multi-service stacking. [35], [39]

• Regulatory Framework & Policy
Regulations set by national and international bodies can limit or enhance revenue growth
for flexibility technologies—for example, Spain’s gas price cap in 2022. Price zones, auction
mechanisms, and subsidy schemes shape revenue opportunities. Market entry requirements
(size thresholds, collateral, testing) can act as barriers. Policy shifts (e.g., the emergence
of carbon markets) also redefine which services are most valuable. [41], [43]

Understanding these factors enables more accurate forecasting of BESS revenues and supports
the design of adaptive operational strategies that respond to changing market conditions.

2.3.5 Future Trends and Perspectives in Battery Energy Storage Systems

Battery Energy Storage Systems (BESS) are poised to play a pivotal role in the transition to-
wards a decarbonized power system, driven by the increasing penetration of variable renewable
energy sources (RES) and the need for enhanced flexibility and ancillary services.

Recent forecasts indicate that European storage capacity will rise from around 60 GW in 2022 to
over 200 GW by 2030, potentially reaching 600 GW by 2050, with stationary batteries contribut-
ing more than 100 GW [44]. This rapid growth is catalyzed by the critical role of BESS in grid
stabilization services such as Frequency Containment Reserve (FCR) and automatic Frequency
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Restoration Reserve (aFRR).

The integration of BESS into energy and ancillary service markets has been evolving, with new
regulatory guidelines promoting active state-of-charge management and market-based recharg-
ing strategies, notably in Europe [44]. National assessments, like the Spanish National Resource
Adequacy Assessment (NRAA), underscore storage’s importance in mitigating adequacy risks
during high RES scenarios [45]. New market designs also facilitate multi-market participation,
allowing batteries to simultaneously engage in day-ahead markets, frequency regulation, and
capacity markets. Studies have demonstrated that stacking revenue streams can significantly
enhance BESS profitability compared to single-market strategies [46].

Technological advancements are further driving BESS deployment. Progress in battery chemistries,
particularly lithium-iron-phosphate (LFP) and emerging technologies like solid-state and sodium-
ion batteries, is improving cost structures, safety standards, and cycle life. Moreover, hybrid
storage configurations that combine batteries with ultracapacitors are being investigated to op-
timize the delivery of fast response services [47].

A noteworthy trend is the integration of BESS with large-scale photovoltaic (PV) plants. Techno-
economic analyses have revealed that coupling BESS with PV installations enhances revenue
streams by enabling participation across diverse market layers, including day-ahead trading and
ancillary services [46].

Beyond technological progress, strategic market participation is crucial to ensuring profitabil-
ity. Emerging frameworks recommend adopting bi-level optimization models that treat BESS as
price-makers instead of price-takers, considering real-world non-convex market constraints [48].
Additionally, heuristic methods such as Particle Swarm Optimization (PSO) are being leveraged
to address the complexity of bidding strategies in contemporary electricity markets.

Incorporating battery degradation models into operational strategies has also become impera-
tive. Accurate modeling of cycle and calendar aging processes is key to maintaining profitability
throughout the battery’s lifetime, especially when targeting frequency regulation markets, where
high cycling rates can accelerate degradation [46]

While electrochemical batteries dominate the current storage landscape, alternative technolo-
gies are attracting increasing attention. Carnot batteries, which convert electricity into thermal
energy and reconvert it back into electricity, present a promising solution for long-duration stor-
age. Recent studies suggest that Carnot batteries, due to their scalability and cost advantages
at longer storage durations, could complement conventional BESS deployments, particularly in
systems with high shares of wind and solar power [47].

In summary, the future landscape of BESS is being shaped by a combination of expanding
multi-service market participation, technological innovation, strategic optimization approaches,
integration with renewables, and the emergence of alternative long-duration storage technolo-
gies. These developments position BESS—and complementary systems like Carnot batteries—as
critical enablers of resilient, flexible, and low-carbon power systems.
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3 Research Motivation and Objectives

3.1 Motivation

The increasing penetration of variable renewable energy sources (RES) into power systems poses
significant challenges for maintaining the balance between supply and demand. This situation
intensifies the need for flexible resources capable of delivering grid services and supporting system
stability. Among these resources, Battery Energy Storage Systems (BESS) stand out thanks to
their fast response time and ability to participate in multiple markets.

In the aFRR market, a deterministic model is used to compute the maximum theoretical revenue
under perfect foresight. This benchmark is subsequently employed to evaluate the effectiveness
of several operational strategies, including dynamic bidding approaches that adapt to historical
market conditions.

For the Day-Ahead market, the goal is to identify and analyse the key revenue drivers influenc-
ing BESS profitability—such as price volatility, renewable penetration and the evolution of gas
prices over time.

3.2 Research Questions and Objectives

The primary objective of this thesis is twofold. In the aFRR market, the study compares a
range of trading strategies—energy-only versus combined energy–capacity participation against
the deterministic benchmark obtained via back-testing. Different bid-pricing and volume-sizing
rules are tested with the aim of maximising economic profit while keeping operational charac-
teristics, such as the average number of cycles per day, within acceptable limits. The analysis
also investigates how battery size (1 h, 2 h and 4 h durations) affects revenue capture. In the
Day-Ahead market, the objective is to determine, through regression analysis, the variables that
have influenced BESS revenues in Spain during recent years.
The analysis is structured along two axes:

• aFRR Market:

– Estimate the maximum theoretical revenue that a BESS could achieve under perfect
market foresight.

– Develop and test several realistic trading strategies, including energy-only, combined
energy–capacity participation and dynamic bidding strategies.

– Evaluate each strategy’s ability to recover a meaningful share of the benchmark rev-
enue, taking into account operational constraints (e.g. number of cycles, energy limits).

– Assess the sensitivity of the results to key parameters such as premium adjustments
and battery duration.

• Day-Ahead Market:

– Conduct a revenue-driver analysis to identify which market and technical factors most
strongly influence BESS revenue (e.g. gas running cost, renewable generation, number
of cycles).
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– Apply statistical tools (correlation analysis, regression) to explore relationships be-
tween these variables and observed revenues.

– Provide a qualitative and quantitative assessment of the conditions under which ar-
bitrage in the Day-Ahead market becomes attractive.

Based on these two complementary approaches, the thesis aims to provide a comprehensive
understanding of the economic potential of BESS and their strategic behaviour in the Spanish
electricity market.

3.3 Outline of the Methodological Approach

This thesis applies a dual methodological approach to assess the market potential of BESS in
Spain. For the aFRR market, a backtesting framework is used to benchmark revenues under
perfect foresight and evaluate the performance of several trading strategies. For the Day-Ahead
market, a statistical analysis identifies key variables influencing profitability, based on historical
market data. This structure enables both a quantitative and qualitative assessment of BESS
performance under real market conditions.

4 Methodology

This chapter outlines the methodological framework adopted to evaluate the economic perfor-
mance of Battery Energy Storage Systems (BESS) in the Spanish aFRR electricity markets and.
While in DAH drivers systematic analysis will head us to identify and quantify what factors drive
or limit the revenues obtained by a battery participating in this market. It provides an overview
of the modeling approach, key assumptions, and the trading strategies implemented, followed by
the data sources used and model limitations.

4.1 Scope and Approach

This thesis evaluates the market potential of Battery Energy Storage Systems (BESS) in two
key segments of the Spanish electricity market: the automatic Frequency Restoration Reserve
(aFRR) and the Day-Ahead (DAH) market.

For the aFRR market, a backtesting framework is developed to simulate multiple BESS trad-
ing strategies using historical data, ranging from idealized deterministic models to more realistic
adaptive heuristics.

For the DAH market, a statistical linear regression analysis is conducted based on battery
revenue drivers. A linear regression model is applied, using 80% of the available data for training
and the remaining 20% for model validation.

4.2 Modeling Assumptions

4.2.1 Automatic Frequency Restoration Reserve (aFRR) Assumptions

To ensure realistic and consistent modeling, the following assumptions were made for the aFRR
market simulation:

Master Thesis 16



Memory

• Marginal battery size: A 1 MW BESS is assumed. The battery is considered a price-
taker, meaning it does not influence market-clearing prices. Thus, the merit order remains
unaffected regardless of whether its bids are accepted.

• Operation and Maintenance Costs: These are considered negligible and are excluded
from the model. No minimum activation threshold is imposed.

• Bid acceptance and Direct activations: If the bid price is below the market-clearing
price, full activation is assumed for the 15-minute product. Activation time is not modeled
due to lack of publicly available data.

• Market access and Procurement: The battery is assumed to have access to both energy
and capacity markets. To maintain energy balance, any required energy is assumed to be
procured from the intraday market. The intraday price is assumed to match the imbalance
price, as these converge when approaching delivery time.

• Bidding deadlines: Energy bids can be submitted up to 25 minutes before delivery, and
capacity bids before 20:00 on the day before delivery, in accordance with REE regula-
tions [49].

• Product symmetry: The model assumes the symmetric structure of aFRR products as
offered in the Spanish market.

• Curtailments: Grid congestion and locational constraints are not modeled, as no grid
topology is implemented. Curtailments are excluded to maintain model simplicity.

• Seasonality and Volatility: Market price volatility is assumed to be constant through-
out the year. As only three months of data are simulated, revenues are annualized by
multiplying by four.

4.2.2 Day-Ahead Market Analysis Assumptions

The analysis of the Day-Ahead Market was based on a linear regression approach, aiming to
estimate the impact of market and technical variables on the daily simulated revenue of a battery
system. The key assumptions and steps in the modeling process are listed below:

• The input dataset covers daily values from 2019 to 2025 and includes prices, renewable
generation, fuel costs, and estimated battery operation metrics.

• A multivariable linear regression model was used to evaluate revenue drivers.

• Data was grouped by season and month to account for temporal variability in market
conditions.

• Columns with more than 50 percent missing values were dropped; only numerical variables
were considered.

• The dataset was split into 80 percent training and 20 percent testing subsets.

• Evaluation metrics included R² and Mean Squared Error (MSE).
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• Additional visual analysis was carried out using scatter plots to reveal patterns, correla-
tions, and validate assumptions of linearity.

These assumptions enabled a transparent and interpretable framework to assess under which
market conditions arbitrage in the DAH market becomes attractive for BESS, and which exter-
nal variables most strongly influence the profitability.

4.3 Model Description and Strategy Design

This section describes the core modeling framework and trading strategies developed to simu-
late the participation of BESS in the aFRR market. All strategies use historical market prices,
battery constraints (power, energy, efficiency), and a 15-minute time resolution.

Both deterministic cases will serve as a benchmark to analyze what revenue share our trading
strategies will capture, introducing uncertainty as well as restrictions on cycles per day to ensure
correct use of my battery as explained in [23] extending battery life.

4.3.1 Deterministic Strategy: Energy-Only Optimization

A dynamic programming approach is implemented, assuming perfect foresight of market prices.
In order to explore the all the operational possibilities, the energy levels are discretised and
backward induction is used to compute the optimal value function. Figure 18 illustrates this
process, showing how all possible battery configurations at different power levels are considered.
The optimal power output that maximies final revenue will be chosen. Once the optimal dispatch
path is obtained, a forward simulation is applied starting from a 50% state of charge. All the
technical features of the battery such as the round-trip efficiency, cycle constraints are respected,
battery energy and power constraints are respected. Only energy revenue is considered; capacity
revenue is excluded.

4.3.2 Deterministic Strategy: Energy + Capacity Optimization

This extends the previous strategy by including revenue from upward reserve capacity. The
battery optimizes both energy dispatch and capacity reservation at each time step considering
the market constraints shaped by [49] . A minimum energy level is required to participate in
the capacity auction. To reach this threshold levels the intraday market is modeled to supply
the needed energy, The optimal strategy is obtained using backward dynamic programming and
validated using forward simulation.
Figure 4 shows the method used to ensure the battery’s energy reserves match the requirements
for participation in both energy and capacity auctions. The ’Committed Energy Threshold’
represents the lowest energy level a battery must maintain to participate in the capacity market.
The energy auction defines the ’Pre-Allocated Energy’ level. To ensure the ‘Final Energy Set’
meets the thresholds set by the capacity auction, additional energy must be acquired from the
intraday market, identified in the graph as ’Intraday Energy Adjustment’.
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Figure 4: Threshold-Constrained State of Charge for aFRR Bidding Eligibility

4.3.3 Heuristic Dynamic Bidding – Energy-Only Strategy

In this case, the first trading strategy is analyzed. The objective is to capture the largest dif-
ference between bid and ask prices, which are unknown beforehand. As stated in the REE
regulations [49], changes can be made to the aFRR bids up to 25 minutes before delivery. Thus,
two different strategies are considered for bid modeling: the Pricing Bid Strategy and the Volume
Bid Strategy.

Figure 5 illustrates that the price strategy enables setting a bid price based on the lowest of
the previous 8 known values. For both selling and charging bid prices, additional parameters
(Premiums) are added, allowing the modification of the bid price to ensure battery participation
during higher-priced periods and thus maximizing profit.

In the Volume Bid Strategy, revenue maximization is targeted primarily through maximizing
energy utilization, constrained by the battery’s power and remaining energy. The charge bid is
limited by the battery’s available energy and charging capacity. In both scenarios, the battery’s
charge and discharge efficiencies are considered.

A sensitivity analysis is conducted to determine the optimal combination of parameters for
revenue maximization and effective battery operation. Different premiums are varied. If the bid
price falls below the market-clearing price, it is considered an activation trigger. Activations last
15 minutes, during which operational battery vectors, such as power, energy, and cycles per day,
are continuously updated.
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Figure 5: Pricing strategy for upward and downward bids with Up Premium =0 and Dn
Premium = 0

4.3.4 Heuristic Strategy: Static Capacity Sensitivity with Price Premiums

This case involves a sensitivity analysis of capacity, Up Premium, and Dn Premium. Each
simulation uses a fixed combination of these three variables. The objective is to identify the
maximum revenue achievable while managing the number of cycles per day. Capacity ranges
from 0 to 1 MW, the battery’s maximum power, as specified in 4.2.1. To determine the minimum
threshold required for participation in the capacity auction, the strategy outlined in Figure 4 is
applied. Metrics such as revenue, energy throughput, and average cycles per day are gathered
for each combination.

4.3.5 Adaptive Strategy: Optimized Capacity and Price Premium Based on 3 Pre-
vious Days

This scenario models the typical operation of a battery trading algorithm by determining the
optimal combination of parameters based on prices observed over the previous three days. A loop
is executed through potential capacities and premiums, with the optimal combination selected
for the following day. Adjustments to premiums and capacity vectors are made prior to 20:00 of
the preceding day, adhering to regulations outlined in [49]. Additionally, the model engages with
the intraday market for energy adjustments to comply with the thresholds depicted in Figure 4.

4.3.6 Adaptive Strategy: Hourly Optimized Capacity and Price Premium Based
on the Previous Day

This case models the typical daily operation of a battery trading algorithm by determining the
optimal hourly combination of capacity and premiums based on prices observed on the previous
day. Optimal hourly combinations are identified and premiums and capacity vectors are adjusted
before 20:00 of the preceding day, in line with regulations described in [49]. Figure ?? is an
example of the optimal hourly premiums. As in previous scenarios, the model contracts with the
intraday market to meet the necessary energy thresholds according to Figure 4.
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Figure 6: Example of the adjusted Premiums per hour (€/MWh)

4.4 Regression Model for the Day-Ahead Market

The objective of this model is to quantify the influence of various market and technical variables
on the simulated daily revenue of a battery operating in the Spanish Day-Ahead (DAH) electricity
market over the period 2019–2025. 4.4 summarizes the predictors included in the analysis:

• Daily average, maximum and minimum DAH prices (e/MWh)

• Gas price (e/MWhth)

• CO2 price (e/t)

• Renewable generation (solar and wind) (%), including the production from each
technology

• Load (MW), including the calculation of residual load

• Installed capacity per technology

To compute the battery revenue, a proprietary Python-based simulation tool developed by Cen-
trica Energy was used. This model estimates the potential revenue based on the daily price
spread between the maximum and minimum values, while respecting the physical constraints of
the battery, such as rated power, energy capacity, and a predefined limit on the number of daily
cycles.

The dataset was split into 80 % for training and 20 % for testing. The model’s performance
was evaluated using two metrics: the coefficient of determination (R2) and the Mean Squared
Error (MSE). To capture seasonal and temporal variability in market conditions, independent
regression models were trained for each season and for each calendar month.
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4.5 Data Sources

• aFRR market prices: Historical activation prices obtained from Red Eléctrica de España
(REE), via the Platform for Balancing Services [50].

• Imbalance/intraday prices: Used to simulate energy procurement during shortfalls [50].

• Battery technical specifications: Based on industry data and academic references [51].

• Electricity generation data: Historical data from 2019 to 2023 retrieved from the REE
open-data portal (ESIOS) [52].

• Installed capacity: Annual values obtained from REE’s Adequacy Report [53].

• Gas prices: Iberian wholesale prices used as a proxy for the marginal cost of gas-based
generation [54].

4.6 Limitations

• Limited data: Only four months of historical market prices were available for the aFRR
simulation.

• Market opacity: Lack of visibility into bidding strategies and competitor behavior due
to limited public disclosure in Spain.

• No degradation modeling: Battery aging and performance degradation are not explic-
itly modeled.

• Simplified geography: Locational constraints and grid congestion are not considered.

• Computational cost: Simulations involving grid search and adaptive strategies are com-
putationally intensive, limiting the time horizon analyzed.

5 Model Implementation

This chapter will detail the computational implementation of both the aFRR trading strategies
and the DAH driver analysis. All models have been written in Python. The market data is
historical and has been obtained from the sources detailed in 4.5.

5.1 Battery Modeling

The physical characteristics with which we have modeled the battery have been

• Power capacity (1 MW for all cases),

• Energy capacity (1 MWh, 2 MWh, and 4 MWh),

• Charging/discharging efficiency (round-trip efficiency of 85%),

• State of Charge (SOC) limits,

• Maximum allowed cycles per day.
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The operational features of the battery such us power and energy stored in the battery are
modeled using different vectors that simulate over time. These vectors are updated according to
battery bid activations, taking into account efficiencies and performances, and also are limited
by operational limits on the battery.

5.2 aFRR Simulation Workflow

All simulations follow a general structure to compute battery operation:

1. Load and preprocess historical price data.

2. Initialize battery state (50% SOC) and operational vectors such as p_up, p_dn, and oth-
ers.All vectors correspond to time series with a 15-minute timestep.

3. In cases involving optimization, execution of the loop to determine and characterize each
strategy and decesive parameters.

4. Run a loop for each time step:

• Determine bid prices (based on the selected strategy).

• Compute available bid volumes (based on SOC and power limits). If adjustments are
required due to daily cycle constraints, the bid volumes may be modified accordingly
to ensure they do not exceed permissible battery limits.

• Check bid acceptance conditions (compare with market price).

• In scenarios involving capacity auctions, verify that the battery is above the acceptable
threshold. If below, calculate the required energy from the intraday market and update
power output and SOC accordingly.

• Update revenue calculations, considering energy sales, capacity payments, and intra-
day adjustment costs.

5. Track cumulative revenue, energy throughput, and daily cycling activity.

In sensitivity analyses, nested loops are executed to systematically explore all parameter combina-
tions, allowing analysis of the final vectors resulting from battery operations over the simulation
period.

5.3 Strategy-Specific Implementation

5.3.1 Dynamic Programming Implementation

The deterministic strategies are implemented using backward Dynamic Programming (DP) which
is the block that loops through output power and determines for each time step which is the
optimal operation to maximise the final revenue. The Power levels are discretized in 0.05 MW
increments. For each power value, a potencial future value is computed backwards like in 17.
Then for each state, all feasible actions are evaluated, and the policy that maximizes immediate
and future value is stored. Subsequently,a forward simulation applies the optimal actions as
described in step 4 of Section 5.2.
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The extended Dynamic Programming formulation for capacity participation adds an additional
control variable: the reserved upward capacity. When the battery commits to providing reserve
capacity, it must ensure sufficient stored energy to meet the committed capacity. If this condition
is not met, the model introduces an intraday energy purchase, translated as cost impacting the
revenue calculation.
The final revenue per time step m is computed as:

Revenue[m] = (pup priceup,m − pdn pricedn,m) · 0.25 + cap pricecap,m · 0.25− capacity_cost[m]

where the intraday cost is

capacity_cost[m] =

{
priceintraday,m

(
cap 0.25

ηd
−
(
ecur − pup0.25/ηd

))
, if reserve shortfall

0, otherwise.

5.3.2 Heuristic Strategy: Energy-Only with Price-Based Bidding

This strategy uses a forward-only simulation. Multiple premium combinations are tested in
nested loops, altering the bid prices derived from historical marginal prices (see Figure 5). For
each premium setting, the simulation computes revenue and average cycles per day following the
workflow from step 4 in Section 5.2.

5.3.3 Heuristic Strategy: Static Capacity + Premium Sensitivity

A nested loop iterates over predefined capacity levels and price premiums. Each parameter pair
is simulated over the full historical dataset. Key performance metrics—revenue, throughput,
and cycle count—are logged for comparison, employing the same operational loop referenced in
Section 5.2.

5.3.4 Adaptive Strategy: Daily Optimization (3-Day History)

This strategy dynamically updates the bidding parameters on a daily basis, using historical
performance over the past three days. Before 20:00 each day, in compliance with market reg-
ulations [49], a nested loop with the known data from the previous days, evaluates all possible
combinations of upward reserve capacity and bid premiums. The algorithm stores the best com-
bination to be used for trading the following day and a forward loop described in Section 5.2,
starting from step 4. In situations where the daily cycle count rises sharply, the bid volume
is progressively constrained to maintain the cycles within acceptable operational limits, while
manteining the battery performance. Daily revenue, energy throughput, and cycle count are
recorded for performance evaluation.

5.3.5 Adaptive Strategy: Hourly Optimization (1-Day History)

This variant extends the adaptive logic to an hourly resolution, offering more granularity adapt-
ability to the market time conditions. For each hour of the previous day, prior to 20:00 as
explained in [49], a loop is executed to determine the optimal capacity and hourly premiums,
which are stored in a vector. These represent the trading features which will be executed the fol-
lowing day. Then, a forward loop described in Section 5.2, starting from step 4 will be executed
for each quarter-hourly step.

Master Thesis 24



Memory

5.4 aFRR Computational Considerations

All operational vectors represent a 15-minute horizon. The libraries we have used to simulate
the battery modeling are:

• pandas: for creating and manipulating time-indexed data (e.g. date_range).

• numpy: for numerical arrays, discretization (arange, round) and computations (zeros,
sum, cumsum).

• dataclasses: to define the Battery class with typed fields via the @dataclass decorator.

• matplotlib.pyplot: to create figures and subplots for line, stack and scatter plots.

• seaborn: to apply the “whitegrid” style and draw high-level line plots.

• matplotlib.dates: to format datetime ticks on the x-axes of the plots.

The arrays for storing the results are:

• up_marginal_price_vector: 15-minute series of “up” market prices used in DP and
simulation loops.

• dn_marginal_price_vector: 15-minute series of “down” market prices used in DP and
simulation loops.

• energy_levels: discretized SOC levels from e_min_mwh to e_max_mwh in 0.05 MWh steps
for the DP state grid.

• actions: possible charge/discharge powers from –1.0 MW to +1.0 MW in 0.05 MW incre-
ments for DP decisions.

• V: (T+1 × n_levels) DP value-function table storing the maximal future value at each
time and SOC.

• policy: (T × n_levels) DP policy table storing the optimal action (power) at each time
and SOC.

• historical_soc: time series of battery state-of-charge (MWh) during the forward simula-
tion.

• historical_action: time series of actual charge/discharge power (MW) applied by follow-
ing policy.

• historical_revenue: instantaneous revenues (€) at each 15-minute step during simula-
tion.

• cycles_per_day: per-step cycle contributions when discharging, used to track battery
aging.

• verify_cycles_per_day: rolling sum of cycles_per_day over the last 96 intervals (24
h) to enforce cycle limits.

• date_index: realistic 15-minute datetime index created via pd.date_range for plotting.

• revenue_acum: cumulative sum of historical_revenue to plot accumulated earnings
over time.
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5.5 Implementation of Regression Analysis for the Day-Ahead Market

The regression analysis described in Section ?? was implemented in Python using the scikit-learn
library. The objective was to quantify the explanatory power of market and system variables
over the simulated daily revenue of a battery energy storage system (BESS) in the Day-Ahead
market.

The computational workflow followed these steps:

1. Data preprocessing: Variables with more than 50% missing data were excluded from
the dataset. The remaining numerical variables were used directly in the regression model.

2. Feature engineering: Daily statistics were computed, such as maximum, minimum, and
average DAH prices, residual load, and daily battery cycles. Renewable production and
installed capacity data were merged per technology.

3. Model training: A multivariable linear regression model was trained separately for each
month and season, using an 80%/20% train-test split.

4. Model evaluation: Performance was measured using the coefficient of determination
(R2) and Mean Squared Error (MSE) on the test subset. These metrics were recorded and
compared across different time aggregations.

5. Visualization: Several plots were generated:

• Scatter plots of real vs. predicted revenues.

• Horizontal bar charts showing the absolute value of the regression coefficients.

• Correlation plots between key input variables and daily revenues.

This implementation allowed both quantitative and qualitative interpretation of the condi-
tions under which arbitrage in the Day-Ahead market becomes attractive for storage assets.

5.6 DAH Computational Considerations

The libraries we have used for running the grouped regression are:

• pandas: for DataFrame manipulation and construction of coef_df.

• sklearn.linear_model.LinearRegression: to train the linear regression model.

• sklearn.model_selection.train_test_split: to split each group’s data into training
and test sets.

• sklearn.metrics.r2_score: to compute the coefficient of determination on the test set.

• sklearn.metrics.mean_squared_error: to compute the mean squared error on the test
set.

• matplotlib.pyplot: to plot Actual vs Predicted scatter plots and coefficient bar charts.

The arrays for storing the results are:
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• X_train: training features for the regression model.

• X_test: test features for evaluating the model.

• y_train: training target values (“Revenue”) for fitting the model.

• y_test: test target values for prediction comparison.

• y_pred: predicted “Revenue” values on the test set.

• coef_df : DataFrame of the top 8 variables with largest coefficients, used for bar chart.

6 aFRR Market Results

6.1 Overview of Trading Strategies

This section summarizes the trading strategies evaluated in the aFRR market. The strategies
range from an idealized deterministic benchmark with perfect foresight to more realistic ap-
proaches including energy-only bidding, fixed capacity strategies, and adaptive bidding schemes
that respond to market signals.

6.2 Revenue Analysis

Table 3 presents the annualized revenues and average cycles per day for each strategy for a 1MW
2h Battery.

Strategy Annual Revenue (EUR/MW-year) Avg. Cycles/Day

Deterministic benchmark (energy only) 270,064 4.18
Deterministic benchmark (energy + capacity) 646,752 5.34
Energy-only participation (no premium) 177,812 4.70
Energy-only participation (best premium 94/37) 190,464 2.04
Constant Capacity best case p=1MW 219,084 3.00
Best Constant Capacity and Premiums in the previous 3 days 223,596 2.10
Best Previous Capacity Shape 219,596 2.95

Table 3: Summary of annual revenues and operational metrics by trading strategy in the aFRR
market (2h Battery).

6.2.1 Deterministic Strategy: Energy-Only Optimization

As explained in Section 4.3.1, the aim of this trading strategy is to establish a benchmark to
determine the maximum revenue achievable under perfect foresight of aFRR market prices. In
this simulation, no constraint is imposed on the number of cycles per day.

As shown in Figure 20, the average number of cycles per day exceeds the acceptable range (0–2
cycles/day) defined in [51] as a threshold to avoid excessive degradation of the battery’s lifespan,
reaching a value of 4.18. The battery demonstrates a high operating frequency. As can be seen
in the power plot, the system continuously exploits every available opportunity for full charge
and discharge, as illustrated in Figure 19. However, we will use this benchmark as the maximum
achievable, since our objective is to maximize revenue and determine the revenue share that our
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strategies can capture—while improving battery operability by bringing our cycles per day closer
to the acceptable range.

In addition, the accumulated revenue curve follows a steady and nearly linear trend, which
supports the assumption that the seasonality of aFRR prices can be reasonably neglected. It can
be seen in Figure 21 Therefore, annual revenue can be estimated by proportionally extrapolating
the results from the simulated period as mentioned in the Section 4.2.1

6.2.2 Deterministic Strategy: Energy + Capacity Optimization

This case allows us to establish the benchmark strategy for the highest theoretical revenue par-
ticipating in aFRR, ensuring full participation in both the energy and capacity auctions, As
detailed in Section 4.3.2, no constraint is imposed on the mean number of cycles per day in this
simulation. In this scenario, the average cycles per day reach approximately 5.34 which can be
seen in Figure 22

As shown in the power plot in Figure 24, the battery operates at high frequency, consistently
exploiting its full power capabilities. Also in Figure 23 it can be appreciated as the benchmark
suggests that the maximum will be reached when the capacity traded in the capacity market is
close to 1 although it takes various values throughout the simulated period.

Finally, the stacked revenue chart illustrates that the dominant source of revenue arises from
energy trading, while capacity payments contribute a smaller but steady share. This confirms
that, although capacity markets offer additional value, the primary profitability in this strategy
continues to be driven by energy arbitrage, shown in Figure 25

6.2.3 Heuristic Dynamic Bidding – Energy-Only Strategy

In this case, the only revenue stream considered is energy trading, as detailed in Section 4.3.3.
In the absence of premium thresholds, the battery experiences very high operational frequency,
with the average number of cycles per day rising significantly. This behavior is illustrated in
Figure 26. To control this, we introduce the parameters up premium and down premium, which
allow us to model the bid pricing strategy in our simulation. These thresholds ensure that the
battery will only be activated when prices exceed a base value, reducing unnecessary cycling
while maintaining profitable dispatch opportunities.

Under the base case (no premiums), the mean cycles per day reach 4.70. By adjusting the pre-
mium values, we can effectively control the activation frequency, keeping it within acceptable
operational limits and increase the trading value. Figure 27 illustrates the sensitivity of both
revenue and cycling to different premium combinations.

When prioritizing maximum cycling frequency, the top-performing parameter combinations are
shown in Table 4. These scenarios lead to higher degradation risk but may be of interest in
short-term arbitrage strategies.
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Table 4: Top 10 premium combinations ranked by mean cycles per day and anual revenue.

Up Premium (e/MWh) Down Premium (e/MWh) Mean Cycles/Day Annual Revenue (e/MW)

6 0 4.679 248,636.20
7 0 4.633 249,015.04
8 0 4.614 248,955.20
10 0 4.565 249,394.84
11 0 4.543 249,709.88
9 0 4.592 248,416.88
12 0 4.507 249,285.72
13 0 4.474 248,960.40
14 0 4.448 248,218.28
15 0 4.423 247,961.52

To preserve battery health and comply with typical degradation constraints, we also identify the
optimal premium combinations that yield mean cycles per day which are lower than 2.05. These
results, shown in Table 5, demonstrate that it is possible to reduce cycling while significantly
improving revenue compared to the base case without premiums.

Table 5: Top 10 premium combinations with mean cycles/day while [mean cycles per day <
2.05], ranked by annual revenue.

Up Premium (e/MWh) Down Premium (e/MWh) Mean Cycles/Day Annual Revenue (e/MW)

94 37 2.045 190,467.49
95 36 2.050 190,012.15
92 38 2.025 189,938.81
95 37 2.027 189,672.35
94 38 2.010 189,598.43
93 38 2.014 189,545.43
91 38 2.029 189,481.07
89 38 2.046 189,474.19
90 38 2.042 189,462.53
95 38 1.994 189,045.06

With this strategy, it has been managed to capture 70 % of the revenue while reducing cycles per
day by applying a fixed premium throughout the operation. These results confirm the effective-
ness of premium thresholds in tuning the operation of the battery—achieving a better balance
between economic performance and technical sustainability than the original energy-only strat-
egy without activation filters.

6.2.4 Static Capacity Sensitivity with Price Premiums

In this case, the analysis examines precisely how enforcing a specific capacity in the capacity
market and varying the premiums impacts revenue, as described in 4.3.4.

It is observed that 34% of the benchmark revenue is captured while reducing cycles per day by
43%. These findings can be compared with the adaptive strategies in 6.2.5 and 6.2.6, which sug-
gest that—most of the time—it is advantageous to bid on the capacity market with the battery’s
full capacity.
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Table 16 lists the top 10 combinations of premiums and capacity that yield the highest revenue,
all of which correspond to a 1MW capacity in the capacity market.

6.2.5 Adaptive Strategy: Optimized Capacity and Price Premium Based on Pre-
vious 3 Days

This strategy is not intended to follow hourly trading patterns; rather, seasonal patterns are
prioritized, and the optimum is determined from the previous three days without emphasis on
time-of-day variations. Figure 30 shows the power and energy profiles of a 2 h battery operating
under the “Optimized Capacity and Price Premium Based on Previous 3 Days” strategy. Figure
31 displays the capacity traded in the capacity auction for the same adaptive strategy. The
optimization consistently alternates between 0 MW and 1 MW. Specifically, traded capacity is
0 MW on 10% of days and 1 MW on the remaining 90%.

Revenue captured relative to the benchmark reaches up to 34% of its value. Capacity revenue
capture exceeds the benchmark, owing to a higher frequency of 1 MW trades in the capacity
auction. Figure 32 shows how premiums remain at low levels most of the time.

6.2.6 Adaptive Strategy: Hourly Optimized Capacity and Price Premium Based
on the Previous Day

This configuration enables the capacity and premiums to be optimized on a daily basis, allowing
a different value to be assigned to each hour. Because the optimized premiums are submitted
at the same time on the previous day, any underlying hourly pattern can be identified. Figure
?? provides an example of how the premiums are allocated across the hours. As observed in the
benchmark shown in Figure 23, the optimal capacity offered in the capacity auction is 1 MW for
the majority of time steps; in the present analysis, a 1 MW offer is selected in 92 % of the hours.

When this variable-capacity strategy is compared with the deterministic benchmark, it reaches
34 % of the benchmark revenue while reducing cycles per day by 45 %.

Figure 34 illustrates how the containment rules applied to the bid volumes help keep the daily
cycles close to an acceptable operational value. Figure 35 shows the capacity committed in the
capacity auction, and Figure 36 presents the resulting revenue and cycles per day.

6.3 Sensitivity Analyses

This section examines how battery size influences the performance of the strategies and the
revenue they generate. The battery’s power rating is kept at 1 MW, but its duration is varied
to 1 h and 4 h. The corresponding results are presented below.

6.3.1 Deterministic Strategy: Energy-Only Optimization

Table 11 shows how different durations affect annual revenue and cycles. As battery size increases,
revenues rise correspondingly, because a larger energy capacity provides greater flexibility for
charging and discharging. Conversely, when the battery size decreases, the number of cycles per
day tends to increase.
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Table 6: Impact of battery duration on Deterministic Strategy: Energy only

Battery Size Annual Revenue (EUR/MW-year) Avg. Cycles/Day

1 MW / 4h 302,988 2,17
1 MW / 2h 270,064 4.18
1 MW / 1h 238,112 7,95

6.3.2 Deterministic Strategy: Energy + Capacity Optimization

Participation in the capacity market leads to a significant increase in total revenue. For a 2-hour
battery, capacity payments amount to €86,280 per year, ensuring the battery’s maximum overall
revenue.

Table 7: Impact of battery duration on Deterministic Strategy: Energy + Capacity
Optimization

Battery Size Annual Revenue (EUR/MW-year) Avg. Cycles/Day

1 MW / 4h 673,500 2.72
1 MW / 2h 646,752 5,34
1 MW / 1h 615,804 9,34

6.3.3 Heuristic Dynamic Bidding: Energy-Only Strategy

This case compares the revenue obtained when participation is limited to the energy auction; a
larger-capacity battery allows higher revenue to be achieved while keeping cycles per day below
2.05. Table 14 and 15 show the best combinations for 1h and 4h battery.

Table 8: Impact of battery duration on Heuristic Dynamic Bidding: Energy-Only Strategy

Battery Size Annual Revenue (EUR/MW-year) Avg. Cycles/Day

1 MW / 4h 264,884 2.03
1 MW / 2h 190,464 2.04
1 MW / 1h 122.768 2.03

6.3.4 Static Capacity Sensitivity with Price Premiums

In Figures 28 and 29 it can be seen that, because all three cases share the same power rating, the
capacity revenues are identical regardless of battery size. The 1-hour battery, however, incurs
intraday costs at high capacity commitments in order to supply the energy required for capacity-
market participation, whereas the 2-hour and 4-hour batteries face almost no such costs because
they remain above the minimum energy threshold. Consequently, revenue differences arise from
the extra cost of maintaining the energy needed for the capacity auction and from trading in the
energy market.
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Table 9: Impact of battery duration on Static Capacity Sensitivity with Price Premiums

Battery Size Annual Revenue (EUR/MW-year) Avg. Cycles/Day

1 MW / 4h 295,956 2.31
1 MW / 2h 219,084 3.00
1 MW / 1h 172,344 3,75

In Figure 7, the revenue from the various simulations is displayed together with the corre-
sponding cycles-per-day values for each battery.

Figure 7: Weekly Revenue for capacity sensitivity analysis on Static Capacity Sensitivity with
Price Premiums

6.3.5 Adaptive Strategy: Optimized Capacity and Price Premium Based on Pre-
vious 3 Days

Table 10: Impact of battery duration on Adaptive Strategy: Optimized Capacity and Price
Premium Based on Previous 3 Days

Battery Size Annual Revenue (EUR/MW-year) Avg. Cycles/Day

1 MW / 4h 298,874 1.97
1 MW / 2h 223,596 2.10
1 MW / 1h 168,367 3,68
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6.3.6 Adaptive Strategy: Hourly Optimized Capacity and Price Premium Based
on the Previous Day

In every case the optimisation favours offering the battery’s full capacity—1 MW—in the capacity
auction for 92 % of the simulation period. This yields an identical €105 360 per year in all three
scenarios, corresponding to 31.03 %, 47.97 %, and 60.45 % of total revenue for the 4-hour, 2-hour,
and 1-hour batteries, respectively. Figure B.7 shows the detailed power and energy results for
the batteries, together with the cycles-per-day control strategy.

Table 11: Impact of battery duration on Adaptive Strategy: Hourly Optimized Capacity and
Price Premium Based on the Previous Day

Battery Size Annual Revenue (EUR/MW-year) Avg. Cycles/Day

1 MW / 4h 294,567 2,29
1 MW / 2h 219,596 2,95
1 MW / 1h 174,260 3.63

7 Day-Ahead Market Results

7.1 Overview and Objectives

This chapter presents the results of the regression analysis developed to identify the key drivers
affecting the daily revenue of a battery operating in the Spanish Day-Ahead Market (DAH)
between 2019 and 2025. The analysis is based on a multivariable linear regression model imple-
mented in Python, as described in Sections 4.4 and 5.5.

The goal is to evaluate the explanatory power of market variables (such as electricity prices, fuel
costs, and renewable generation) and technical metrics (such as battery cycling and installed
capacity) on the simulated daily revenue of the battery. To assess model accuracy and robustness,
the following steps were performed:

• Independent models were trained for each season and for each calendar month to capture
temporal variability in market conditions.

• Model performance was evaluated using the coefficient of determination (R2) and the
Mean Squared Error (MSE) on test data.

• The most influential variables were identified based on the absolute value of their regression
coefficients.

The results are organized into four sections. Section 7.2 presents the performance of the model
by season, followed by monthly results in Section 7.3. Section 7.4 discusses the importance of
individual variables. Finally, Section 7.5 provides a discussion of key insights and operational
implications.
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7.2 Model Performance by Season

To evaluate the ability of the regression model to capture seasonal effects, independent models
were trained using grouped data for each of the four seasons: spring, summer, autumn, and win-
ter. The performance was assessed using two standard metrics: the coefficient of determination
(R2) and the Mean Squared Error (MSE), both computed on the test set.

Figure 8 shows the scatter plots comparing predicted and actual daily revenues for each season.
The visual dispersion provides a qualitative indication of the model’s accuracy and robustness.
As shown in the figure, summer presents the highest predictive performance, with data points
closely aligned to the 45-degree line. In contrast, winter shows higher variance and reduced
correlation, likely due to price volatility and a more complex interaction between variables.

The corresponding performance metrics are summarized in Table 12. The R2 value for summer
reaches 0.685, indicating a strong correlation between inputs and revenue. Meanwhile, the winter
model produces a much lower R2, suggesting that seasonal volatility and unobserved variables
reduce the model’s explanatory power during this period.

These results confirm that the model’s ability to predict battery revenue is not constant through-
out the year and is significantly affected by underlying seasonal market dynamics.
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(a) Autumn — R2 = 0.567, MSE = 5090.07 €2 (b) Spring — R2 = 0.441, MSE = 4406.50 €2

(c) Summer — R2 = 0.685, MSE = 1365.56€2 (d) Winter — R2 = 0.588, MSE = 4594.15 €2

Figure 8: Predicted vs. actual daily revenue for each season.

Table 12: Regression model performance by season (test set).

Season R2 MSE

Spring 0.441 4406.50 €2

Summer 0.685 1365.56 €2

Autumn 0.567 5090.07 €2

Winter 0.588 4594.15 €2
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(a) Autumn (b) Spring

(c) Summer (d) Winter

Figure 9: Top regression coefficients by season. The coefficients are sorted by absolute value,
showing the most influential variables on battery revenue for each period.

In the autumn model, the most influential variables include hydro capacity (negative), renew-
able share of load (positive), wind onshore capacity (negative), and renewable share of generation
(negative). According to the figure: 9a

The negative coefficient of hydro capacity suggests that flexible hydro reduces price spreads by
flattening daily price profiles, limiting arbitrage opportunities for batteries. The positive impact
of renewable share of load likely reflects increased price volatility from intermittent sources like
wind and solar. Conversely, the negative effect of wind onshore capacity may indicate that sus-
tained wind output suppresses prices over long periods, reducing daily spread. Collinearity with
other renewable related variables may also contribute to this outcome.

During the autumn season, the most influential variables were the installed hydro capacity (neg-
ative coefficient), the renewable share of load (positive), and installed wind onshore capacity
(negative coefficient). This suggests that during wetter months, higher hydro availability may
reduce the price volatility and thus limit arbitrage opportunities for the battery.

This interpretation aligns with official data from AEMET (Spanish State Meteorological Agency),
[55] which identifies October and November as the rainiest months of the year 47. The regression
results for these months (see Figures 45 and Table 18) show similar coefficient patterns to the
autumn season model, supporting the idea that precipitation-related technologies like hydro play
a significant role in shaping battery revenues during this period.

The model for the autumn season achieved an R2 of 0.567 and a mean squared error (MSE) of
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5090.07 €2, indicating a moderate predictive capability. These results suggest that although the
model captures relevant market and technical patterns, significant variability remains—possibly
due to hydrological conditions and other weather-driven dynamics typical of October and Novem-
ber, which are statistically the rainiest months in Spain.

In the spring model, the most influential variable is the installed onshore wind capacity, with a
strong positive coefficient. This suggests that wind generation plays a dominant role in driving
battery revenues during this season. This is consistent with meteorological data, as April is
typically the windiest month in Spain, allowing wind farms to produce at high output levels.
This often leads to large intraday price swings—low prices during high wind periods and higher
prices during lulls—creating profitable arbitrage opportunities for batteries.

The residual load also shows a positive coefficient, indicating that when renewable generation
(mainly wind and solar) is not sufficient to cover demand, price volatility increases, boosting rev-
enue potential. Meanwhile, the hydro capacity appears with a small negative coefficient, possibly
reflecting that higher hydro availability reduces price variability by acting as a flexible resource
in the system.

During summer, the most influential variable is the renewable share of load, showing a strong
positive coefficient. This suggests that a higher penetration of renewables —especially solar—into
the demand mix increases price volatility or spread, which enhances battery arbitrage revenue.
This is consistent with seasonal generation patterns in Spain, where solar production peaks dur-
ing the summer months.

In contrast, the renewable share of generation appears with a strong negative coefficient, likely
capturing the effect of system-wide oversupply: as renewables dominate the generation mix (es-
pecially during midday hours), market prices may collapse across multiple hours, limiting the
spread that batteries can exploit.

Additionally, hydro and solar installed capacities also exhibit negative coefficients. This might
reflect that in periods with high renewable availability, price flattening occurs due to reduced
residual load, reducing arbitrage opportunities. The impact of wind is negligible in summer, as
expected, since wind speeds are relatively low during this season in most of Spain.

Among all seasonal models, summer achieves the highest predictive performance, with an R2 of
0.685 and the lowest mean squared error (MSE = 1365.56 €2). This suggests that the market dy-
namics during the summer months are more consistent and easier to capture through the selected
input variables. The dominance of solar generation and clear renewable patterns in this season
likely contribute to the model’s improved accuracy compared to the more variable conditions of
other seasons.

The winter model identifies the renewable share of load as the most influential variable, with
a strong positive coefficient. This suggests that, even when renewables supply a significant
portion of demand, price volatility may still increase during peak demand hours—such as cold
evenings—when renewable output is insufficient. This dynamic creates larger intraday price
spreads, which batteries can exploit through arbitrage.
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Hydro capacity appears as the second most influential driver, with a large negative coefficient.
This is consistent with seasonal conditions, as hydro availability typically peaks during the winter
due to accumulated rainfall from autumn. The increased flexibility of hydro generation during
these months tends to smooth price fluctuations, thereby limiting arbitrage opportunities for
batteries.

Other variables such as the renewable share of generation and installed onshore wind capac-
ity also show negative coefficients. These reflect periods of high renewable output, especially
wind, that suppress electricity prices for extended hours. Although gas running costs show a
minor positive effect—indicating that more expensive marginal generation can increase price
peaks—overall price spreads remain dampened by the dominant presence of flexible and low-
marginal-cost resources in the system.

7.3 Visual Insights and Correlation Analysis

Figure 10: Correlation between the gas running cost and Battery revenue

Figure 10 presents the weekly evolution of gas running costs and simulated battery revenue
between 2019 and 2025. A strong co-movement is observed during late 2021 and throughout
2022, where both variables peak simultaneously. This trend reflects a combination of geopolitical,
structural, and market-specific dynamics that drastically increased price volatility.
Global Context. Beginning in the second half of 2021, European natural gas prices rose sharply
due to:

• Low storage refill levels after the cold winter of 2020–2021,

• A strong post-COVID industrial rebound that increased energy demand,

• Reduced supply from Russia via the Nord Stream pipeline.
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War in Ukraine. The Russian invasion of Ukraine in February 2022 intensified the crisis.
Russia began progressively cutting gas flows to Europe, and gas prices—measured by the TTF
index—reached historic highs. In response, many countries ramped up thermal generation. In
marginal pricing markets like Spain, this led to extreme price peaks in the electricity market.

Spanish Market Implications. Spain operates under a marginal-cost pricing system, where
the market clearing price is set by the most expensive unit (often gas-fired plants). As gas costs
soared, electricity prices followed—especially during low-renewable hours. This created larger
intraday spreads, directly increasing the revenue potential of battery energy storage systems
through arbitrage.

Policy Reaction. Although the Spanish government introduced a gas price cap in June 2022
to dampen wholesale market prices, intraday volatility remained high. For batteries, this volatil-
ity translated into more profitable charging and discharging windows, as clearly reflected in the
revenue spikes during 2022.

Indeed, as shown in the weights of the annual linear regression in Figure 41, the Gas Running
Cost variable plays a significant role between 2019 and 2021. However, in 2022 it loses relevance,
and in 2023 it regains notable influence. This trend is also reflected in the Pearson correlation
coefficients shown in Table 19, where the coefficient for the maximum Gas Running Cost reaches
values as high as 0.76 before 2022 and 0.60 in 2021. In contrast, in 2022 it drops to just
0.08, before rising again to around 0.30 in the following years. These results suggest that the
increasing integration of renewable capacity into the system has weakened the dependence of
battery revenue on gas running costs.

Figure 11: Correlation between the Battery Revenue and Gas Running Cost

In Figure 50, the linear relationship between gas and power price variables can be observed.
Specifically, for the minimum power price, the gas cost often shows little relevance, as renewable
sources and other technologies with lower marginal costs are frequently able to cover the full de-
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mand, thus setting the market price. However, a clearer linearity is observed in the relationship
between the gas running cost and both the average and maximum power prices. As discussed
previously, in Spain’s marginal pricing system, the last technology to be dispatched determines
the market price — and this is often a gas turbine. The model proposed by Centrica estimates
potential battery revenue based on the spread in DAH market prices. Therefore, as shown in
Figure 52, there is a visible linear trend between the maximum power price and battery revenue.

Residual load refers to the portion of electricity demand that remains after subtracting the gen-
eration covered by renewable sources. When this value is at its maximum, it indicates both a
lower share of renewables and a higher total load. This typically occurs during late afternoon
or evening hours, when solar generation drops to zero due to lack of irradiance and demand
increases. As shown in Figure 54, the maximum residual load does not exhibit linearity with
the minimum power price. However, it does show a clearer relationship with both the average
and maximum prices, since when renewables are insufficient to meet demand, prices tend to rise
depending on the marginal technology setting the market price.

As shown in Tables 22 and 23, there is a moderate negative correlation between average and min-
imum residual load and battery revenue during the years 2022 and 2023. This suggests that the
battery performs better under conditions of high renewable generation (i.e., low residual load),
when price volatility is typically higher. In contrast, the correlation between maximum residual
load and battery revenue is weak or inconsistent across the years, indicating that revenue is not
strongly influenced by peak demand periods but rather by the spread created when renewables
displace more expensive generation sources during off-peak hours.

As shown in Table 24 and Figure 25, the correlation between total system load and battery
revenue varies significantly across years. In 2020 and 2021, the correlations are weak and incon-
sistent, with both positive and negative signs depending on the load metric. However, in 2022, a
strong negative correlation emerges, especially with minimum load (r = −0.55, R2 = 0.31) and
average load (r = −0.50, R2 = 0.25).

This strong negative correlation in 2022 might be partially explained by the introduction of the
Iberian gas price cap mechanism, implemented in June 2022. This policy decoupled the marginal
electricity price from the full gas cost by capping the input fuel price used in thermal generation,
thus introducing compensations in the market. As a result, price volatility increased—especially
during periods of low load, typically with high renewable penetration—which could explain the
stronger relationship between battery revenue and minimum/average load observed that year.
From 2023 onwards, the negative correlation weakens again, which could suggest a rebalancing
effect as the market adapted to the new price formation mechanism and as renewable penetration
increased further.
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8 Conclusions and Future Work

8.1 Optimal aFRR Trading Strategies and Their Impact on BESS Perfor-
mance

• Pricing-strategy control optimizes dispatch. Introducing optimal up/down premi-
ums (94 €/MWh up, 37 €/MWh down) in the energy-only heuristic raises annual energy
revenue from € 177 812 to € 190 464 /MW-year (66% and 70% revenue of the benchmark)
while reducing average cycles per day from 4.70 to 2.04. By filtering out low-margin ac-
tivations, the battery is dispatched only during the most profitable intervals, improving
both earnings and longevity.

• Adaptive vs. constant capacity yields similar full-capacity exposure.

– A fixed 1 MW capacity bid achieves € 219 084/MW-year at 3.00 cycles/day, demon-
strating the value of simple capacity participation.

– The 3-day adaptive strategy elevates revenue to € 282 792/MW-year at just 1.13
cycles/day, capturing the majority of high-value periods with minimal cycling.

– The hourly adaptive approach yields € 219 596/MW-year at 2.95 cycles/day—almost
identical to the static case.

In all cases, over 90% of time steps see full-capacity (1 MW) offers in the capacity auc-
tion, indicating that both adaptive and static strategies naturally converge on maximum-
capacity bidding under prevailing aFRR price conditions.

• Lack of daily price pattern The superior performance of the 3-day look-back over the
hourly look-back—despite its coarser temporal resolution—suggests that aFRR prices lack
a consistent hourly pattern that can be exploited. Instead, leveraging recent multi-day
trends provides a more robust basis for setting capacity and price premiums, balancing
revenue capture with cycle-life constraints.

• Sensitivity analysis The sensitivity analysis confirms that battery duration is a critical
driver of both revenue and cycling behavior, fully addressing our objective to assess key
parameter impacts. Increasing storage from 1 h to 4 h raises annual revenues by roughly 27
% for energy-only strategies (from €238 k to €303 k) while cutting average daily cycles from
8 to 2. Combined energy–capacity optimization sees diminishing returns beyond 2 h (9 %
gain to €647 k at 2 h vs. 4.7 % to €673 k at 4 h), and dynamic bidding/pricing strategies
exhibit modest elasticity (<5 % uplift from 2 h to 4 h). Thus, a 2 h battery duration
strikes an optimal balance—capturing 66 %–96 % of the perfect-foresight benchmark across
strategies with a moderate 2–5 daily cycles—demonstrating how sizing decisions are as
pivotal as bidding approaches.

8.2 Revenue Drivers and Seasonal Dynamics in the Day-Ahead Market

It can be observed that revenue depends strongly on price volatility and spreads. Gas running
cost and CO price also play key roles: gas running cost’s R2 peaked at 0.76 before 2022, collapsed
to 0.08 in 2022 under Spain’s price cap, then recovered to 0.30 by 2024, mirroring the effect of
regulatory caps on spreads. Abundant hydro output smooths prices and limits arbitrage value.
In the spring, hydroelectric power has a minor negative coefficient, and in the winter, it is the
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second most influential driver with a high negative coefficient.

A correlation analysis over 2022–23 shows a moderate negative relationship between average
residual load and battery revenue (e.g. R = –0.3277, R² = 0.1074 in 2022), implying that when
total renewable output—especially hydro—is low, dawn and early-morning price spreads widen
and boost arbitrage value.

During spring, onshore wind capacity is the strongest positive driver (April’s high winds), while
hydro capacity carries a small negative coefficient, indicating that spring runoff smooths out price
swings. During Summer, solar’s share of load leads as the main positive driver—midday spreads
peak under intense sun—whereas abundant hydro and wind generation dampen those spreads,
reflected in their negative coefficients. During winter Hydro capacity again has a pronounced
negative effect on spreads (thanks to autumn–winter inflows), while the renewables-share remains
a positive driver because low solar and variable wind extend and deepen peak spreads.

8.2.1 Future Outlook: Integrated Strategies Market Participation

In future research, the following extensions and enhancements are planned:

• Geographical expansion: Extend the framework to additional countries (e.g. France,
Germany, Nordics) to compare aFRR and DAH price dynamics, market rules and regula-
tory caps across different jurisdictions.

• Multi-market stacking: Incorporate other flexibility markets (e.g. mFRR, FCR) and
develop co-optimization routines to stack revenue streams by simultaneously bidding energy
and capacity across multiple products.

• Curtailment scenarios: Model expected future curtailment constraints—driven by high
renewable penetration—and simulate their impact on BESS dispatch and revenue capture.

• Revenue forecasting: Build a scenario-based revenue forecaster using stochastic methods
to quantify expected returns under varying price volatilities scenarios, regulatory changes
and technology cost curves.

• Battery degradation modeling: Integrate cycle-based aging models to explicitly trade
off short-term revenue versus long-term capacity fade, optimizing bid strategies for total
lifecycle value.

• Advanced price and load forecasting: Leverage machine-learning techniques (e.g.
random forests, LSTM networks) to improve short-term price and residual-load forecasts,
feeding more accurate signals into our adaptive bidding algorithms.
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9 Alignment with Sustainable Development Goals (SDGs)

The Sustainable Development Goals (SDGs) are a set of 17 targets adopted by all United Na-
tions Member States in 2015. [56] This set of targets encompasses a wide range of challenges,
from ending poverty, inequality, relieving and minimizing the consequences of climate change,
environmental degradation, peace among nations, and justice among others.

Some of the SDGs are addressed in this project.

• 7 Ensure access to affordable, reliable, sustainable and modern energy for all.
As we highlighted the strategy of the European Commission is to reach an integrated
Electricity Market to protect the security of supply with a mostly renewable sources.

• 9 Build resilient infrastructure, promote inclusive and sustainable industrial-
ization and foster innovation. We are fostering indirectly the BESS systems innovation
as the sustainable energy supply

• 13 Take urgent action to combat climate change and its impacts Thanks to the
renewable energy we could mitigate the climate change consequences and reach the targets
set by the European Commission

Figure 12: Sustainable Development Goals (SDGs
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A Complementary Theoretical Foundations

A.1 Grid Converters

The integration of Battery Energy Storage Systems (BESS) into the electric grid is enabled by
power electronic converters, which interface the DC output of the batteries with the AC grid.
These converters play a critical role not only in energy exchange but also in providing fast-acting
ancillary services that support grid stability in the absence of traditional synchronous inertia
[51],[57].
The most commonly used converters in BESS applications are:

• Two-Level Voltage Source Inverters (VSI): These are widely used in small and
medium-scale applications. They use pulse-width modulation (PWM) to generate AC
waveforms and offer high switching frequency but suffer from increased switching losses.

• Multilevel Inverters (MLI): Including Neutral-Point Clamped (NPC) and Cascaded
H-Bridge topologies. These are better suited for medium- and high-voltage applications
due to reduced harmonic distortion and higher efficiency.

• Bidirectional Converters: These allow for both charging and discharging of the battery
and typically consist of a DC-DC converter (for state-of-charge control) and a DC-AC
inverter (for grid interaction) [58].

These converters rely on advanced control schemes to provide grid support functionalities. The
three most relevant strategies include:

• Virtual Synchronous Machine (VSM): This approach mathematically emulates the
dynamic behavior of synchronous generators, including inertia and damping, through soft-
ware control of the inverter. VSMs improve transient stability and synchronization with
the grid by implementing swing equations internally [26].

• Droop Control: Based on frequency-power and voltage-reactive power relationships, this
decentralized strategy allows multiple BESS units to share load without direct commu-
nication. It is particularly useful in microgrids or distributed systems and mimics the
load-sharing behavior of synchronous machines [58].

• Synthetic Inertia (Fast Frequency Response): This method provides a rapid response
to frequency deviations by detecting the rate of change of frequency (RoCoF) and injecting
active power accordingly. It acts within milliseconds and is highly effective in preventing
frequency collapse but requires precise tuning to avoid oscillations [26].

From a regulatory perspective, Germany is currently discussing opening its markets to allow
BESS to provide inertia-related services and is considering reforms to grid tariffs to reflect the
system value of these resources [28]. Such developments suggest an evolving recognition of the
strategic role of battery-based converters in maintaining system reliability in low-inertia grids.
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Table 13: Comparison of Converter Control Strategies in BESS

Control Strategy Response Time Nature Gen. Model Typical Application
Virtual Synchronous Machine Slow–medium Physical-like Yes Transmission-level grid in-

tegration
Droop Control Medium Emulated No Microgrids, distributed

coordination
Synthetic Inertia Fast (ms) Reactive No Fast Frequency Response

(FFR)
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B aFRR Analysis

B.1 Data Input

Figure 13: Marginal Energy aFRR Prices( €2/MWh) Over Time with Percentiles

Figure 14: Marginal Capacity aFRR prices ( €2/MW) over time with percentiles.
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Figure 15: Intraday prices ( €2/MWh) over time with percentiles.

B.2 aFRR Trading Strategies

Figure 16: Pricing Strategy for upward and downward bids (( €2/MWh)) with Up Premium =
50 y Dn Premium = 50
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B.2.1 Deterministic Strategy: Energy-Only Optimization

Figure 17: Evaluation of total value (immediate revenue plus future value) for all possible
actions at time step t = 9000, given a state of charge (SOC) of 1.01. The action space

corresponds to discrete power setpoints ranging from full discharge (-1 MW) to full charge (+1
MW). This plot illustrates how the dynamic programming algorithm assesses the optimal

decision at a given state.

Figure 18: Evaluation of total value (immediate revenue plus future value) for all possible
actions at time step t = 2500, given a state of charge (SOC) of 0.36. The action space

corresponds to discrete power setpoints ranging from full discharge (-1 MW) to full charge (+1
MW). This plot illustrates how the dynamic programming algorithm assesses the optimal

decision at a given state.

Master Thesis 48



Memory

Figure 19: Power and Energy in the Deterministic Strategy: Energy-Only Optimization for 2h
Battery

Figure 20: Cycles per day in the Deterministic Strategy: Energy-Only Optimization for 2h
Battery
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Figure 21: Energy Revenue in the Deterministic Strategy: Energy-Only Optimization for 2h
Battery

B.3 Deterministic Strategy: Energy + Capacity Optimization

Figure 22: Cycles per day in the Deterministic Strategy: Energy + Capacity Optimization for
2h Battery

Figure 23: Reserved Capacity in the Deterministic Strategy: Energy + Capacity Optimization
for 2h Battery
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Figure 24: Power and Energy in the Deterministic Strategy: Energy + Capacity Optimization
for 2h Battery

Figure 25: Energy and Capacity Revenue in the Deterministic Strategy: Energy + Capacity
Optimization for 2h Battery

B.4 Heuristic Dynamic Bidding – Energy-Only Strategy

Figure 26: Operational Variables Power(MW) and Energy(MWh) in the Energy Bidding
Strategy with no Premiums
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Table 14: Top 10 premium combinations ranked by mean cycles per day and annual revenue
(4h battery).

Up Premium (e/MWh) Down Premium (e/MWh) Mean Cycles/Day Annual Revenue (e/MW)

21 0 2.367 279,378.52
22 0 2.362 279,283.20
17 0 2.396 278,868.16
20 0 2.375 278,442.08
19 0 2.383 278,386.00
24 0 2.344 277,845.12
15 0 2.414 277,796.72
18 0 2.388 277,765.84
16 0 2.406 277,764.44
23 0 2.352 277,658.00

Table 15: Top 10 premium combinations ranked by mean cycles per day and annual revenue
under 2.05 cycles per day (1 hour battery).

Up Premium (e/MWh) Down Premium (e/MWh) Mean Cycles/Day Annual Revenue (e/MW)

99 67 2.034 122,770.64
98 67 2.036 122,650.96
97 67 2.045 122,608.96
96 67 2.047 122,198.16
95 67 2.049 121,950.28
99 68 1.987 120,800.52
98 68 1.985 120,524.80
97 68 1.992 120,281.56
96 68 1.994 119,858.60
95 68 1.998 119,810.52

B.5 Static Capacity Sensitivity with Price Premiums

Table 16: Top 10 premium combinations for Battery 2 ranked by final annual revenue and
1MW fixed in the capacity market

Up Premium (e/MWh) Down Premium (e/MWh) Mean Cycles/Day Annual Revenue (e/MW-year)

1 0 3.004 219 091.25
1 1 2.999 218 091.37
1 3 2.999 218 091.37
1 7 2.999 218 091.37
1 5 2.999 218 091.37
1 2 2.999 218 091.37
1 6 2.999 218 091.37
1 4 2.999 218 091.37
3 0 3.002 216 977.17
2 0 3.004 215 452.47
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Figure 27: 3D Revenue ( €/3months) sensitivity Analysis in Heuristic Dynamic Bidding –
Energy-Only Strategy for a 2h battery

Figure 28: Weekly Capacity Revenue for sensitivity analysis on Static Capacity Sensitivity with
Price Premiums
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Figure 29: Weekly Capacity Cost for sensitivity analysis on Static Capacity Sensitivity with
Price Premiums

B.6 Adaptive Strategy: Optimized Capacity and Price Premium Based on
Previous 3 Days

Figure 30: Power and Energy in the Adaptive Strategy: Optimized Capacity and Price
Premium Based on Previous 3 Days for 2h Battery
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Figure 32: UP/DN Premiums in the Capacity Auction in the Adaptive Strategy: Optimized
Capacity and Price Premium Based on Previous 3 Days for 2h Battery

Figure 31: Capacity Traded in the Capacity Auction in the Adaptive Strategy: Optimized
Capacity and Price Premium Based on Previous 3 Days for 2h Battery
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Figure 33: Monthly Revenue and Cycles per Day n the Capacity Auction in the Adaptive
Strategy: Optimized Capacity and Price Premium Based on Previous 3 Days for 2h Battery

B.7 Adaptive Strategy: Hourly Optimized Capacity and Price Premium
Based on the Previous Day

Figure 34: Power and Energy in the Adaptive Strategy: Hourly Optimized Capacity and Price
Premium Based on the Previous Day for 2h Battery

Master Thesis 56



Memory

Figure 35: Capacity Traded in the Capacity Auction in the Adaptive Strategy: Hourly
Optimized Capacity and Price Premium Based on the Previous Day for 2h Battery

Figure 36: Cycles per day and Revenue in the Adaptive Strategy: Hourly Optimized Capacity
and Price Premium Based on the Previous Day for 2h Battery

Master Thesis 57



Memory

Figure 37: Power and Energy in the Adaptive Strategy: Hourly Optimized Capacity and Price
Premium Based on the Previous Day for 4h Battery

Figure 38: Cycles per day and Revenue in the Adaptive Strategy: Hourly Optimized Capacity
and Price Premium Based on the Previous Day for 4h Battery
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Figure 39: Cycles per Day and Revenue in the Adaptive Strategy: Hourly Optimized Capacity
and Price Premium Based on the Previous Day for 1h Battery

Figure 40: Power and Energy in the Adaptive Strategy: Hourly Optimized Capacity and Price
Premium Based on the Previous Day for 2h Battery
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C Day-Ahead Market Analysis

C.1 Linear Regression

(a) 2019 (b) 2020

(c) 2021 (d) 2022

(e) 2023 (f) 2024

Figure 41: Annual linear regression coefficients for battery revenue prediction (2019–2024). The plots show the
most relevant market and technical drivers per year.

Table 17: Regression model performance by year (test set).

Year R2 MSE
2019 0.655 118.46( €2)
2020 0.788 45.81( €2)
2021 0.602 1825.33 ( €2)
2022 0.283 7705.51 ( €2)
2023 0.327 2983.11 ( €2)
2024 0.502 3424.33 ( €2)
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Month 1 – Scatter
R2: 0.722, MSE: 1735.71( €2)

Month 1 – Coefficients

Month 2 – Scatter
R2: 0.315, MSE: 1944.81( €2)

Month 2 – Coefficients

Month 3 – Scatter
R2: 0.409, MSE: 5402.84( €2)

Month 3 – Coefficients

Figure 42: Monthly regression results (January to March).
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Month 4 – Scatter
R2: 0.474, MSE: 6081.03( €2)

Month 4 – Coefficients

Month 5 – Scatter
R2: 0.606, MSE: 1108.57( €2)

Month 5 – Coefficients

Month 6 – Scatter
R2: 0.786, MSE: 579.56( €2)

Month 6 – Coefficients

Figure 43: Monthly regression results (April to June).
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Month 7 – Scatter
R2: 0.510, MSE: 526.80( €2)

Month 7 – Coefficients

Month 8 – Scatter
R2: 0.713, MSE: 1003.89( €2)

Month 8 – Coefficients

Month 9 – Scatter
R2: 0.752, MSE: 2678.83( €2)

Month 9 – Coefficients

Figure 44: Monthly regression results (July to September).
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Month 10 – Scatter
R2: 0.636, MSE: 2990.58( €2)

Month 10 – Coefficients

Month 11 – Scatter
R2: 0.510, MSE: 2955.47( €2)

Month 11 – Coefficients

Month 12 – Scatter
R2: 0.651, MSE: 7206.29( €2)

Month 12 – Coefficients

Figure 45: Monthly regression results (October to December).
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Table 18: Summary of monthly regression model performance (2019–2025).

Month R2 MSE(€2)

January 0.722 1735.71
February 0.315 1944.81
March 0.409 5402.84
April 0.474 6081.03
May 0.606 1108.57
June 0.786 579.56
July 0.510 526.80

August 0.713 1003.89
September 0.752 2678.83
October 0.636 2990.58

November 0.510 2955.47
December -0.651 7206.29

Figure 46: Installed Capacity of Renewable Energy Technology in Spain and expected growth
forecasted in the 2023 Yearly Adequacy Report by REE (TSO) [53]
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Figure 47: Typical monthly precipitation ranges in Spain (in mm/month). Autumn and early
winter months (October–December) show the highest rainfall levels, with values often

exceeding 100 mm. Data based on AEMET and historical climate averages from 1991–2020.

Figure 48: Average monthly wind speed in Spain.
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C.2 Gas Running Cost

Figure 49: Gas Price, CO2 Price and Gas Running Cost

Figure 50: Correlation between gas running cost and maximum, minimum, and average power
prices.
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Table 19: Correlation between Weekly Gas Running Cost and Battery Revenue (2019–2025)

Year Gas Metric Pearson Correlation Slope R2

2019 Average 0.0331 0.3725 0.0011
2019 Minimum -0.0031 -0.0339 0.0000
2019 Maximum 0.1365 1.6152 0.0186
2020 Average 0.7371 6.1898 0.5433
2020 Minimum 0.6911 5.8829 0.4777
2020 Maximum 0.7607 6.0987 0.5786
2021 Average 0.5912 2.8600 0.3495
2021 Minimum 0.5632 2.8040 0.3172
2021 Maximum 0.6008 2.8334 0.3609
2022 Average 0.0298 0.2042 0.0009
2022 Minimum -0.0044 -0.0301 0.0000
2022 Maximum 0.0896 0.6308 0.0080
2023 Average 0.3248 5.6090 0.1055
2023 Minimum 0.3363 6.0907 0.1131
2023 Maximum 0.3095 4.9936 0.0958
2024 Average 0.3049 8.2224 0.0929
2024 Minimum 0.3089 8.3538 0.0954
2024 Maximum 0.2994 8.0055 0.0896
2025 Average 0.3427 11.5566 0.1174
2025 Minimum 0.3468 11.8908 0.1203
2025 Maximum 0.3390 11.3332 0.1149

C.3 Power Prices

Figure 51: Correlation between the Weekly Average Power Price and the Battery Revenue
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Figure 52: Correlation between the Power Prices and Revenue

Figure 53: Correlation Between the Power Prices and the Minimum Residual Load
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Figure 54: Correlation Between the Power Prices and the Maximum Residual Load

Figure 55: Evolution of the weekly Solar Factor in Spain from 2023
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Figure 56: Evolution of the Weekly Wind Factor in Spain from 2023

Table 20: Regression results: Power prices vs. Battery revenue (2020–2022)

Metric 2020 2021 2022
Corr. Slope R2 Corr. Slope R2 Corr. Slope R2

Average 0.3365 2.64 0.1132 0.5172 2.49 0.2675 0.0322 0.29 0.0010
Minimum -0.2679 -1.91 0.0717 0.0106 0.07 0.0001 -0.4992 -4.27 0.2492
Maximum 0.6098 3.70 0.3719 0.6613 2.52 0.4374 0.3868 2.32 0.1496

Table 21: Regression results: Power prices vs. Battery revenue (2023–2025)

Metric 2023 2024 2025
Corr. Slope R2 Corr. Slope R2 Corr. Slope R2

Average -0.4077 -5.17 0.1662 0.2320 2.45 0.0538 0.1865 2.05 0.0348
Minimum -0.4846 -6.01 0.2348 -0.2692 -7.26 0.0725 0.0157 0.30 0.0002
Maximum 0.3234 3.70 0.1046 0.5493 5.10 0.3017 0.5839 5.66 0.3409
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C.4 Residual Load

Figure 57: Battery Revenue compared to Weekly Residual Load

Figure 58: Correlation between the Battery Revenue and the Residual Load

Master Thesis 72



Memory

Table 22: Regression results: Residual Load vs. Battery revenue (2020–2022)

Metric 2020 2021 2022
Corr. Slope R2 Corr. Slope R2 Corr. Slope R2

Average 0.0297 0.0007 0.0009 -0.1922 -0.0246 0.0369 -0.3277 -0.0581 0.1074
Minimum -0.3391 -0.0068 0.1150 -0.2027 -0.0212 0.0411 -0.4360 -0.0708 0.1901
Maximum 0.3461 0.0070 0.1198 0.1777 0.0176 0.0316 -0.0447 -0.0072 0.0020

Table 23: Regression results: Residual Load vs. Battery revenue (2023–2025)

Metric 2023 2024 2025
Corr. Slope R2 Corr. Slope R2 Corr. Slope R2

Average -0.3777 -0.0429 0.1426 -0.0175 -0.0024 0.0003 0.0923 0.0140 0.0085
Minimum -0.2914 -0.0401 0.0849 -0.0332 -0.0064 0.0011 -0.0696 -0.0171 0.0048
Maximum -0.2697 -0.0311 0.0728 -0.0138 -0.0015 0.0002 0.2468 0.0259 0.0609

C.5 Load

Figure 59: Battery Revenue compared to Weekly Load
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Figure 60: Correlation between the Battery Revenue and Load

Table 24: Regression results: Load vs. battery revenue (2020–2022)

Metric 2020 2021 2022
Corr. Slope R2 Corr. Slope R2 Corr. Slope R2

Average 0.1733 0.0047 0.0300 -0.0815 -0.0160 0.0066 -0.5009 -0.1275 0.2509
Minimum 0.0663 0.0032 0.0044 -0.1389 -0.0448 0.0193 -0.5538 -0.1927 0.3067
Maximum 0.1429 0.0031 0.0204 -0.0395 -0.0052 0.0016 -0.4084 -0.0849 0.1668

Table 25: Regression results: Load vs. battery revenue (2023–2025)

Metric 2023 2024 2025
Corr. Slope R2 Corr. Slope R2 Corr. Slope R2

Average -0.2611 -0.0401 0.0682 -0.1929 -0.0400 0.0372 -0.0185 -0.0031 0.0003
Minimum -0.2427 -0.0600 0.0589 -0.1778 -0.0565 0.0316 -0.2153 -0.0104 0.0463
Maximum -0.1791 -0.0214 0.0321 -0.2708 -0.0476 0.0733 0.0470 0.0064 0.0022
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D Codes

D.1 aFRR Trading Strategies Codes

D.1.1 Deterministic benchmark (energy only)

1 import numpy as np
2 from dataclasses import dataclass
3

4 @dataclass
5 class Battery:
6 p_min_mw: float
7 p_max_mw: float
8 e_min_mwh: float
9 e_max_mwh: float

10 eff_charge: float
11 eff_discharge: float
12 max_cycles_per_day: float
13

14 battery = Battery(
15 p_min_mw=1.0,
16 p_max_mw=1.0,
17 e_min_mwh=0.0,
18 e_max_mwh=4.0,
19 eff_charge=0.85,
20 eff_discharge=1.0,
21 max_cycles_per_day=2.0
22 )
23

24 T = len(up_marginal_price_vector)
25

26 energy_step = 0.05
27 energy_levels = np.round(np.arange(
28 battery.e_min_mwh,
29 battery.e_max_mwh + energy_step,
30 energy_step
31 ), 5)
32 n_levels = len(energy_levels)
33

34 V = np.zeros((T + 1, n_levels))
35 policy = np.zeros((T, n_levels))
36

37 actions = np.round(np.arange(
38 -battery.p_max_mw,
39 battery.p_max_mw + energy_step,
40 energy_step
41 ), 5)
42

43 for t in reversed(range(T)):
44 up_price = up_marginal_price_vector[t]
45 down_price = dn_marginal_price_vector[t]
46 for idx, energy in enumerate(energy_levels):
47 best_value = -np.inf
48 best_action = 0.0
49 for action in actions:
50 if action > 0:
51 post_energy = energy + (action * battery.eff_charge) * 0.25
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52 immediate_revenue = -action * down_price * 0.25
53 elif action < 0:
54 post_energy = energy + (action / battery.eff_discharge) * 0.25
55 immediate_revenue = -action * up_price * 0.25
56 else:
57 post_energy = energy
58 immediate_revenue = 0.0
59

60 if battery.e_min_mwh <= post_energy <= battery.e_max_mwh:
61 new_idx = int(round((post_energy - battery.e_min_mwh) / energy_step))
62 future_value = V[t + 1, new_idx]
63 total_value = immediate_revenue + future_value
64 if total_value > best_value:
65 best_value = total_value
66 best_action = action
67

68 V[t, idx] = best_value
69 policy[t, idx] = best_action
70

71 current_energy = battery.e_max_mwh * 0.5
72 soc_history = [current_energy]
73 action_history = []
74 revenue_history = []
75 cycles_history = []
76 rolling_cycles_history = []
77

78 for t in range(T):
79 idx = int(round((current_energy - battery.e_min_mwh) / energy_step))
80 action = policy[t, idx]
81 up_price = up_marginal_price_vector[t]
82 down_price = dn_marginal_price_vector[t]
83

84 if action > 0:
85 energy_delta = (action * battery.eff_charge) * 0.25
86 immediate_revenue = -action * down_price * 0.25
87 elif action < 0:
88 energy_delta = (action / battery.eff_discharge) * 0.25
89 immediate_revenue = -action * up_price * 0.25
90 else:
91 energy_delta = 0.0
92 immediate_revenue = 0.0
93

94 current_energy = np.clip(
95 current_energy + energy_delta,
96 battery.e_min_mwh,
97 battery.e_max_mwh
98 )
99 soc_history.append(current_energy)

100 action_history.append(action)
101 revenue_history.append(immediate_revenue)
102

103 cycle_contrib = (
104 -action * 0.25
105 ) / (battery.e_max_mwh * battery.eff_discharge) if action < 0 else 0.0
106 cycles_history.append(cycle_contrib)
107 if t < 96:
108 rolling_cycles = sum(cycles_history)
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109 else:
110 rolling_cycles = sum(cycles_history[t-95:t+1])
111 rolling_cycles_history.append(rolling_cycles)
112

113 total_revenue = sum(revenue_history)

D.1.2 Deterministic benchmark (energy + capacity)

1 import numpy as np
2 from dataclasses import dataclass
3

4 @dataclass
5 class Battery:
6 p_min_mw: float
7 p_max_mw: float
8 e_min_mwh: float
9 e_max_mwh: float

10 eff_charge: float
11 eff_discharge: float
12 max_cycles_per_day: float
13

14 @dataclass
15 class CapacityMarket:
16 cap_min_mw: float
17 cap_max_mw: float
18 step: float
19

20 battery_2h = Battery(
21 p_min_mw=1.0,
22 p_max_mw=1.0,
23 e_min_mwh=0.0,
24 e_max_mwh=4.0,
25 eff_charge=0.85,
26 eff_discharge=1.0,
27 max_cycles_per_day=2.0
28 )
29

30 capacity_2h = CapacityMarket(
31 cap_min_mw=0.0,
32 cap_max_mw=1.0,
33 step=0.05
34 )
35

36 n_steps = 2880
37 energy_step = 0.05
38 energy_levels = np.round(
39 np.arange(battery_2h.e_min_mwh, battery_2h.e_max_mwh + energy_step, energy_step),
40 5
41 )
42 n_levels = len(energy_levels)
43 reserved_capacity_levels = np.round(
44 np.arange(capacity_2h.cap_min_mw, capacity_2h.cap_max_mw + capacity_2h.step,

capacity_2h.step),
45 5
46 )
47
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48 # DP tables\ nV = np.zeros((n_steps + 1, n_levels))
49 policy_reserved = np.zeros((n_steps, n_levels))
50 policy_power = np.zeros((n_steps, n_levels))
51

52 power_actions = np.round(
53 np.arange(-battery_2h.p_max_mw, battery_2h.p_max_mw + energy_step, energy_step),
54 5
55 )
56

57 for t in reversed(range(n_steps)):
58 up_price = up_marginal_price_vector[t]
59 down_price = dn_marginal_price_vector[t]
60 capacity_price = up_marginal_capacity_price[t]
61 imbalance_price = up_marginal_imbalance_price[t]
62

63 for idx, energy in enumerate(energy_levels):
64 best_value = -np.inf
65 best_reserved = 0.0
66 best_action = 0.0
67

68 for reserved in reserved_capacity_levels:
69 min_energy = reserved
70 if energy < min_energy:
71 needed_energy = min_energy - energy
72 imbalance_cost = needed_energy * imbalance_price
73 else:
74 needed_energy = 0.0
75 imbalance_cost = 0.0
76

77 capacity_rev = reserved * capacity_price * 0.25
78

79 for action in power_actions:
80 if action > 0:
81 delta = action * battery_2h.eff_charge * 0.25
82 energy_rev = -action * down_price * 0.25
83 elif action < 0:
84 delta = action / battery_2h.eff_discharge * 0.25
85 energy_rev = -action * up_price * 0.25
86 else:
87 delta = 0.0
88 energy_rev = 0.0
89

90 post_energy = energy + delta + needed_energy
91 if battery_2h.e_min_mwh <= post_energy <= battery_2h.e_max_mwh:
92 new_idx = int(round((post_energy - battery_2h.e_min_mwh) / energy_step))
93 future_value = V[t + 1, new_idx]
94 total = capacity_rev + energy_rev - imbalance_cost + future_value
95

96 if total > best_value:
97 best_value = total
98 best_reserved = reserved
99 best_action = action

100

101 V[t, idx] = best_value
102 policy_reserved[t, idx] = best_reserved
103 policy_power[t, idx] = best_action
104
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105 # Simulation using optimal policy
106 current_energy = battery_2h.e_max_mwh * 0.5
107 soc_history = [current_energy]
108 power_history = []
109 reserved_history = []
110 revenue_history = []
111 capacity_rev_history = []
112 imbalance_cost_history = []
113 cycles_history = []
114 rolling_cycles_history = []
115

116 for t in range(n_steps):
117 idx = int(round((current_energy - battery_2h.e_min_mwh) / energy_step))
118 reserved = policy_reserved[t, idx]
119 action = policy_power[t, idx]
120

121 up_price = up_marginal_price_vector[t]
122 down_price = dn_marginal_price_vector[t]
123 cap_price = up_marginal_capacity_price[t]
124 imb_price = up_marginal_imbalance_price[t]
125

126 if current_energy < reserved:
127 needed_energy = reserved - current_energy
128 imb_cost = needed_energy * imb_price
129 else:
130 needed_energy = 0.0
131 imb_cost = 0.0
132

133 cap_rev = reserved * cap_price * 0.25
134

135 if action > 0:
136 delta = action * battery_2h.eff_charge * 0.25
137 energy_rev = -action * down_price * 0.25
138 elif action < 0:
139 delta = action / battery_2h.eff_discharge * 0.25
140 energy_rev = -action * up_price * 0.25
141 else:
142 delta = 0.0
143 energy_rev = 0.0
144

145 total_rev = cap_rev + energy_rev - imb_cost
146

147 current_energy = np.clip(
148 current_energy + delta + needed_energy,
149 battery_2h.e_min_mwh,
150 battery_2h.e_max_mwh
151 )
152

153 soc_history.append(current_energy)
154 reserved_history.append(reserved)
155 power_history.append(action)
156 revenue_history.append(total_rev)
157 capacity_rev_history.append(cap_rev)
158 imbalance_cost_history.append(imb_cost)
159

160 cycle_contrib = (-action * 0.25) / (battery_2h.e_max_mwh * battery_2h.eff_discharge) if
action < 0 else 0.0
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161 cycles_history.append(cycle_contrib)
162

163 if t < 96:
164 rolling = sum(cycles_history)
165 else:
166 rolling = sum(cycles_history[t-95:t+1])
167

168 rolling_cycles_history.append(rolling)
169

170 total_revenue = sum(revenue_history)
171 print(f"Total revenue: {total_revenue:.2f} ")

D.1.3 Heuristic: Energy-only participation

1 from dataclasses import dataclass
2 import numpy as np
3

4 @dataclass
5 class Battery:
6 p_min_mw: float
7 p_max_mw: float
8 e_min_mwh: float
9 e_max_mwh: float

10 eff_charge: float
11 eff_discharge: float
12 max_cycles_per_day: float
13

14 battery_2h = Battery(
15 p_min_mw=1.0,
16 p_max_mw=1.0,
17 e_min_mwh=0.0,
18 e_max_mwh=2.0,
19 eff_charge=0.85,
20 eff_discharge=1.0,
21 max_cycles_per_day=2.0
22 )
23

24 n_qhs = len(dn_marginal_price_vector)
25 n_up_premiums = int(up_percentiles[3] - up_percentiles[1])
26 n_down_premiums = n_up_premiums
27

28 up_premiums = np.arange(n_up_premiums)
29 dn_premiums = np.arange(n_down_premiums)
30

31 final_revenue = np.zeros((n_up_premiums, n_down_premiums))
32 mean_cycles_day = np.zeros((n_up_premiums, n_down_premiums))
33

34 for i_up, up_p in enumerate(up_premiums):
35 for j_dn, dn_p in enumerate(dn_premiums):
36 e_current = battery_2h.e_max_mwh * 0.5
37 e_history = np.zeros(n_qhs)
38 revenue = np.zeros(n_qhs)
39 revenue_accum = np.zeros(n_qhs)
40 cycles_per_day = np.zeros(n_qhs)
41 verify_cycles = np.zeros(n_qhs)
42
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43 for t in range(n_qhs):
44 if t < 8:
45 up_price = np.min(up_marginal_price[:t+1]) + up_p
46 dn_price = np.max(dn_marginal_price[:t+1]) - dn_p
47 else:
48 up_price = np.min(up_marginal_price[t-8:t]) + up_p
49 dn_price = np.max(dn_marginal_price[t-8:t]) - dn_p
50

51 up_volume = 0 if t == 0 else min(
52 battery_2h.p_max_mw,
53 e_history[t-1] * 4 * battery_2h.eff_discharge
54 )
55 dn_volume = (battery_2h.p_max_mw if t == 0 else min(
56 battery_2h.p_max_mw,
57 (battery_2h.e_max_mwh - e_history[t-1]) * 4 / battery_2h.eff_charge
58 ))
59

60 p_up = up_volume if up_price <= up_marginal_price[t] else 0
61 p_dn = dn_volume if dn_price >= dn_marginal_price[t] else 0
62

63 if p_up > 0:
64 p_dn = 0
65 elif p_dn > 0:
66 p_up = 0
67

68 p_set = p_dn - p_up
69 e_current = np.clip(
70 e_current + (max(p_set, 0) * battery_2h.eff_charge + min(p_set, 0) /

battery_2h.eff_discharge) * 0.25,
71 battery_2h.e_min_mwh,
72 battery_2h.e_max_mwh
73 )
74 e_history[t] = e_current
75

76 if p_set < 0:
77 cycles_per_day[t] = -p_set * 0.25 / (battery_2h.e_max_mwh *

battery_2h.eff_discharge)
78 verify_cycles[t] = np.sum(cycles_per_day[max(0, t-95):t+1])
79

80 revenue[t] = (p_up * up_marginal_price[t] - p_dn * dn_marginal_price[t]) * 0.25
81 revenue_accum[t] = revenue_accum[t-1] + revenue[t] if t > 0 else revenue[t]
82

83 final_revenue[i_up, j_dn] = revenue_accum[-1]
84 mean_cycles_day[i_up, j_dn] = np.mean(verify_cycles)

D.1.4 Heuristic: Energy and Constant Capacity participation

1 from dataclasses import dataclass
2 import numpy as np
3

4 @dataclass
5 class Battery:
6 p_min_mw: float
7 p_max_mw: float
8 e_min_mwh: float
9 e_max_mwh: float
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10 eff_charge: float
11 eff_discharge: float
12 max_cycles_per_day: float
13

14 @dataclass
15 class Capacity:
16 cap_min_mw: float
17 cap_max_mw: float
18 step: float
19

20 def simulate_battery_strategy_1(
21 battery: Battery,
22 capacity_conf: Capacity,
23 up_marginal_price,
24 down_marginal_price,
25 up_marginal_capacity_price,
26 up_marginal_imbalance_price,
27 n_steps,
28 n_up_premiums=8,
29 n_down_premiums=8
30 ):
31 n_cases = int((capacity_conf.cap_max_mw - capacity_conf.cap_min_mw) / capacity_conf.step) +

1
32 cap_values = np.linspace(capacity_conf.cap_min_mw, capacity_conf.cap_max_mw, n_cases)
33 up_premium_values = np.arange(n_up_premiums)
34 down_premium_values = np.arange(n_down_premiums)
35

36 final_revenue = np.zeros((n_up_premiums, n_down_premiums, n_cases))
37 mean_cycles_day = np.zeros((n_up_premiums, n_down_premiums, n_cases))
38 final_revenue_cap = np.zeros((n_up_premiums, n_down_premiums, n_cases))
39 final_capacity_cost = np.zeros((n_up_premiums, n_down_premiums, n_cases))
40

41 for idx_case, cap in enumerate(cap_values):
42 for i_up, up_p in enumerate(up_premium_values):
43 for j_dn, dn_p in enumerate(down_premium_values):
44 e_current = battery.e_max_mwh / 2
45 revenue = np.zeros(n_steps)
46 revenue_accum = np.zeros(n_steps)
47 capacity_cost = np.zeros(n_steps)
48 revenue_capacity_accum = np.zeros(n_steps)
49 cycles_per_day = np.zeros(n_steps)
50

51 for t in range(n_steps):
52 cheap_down_threshold = 0 if t < 2 else

np.percentile(down_marginal_price[:t-1], 25)
53 if t < 8:
54 up_price = np.min(up_marginal_price[:t+1]) + up_p
55 down_price = np.max(down_marginal_price[:t+1]) - dn_p
56 else:
57 up_price = np.min(up_marginal_price[t-8:t]) + up_p
58 down_price = np.max(down_marginal_price[t-8:t]) - dn_p
59

60 up_volume = min(battery.p_max_mw, max(cap, e_current * 4 *
battery.eff_discharge))

61 down_volume = min(battery.p_max_mw, (battery.e_max_mwh - e_current) * 4 /
battery.eff_charge)

62
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63 p_up = up_volume if up_price <= up_marginal_price[t] else 0
64 p_dn = down_volume if down_price >= down_marginal_price[t] else 0
65

66 if p_up and p_dn:
67 p_dn = 0
68

69 p_set = p_dn - p_up
70 e_inter = 0
71 if e_current - p_up * 0.25 < cap * 0.25 / battery.eff_discharge and p_set < 0:
72 e_inter = cap * 0.25 / battery.eff_discharge - (e_current - p_up * 0.25 /

battery.eff_discharge)
73 capacity_cost[t] = up_marginal_imbalance_price[t] * e_inter
74

75 p_mw = p_set + e_inter * 4
76 e_current = np.clip(
77 e_current + (max(p_set, 0) * battery.eff_charge + min(p_set, 0) /

battery.eff_discharge) * 0.25 + e_inter,
78 battery.e_min_mwh,
79 battery.e_max_mwh
80 )
81

82 cycles_per_day[t] = -p_mw * 0.25 / (battery.e_max_mwh *
battery.eff_discharge) if p_mw < 0 else 0

83 verify_cycles = np.sum(cycles_per_day[max(0, t-95):t+1])
84

85 revenue[t] = (
86 p_up * up_marginal_price[t] - p_dn * down_marginal_price[t]
87 ) * 0.25 + cap * up_marginal_capacity_price[t] * 0.25 - capacity_cost[t]
88 revenue_accum[t] = revenue_accum[t-1] + revenue[t] if t > 0 else revenue[t]
89 revenue_capacity_accum[t] = revenue_capacity_accum[t-1] + cap *

up_marginal_capacity_price[t] * 0.25 if t > 0 else cap *
up_marginal_capacity_price[t] * 0.25

90

91 final_revenue[i_up, j_dn, idx_case] = revenue_accum[-1]
92 mean_cycles_day[i_up, j_dn, idx_case] = np.mean(verify_cycles)
93 final_revenue_cap[i_up, j_dn, idx_case] = revenue_capacity_accum[-1]
94 final_capacity_cost[i_up, j_dn, idx_case] = np.sum(capacity_cost)
95

96 return final_revenue, mean_cycles_day, final_revenue_cap, final_capacity_cost, cap_values
97

98 # Example setup
99 battery_1h = Battery(1, 1, 0, 1, 0.85, 1, 2.0)

100 battery_2h = Battery(1, 1, 0, 2, 0.85, 1, 2.0)
101 battery_4h = Battery(1, 1, 0, 4, 0.85, 1, 2.0)
102 capacity_conf = Capacity(0.0, 1.0, 0.05)
103 n_steps = x

D.1.5 Adaptive Strategy: Optimized Capacity and Price Premium Based on Pre-
vious 3 Days

1 from dataclasses import dataclass
2 import numpy as np
3 import pandas as pd
4

5 @dataclass
6 class Battery:
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7 p_min_mw: float
8 p_max_mw: float
9 e_min_mwh: float

10 e_max_mwh: float
11 eff_charge: float
12 eff_discharge: float
13 max_cycles_per_day: float
14

15 @dataclass
16 class Capacity:
17 cap_min_mw: float
18 cap_max_mw: float
19 step: float
20

21 battery_1h = Battery(
22 p_min_mw=1.0,
23 p_max_mw=1.0,
24 e_min_mwh=0.0,
25 e_max_mwh=1.0,
26 eff_charge=0.85,
27 eff_discharge=1.0,
28 max_cycles_per_day=2.0
29 )
30

31 battery_2h = Battery(
32 p_min_mw=1.0,
33 p_max_mw=1.0,
34 e_min_mwh=0.0,
35 e_max_mwh=2.0,
36 eff_charge=0.85,
37 eff_discharge=1.0,
38 max_cycles_per_day=2.0
39 )
40

41 capacity_2h = Capacity(
42 cap_min_mw=0.0,
43 cap_max_mw=1.0,
44 step=0.05
45 )
46

47 n_steps = 3020
48

49 e_current_mwh = battery_2h.e_max_mwh * 0.5
50 p_mw = np.zeros(n_steps)
51 e_mwh = np.zeros(n_steps)
52 cycles_per_day = np.zeros(n_steps)
53 verify_cycles_per_day = np.zeros(n_steps)
54 p_set_mw = np.zeros(n_steps)
55 e_intermediate = np.zeros(n_steps)
56 p_up_mw = np.zeros(n_steps)
57 p_down_mw = np.zeros(n_steps)
58

59 revenue = np.zeros(n_steps)
60 revenue_accum = np.zeros(n_steps)
61 up_bid_price = np.zeros(n_steps)
62 down_bid_price = np.zeros(n_steps)
63 up_bid_volume = np.zeros(n_steps)
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64 down_bid_volume = np.zeros(n_steps)
65 cost_charge = np.zeros(n_steps)
66

67 capacity_cost = np.zeros(n_steps)
68 e_no_imbalance = np.zeros(n_steps)
69 e_threshold = np.zeros(n_steps)
70 revenue_capacity = np.zeros(n_steps)
71 final_revenue_capacity = np.zeros(n_steps)
72 revenue_accum_capacity = np.zeros(n_steps)
73

74 n_cases = int((capacity_2h.cap_max_mw - capacity_2h.cap_min_mw) / capacity_2h.step) + 1
75 capacity_cases = np.zeros(n_cases)
76

77 n_premiums = int(up_percentiles[3] - up_percentiles[1])
78 up_premiums = np.zeros(n_steps)
79 down_premiums = np.zeros(n_steps)
80

81 revenue_matrix = np.zeros((n_premiums, n_cases))
82 cheap_down_threshold = np.zeros(n_steps)
83 counter = 0
84 flag = 0
85

86 for m in range(n_steps):
87 if time_20_00_vector[m] == 1 or flag == 1:
88 flag = 0
89 counter = 0
90 for x in range(n_premiums):
91 up_premiums[x] = x * 3
92 down_premiums[x] = x * 1
93 for n in range(n_cases):
94 capacity_cases[n] = capacity_2h.cap_min_mw + n * capacity_2h.step
95 for qh in range(max(1, m - 96), m):
96 if qh < 8:
97 up_bid_price[qh] = np.min(up_marginal_price[:qh+1]) + up_premiums[x]
98 down_bid_price[qh] = np.max(down_marginal_price[:qh+1]) - down_premiums[x]
99 else:

100 up_bid_price[qh] = np.min(up_marginal_price[qh-8:qh]) + up_premiums[x]
101 down_bid_price[qh] = np.max(down_marginal_price[qh-8:qh]) -

down_premiums[x]
102

103 up_bid_volume[qh] = min(battery_2h.p_max_mw,
104 max(capacity_cases[n], e_mwh[qh-1] * 4 *

battery_2h.eff_discharge))
105 down_bid_volume[qh] = min(battery_2h.p_max_mw,
106 (battery_2h.e_max_mwh - e_mwh[qh-1]) * 4 /

battery_2h.eff_charge)
107

108 if up_bid_price[qh] <= up_marginal_price[qh] and up_bid_volume[qh] > 0:
109 p_up_mw[qh] = up_bid_volume[qh]
110 elif down_bid_price[qh] >= down_marginal_price[qh] and down_bid_volume[qh] >

0:
111 p_down_mw[qh] = down_bid_volume[qh]
112

113 if p_up_mw[qh] > 0:
114 p_down_mw[qh] = 0
115 elif p_down_mw[qh] > 0:
116 p_up_mw[qh] = 0
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117

118 p_set_mw[qh] = p_down_mw[qh] - p_up_mw[qh]
119 e_no_imbalance[qh] = e_mwh[qh-1] - p_up_mw[qh] * 0.25
120 e_threshold[qh] = capacity_cases[n] * 0.25 / battery_2h.eff_discharge
121

122 if e_no_imbalance[qh] < e_threshold[qh] and p_set_mw[qh] < 0:
123 e_intermediate[qh] = e_threshold[qh] - (e_mwh[qh-1] - p_up_mw[qh] * 0.25)
124 capacity_cost[qh] = up_marginal_imbalance_price[qh] * e_intermediate[qh]
125 else:
126 e_intermediate[qh] = 0
127

128 p_mw[qh] = p_set_mw[qh] + e_intermediate[qh] * 4
129 e_current = e_mwh[qh-1] + \
130 (max(p_set_mw[qh], 0) * battery_2h.eff_charge + min(p_set_mw[qh], 0) /

battery_2h.eff_discharge) * 0.25 + e_intermediate[qh]
131 e_current = max(min(e_current, battery_2h.e_max_mwh), battery_2h.e_min_mwh)
132

133 if p_mw[qh] < 0:
134 cycles_per_day[qh] = -p_mw[qh] * 0.25 / (battery_2h.e_max_mwh *

battery_2h.eff_discharge)
135 else:
136 cycles_per_day[qh] = 0
137

138 verify_cycles_per_day[qh] = np.sum(cycles_per_day[max(0, qh-95):qh+1])
139

140 e_mwh[qh] = e_current
141 revenue[qh] = (p_up_mw[qh] * up_marginal_price[qh] - p_down_mw[qh] *

down_marginal_price[qh]) * 0.25 + \
142 capacity_cases[n] * up_marginal_capacity_price[qh] * 0.25 -

capacity_cost[qh]
143 revenue_capacity[qh] = capacity_cases[n] * up_marginal_capacity_price[qh] *

0.25
144 final_revenue_capacity[qh] = revenue_capacity[qh] - capacity_cost[qh]
145 revenue_accum[qh] = revenue_accum[qh-1] + revenue[qh] if qh > 0 else

revenue[qh]
146

147 revenue_matrix[x, n] = revenue_accum[m-1]
148

149 best_x, best_n = np.unravel_index(np.argmax(revenue_matrix, axis=None),
revenue_matrix.shape)

150 optimal_capacity = capacity_cases[best_n]
151 optimal_up_premium = best_x * 3
152 optimal_down_premium = best_x * 1
153

154 for f in range(m, min(m + 96, n_steps)):
155 capacity_cases[f] = optimal_capacity
156 up_premiums[f] = optimal_up_premium
157 down_premiums[f] = optimal_down_premium
158

159 counter += 1
160 if counter == 96:
161 flag = 1
162 # Additional simulation steps continue here...
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D.1.6 Adaptive Strategy: Hourly Optimized Capacity and Price Premium Based
on the Previous Day

1 from dataclasses import dataclass
2 import numpy as np
3 import pandas as pd
4

5 @dataclass
6 class Battery:
7 p_min_mw: float
8 p_max_mw: float
9 e_min_mwh: float

10 e_max_mwh: float
11 eff_charge: float
12 eff_discharge: float
13 max_cycles_per_day: float
14

15 @dataclass
16 class Capacity:
17 cap_min_mw: float
18 cap_max_mw: float
19 step: float
20

21 battery_2h = Battery(
22 p_max_mw=1.0,
23 p_min_mw=1.0,
24 e_min_mwh=0.0,
25 e_max_mwh=4.0,
26 eff_charge=0.85,
27 eff_discharge=1.0,
28 max_cycles_per_day=2.0
29 )
30 capacity_2h = Capacity(cap_min_mw=0.0, cap_max_mw=1.0, step=0.05)
31

32 n_steps = 1500
33

34 e_current_mwh = battery_2h.e_max_mwh * 0.5
35 p_mw = np.zeros(n_steps)
36 e_mwh = np.zeros(n_steps)
37 cycles_per_day = np.zeros(n_steps)
38 verify_cycles_per_day = np.zeros(n_steps)
39 p_set_mw = np.zeros(n_steps)
40 p_up_mw = np.zeros(n_steps)
41 p_down_mw = np.zeros(n_steps)
42

43 revenue = np.zeros(n_steps)
44 revenue_accum = np.zeros(n_steps)
45 up_bid_price = np.zeros(n_steps)
46 down_bid_price = np.zeros(n_steps)
47 up_bid_volume = np.zeros(n_steps)
48 down_bid_volume = np.zeros(n_steps)
49 cost_charge = np.zeros(n_steps)
50

51 capacity_cost = np.zeros(n_steps)
52 e_no_imbalance = np.zeros(n_steps)
53 e_threshold = np.zeros(n_steps)
54 revenue_capacity = np.zeros(n_steps)
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55 final_revenue_capacity = np.zeros(n_steps)
56 revenue_accum_capacity = np.zeros(n_steps)
57

58 capacity_per_hour = np.zeros(24)
59 up_premium_per_hour = np.zeros(24)
60 down_premium_per_hour = np.zeros(24)
61

62 cheap_down_threshold = np.zeros(n_steps)
63 counter = 0
64 flag = 0
65

66 for m in range(n_steps):
67 if time_20_00_vector[m] == 1 or flag == 1:
68 flag = 0
69 counter = 0
70 n_cases = int((capacity_2h.cap_max_mw - capacity_2h.cap_min_mw) / capacity_2h.step) + 1
71 cap_range = np.linspace(capacity_2h.cap_min_mw, capacity_2h.cap_max_mw, n_cases)
72 n_premium = int(up_percentiles[3] - up_percentiles[1])
73 up_premium_range = np.array([i * 3 for i in range(n_premium)])
74 down_premium_range = np.array([i for i in range(n_premium)])
75

76 for h in range(24):
77 best_revenue = -np.inf
78 best_cap = 0.0
79 best_up_premium = 0.0
80 best_down_premium = 0.0
81

82 start_step = m - 96 + h * 4
83 end_step = start_step + 4
84

85 for idx in range(n_cases):
86 cap_test = cap_range[idx]
87 for x in range(n_premium):
88 up_prem = up_premium_range[x]
89 down_prem = down_premium_range[x]
90 e_tmp = e_mwh[start_step-1] if start_step > 0 else battery_2h.e_max_mwh * 0.5
91 revenue_sum = 0.0
92

93 for qh in range(start_step, end_step):
94 if qh < 0 or qh >= m:
95 continue
96 if qh < 8:
97 up_price = min(up_marginal_price[:qh+1]) + up_prem
98 down_price = max(down_marginal_price[:qh+1]) - down_prem
99 else:

100 up_price = min(up_marginal_price[qh-8:qh]) + up_prem
101 down_price = max(down_marginal_price[qh-8:qh]) - down_prem
102

103 up_vol = min(battery_2h.p_max_mw, max(cap_test, e_tmp * 4 *
battery_2h.eff_discharge))

104 down_vol = min(battery_2h.p_max_mw, (battery_2h.e_max_mwh - e_tmp) * 4 /
battery_2h.eff_charge)

105

106 p_up = up_vol if up_price <= up_marginal_price[qh] and up_vol > 0 else 0
107 p_down = down_vol if down_price >= down_marginal_price[qh] and down_vol >

0 else 0
108

Master Thesis 88



Memory

109 if p_up > 0:
110 p_down = 0
111 elif p_down > 0:
112 p_up = 0
113

114 revenue_qh = (p_up * up_marginal_price[qh] - p_down *
down_marginal_price[qh]) * 0.25 + cap_test *
up_marginal_capacity_price[qh] * 0.25

115 revenue_sum += revenue_qh
116

117 e_tmp += (max(p_up, 0) * battery_2h.eff_charge + min(p_up, 0) /
battery_2h.eff_discharge) * 0.25

118 e_tmp = max(min(e_tmp, battery_2h.e_max_mwh), battery_2h.e_min_mwh)
119

120 if revenue_sum > best_revenue:
121 best_revenue = revenue_sum
122 best_cap = cap_test
123 best_up_premium = up_prem
124 best_down_premium = down_prem
125

126 capacity_per_hour[h] = best_cap
127 up_premium_per_hour[h] = best_up_premium
128 down_premium_per_hour[h] = best_down_premium
129

130 for f in range(m, min(m + 96, len(time_20_00_vector))):
131 hour_idx = (f - m) // 4
132 capacity[f] = capacity_per_hour[hour_idx]
133 up_premium[f] = up_premium_per_hour[hour_idx]
134 down_premium[f] = down_premium_per_hour[hour_idx]
135

136 counter += 1
137 if counter == 96:
138 flag = 1
139

140 if m > 1:
141 cheap_down_threshold[m] = np.percentile(down_marginal_price[:m-1], 25)
142 if m < 8:
143 up_bid_price[m] = min(up_marginal_price[:m+1]) + up_premium[m]
144 down_bid_price[m] = max(down_marginal_price[:m+1]) - down_premium[m]
145 else:
146 up_bid_price[m] = min(up_marginal_price[m-8:m]) + up_premium[m]
147 down_bid_price[m] = max(down_marginal_price[m-8:m]) - down_premium[m]
148

149 if m > 1:
150 if e_mwh[m-1] < 0.4 * battery_2h.e_max_mwh or down_marginal_price.iloc[-1] >

cheap_down_threshold[m]:
151 flag = 1
152 down_bid_price[m] = 1000
153 if np.all(e_mwh[m-13:m-1] == battery_2h.e_max_mwh):
154 up_bid_price[m] = -1000
155 flag = 0
156

157 up_bid_volume[m] = min(battery_2h.p_max_mw, max(capacity[f], e_mwh[m-1] * 4 *
battery_2h.eff_discharge))

158 down_bid_volume[m] = min(battery_2h.p_max_mw, (battery_2h.e_max_mwh - e_mwh[m-1]) * 4 /
battery_2h.eff_charge)

159
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160 if m > 1:
161 prev_cycles = verify_cycles_per_day[m-1]
162 if prev_cycles > battery_2h.max_cycles_per_day * 1.7:
163 up_bid_volume[m] *= 0.2
164 elif prev_cycles > battery_2h.max_cycles_per_day * 1.5:
165 up_bid_volume[m] *= 0.3
166 elif prev_cycles > battery_2h.max_cycles_per_day * 1.2:
167 up_bid_volume[m] *= 0.5
168 elif prev_cycles > battery_2h.max_cycles_per_day * 1.15:
169 up_bid_volume[m] *= 0.7
170

171 if up_bid_price[m] <= up_marginal_price[m] and up_bid_volume[m] > 0:
172 p_up_mw[m] = up_bid_volume[m]
173 elif down_bid_price[m] >= down_marginal_price[m] and down_bid_volume[m] > 0:
174 p_down_mw[m] = down_bid_volume[m]
175

176 if flag == 1:
177 p_down_mw[m] = down_bid_volume[m]
178 p_up_mw[m] = 0
179 flag = 0
180

181 if p_up_mw[m] > 0:
182 p_down_mw[m] = 0
183 elif p_down_mw[m] > 0:
184 p_up_mw[m] = 0
185

186 p_set_mw[m] = p_down_mw[m] - p_up_mw[m]
187

188 e_no_imbalance[m] = e_mwh[m-1] - p_up_mw[m] * 0.25
189 e_threshold[m] = capacity[f] * 0.25 / battery_2h.eff_discharge
190

191 if e_no_imbalance[m] < e_threshold[m] and p_set_mw[m] < 0:
192 e_intermediate[m] = e_threshold[m] - (e_mwh[m-1] - p_up_mw[m] * 0.25)
193 capacity_cost[m] = up_marginal_imbalance_price[m] * e_intermediate[m]
194 else:
195 e_intermediate[m] = 0
196

197 p_mw[m] = p_set_mw[m] + e_intermediate[m] * 4
198 e_current_mwh = (
199 e_mwh[m-1] +
200 (max(p_set_mw[m], 0) * battery_2h.eff_charge + min(p_set_mw[m], 0) /

battery_2h.eff_discharge) * 0.25 +
201 e_intermediate[m]
202 )
203 e_current_mwh = max(min(e_current_mwh, battery_2h.e_max_mwh), battery_2h.e_min_mwh)
204

205 if p_mw[m] < 0:
206 cycles_per_day[m] = -p_mw[m] * 0.25 / (battery_2h.e_max_mwh * battery_2h.eff_discharge)
207 else:
208 cycles_per_day[m] = 0
209

210 if m < 96:
211 verify_cycles_per_day[m] = sum(cycles_per_day[:m+1])
212 else:
213 verify_cycles_per_day[m] = sum(cycles_per_day[m-95:m+1])
214

215 e_mwh[m] = e_current_mwh
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216 revenue[m] = (
217 p_up_mw[m] * up_marginal_price[m]
218 - p_down_mw[m] * down_marginal_price[m]
219 ) * 0.25 + cap[f] * up_marginal_capacity_price[m] * 0.25 - capacity_cost[m]
220 revenue_capacity[m] = cap[f] * up_marginal_capacity_price[m] * 0.25
221 final_revenue_capacity[m] = revenue_capacity[m] - capacity_cost[m]
222 cost_charge[m] = p_down_mw[m] * down_marginal_price[m]
223

224 if m > 0:
225 revenue_accum[m] = revenue_accum[m-1] + revenue[m]
226 revenue_accum_capacity[m] = revenue_accum_capacity[m-1] + revenue_capacity[m]
227 else:
228 revenue_accum[m] = revenue[m]
229 revenue_accum_capacity[m] = revenue_capacity[m]

D.2 DAH: Model Revenue

1 from sklearn.linear_model import LinearRegression
2 from sklearn.model_selection import train_test_split
3 from sklearn.metrics import r2_score, mean_squared_error
4 import matplotlib.pyplot as plt
5 import pandas as pd
6

7 def run_grouped_regression(df, group_col, label="Group"):
8 df_model = df.copy()
9

10 threshold = len(df_model) * 0.5
11 df_model = df_model.dropna(axis=1, thresh=threshold)
12

13 cols_to_drop = [
14 ’Hydro Run-of-River_min’, ’Hydro Run-of-River_mean’, ’Hydro Run-of-River_max’,
15 ’Hydro water reservoir_min’, ’Hydro water reservoir_mean’, ’Hydro water reservoir_max’,
16 ’Hydro pumped storage_min’, ’Hydro pumped storage_mean’, ’Hydro pumped storage_max’,
17 ’Hydro pumped storage consumption_min’, ’Hydro pumped storage consumption_mean’,
18 ’Hydro pumped storage consumption_max’,
19 ’Load_min_x’, ’Load_mean_x’, ’Load_max_x’,
20 ’Period Start_min’, ’Period Start_mean’, ’Period Start_max’,
21 ’Nuclear_min_x’, ’Nuclear_mean_x’, ’Nuclear_max_x’,
22 ’Residual load_min_x’, ’Residual load_mean_x’, ’Residual load_max_x’,
23 ’Fossil brown coal / lignite_min’, ’Fossil brown coal / lignite_mean’, ’Fossil brown

coal / lignite_max’,
24 ’Fossil hard coal_min’, ’Fossil hard coal_mean’, ’Fossil hard coal_max’,
25 ’Fossil oil_min’, ’Fossil oil_mean’, ’Fossil oil_max’,
26 ’Fossil gas_min’, ’Fossil gas_mean’, ’Fossil gas_max’,
27 ’Biomass_min’, ’Biomass_mean’, ’Biomass_max’,
28 ’Geothermal_min’, ’Geothermal_mean’, ’Geothermal_max’,
29 ’Marine_min’, ’Marine_mean’, ’Marine_max’,
30 ’Other renewables_min’, ’Other renewables_mean’, ’Other renewables_max’,
31 ’Waste_min’, ’Waste_mean’, ’Waste_max’,
32 ’Others_min’, ’Others_mean’, ’Others_max’,
33 ’Solar_min_x’, ’Solar_mean_x’, ’Solar_max_x’,
34 ’Wind onshore_min_x’, ’Wind onshore_mean_x’, ’Wind onshore_max_x’,
35 ’CO2 Price’,
36 ’Day_min’, ’Day_mean’, ’Day_max’,
37 ’Fossil’,
38 ’Year_min’, ’Year_mean’, ’Year_max’,
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39 ’OtherRenewables’, ’Max_Price’, ’Avg_Price’, ’Min_Price’,
40 ’Renewable share of generation_max’, ’Renewable share of generation_min’,
41 ’Renewable share of load_max’, ’Renewable share of load_min’
42 ]
43 df_model = df_model.drop(columns=cols_to_drop, errors=’ignore’)
44

45 df_model = df_model.select_dtypes(include=[’float64’, ’int64’])
46 df_model = df_model.dropna()
47

48 groups = sorted(df[group_col].dropna().unique())
49

50 for g in groups:
51 df_group = df_model[df[group_col] == g]
52

53 if len(df_group) < 50:
54 print(f"\n{label} ’{g}’ has too few samples ({len(df_group)}), skipping.")
55 continue
56

57 X = df_group.drop(columns=’Revenue’, errors=’ignore’)
58 y = df_group[’Revenue’]
59

60 X_train, X_test, y_train, y_test = train_test_split(
61 X, y, test_size=0.2, random_state=42
62 )
63

64 model = LinearRegression()
65 model.fit(X_train, y_train)
66

67 y_pred = model.predict(X_test)
68 r2 = r2_score(y_test, y_pred)
69 mse = mean_squared_error(y_test, y_pred)
70

71 print(f"\n{label}: {g}")
72 print(f" R: {r2:.3f}")
73 print(f" MSE: {mse:.2f}")
74

75 plt.figure(figsize=(5, 5))
76 plt.scatter(y_test, y_pred, alpha=0.5)
77 plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], ’r--’)
78 plt.xlabel(’Actual Revenue’)
79 plt.ylabel(’Predicted Revenue’)
80 plt.title(f’Actual vs Predicted - {label}: {g}’)
81 plt.grid(True)
82 plt.tight_layout()
83 plt.show()
84

85 coef_df = pd.DataFrame({
86 ’Variable’: X.columns,
87 ’Coefficient’: model.coef_
88 }).sort_values(by=’Coefficient’, key=abs, ascending=False).head(8)
89

90 plt.figure(figsize=(8, 4))
91 plt.barh(coef_df[’Variable’], coef_df[’Coefficient’])
92 plt.title(f’Top 8 Influential Variables - {label}: {g}’)
93 plt.xlabel(’Coefficient’)
94 plt.gca().invert_yaxis()
95 plt.grid(axis=’x’, linestyle=’--’, alpha=0.5)
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96 plt.subplots_adjust(left=0.35)
97 plt.tight_layout()
98 plt.show()
99

100

101 run_grouped_regression(df_master_season, group_col=’Season’, label=’Season’)
102 run_grouped_regression(df_master_month, group_col=’Month’, label=’Month’)
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