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Abstract

This Master’s Thesis explores the application of advanced probabilistic machine learning
techniques for medium-term forecasting of electricity production, with a particular focus
on wind power prediction. As the integration of renewable energy sources into the power grid
increases, the need to develop accurate and reliable forecasting models arises to ensure the grid’s
stability and efficiency. This study focuses on two key methodologies: Partial Least Squares
Regression (PLSR) for power prediction and Gaussian Mixture Models (GMM) for generation
of scenarios. These two technologies are used to forecast monthly wind power production
over a one-year horizon. A significant part of this research was devoted to comprehensive
data preparation and exploratory data analysis (EDA), which are essential steps for developing
effective forecasting models.

The data preparation phase involved transforming raw data into a usable format for model
training. This included cleaning the data to handle missing values. Missing data were addressed
through Lagrange interpolation to fill the gaps. Data normalization and scaling were performed
to ensure that all variables contributed equally to the model, which facilitated the convergence
of machine learning algorithms and improved their performance.

Exploratory Data Analysis (EDA) was conducted to uncover underlying patterns and
relationships within the data. Through visualizations such as scatter plots and correlation
matrices, the EDA process provided insights into the distribution and variability of the data,
helping to identify key trends and correlations. This step also involved checking assumptions
of normality and linearity, which are important for the validity of some machine learning
techniques.

Regarding the methodology, Partial Least Squares Regression (PLSR) was used to address
the problem of multicollinearity among predictor variables. PLSR reduces data dimensionality
by focusing on latent variables, which capture the essential relationships between meteorological
factors and wind power production. This method was particularly effective for handling highly
correlated variables, making the model robust in its predictions.

Gaussian Mixture Models (GMM) were employed to model the probabilistic distribution of
wind energy production. GMMs provide a flexible framework for representing data as a mixture
of several Gaussian distributions, each with its own mean and covariance. This probabilistic
approach allowed for comprehensive modeling of the variability and uncertainty inherent in
wind energy production.

The findings of this research highlight the significant impact of meteorological factors on
wind energy production. Variables such as wind speed, atmospheric pressure, and temperature
emerged as important predictors. The combination of PLSR and GMM allowed for the
development of a sophisticated forecasting model that outperformed traditional deterministic
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Abstract

approaches in terms of accuracy and reliability. The results demonstrate that probabilistic
models offer robust and reliable forecasts for wind energy production.

This Master’s Thesis makes a significant contribution to the field of renewable energy
forecasting by presenting a robust and practical methodology for medium-term forecasting
of wind energy production. The integration of comprehensive data preparation, detailed
exploratory data analysis, and advanced machine learning techniques highlights the potential
of probabilistic models to improve forecast accuracy and provide valuable insights for energy
planners and decision-makers, thus supporting more informed decision-making in energy
management.
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Resumen

Esta trabajo de fin de máster explora la aplicación de técnicas avanzadas de aprendizaje
automático probabilístico para la previsión a medio plazo de la producción de electricidad,
con un enfoque particular en la predicción de la energía eólica. A medida que aumenta la
integración de fuentes de energía renovable en la red eléctrica, surge la necesidad de desarrollar
modelos de previsión precisos y fiables para garantizar la estabilidad y eficiencia de la red. Este
estudio se centra en dos metodologías clave: Regresión por Mínimos Cuadrados Parciales
(PLSR) para la predicción de la energía y Modelos de Mezcla Gaussiana (GMM) para la
generación de escenarios. Estas dos tecnologías se utilizan para prever la producción mensual
de energía eólica en un horizonte de un año. Una parte significativa de esta investigación se
dedicó a la preparación integral de datos y al análisis exploratorio de datos (EDA), que son
pasos imprescindibles para desarrollar modelos de previsión efectivos.

La fase de preparación de datos implicó transformar los datos brutos en un formato utilizable
para el entrenamiento del modelo. Esto incluyó la limpieza de los datos para manejar los valores
faltantes. Los datos faltantes se trataron mediante interpolación de Lagrange para llenar los
vacíos. Se realizaron la normalización y el escalado de los datos para asegurar que todas las
variables contribuyeran por igual al modelo, lo que facilitó la convergencia de los algoritmos de
aprendizaje automático y mejoró su rendimiento.

Se llevó a cabo un Análisis Exploratorio de Datos (EDA) para descubrir patrones y relaciones
subyacentes en los datos. A través de visualizaciones como gráficos de dispersión y matrices de
correlación, el proceso de EDA proporcionó información sobre la distribución y variabilidad de
los datos, ayudando a identificar tendencias y correlaciones clave. Este paso también involucró
la verificación de supuestos de normalidad y linealidad, que son importantes para la validez de
algunas técnicas de aprendizaje automático.

En cuanto a la metodología, se utilizó la Regresión por Mínimos Cuadrados Parciales
(PLSR) para abordar el problema de la multicolinealidad entre las variables predictoras. PLSR
reduce la dimensionalidad de los datos al centrarse en variables latentes, que capturan las
relaciones esenciales entre los factores meteorológicos y la producción de energía eólica.
Este método fue particularmente efectivo para manejar variables altamente correlacionadas,
haciendo que el modelo sea robusto en sus predicciones.

Se emplearon Modelos de Mezcla Gaussiana (GMM) para modelar la distribución
probabilística de la producción de energía eólica. Los GMM proporcionan un marco flexible
para representar los datos como una mezcla de varias distribuciones gaussianas, cada una con
su propia media y covarianza. Este enfoque probabilístico permitió una modelación integral de
la variabilidad e incertidumbre inherentes a la producción de energía eólica, generando una
gama de posibles resultados con sus probabilidades asociadas.
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Resumen

Los hallazgos de esta investigación resaltan el impacto significativo de los factores
meteorológicos en la producción de energía eólica. Variables como la velocidad del viento, la
presión atmosférica y la temperatura surgieron como predictores importantes. La combinación
de PLSR y GMM permitió el desarrollo de un modelo de previsión que superó a los enfoques
deterministas tradicionales en términos de precisión y fiabilidad. Los resultados demuestran
que los modelos probabilísticos ofrecen previsiones robustas y fiables para la producción de
energía eólica.

Esta trabajo de fin de máster hace una contribución significativa al campo de la previsión de
energía renovable al presentar una metodología robusta y práctica para la previsión a medio
plazo de la producción de energía eólica. La integración de una preparación de datos integral,
un análisis exploratorio de datos detallado y técnicas avanzadas de aprendizaje automático
destaca el potencial de los modelos probabilísticos para mejorar la precisión de las previsiones
y proporcionar información valiosa para los planificadores y tomadores de decisiones en el
ámbito energético, apoyando así una toma de decisiones más informada en la gestión de la
energía.
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1
Introduction

When you are inspired by some great
purpose, some extraordinary project,
all your thoughts break their bonds.

Patanjali (1th Century BC)

This first chapter introduces the rationale behind this thesis as well as its main objectives.
In addition, it provides the reader with a general overview of the organization and the
outline of the dissertation in order to make it easier to follow.

1.1. Motivation
The motivation behind this master’s thesis lies in the intricate dynamics of renewable energy
integration into the existing electricity grid. As society increasingly pivots towards sustainable
energy sources to combat climate change, understanding the complex interplay between
renewable energy production and demand becomes essential.

At the core of the research is the probabilistic prediction of electricity (Zhang et al., 2014)
generated from the eolic renewable source. By exploring into the probabilistic nature of these
predictions, the research aims to analyse and extract the trends that develop over time in
production.

This exploration serves a dual purpose. Firstly, it offers insights into the inherent variability
and uncertainty associated with renewable energy sources such as wind power (Xue et al.,
2014). Insights of this nature are indispensable for grid operators and policymakers who
attempt to maintain grid stability and reliability in the face of fluctuating energy inputs.

Secondly, by figuring out the patterns and trends in electricity production, the research aims
to find ways to optimize demand management. This information helps stakeholders design
custom plans, like demand responsive programs or time-of-use pricing (Dillig et al., 2016), that
produce a tendency in consumers to use electricity when renewable energy is available.

Finally, the research aims to go beyond just academic study, applying the methodology
developed in this thesis to a real use case (Korpas and Holen, 2006). By doing this, I want to
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Chapter 1. Introduction

push us all towards a future with more sustainable and reliable energy, where we use renewable
sources in smart ways to meet society’s changing needs.

1.2. Thesis objectives
The primary objective of this thesis is to employ various Machine Learning techniques to predict
the monthly energy production of wind (eolic) technology in 1 year horizon.

The secondary objectives in this thesis are the following:

• Evaluate the performance of different Machine Learning models in predicting the monthly
energy production of wind technology using probabilistic predictions.

• Identify the most influential factors affecting the monthly energy production of wind
technology (i.e. meteorological factors).

• Generate valid code for scenario generation to build a probabilistic model.

1.3. Dissertation outline
This dissertation consists of 6 chapters including this first introductory one.

In Chapter 2, we explore the background.

Diving into the data, Chapter 3 introduces how the data has been obtained and
preprocessed.

The goal of Chapter 4 is to explain the EDA done in the research.

Chapter 5 involves the main models developed and their accuracy.

Finally, Chapter 6 provides the concluding remarks of the dissertation, summarizing the
contributions and future developments.

2 Medium-Term Electric Production Forecasting using Probabilistic Machine Learning Algorithms
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2
Background

The journey of a thousand miles must
begin with a single step.

Laozi (6th Century BC)

This chapter aims to provide a comprehensive background to enhance the understanding
of this Master’s thesis. Firstly, it introduces fundamental electricity forecasting
terminology, followed by an explanation of the concepts and definitions of the
Probabilistic Machine Learning techniques employed during the thesis development.

2.1. Introduction

Electricity forecasting has emerged as a critical concern in recent years, attracting significant
attention from major corporations. Recognizing its important role in various aspects such
as saving funds and maximizing benefits, prominent entities are diligently pursuing the
development of highly accurate predictive models. These models are meticulously crafted
to predict both the production and consumption patterns of electricity with precision and
reliability.

Terminology

Electricity forecasting involves predicting various aspects related to the supply and demand.
Understanding fundamental terminology in this domain is essential for grasping the concepts
discussed in the thesis.

• Load Forecasting: Predicting the amount of electricity consumption or demand over a
certain period. This can include short-term forecasts (e.g., hourly or daily) or long-term
forecasts (e.g., yearly).

• Generation Forecasting: Predicting the amount of electricity that will be produced by
various generation sources, such as power plants, wind turbines, or solar panels.

Medium-Term Electric Production Forecasting using Probabilistic Machine Learning Algorithms
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Chapter 2. Background

• Probabilistic Prediction: Forecasting future outcomes while acknowledging and quanti-
fying uncertainty. Unlike deterministic forecasts, which provide a single point estimate,
probabilistic predictions provide a range of possible outcomes along with associated
probabilities.

• Renewable energy technologies: Technologies that generate electricity from renewable
sources, such as solar, wind, hydro, geothermal, and biomass. These technologies utilize
natural processes to produce energy without depleting resources, offering a sustainable
and environmentally friendly alternative to traditional fossil fuels.

Probabilistic Forecasting

Probabilistic forecasting holds significant importance in industries such as retail, consumer
packaged goods (CPG), and quick-service restaurants (QSR), where accurately predicting
critical parameters like demand is essential for success. Extending this concept to the domain
of electricity business, the understanding and applying probabilistic prediction techniques in
electricity forecasting enable businesses to make more informed decisions, mitigate risks, and
enhance overall operational efficiency.

This mathematical concept addresses the inherent uncertainty present in various real-world
problems by offering not just a single point estimate but a range of potential outcomes
alongside confidence levels. These confidence levels quantify the certainty associated with a
forecast. For instance, an 80% confidence level indicates an 80% probability that the actual
energy production will fall within the forecasted range.

Quantiles serve as another measurement in this concept, representing specific points in a
distribution that divide the data into equally sized groups. In demand forecasting, quantiles
such as P75, P90, and P95 denote specific levels of confidence or probability. For instance,
P90 signifies the 90th percentile of the demand distribution, indicating that 90% of the time,
demand will be below this level.

To illustrate, point forecasting would state "we expect to sell 100 units," probabilistic
demand forecasting might convey with "there is an 80% chance that sales will fall between 90
and 110 units.". Figure 2.1 shows a comparison between point forecasting and probabilistic
forecasting.

Figure 2.1. Probabilistic vs point forecasting. Source: Dexter energy.
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2.2. State of the Art

Medium-Term Forecasting

Medium-term forecasting refers to predicting future events, trends, or outcomes over a time
horizon typically ranging from several weeks to a few years. This type of forecasting is used
in various fields such as economics, finance, meteorology, and energy planning to anticipate
developments and make informed decisions. Because of this reason, it has been decided to use
this type of forecast.

Figure 2.2. Forecasting types

The type of data granularity or aggregation used in medium-term forecasting can vary
depending on the specific application and the level of detail required. However, in many
cases, medium-term forecasting involves working with aggregated data that captures trends
and patterns over relatively large time intervals, such as weeks, months, or quarters. This
aggregated data allows forecasters to identify longer-term trends and make predictions at a
broader scale, rather than focusing on day-to-day fluctuations or short-term variations.

To maintain precision, data will be collected on a daily basis. Following subsequent analysis,
consideration will be given to aggregating the data into weekly, monthly, or quarterly intervals
as necessary.

2.2. State of the Art
Wind energy has gained considerable attention as a renewable energy source due to its abundant
reserves and wide distribution. However, the inherent instability of wind resources poses
significant challenges for reliable power grid integration. Effective wind energy prediction is
essential to mitigate these challenges. Over the years, numerous forecasting models have been
developed, categorized primarily into deterministic and probabilistic methods (Alvarenga et al.,
2023).

Deterministic forecasting models provide specific point estimates of wind speed or power,
whereas probabilistic forecasting models offer predictions in the form of probability distributions
or intervals. Probabilistic models are particularly advantageous as they quantify the uncertainty
in forecasts, providing more comprehensive information for decision-makers.

Deterministic models predict specific values based on historical data. They include physical
models, statistical models, and machine learning models. Physical models, such as the Numerical
Weather Prediction (NWP) models, use meteorological data to simulate wind conditions.
Statistical models, including autoregressive and moving average models, rely on historical
wind data to make predictions. Machine learning models, like artificial neural networks (ANNs)
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Chapter 2. Background

and support vector machines (SVMs), have gained popularity due to their ability to capture
complex patterns in wind data (Xie et al., 2023).

Probabilistic forecasting methods provide a range of possible outcomes with associated
probabilities. These methods can be broadly classified into parametric and non-parametric
approaches (Alvarenga et al., 2023). Parametric methods assume a specific distribution for
the wind data, such as Gaussian or Weibull distributions, and estimate the parameters of
these distributions. Non-parametric methods, such as kernel density estimation and quantile
regression, do not assume any predefined distribution and are flexible in handling diverse wind
data characteristics.

High-quality input data is crucial for developing accurate wind forecasting models. Common
data sources include locally sensed wind speed and power data, NWP data, and exogenous
data like meteorological and geographic information. Data processing techniques, such as data
decomposition, dimensionality reduction, and data denoising, enhance the quality of input data
by reducing noise and extracting relevant features.

The field of wind forecasting continues to evolve with advancements in machine learning
and data processing techniques. Hybrid models that combine deterministic and probabilistic
approaches are gaining traction for their ability to leverage the strengths of both methods.
Additionally, integrating real-time data and improving the scalability of models for large-scale
wind farms remain critical areas of research (Xie et al., 2023).
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3
Data acquisition and

preprocessing

No great discovery was ever made
without a bold guess.

Isaac Newton (1643—1727)

This chapter will cover the acquisition and preprocessing of data. It will discuss the
sources of the data and the challenges faced in dealing with missing values, with a
description on how the challenges have been solved.

3.1. Data acquisition and Data transformation
To forecast energy production for wind energy technology, meteorological data and historical
energy production have been selected. Additionally, as previously mentioned, a separate model
will be developed for each Autonomous Community in Spain. Consequently, energy production
data for each Autonomous Community is required.

Meteorological data

The data has been acquired from Clima, 2023 on a daily basis, conveniently accessible through
their website in Excel format. This daily data is disaggregated by weather stations, necessitating
some data transformation to aggregate it by Autonomous Community. The provided data
adheres to the following format:

Estación Provincia Temp. máx. (°C) ... Precipitación 18-24h (mm)

Estaca de Bares A Coruña 13.9 (13:10) ... 0,2
... ... ... ... ...

Bujaraloz Zaragoza 14.1 (16:20) ... 0

Table 3.1. Daily meteorological data from select stations
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Chapter 3. Data acquisition and preprocessing

Their columns represent the input meteorological data for the various models. Below is the
explanation for each variable associated with each column:

1. Station: Name or identifier of the weather station.

2. Province: Location of the weather station, typically referring to the province or region
where it is situated.

3. Max Temperature (ºC): The highest recorded temperature in Celsius degrees for the
given day.

4. Min Temperature (ºC): The lowest recorded temperature in Celsius degrees for the given
day.

5. Avg Temperature (ºC): The average temperature in Celsius degrees for the given day,
calculated from recorded temperatures over a specific period.

6. Gust (km/h): The maximum gust of wind recorded in kilometers per hour for the given
day.

7. Max Wind Speed (km/h): The maximum sustained wind speed recorded in kilometers
per hour for the given day.

8. Precipitation 00-24h (mm): Total precipitation recorded in millimeters for the entire
day (00:00 to 23:59).

9. Precipitation 00-06h (mm): Precipitation recorded in millimeters from midnight to 6:00
AM.

10. Precipitation 06-12h (mm): Precipitation recorded in millimeters from 6:00 AM to 12:00
PM (noon).

11. Precipitation 12-18h (mm): Precipitation recorded in millimeters from 12:00 PM (noon)
to 6:00 PM.

12. Precipitation 18-24h (mm): Precipitation recorded in millimeters from 6:00 PM to
midnight.

It has been observed that the meteorological data is more detailed than initially required,
given that the data is provided on a per-station basis. Therefore, operations will be conducted
to aggregate it by Autonomous Community. Initially, the aggregation of meteorological
stations by province will be performed, involving various operations based on the variable.
Subsequently, aggregation at the level of Autonomous Communities will be executed by
computing averages across their respective provinces. To perform these aggregations, code 7.1
has been developed.

8 Medium-Term Electric Production Forecasting using Probabilistic Machine Learning Algorithms
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3.1. Data acquisition and Data transformation

Variables Aggregation by Province Aggregation by AC
Maximum Temperature (ºC) max mean
Minimum Temperature (ºC) min mean

Mean Temperature (ºC) mean mean
Wind Gust (km/h) max mean

Maximum Wind Speed (km/h) mean mean
Precipitation 00-24h (mm) mean mean
Precipitation 00-06h (mm) mean mean
Precipitation 06-12h (mm) mean mean
Precipitation 12-18h (mm) mean mean
Precipitation 18-24h (mm) mean mean

Table 3.2. Aggregation Methods for Meteorological Variables

To finish with, this dataset contains certain missing data for some days. It is also necessary
to identify the missing days in order to address them later. Missing data is observed for the
following days:

• 2020: From March 5th to March 7th and the day July 26th.

• 2022: September 27th and September 28th.

To address the absence of data for these days, techniques will be implemented at a later
stage.

Energy production data

The daily energy production data have been acquired through the eSios (de España (REE), 2023)
website via API. However, obtaining energy production data disaggregated by Autonomous
Community is not available. Consequently, an approximation is necessary to acquire this data,
which will be explained later.

The initial step involves obtaining the energy production dissagregated by renewable
technology in the whole Iberian Peninsula using the code 7.2, filtering by wind power
technology.

The second step involves formulating the following hypothesis: a weighting will be
conducted between the production of wind power technology and the installed capacity of
each Autonomous Community for this technology. It is assumed that the higher the installed
capacity, the greater the production. These weights will be calculated according to the following
formula:

Weighti,j =
Installed capacityi,j

Total installed capacityi
(3.1)

where:

• i- index corresponding to the power technology type.

• j- index corresponding to the Autonomous Community.

therefore:
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• Installed capacityi,j: installed capacity of the ith technology type in the jth Autonomous
Community. In this thesis, only wind power technology will be considered.

• Total installed capacityi: installed capacity of the ith technology in the Iberian Peninsula.

So finally, the daily energy production for the ith technology in the jth Autonomous
Community will be calculated as follows:

Daily energy productioni,j = Weighti,j × Total energy productioni (3.2)

Based on the aforementioned hypothesis, it is necessary to have some data related with
the installed capacity for each technology. It’s worth mentioning that the granularity of this
capacity data in eSios is only disaggregated by month. The process will follow the same steps as
code 7.2, although with slight modifications, resulting in code 7.3. Both codes use the API of
this website to extract the necessary data, taking advantage of the disaggregation it offers.

After the data is obtained with the previous codes, the calculation of daily energy production
by Autonomous Community and technology is performed with code referenced as 7.4. This
code applies the formula previously mentioned.

3.2. Addressing Missing Values

As mentioned earlier, the meteorological data contains missing values. Various techniques are
available for addressing this issue (Thomas and Rajabi, 2021), with the method utilized in this
section being Lagrange interpolation (Manembu et al., 2015).

Lagrange interpolation is a mathematical method used to estimate values between known
data points. It works by constructing a polynomial function that passes through the given data
points. This polynomial can then be used to approximate the value of the function at any point
within the range of the data.

The key idea behind Lagrange interpolation is to construct a polynomial of degree n, where
n is the number of data points minus one. This polynomial is uniquely determined by the given
data points and can be written as a weighted sum of Lagrange basis polynomials. These basis
polynomials are constructed in such a way that each one evaluates to 1 at its corresponding
data point and 0 at all other data points, ensuring that the resulting polynomial passes through
each data point.

Once the Lagrange polynomial is constructed, it can be used to estimate the value of the
function at any point within the range of the data. This makes Lagrange interpolation a useful
tool for filling in missing data points or generating smooth curves from discrete data.
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Figure 3.1. Different degrees of Lagrange interpolation

In the image above, with four given points, there’s the option to interpolate passing through
one of them (such as f0, f1, f2 and f3,) up to all four. The Lagrange interpolation of degree
n = 4 precisely represents the function that passes through each of these points.

To tackle the issue of missing values, it has been determined to employ a second-degree
interpolation (n = 2). The code utilized to address this problem is found in code 7.5.
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4
Exploratory Data Analysis

Statistics is the grammar of science.

Karl Pearson (1857–1936)

This chapter explains the exploratory data analysis (EDA) process performed in the data
acquired in the previous chapter. The EDA aims to understand distribution, correlations
between variables, summarize information, and guide subsequent modeling for deeper
analysis and informed decision-making.

4.1. EDA
Exploratory Data Analysis will be used in the collected meteorological data to understand
its main characteristics, identify outliers, understand patterns and relationships, and extract
insights. This process can help in the development of forecasting models, for example, choosing
the optimal model based on the insights retrieved.

First of all, the mean, the standard deviation (std), and the quartiles of the meteorological
data can be seen in the table below:

Figure 4.1. Description of meteorological variables

As observed, the mean of “Tmax” in Spain is about 23.6ºC, corresponding with which one
can expect. Regarding “Tmin” and “Tmed”, both are also as expected. The gust and the Max
Wind Speed (“Vmax”), measured in Km/h, are within the range that can be expected. Regarding
precipitation data, we can see that Spain is not a rainy country as the mean and the 50%
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quartile of all the variables related to precipitation are near or equal to zero. Because of this
characteristic of rain, a different model will be proposed in section 5.2 for rainy days, as it is
expected that the relationship between energy generation and meteorological data changes
substantially for a rainy day versus a not rainy day. This approach is further motivated by the
precipitation histogram depicted in figure 4.2.
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Figure 4.2. Histogram of the precipitation in Spain

To differentiate between rainy and non-rainy days, it is hypothesized that a rainfall of more
than 1mm is needed for a day to be considered rainy.

It is going to be displayed the pairplot (figure 4.3 for understanding the relationships
between multiple variables in a dataset.

• Temperature Relationships (Tmax, Tmin, Tmed):

– There is a strong positive correlation between Tmax and Tmed, and between
Tmin and Tmed, as expected, since the average temperature is calculated from
the maximum and minimum temperatures.

– There is also a significant positive correlation between Tmax and Tmin.

• Wind Relationships (Rmed, Vmax):
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– There is a notable positive correlation between Rmed and Vmax, which is logical
since higher gusts of wind tend to accompany higher maximum wind speeds.

Figure 4.3. Pairplot of the data

• Precipitation Relationships:

– The partial precipitation variables (Pmed_00_06, Pmed_06_12, Pmed_12_18,
Pmed_18_24) are strongly correlated with each other and with the total daily
precipitation (Pmed_00_24). This indicates that the daily values are a direct sum of
the partial precipitation amounts.

• Interactions between Temperature and Precipitation Variables:

– There are no strong correlations between temperature variables (Tmax, Tmin, Tmed)
and precipitation variables (Pmed_00_24, Pmed_00_06, Pmed_06_12, Pmed_12_18,
Pmed_18_24). This suggests that daily temperatures are not directly influenced by
the amount of precipitation on the same day.

Medium-Term Electric Production Forecasting using Probabilistic Machine Learning Algorithms
Teresa Carbo Espeja

15



Chapter 4. Exploratory Data Analysis

• Interactions between Wind and Precipitation Variables:

– Similarly, there are no strong correlations between wind variables (Rmed, Vmax)
and precipitation variables. This indicates that the amount of precipitation does not
have a significant impact on the daily maximum wind gusts and speeds.

• Distributions:

– The distributions of individual variables can be observed in the histograms on the
diagonal of the pairplot. This provides information about the dispersion and central
tendency of each variable.

In order to see the correlations between variables, the correlation matrix will be plotted
below:

Figure 4.4. Correlation matrix of meteorological variables

1. High Positive Correlations:

• Tmax, Tmin and Tmed have a high positive correlation (between 0.8 to 1). This
indicates that when the maximum temperature of the day is high, it is likely that the
minimum temperature and the average temperature are also high, which is expected.

2. Negative Correlations:

• Rmed (Gust) and Temperatures (Tmax, Tmin, Tmed) have negative correlations.
This suggests that as the temperature increases, the gust tends to be lower.

3. Precipitations:

• Pmed_00_24 (Total Day Precipitation) has significant positive correlations with
Pmed_00_06, Pmed_06_12, Pmed_12_18, Pmed_18_24, which is natural since the
total precipitation of the day is the sum of the precipitations in these time intervals.

16 Medium-Term Electric Production Forecasting using Probabilistic Machine Learning Algorithms
Teresa Carbo Espeja



4.1. EDA

• Among the different precipitation intervals Pmed_00_06, Pmed_06_12, Pmed_12_18,
and Pmed_18_24 have significant correlations with each other, indicating that, if it
rains in a period of the day, it will rain during more than one period.

Due to these high correlations between group of variables, it can be inferred that some
variables would not provide any information to predict the wind energy production. Therefore,
we need to make sure that the variables which carry the most information are selected as input
variables in our models.
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5
Models

Mathematics is the language God used
to write the world.

Galileo Galilei (1564–1642)

In this chapter, the modeling process is described in detail, focusing on the application of
various regularization techniques—specifically Ridge, Lasso, and Partial Least Squares
Regression (PLSR)—in contrast to traditional Linear Regression (LR). Besides, it will
be explained the generation of scenarios using Gaussian Mixture Models (GMM) for
probabilistic forecasting.

5.1. Introduction
This section introduces key concepts essential for understanding the approach to modeling wind
energy production. Modeling involves creating a mathematical representation of a real-world
process, in this case, the generation of wind energy. To build robust and reliable models, data is
partitioned into training and testing sets. The training set is used to fit the model, while the
testing set is utilized to evaluate its performance, ensuring that the model generalizes well to
unseen data. For each community under study, a separate model is developed, tailored to its
specific characteristics.

Linear regression serves as a fundamental technique in these models, aiming to predict a
target variable based on one or more predictor variables by fitting a linear equation to the
observed data. It is often used as a baseline model to establish initial metrics for comparison.
By providing a straightforward and interpretable benchmark, linear regression helps assess the
effectiveness of more complex models. However, linear regression can suffer from overfitting,
particularly with complex datasets containing numerous predictors. To mitigate this issue,
regularization methods are applied. Regularization introduces a penalty to the model’s
complexity, encouraging simpler models that generalize better to new data. Techniques such
as Lasso, Ridge regression and Partial Least Square Regression are employed to improve the
model’s performance by preventing overfitting, thereby ensuring more reliable predictions
across different communities.
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5.2. Regularization
Regularization is a technique used in machine learning models to prevent overfitting and
improve model generalization. It works by adding a penalty term based on the model parameters
to the loss function that the model optimizes, which discourages the model from learning overly
complex patterns in the training data that may not generalize well to unseen data.

With these properties, it is going to be used some regularization techniques in the context of
understanding which variables (or features) are important to the model. These techniques offer
several benefits:

1. Feature Selection: Some forms of regularization, like L1 regularization (Lasso), can result
in sparse solutions where some feature coefficients are zero. This effectively performs
feature selection, identifying which features are most important for the model.

2. Multicollinearity: Regularization can help in situations where you have multicollinearity
(i.e., high correlations between predictor variables). In these cases, standard regression
might distribute the effect of one variable across several correlated variables, finding
spurious relationships between output and inputs.

3. Interpretability: By discouraging complex models (i.e., models with too many
coefficients), regularization can help to make the model more interpretable. This can
make it easier to understand the effect of individual variables on the model’s predictions,
identifying which are the most important variables to predict the outcome.

4. Preventing Overfitting: as stated previously, regularization helps to prevent overfitting
by adding a cost to the loss function for large coefficients. This means that models are
less likely to fit the noise in the training data and are more likely to find the signal.

The selected regularization techniques include Ridge Regression, Lasso Regression and
Partial Least Square Regression. These techniques have been applied across all Autonomous
Communities but for illustrative purposes, however, an illustrative analysis will be shown for
only one of them, Galicia. Besides, a regular Linear Regression model will be trained in order
to compare it with the chosen regularization techniques.

Ridge Regression

As stated before, regularization techniques add a penalty term to the model objective function.
the objective function for Ridge regression is given by:

min
β


n∑

i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + α

p∑
j=1

β2
j

 (5.1)

Where:

• yi is the response for the i-th observation,

• β0 is the intercept term,

• βj is the coefficient for the j-th predictor,

• xij is the value of the j-th predictor for the i-th observation,

• n is the number of observations,
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• p is the number of predictors,

• α is the tuning parameter that controls the strength of the penalty.

After training the regularization model, the development of the predictors proceeds as
follows:

Figure 5.1. Ridge coefficients

The graph 5.1 shows the Ridge coefficients as a function of the regularization parameter α,
on a logarithmic scale. On the x-axis is α and on the y-axis are the values of the coefficients
(weights).

When α is very small (close to 0 or negative values), the regularization is minimal and
the coefficients adjust almost freely to minimize the training error. We observe that some
coefficients have very large values, indicating overfitting. As α increases, the regularization
becomes stronger. The coefficients begin to reduce in magnitude, approaching zero, which
reduces the complexity of the model and the risk of overfitting. With very large values of α, the
coefficients approach zero. This can lead to a model that underfits the data, losing the ability to
capture the relationship between the independent variables and the dependent variable.

As for the behavior of the variables, some variables like "Vmax" (maximum wind speed) start
with very high coefficient values, but they drastically reduce as α increases. Other variables,
like the different precipitation measurements ("Pmed_00_24", "Pmed_00_06", etc.), show less
drastic changes but follow a decreasing trend with the increase of α.
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Figure 5.2. Alpha chosen for Ridge

It can be seen that the model has chosen an α of 69.5 with a training R2 of 0.411 and test
R2 of 0.407.

Figure 5.3. Variables chosen for Ridge

It can be seen that with this type of regularization, there is no variable discarded.

Lasso Regression

Lasso Regression, also known as Least Absolute Shrinkage and Selection Operator, is a type
of linear regression that uses shrinkage. Shrinkage is where data values are shrunk towards
a central point, like the mean. The lasso procedure encourages simple, sparse models (i.e.,
models with fewer parameters). This is done by imposing a constraint on the model parameters
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that causes regression coefficients for some variables to shrink towards zero. Variables with
a regression coefficient equal to zero after the shrinkage process are excluded from the
model.

The Lasso method performs L1 regularization, which adds a penalty equal to the absolute
value of the magnitude of coefficients. This type of regularization can result in sparse models
with few coefficients; Some coefficients can become zero and eliminated from the model. Larger
penalties result in coefficient values closer to zero, which is the ideal for producing simpler
models.

The objective function to minimize for Lasso Regression can be represented as:

min
β

{
1

2n
||y −Xβ||22 + α||β||1

}
(5.2)

In this equation:

• y is the output vector

• X is the input matrix

• β is the vector of coefficients

• ||.||2 denotes the L2 norm

• ||.||1 denotes the L1 norm

• α is the regularization parameter controlling the amount of shrinkage: the larger the
value of α, the greater the amount of shrinkage.

Figure 5.4. Lasso coefficients

The graph 5.4 shows the Lasso coefficients as a function of the regularization parameter α,
also on a logarithmic scale. On the x-axis is α and on the y-axis are the values of the coefficients
(weights).

For very small α (close to 0 or negative values), the behavior is similar to Ridge. The
regularization is minimal and the coefficients adjust almost freely. As α increases, the coefficients
begin to reduce. Unlike Ridge, Lasso can bring coefficients exactly to zero, effectively eliminating
some variables from the model. With very large values of α, many coefficients are reduced to
zero, resulting in a very simple model that likely underfits the data.
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As for the behavior of the variables, the variable "Vmax" starts with very high coefficient
values but reduces significantly with an increase in α. Several precipitation variables
("Pmed_00_24", "Pmed_00_06", etc.) and temperatures ("Tmax", "Tmin", "Tmed") also show
reduction trends and some of them can reach zero.

Figure 5.5. Alpha chosen for Lasso

It can be seen that the model has chosen an α of 20.69 with a training R2 of 0.412 and test
R2 of 0.411.

Figure 5.6. Variables chosen for Lasso

The variables chosen for Lasso Regression would be: "Tmax", "Tmed", "Rmed", "Vmax", and
the precipitations by intervals of time.
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Partial Least Square Regression

Partial Least Squares Regression (PLSR) is a statistical method that bears some relation to
principal components regression; instead of finding hyperplanes of maximum variance between
the response and independent variables, it finds a linear regression model by projecting the
predicted variables and the observable variables to a new space.

The objective function of PLSR can be represented as:

min
w,c

{
n∑

i=1

(
yi − xTi wc

)2
+ α

(
||w||22 + ||c||22

)}
(5.3)

• xi is the i-th observation of the predictor variables,

• yi is the i-th observation of the response variable,

• w is the weight vector for the predictor variables,

• c is the weight for the response variable,

• ||.||2 denotes the L2 norm,

• α is the regularization parameter controlling the amount of shrinkage.

By solving this optimization problem, PLSR finds the weights w and c that minimize the
sum of the squared errors between the observed and predicted response variables, subject to a
penalty term that prevents overfitting.

Figure 5.7. Number of components for PLSR

It can be seen that the model has chosen a number of components of n = 3 with a training
R2 of 0.410 and test R2 of 0.411.
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Figure 5.8. Variables chosen for PLSR

It can also be seen that with this type of regularization, there is no variable discarded.

Comparison of the regularization techniques with Linear Regres-
sion

In Figure 5.9 it can be seen the negative Root Mean Squared Error (Neg RMSE) for different
models including Ridge, Lasso, Linear Regression (LR1), and Partial Least Squares Regression
(PLSR), providing a sense of their performance. Lower Neg RMSE values indicate better
performance since the negative sign implies that higher absolute values are actually worse.

Figure 5.9. Comparison of Regularization Techniques
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In the displayed graph, the Neg RMSE values are in the range of −9 × 107 to −7 × 107,
suggesting variability in the performance of these models on the dataset. All four models—Ridge,
Lasso, LR1, and PLSR—exhibit Neg RMSE values within a similar range, indicating that they
perform comparably.

Specifically, the Ridge and LR1 models show slightly higher Neg RMSE values compared
to Lasso and PLSR, indicating marginally poorer performance. However, the differences are
relatively small, suggesting that while there are some variations, all models have a comparable
predictive accuracy on this dataset. The PLSR model demonstrates the narrowest interquartile
range, implying more consistent performance across different data subsets. Conversely, the
Ridge and LR1 models have slightly wider distributions, indicating more variability in their
performance.

Overall, while all four models demonstrate similar performance with Neg RMSE values
tightly clustered, PLSR and Lasso slightly outperform Ridge and LR1 in terms of consistency and
lower Neg RMSE values. For this reason, we will use Linear Regression as the baseline metric
to compare the performance of PLSR. As previously mentioned, the models will be trained
separating between rainy and non-rainy days to assess their effectiveness under different
weather conditions.

5.3. Baseline metrics

It is believed that distinguishing between rainy and non-rainy days could potentially enhance
the performance of the models. Therefore, separate Linear Regression models have been trained
for rainy and non-rainy days, and their respective metrics have been calculated. After being
trained with code 7.6, it can be seen in the figure 5.10, that when differentiating, the R2

decreases for non-rainy days for each autonomous community. Even in Navarra, a model with a
negative R2 has been obtained.

Figure 5.10. Metrics in LR
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There’s a proposal to create a model with a lag of 1 year for when the model performs worse.
A model with a lag of 1 year refers to a type of time series model where the value of a variable at
a certain time (t) is influenced by the values of the same variable at previous times, in this case,
one year prior (t− 1 year). In this case, the primary hypothesis is that the energy production
for a given day is identical to that of the same day in the previous year.

To train the model, it has been developed the code 7.7. The results of this model are shown
in figure 5.11. However, as seen in the table below, this idea is rejected because it performs
worse, as all the R2 are negatives.

Figure 5.11. Metrics in LR with lag

With all this, the metrics of this work for each autonomous community are established in
figure 5.10.

5.4. Partial Least-Squares Regression

To train the model it has been needed the code 7.8. The parameters used in the model has been
’PLSR_model__n_components’, and a grid of ’PLSR_model__n_components’: {1, 2, 3, 4, 5, 6, 7,
8} has been employed. Depending on the autonomous community, the selected grid has varied,
as the optimal one for each case is chosen.

After being trained with the code previously mentioned, the model shows the following
metrics:
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Figure 5.12. Metrics in PLSR

As can be seen in the table, many R2 values have reasonably improved, even leading to
a positive R2 for Navarra, which was previously negative. Therefore, this model seems to be
useful for this dataset.

5.5. Generation of scenarios
Once it has been seen that the PLSR technique works well for the dataset, it is continued with
the generation of scenarios.

To achieve this, it will be performed dimensionality reduction by using Principal Component
Analysis (PCA), in order to facilitate the input space density estimation using a Gaussian
Mixture Model (GMM). Subsequently, the generation of random scenarios would be produced
by sampling from the GMM model, that shall had learnt the patterns in the data and would
produce feasible synthetic input samples.

Dimensionality Reduction with PCA

Principal Component Analysis (PCA) is a dimensionality reduction technique that transforms a
set of possibly correlated variables into a set of linearly uncorrelated variables called principal
components. The transformation is defined as follows:

1. Calculate the mean of the dataset

µ =
1

n

n∑
i=1

xi

where xi is the data vector and n is the number of samples.

2. Subtract the mean
Xcentered = X− µ
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3. Compute the covariance matrix

C =
1

n− 1
XT

centeredXcentered

4. Compute the eigenvalues and eigenvectors of the covariance matrix

Cvi = λivi

where vi are the eigenvectors and λi are the eigenvalues.

5. Select the top k eigenvectors corresponding to the top k largest eigenvalues to form the
principal component matrix

WPCA = [v1,v2, . . . ,vk]

6. Transform the original data
Z = XcenteredWPCA

where Z is the representation of the data in the principal component space.

With this technique, the variance captured by each component is as follows:

Figure 5.13. Variance captured by each component in PCA

It can be observed that only with 5 components, we can capture near to 95% of the variance
of the original data.

After the PCA space has been constructed, it can be seen the projection of the data on PCA1
and PCA2, differentiating by color the autonomous community:
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Figure 5.14. Data projection

To gain a deeper understanding of the PCA space, it is essential to plot at least the first three
principal components, as shown in figure 5.15:

Figure 5.15. Interpretation of the first three PCA

PC1 is primarily a temperature-related component, where maximum temperature, minimum
and mean temperatures influence it negatively. On the other hand, Wind speed and precipitation
measurements contribute positively.

PC2 represents a component primarily influenced by temperature variables, with maximum,
minimum, and mean temperatures all positively contributing to it. It suggests a relationship
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where higher temperature measurements are grouped together, distinguishing them from other
variables.

PC3 is influenced significantly by wind speed and precipitation measurements. It shows a
negative relationship with gust and wind speed, suggesting that it might be representing weather
patterns where high precipitations are associated with lower gust and wind speed.

One can see this PCA as a sort of scenario classifier, where PC1 states the general behavior of
every day in Spain, where days with heavier rain correlates with lower temperatures and greater
wind speed. PC2 provides incremental information above PC1, differentiating those days where,
for the same amount of rain, temperatures might be greater or lower than the expected by PC1.
PC3 provides even more information, differentiating those days whose wind speed is much
higher or lower than the expected with the information of PC1 and PC2. Therefore, a day with
heavy rain, high temperature and no wind would have a high value of PC1, PC2 and PC3; while
a day with almost rain, medium temperature and a little wind would have a null value of PC1,
PC2 and PC3, and a day with no rain, cold and high wind would have negative values of PC1,
PC2 and PC3.

The task remaining is to first, locate the real scenario in the PCA space and then generate
believable scenarios in the neighborhood of the point. To do so, we would use a GMM
model.

Space Partitioning with GMM

The Gaussian Mixture Model (GMM) is a probabilistic model that assumes the data is a mixture
of several Gaussian distributions. The probability density function for a GMM with k components
is given by:

p(x) =

k∑
j=1

πjN (x|µj ,Σj)

where:

• πj is the weight of the j-th component, with
∑k

j=1 πj = 1.

• N (x|µj ,Σj) is the multivariate normal distribution with mean µj and covariance matrix
Σj .

The parameters πj , µj and Σj are estimated using the Expectation-Maximization (EM)
algorithm, which iteratively maximizes the likelihood of the observed data given the Gaussian
components.

Following the parameter estimation, the decision to utilize six Gaussian distributions in
the Gaussian Mixture Model (GMM) was guided by two main factors: the Bayesian Information
Criterion (BIC) and a three-dimensional visualization of the data using Principal Component
Analysis (PCA). The BIC was employed to determine the number of Gaussian components,
as it provides a measure that balances model complexity against the fit to the data. By
evaluating models with varying numbers of Gaussian distributions, it was observed that the
model incorporating six Gaussians resulted in the lowest BIC value, as it can be seen in figure
5.16. This indicated that six components offered an optimal compromise between adequately
fitting the data and avoiding overfitting.
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Figure 5.16. BIC

Additionally, a three-dimensional visualization of the data using PCA was conducted to
further validate the choice of six Gaussian distributions. This method allowed for a visual
inspection of how well the Gaussian components represented the data’s density and structure
in a reduced dimensional space. The visualization (represented in figures 5.17, 5.18 and
5.19) demonstrated that the use of six Gaussians effectively captured the data’s clusters and
distribution patterns, suggesting a good fit.

Figure 5.17. View 1 Figure 5.18. View 2 Figure 5.19. View 3

Thus, the selection of six Gaussian distributions was justified both by the statistical evidence
from the BIC and the visual confirmation from the PCA-based analysis, ensuring an accurate
and interpretable model of the data’s underlying structure.

Generating Random Scenarios
Once the GMM is trained, we can generate new random scenarios by sampling from the Gaussian
mixture.

The first hypothesis is that, we generate new random scenarios taking each day from the
previous year. The process consists of the following steps:

1. Select each day of the previous year and pass it through the scaler and the transformer.

2. Calculate the membership probabilities for each point in relation to each GMM component.
For example, day i has a probability πj of being a member of the component j.
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3. Scale those probabilities so that for each point i, the sum of the membership probabilities
across all GMM components equals 1.

4. Generate scenarios using a weighted uniform distribution based on the membership
probabilities, selecting points from each component according to these probabilities.

In the developed code, 1000 scenarios have been selected for each day.

Reversing the PCA Projection

To reverse the projection back to the original space, we use the inverse transformation of PCA.
If Znew are the new points generated in the reduced space:

Xnew = ZnewW
T
PCA + µ

Prediction with PLSR

Finally, we apply Partial Least Squares Regression (PLSR) on the dataset projected back to the
original space to make predictions. The PLSR model applied to the point will depend on the
selected autonomous community and whether it rains or not.

PLSR finds the linear relationship between the input matrix X and the output matrix
Y.

The basic equation of PLSR is:

Y = XB+E

where:

• B is the matrix of regression coefficients,

• E is the error term.

The PLSR algorithm finds B by maximizing the covariance between the projections of X and
Y.

All of this has been developed in code 7.9.
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5.6. Final Methodology

After the mathematical explanation, the following diagram illustrates the methodology that has
been followed:

Model generation:

Dataset Model Generation with PLSR

Transformation with PCA Classification with GMM

Scenario generation and prediction:

Generation of a Point in GMM Inverse Transformation Prediction with PLSR

To validate this methodology, it has been tested with various autonomous communities.
For illustrative purposes, two examples will be presented to demonstrate its application in a
scenarios involving Galicia and Castilla y León.

A scenario of n = 1000 simulations was created for each day following the previously
mentioned procedure. A day is considered rainy when ′Pmed_00_24′ ≥ 1, and non-rainy
otherwise. To measure its accuracy, the global MAE and the mean RMSE was used. The
following results were obtained:

Galicia Castilla y León

Global MAE 10.903,62 18.655,44
mean RMSE 13.772,22 24.215,17

Table 5.1. Summary statistics for Galicia and Castilla y León.

As observed, both metrics vary across the autonomous communities. The Global MAE
and mean RMSE values are notably lower in Galicia compared to Castilla y León, indicating
better predictive accuracy in the former region. This disparity could be attributed to regional
differences in climate patterns, data distribution, or model performance specific to each
area.

These results highlight the importance of considering regional characteristics when
evaluating prediction models, as their accuracy may differ depending on the location.
Further analysis could explore the factors driving these differences and assess whether model
adjustments could improve performance in areas with higher error metrics.
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The graphics below are presenting the actual production for Galicia and Castilla y León
in black, in blue the predicted value by the PLSR based on the hypothesis that the following
year behaves like the previous one, and the 50%, 75%, and 90% confidence intervals of the
simulations.

Figure 5.20. Confidence intervals for the energy production in Galicia

Figure 5.21. Confidence intervals for the energy production in Castilla y León
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As observed, daily predictions are not sufficiently accurate. Therefore, it is proposed to
perform aggregations, such as monthly aggregations, to improve the accuracy.
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6
Conclusions

Success doesn’t mean the absence of
failures; it means the attainment of

ultimate objectives. It means winning
the war, not every battle.

Edwin Bliss (1912—2002)

This last chapter summarizes the developments of this dissertation. The main conclusions
that can be drawn from the experiments carried out are set forth and the most original
contributions are highlighted. Finally, the open issues that have not been tackled in the
thesis, as well as possible future research lines, are discussed.

6.1. Summary and conclusions
In this thesis, we have explored the application of probabilistic machine learning techniques
for medium-term forecasting of electric production, with a specific focus on wind energy.
The increasing integration of renewable energy sources into the power grid necessitates
reliable forecasting models to ensure stability and efficiency. Through the analysis of various
machine learning models, we aimed to predict monthly wind energy production over a one-year
horizon.

Our research demonstrated that probabilistic models, which provide a range of possible
outcomes along with associated probabilities, are particularly effective in capturing the inherent
uncertainty in renewable energy production. These models were evaluated and compared
against traditional deterministic approaches, highlighting their superiority in terms of accuracy
and reliability.

Key findings from our study include the identification of meteorological factors as critical
predictors for wind energy production, and the successful application of probabilistic models
such as PLSR, PCA and GMM in generating reliable forecasts. The comparative analysis
with existing models confirmed that our proposed approach offers a new methodology to
produce probability forecasts, making it a valuable tool for energy planners and policymakers.
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However, prediction accuracy of the model is not sufficient and is left as future development
the enhancement of the prediction model with date aggregation or data enhancement.

In conclusion, this thesis contributes to the field of renewable energy forecasting by
presenting a robust and practical methodology for medium-term wind energy production
forecasting. The findings underscore the importance of probabilistic forecasting in managing
the complexities of renewable energy integration and pave the way for further advancements in
this domain.

6.2. Original contributions
The original contributions of this thesis are manifold and highlight its significance in the field of
renewable energy forecasting. Firstly, this work introduces a novel application of probabilistic
machine learning techniques to the specific problem of medium-term wind energy production
forecasting. Unlike traditional deterministic models, the probabilistic approach provides a
comprehensive view of possible outcomes, accounting for the inherent uncertainty in wind
energy generation.

Secondly, the thesis identifies key meteorological factors that significantly impact wind
energy production, providing valuable insights for future research and model development. The
integration of these factors into the forecasting models has proven to enhance the accuracy and
reliability of the predictions.

Thirdly, the comparative analysis with existing models demonstrates the superior perfor-
mance of the proposed probabilistic approach, showcasing its potential to improve decision-
making processes in energy planning and management.

Finally, the practical application of the methodology to a real-world use case underlines its
relevance and effectiveness, offering a scalable and adaptable solution for medium-term energy
forecasting in various contexts.

6.3. Future work
The scope of this research opens up several avenues for future work, aimed at further refining
and expanding the capabilities of probabilistic energy forecasting models.

1. Model Enhancement: Future studies could focus on improving the existing models by
incorporating additional data sources, such as real-time weather forecasts, economic
indicators, and grid operational data. Enhancing the models’ predictive accuracy through
advanced feature selection and model optimization techniques remains a key area for
development.

2. Integration with Other Renewable Sources: Expanding the methodology to include other
renewable energy sources, such as solar and hydro, could provide a more comprehensive
forecasting tool. This integration would help in creating a unified model capable of
predicting the combined output of various renewable sources.

3. Short-Term Forecasting: While this thesis focuses on medium-term forecasting, extending
the approach to short-term horizons could offer significant benefits for operational
planning and grid management. Developing models that can provide accurate forecasts
on a daily or hourly basis could further enhance grid stability and efficiency.
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6.3. Future work

4. Real-World Implementation: Applying the developed models in real-world scenarios, such
as utility companies and energy market operations, would be an important next step.
This practical implementation could provide valuable feedback and insights for model
refinement and validation.

By addressing these areas, future research can build on the foundations laid by this thesis,
driving further advancements in the field of renewable energy forecasting and contributing to a
more sustainable and efficient energy future.
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7
List of codes

Code 1
1 # Import libraries

2 import pandas as pd

3 import numpy as np

4 from datetime import datetime , timedelta

5

6 sheet_name = 0

7

8 # Load the variables

9 galicia_provinces = ['A Coruña', 'Lugo', 'Ourense ', 'Pontevedra ']

10 asturias_provinces = ['Asturias ']

11 cantabria_provinces = ['Cantabria ']

12 pais_vasco_provinces = ['Bizkaia ', 'Gipuzkoa ', 'Araba/Álava']

13 navarra_provinces = ['Navarra ']

14 aragon_provinces = ['Huesca ', 'Zaragoza ', 'Teruel ']

15 cataluna_provinces = ['Girona ', 'Lleida ', 'Barcelona ', 'Tarragona ']

16 comunidad_valenciana_provinces = ['Castelló/Castellón', 'València/Valencia ',

↪→ 'Alacant/Alicante ']

17 region_murcia_provinces = ['Murcia ']

18 andalucia_provinces = ['Almería', 'Granada ', 'Jaén', 'Córdoba', 'Málaga',

↪→ 'Cádiz', 'Sevilla ', 'Huelva ']

19 extremadura_provinces = ['Cáceres', 'Badajoz ']

20 castilla_leon_provinces = ['León', 'Zamora ', 'Palencia ', 'Valladolid ', 'Ávila',

↪→ 'Burgos ', 'Segovia ', 'Soria ']

21 la_rioja_provinces = ['La Rioja ']

22 castilla_mancha_provinces = ['Guadalajara ', 'Cuenca ', 'Albacete ', 'Toledo ',

↪→ 'Ciudad Real']

23 madrid_provinces = ['Madrid ']

24

25 # Create a dictionary with the data

26 Aemet = {'Dia': [], 'ccaa': [], 'Tmax': [], 'Tmin': [], 'Tmed': [], 'Rmed': [],

↪→ 'Vmax':[], 'Pmed_00_24 ': [], 'Pmed_00_06 ': [], 'Pmed_06_12 ': [],

↪→ 'Pmed_12_18 ': [], 'Pmed_18_24 ': []}

27 # Create the DataFrame

28 Aemet = pd.DataFrame(Aemet)

29 # Put the column names into the columns

30 Aemet.columns = ['Dia', 'ccaa', 'Tmax', 'Tmin', 'Tmed', 'Rmed', 'Vmax',

↪→ 'Pmed_00_24 ', 'Pmed_00_06 ', 'Pmed_06_12 ', 'Pmed_12_18 ', 'Pmed_18_24 ']
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31

32 # Create a dictionary with the data and create the DataFrame

33 Aemet_aux = pd.DataFrame(Aemet)

34 # Put the column names into the columns

35 Aemet_aux.columns = ['Dia', 'ccaa', 'Tmax', 'Tmin', 'Tmed', 'Rmed', 'Vmax',

↪→ 'Pmed_00_24 ', 'Pmed_00_06 ', 'Pmed_06_12 ', 'Pmed_12_18 ', 'Pmed_18_24 ']

36

37 # Load the time data

38 start_date = datetime (2022, 9, 29) #change the date to the first day of the data

39

40 end_date = datetime (2023, 12, 31) #change the date to the last day of the data

41 date_range = pd.date_range(start=start_date , end=end_date , freq='D')

42

43 for date in date_range:

44 file_name = 'Aemet {}.xls'.format(date.strftime('%Y-%m-%d'))

45 xls_file = pd.ExcelFile(file_name)

46 df = xls_file.parse(sheet_name)

47

48 # Eliminate the first 3 rows

49 df = df.drop([0, 1, 2])

50

51 # Take the values of the first row

52 names = df.iloc [0]

53

54 # Eliminate the 1st row

55 df = df.iloc [1:]

56 df.columns = names #put the name to the colums

57 df = df.reset_index(drop=True)

58

59 #Eliminate the Nan values

60 df = df.dropna ()

61

62 #Transform the columns to its type and clean the data

63 df["Temperatura máxima (ºC)"] = df["Temperatura máxima

↪→ (ºC)"].str.extract(r"(\d+\.\d+)")

64 df["Temperatura mínima (ºC)"] = df["Temperatura mínima

↪→ (ºC)"].str.extract(r"(\d+\.\d+)")

65 df["Velocidad máxima (km/h)"] = df["Velocidad máxima

↪→ (km/h)"].str.extract(r"(\d+)")

66 df["Racha (km/h)"] = df["Racha (km/h)"].str.extract(r"(\d+)")

67 df["Velocidad máxima (km/h)"] = df["Velocidad máxima

↪→ (km/h)"].str.extract(r"(\d+)")

68

69

70 df["Temperatura máxima (ºC)"] = df["Temperatura máxima (ºC)"]. astype(float)

71 df["Temperatura mínima (ºC)"] = df["Temperatura mínima (ºC)"]. astype(float)

72 df["Temperatura media (ºC)"] = df["Temperatura media (ºC)"]. astype(float)

73 df["Precipitación 00-24h (mm)"] = df["Precipitación 00-24h

↪→ (mm)"]. astype(float)

74 df["Precipitación 00-06h (mm)"] = df["Precipitación 00-06h

↪→ (mm)"]. astype(float)

75 df["Precipitación 06-12h (mm)"] = df["Precipitación 06-12h

↪→ (mm)"]. astype(float)

76 df["Precipitación 12-18h (mm)"] = df["Precipitación 12-18h

↪→ (mm)"]. astype(float)

77 df["Precipitación 18-24h (mm)"] = df["Precipitación 18-24h

↪→ (mm)"]. astype(float)

78 df["Velocidad máxima (km/h)"] = df["Velocidad máxima (km/h)"]. astype(float)

79 df["Racha (km/h)"] = df["Racha (km/h)"]. astype(float)
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80

81 #Select the unique values of the column Provincia

82 df = df[~df['Provincia '].isin(['Illes Balears ', 'Las Palmas ', 'Ceuta ',

↪→ 'Melilla ', 'Santa Cruz de Tenerife '])]

83

84 galicia_df = df[df['Provincia '].isin(galicia_provinces)]

85 asturias_df = df[df['Provincia '].isin(asturias_provinces)]

86 cantabria_df = df[df['Provincia '].isin(cantabria_provinces)]

87 pais_vasco_df = df[df['Provincia '].isin(pais_vasco_provinces)]

88 navarra_df = df[df['Provincia '].isin(navarra_provinces)]

89 aragon_df = df[df['Provincia '].isin(aragon_provinces)]

90 cataluna_df = df[df['Provincia '].isin(cataluna_provinces)]

91 comunidad_valenciana_df =

↪→ df[df['Provincia '].isin(comunidad_valenciana_provinces)]

92 region_murcia_df = df[df['Provincia '].isin(region_murcia_provinces)]

93 andalucia_df = df[df['Provincia '].isin(andalucia_provinces)]

94 extremadura_df = df[df['Provincia '].isin(extremadura_provinces)]

95 castilla_leon_df = df[df['Provincia '].isin(castilla_leon_provinces)]

96 la_rioja_df = df[df['Provincia '].isin(la_rioja_provinces)]

97 castilla_mancha_df = df[df['Provincia '].isin(castilla_mancha_provinces)]

98 madrid_df = df[df['Provincia '].isin(madrid_provinces)]

99

100 spain = [galicia_df , asturias_df , cantabria_df , pais_vasco_df , navarra_df ,

↪→ aragon_df , cataluna_df , comunidad_valenciana_df , region_murcia_df ,

↪→ andalucia_df , extremadura_df , castilla_leon_df , la_rioja_df ,

↪→ castilla_mancha_df , madrid_df]

101 comunidades_autonomas = ['Galicia ', 'Asturias ', 'Cantabria ', 'Pais Vasco',

↪→ 'Navarra ', 'Aragon ', 'Cataluna ', 'Comunidad Valenciana ', 'Region de

↪→ Murcia ', 'Andalucia ', 'Extremadura ', 'Castilla y Leon', 'La Rioja ',

↪→ 'Castilla la Mancha ', 'Madrid ']

102

103 Aemet_aux.drop(Aemet_aux.index , inplace=True)

104 cont = 0

105 for i in spain:

106 provincias = i['Provincia ']. unique ()

107 Tmax_list = []

108 Tmin_list = []

109 Tmed_list = []

110 Rmax_list = []

111 Vmed_list = []

112 Pmed_00_24_list = []

113 Pmed_00_06_list = []

114 Pmed_06_12_list = []

115 Pmed_12_18_list = []

116 Pmed_18_24_list = []

117

118 for j in provincias:

119 aux = i[i['Provincia '] == j]

120 Tmax = aux['Temperatura máxima (ºC)'].max()

121 Tmin = aux['Temperatura mínima (ºC)'].min()

122 Tmed = aux['Temperatura media (ºC)'].mean()

123 Rmax = aux['Racha (km/h)'].max()

124 Vmed = aux['Velocidad máxima (km/h)'].mean()

125 Pmed_00_24 = aux['Precipitación 00-24h (mm)'].mean()

126 Pmed_00_06 = aux['Precipitación 00-06h (mm)'].mean()

127 Pmed_06_12 = aux['Precipitación 06-12h (mm)'].mean()

128 Pmed_12_18 = aux['Precipitación 12-18h (mm)'].mean()

129 Pmed_18_24 = aux['Precipitación 18-24h (mm)'].mean()

130
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131 Tmax_list.append(Tmax)

132 Tmin_list.append(Tmin)

133 Tmed_list.append(Tmed)

134 Rmax_list.append(Rmax)

135 Vmed_list.append(Vmed)

136 Pmed_00_24_list.append(Pmed_00_24)

137 Pmed_00_06_list.append(Pmed_00_06)

138 Pmed_06_12_list.append(Pmed_06_12)

139 Pmed_12_18_list.append(Pmed_12_18)

140 Pmed_18_24_list.append(Pmed_18_24)

141

142 Aemet_aux = pd.concat ([Aemet_aux , pd.DataFrame ({'Dia':

↪→ [date.strftime('%Y-%m-%d')],

143 'ccaa': [comunidades_autonomas[cont]],

144 'Tmax': [np.mean(Tmax_list)],

145 'Tmin': [np.mean(Tmin_list)],

146 'Tmed': [np.mean(Tmed_list)],

147 'Rmed': [np.mean(Rmax_list)],

148 'Vmax': [np.mean(Vmed_list)],

149 'Pmed_00_24 ': [np.mean(Pmed_00_24_list)],

150 'Pmed_00_06 ': [np.mean(Pmed_00_06_list)],

151 'Pmed_06_12 ': [np.mean(Pmed_06_12_list)],

152 'Pmed_12_18 ': [np.mean(Pmed_12_18_list)],

153 'Pmed_18_24 ': [np.mean(Pmed_18_24_list)]})], ignore_index=False)

154 cont += 1

155

156 Aemet = pd.concat ([Aemet , Aemet_aux], ignore_index=False)

157 Aemet.to_csv('tramox.csv', index=False)

Listing 7.1. Meteorological Aggregations by Autonomous Community

Code 2
1 import json

2 import requests

3 import csv

4 import pandas as pd

5 # Now we are going to obtain the energy production for la peninsula

6

7 sd = ['2018 -01 -02 T00:00', '2019 -01 -02 T00:00', '2020 -01 -02 T00:00',

↪→ '2021 -01 -02 T00:00', '2022 -01 -02 T00:00', '2023 -01 -02 T00:00']

8 ed = ['2019 -01 -02 T00:00', '2020 -01 -02 T00:00', '2021 -01 -02 T00:00',

↪→ '2022 -01 -02 T00:00', '2023 -01 -02 T00:00', '2024 -01 -02 T00:00']

9

10 def extract(attributes):

11 return attributes['values ']

12

13 def extract_value(title_list):

14 return [item['value '] for item in title_list]

15

16 def extract_date(title_list):

17 return [item['datetime '] for item in title_list]

18

19 data_list = []

20 for s, e in zip(sd, ed):

21 url = f"https :// apidatos.ree.es/es/datos/generacion/estructura -renovables?

↪→ start_date ={s}& end_date ={e}& time_trunc=day&geo_trunc=electric_system&

↪→ geo_limit=peninsular&geo_ids =8741"
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22 print(url)

23 response = requests.get(url)

24 print(response)

25 data = response.json()

26 print(data)

27

28 df = pd.DataFrame(data['included '])

29 df = df[['type', 'attributes ']]

30 df['title '] = df['attributes '].apply(extract)

31

32 df.drop(columns =['attributes '], inplace=True)

33

34 df['value '] = df['title '].apply(extract_value)

35 df['date'] = df['title '].apply(extract_date)

36

37 df.drop(columns =['title '], inplace=True)

38 filtered_df = df[df['type'].isin(['Eólica'])]

39

40 new_data = []

41 for _, row in filtered_df.iterrows ():

42 for value , date in zip(row['value '], row['date']):

43 new_data.append ({'type': row['type'], 'value ': value , 'date': date})

44

45 new_df = pd.DataFrame(new_data)

46

47 new_df['date'] = pd.to_datetime(new_df['date'], utc=True)

48 new_df['Month '] = pd.to_datetime(new_df['date']).dt.month

49 new_df['Year'] = pd.to_datetime(new_df['date']).dt.year

50

51 data_list.append(new_df)

52

53 result_df = pd.concat(data_list)

54 result_df.to_csv('eolica.csv', index=False)

Listing 7.2. Request of the production of wind power energy

Code 3
1 import requests

2 import csv

3 import pandas as pd

4

5 #We are going to stract the potencias instaladas

6 ccaa = [ '4', '5', '6', '7', '8', '9', '10', '11', '13', '14', '15', '16', '17',

↪→ '20', '21']

7 sd = ['2018 -01 -01 T00:01', '2020 -01 -01 T00:01', '2022 -01 -01 T00:01']

8 ed = ['2020 -01 -01 T00:00', '2022 -01 -01 T00:00', '2024 -01 -01 T00:00']

9

10 def extract(attributes):

11 return attributes['values ']

12

13 def extract_value(title_list):

14 return [item['value '] for item in title_list]

15

16 def extract_date(title_list):

17 return [item['datetime '] for item in title_list]

18

19 data_list = []
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20

21 for c in ccaa:

22 for s, e in zip(sd, ed):

23 url = f"https :// apidatos.ree.es/es/datos/generacion/potencia -instalada?

↪→ start_date ={s}& end_date ={e}& time_trunc=month&geo_limit=ccaa&geo_ids ={c}"

24 response = requests.get(url)

25 data = response.json()

26

27 df = pd.DataFrame(data['included '])

28 df = df[['type', 'attributes ']]

29 df['title '] = df['attributes '].apply(extract)

30

31 df.drop(columns =['attributes '], inplace=True)

32

33 df['value '] = df['title '].apply(extract_value)

34 df['date'] = df['title '].apply(extract_date)

35

36 df.drop(columns =['title '], inplace=True)

37 filtered_df = df[df['type'].isin(['Eólica'])]

38

39 new_data = []

40 for _, row in filtered_df.iterrows ():

41 for value , date in zip(row['value '], row['date']):

42 new_data.append ({'type': row['type'], 'value ': value , 'date':

↪→ date})

43

44 new_df = pd.DataFrame(new_data)

45

46 new_df['date'] = pd.to_datetime(new_df['date'], utc=True)

47 new_df['Month '] = pd.to_datetime(new_df['date']).dt.month

48 new_df['Year'] = pd.to_datetime(new_df['date']).dt.year

49

50 new_df['ccaa'] = c

51

52 data_list.append(new_df)

53

54 result_df = pd.concat(data_list)

55

56 #We have finished the request , I split the data in 3 different files to make it

↪→ easier to work with them

57 pt_eo = result_df[result_df['type'] == 'Eólica']

58

59 pt_eo.to_csv('potencia_instalada_eo.csv', index=False)

Listing 7.3. Request of the data of installed capacity

Code 4
1 '''

2 With the previous df we can start to make the analysis. In the same date , we are

↪→ going to

3 see the proportion of the different types of energy in the different regions.

4 '''

5 import pandas as pd

6

7 pt_inst_eo = pd.read_csv('potencia_instalada_eo.csv', sep=';', decimal=',')

8 pt_inst_eo_date = pt_inst_eo.groupby ([ 'Year', 'Month ']).sum('value ')

9 pt_inst_eo_date.rename(columns ={'value ': 'total '}, inplace=True)
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10

11 result_eo = pd.merge(pt_inst_eo , pt_inst_eo_date , on=['Year', 'Month '],

↪→ how='left')

12 result_eo['percentage '] = result_eo['value '] / result_eo['total ']

13 result_eo.drop(columns =['ccaa_y '], inplace=True)

14 result_eo.rename(columns ={'ccaa_x ': 'ccaa'}, inplace=True)

15 result_eo.to_csv('pot_inst_eo_ccaa.csv', index=False)

Listing 7.4. Weighting of the installed capacity

Code 5
1 import pandas as pd

2 from scipy.interpolate import lagrange

3

4 tramo1 = pd.read_csv('tramo1.csv')

5 tramo2 = pd.read_csv('tramo2.csv')

6 tramo3 = pd.read_csv('tramo3.csv')

7 tramo4 = pd.read_csv('tramo4.csv')

8

9 ccaa = pd.unique(tramo1['ccaa'])

10 column_names = tramo4.columns

11 column_names = column_names.drop('Dia')

12 column_names = column_names.drop('ccaa')

13

14 #TRAMO 1

15 AEMET = pd.concat ([ tramo1], axis =0)

16 missing_val = ['2020 -03 -05', '2020 -03 -06', '2020 -03 -07']

17 aux = pd.DataFrame(columns = tramo1.columns)

18

19 for i in missing_val:

20 for j in ccaa:

21 new_rows = pd.DataFrame ({'Dia': [i], 'ccaa': [j]})

22 aux = pd.concat ([aux , new_rows], ignore_index=True)

23

24 AEMET = pd.concat ([AEMET , aux], axis =0)

25

26 # TRAMO 2

27 AEMET = pd.concat ([AEMET , tramo2], axis =0)

28 missing_val = ['2020 -07 -26']

29 aux = pd.DataFrame(columns = tramo1.columns)

30

31 for i in missing_val:

32 for j in ccaa:

33 new_rows = pd.DataFrame ({'Dia': [i], 'ccaa': [j]})

34 aux = pd.concat ([aux , new_rows], ignore_index=True)

35

36 AEMET = pd.concat ([AEMET , aux], axis =0)

37

38 # TRAMO 3

39 AEMET = pd.concat ([AEMET , tramo3], axis =0)

40 missing_val = ['2022 -09 -27', '2022 -09 -28']

41 aux = pd.DataFrame(columns = tramo1.columns)

42

43 for i in missing_val:

44 for j in ccaa:

45 new_rows = pd.DataFrame ({'Dia': [i], 'ccaa': [j]})

46 aux = pd.concat ([aux , new_rows], ignore_index=True)
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47

48 AEMET = pd.concat ([AEMET , aux], axis =0)

49 AEMET = pd.concat ([AEMET , tramo4], axis =0)

50

51 #Recuperar datos - 2020: 03/05, 03/06, 03/07 con una interpolacion lineal entre

↪→ 03/04 y 03/08

52 inicio = tramo1.loc[tramo1['Dia'] == '2020 -03 -04']

53 fin = tramo2.loc[tramo2['Dia'] == '2020 -03 -08']

54

55 x= [1,5]

56

57 for i in ccaa:

58 filtered_row_i = inicio[inicio['ccaa'] == i]

59 filtered_row_f = fin[fin['ccaa'] == i]

60

61 filtered_row_i.drop('Dia', axis=1, inplace=True)

62 filtered_row_i.drop('ccaa', axis=1, inplace=True)

63

64 filtered_row_f.drop('Dia', axis=1, inplace=True)

65 filtered_row_f.drop('ccaa', axis=1, inplace=True)

66

67

68 for j in column_names:

69 y = [filtered_row_i[j]. values [0], filtered_row_f[j]. values [0]]

70 p = lagrange(x, y)

71 AEMET.loc[(AEMET['Dia'] == '2020 -03 -05') & (AEMET['ccaa'] == i), j] = p(2)

72 AEMET.loc[(AEMET['Dia'] == '2020 -03 -06') & (AEMET['ccaa'] == i), j] = p(3)

73 AEMET.loc[(AEMET['Dia'] == '2020 -03 -07') & (AEMET['ccaa'] == i), j] = p(4)

74

75 AEMET.to_csv('AEMET.csv', index=False)

76

77 #Recuperar datos - 2020: 07/26 con una interpolacion lineal entre 07/25 y 07/27

78 inicio = tramo2.loc[tramo2['Dia'] == '2020 -07 -25']

79 fin = tramo3.loc[tramo3['Dia'] == '2020 -07 -27']

80

81 x= [1,3]

82

83 for i in ccaa:

84 filtered_row_i = inicio[inicio['ccaa'] == i]

85 filtered_row_f = fin[fin['ccaa'] == i]

86

87 filtered_row_i.drop('Dia', axis=1, inplace=True)

88 filtered_row_i.drop('ccaa', axis=1, inplace=True)

89

90 filtered_row_f.drop('Dia', axis=1, inplace=True)

91 filtered_row_f.drop('ccaa', axis=1, inplace=True)

92

93

94 for j in column_names:

95 y = [filtered_row_i[j]. values [0], filtered_row_f[j]. values [0]]

96 p = lagrange(x, y)

97 AEMET.loc[(AEMET['Dia'] == '2020 -07 -26') & (AEMET['ccaa'] == i), j] = p(2)

98

99 #Recuperar datos - 2020: 09/27, 09/28 con una interpolacion lineal entre 09/26 y

↪→ 09/29

100 inicio = tramo3.loc[tramo3['Dia'] == '2022 -09 -26']

101 fin = tramo4.loc[tramo4['Dia'] == '2022 -09 -29']

102

103 x= [1,4]
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104

105 for i in ccaa:

106 filtered_row_i = inicio[inicio['ccaa'] == i]

107 filtered_row_f = fin[fin['ccaa'] == i]

108

109 filtered_row_i.drop('Dia', axis=1, inplace=True)

110 filtered_row_i.drop('ccaa', axis=1, inplace=True)

111

112 filtered_row_f.drop('Dia', axis=1, inplace=True)

113 filtered_row_f.drop('ccaa', axis=1, inplace=True)

114

115

116 for j in column_names:

117 y = [filtered_row_i[j]. values [0], filtered_row_f[j]. values [0]]

118 p = lagrange(x, y)

119 AEMET.loc[(AEMET['Dia'] == '2022 -09 -27') & (AEMET['ccaa'] == i), j] = p(2)

120 AEMET.loc[(AEMET['Dia'] == '2022 -09 -28') & (AEMET['ccaa'] == i), j] = p(3)

121

122 AEMET.to_csv('AEMET.csv', index=False)

Listing 7.5. Lagrange interpolation for missing values in meteorological data

Code 6
1 ### Load libraries ###

2 import pandas as pd

3

4 # plotting libraries

5 import matplotlib.pyplot as plt

6

7 # Data management libraries

8 import numpy as np # linear algebra

9

10 # # Machine learning libraries

11 from sklearn.model_selection import train_test_split , GridSearchCV ,

↪→ cross_val_score

12 from sklearn.pipeline import Pipeline

13 from sklearn.preprocessing import StandardScaler , OneHotEncoder

14 from sklearn.compose import ColumnTransformer

15 from sklearn.metrics import mean_squared_error , r2_score , mean_absolute_error ,

↪→ mean_absolute_percentage_error

16

17 # others

18 from mltools.regression_tools import LinearRegressor

19 import math

20

21 # Load data

22 meteo = pd.read_csv("AEMET.csv")

23

24 # Remove missing

25 meteo.dropna(inplace=True)

26

27 ## Add day of the week

28 meteo['Dia'] = pd.to_datetime(meteo['Dia'])

29 meteo['day_of_week '] = meteo['Dia'].dt.day_name ()

30

31 ### Convert necessary variable to factor

32 meteo.day_of_week = meteo.day_of_week.astype('category ')
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33

34 ## Month

35 meteo['month '] = meteo['Dia'].dt.month

36 meteo.month = meteo.month.astype('category ')

37 dataset = meteo.copy()

38 gen_eo = pd.read_csv('gen_eo_ccaa.csv')

39

40 gen_eo = gen_eo.replace(4, "Andalucia")

41 gen_eo = gen_eo.replace(5, "Aragon")

42 gen_eo = gen_eo.replace(6, "Cantabria")

43 gen_eo = gen_eo.replace(7, "Castilla la Mancha")

44 gen_eo = gen_eo.replace(8, "Castilla y Leon")

45 gen_eo = gen_eo.replace(9, "Cataluna")

46 gen_eo = gen_eo.replace (10, "Pais Vasco")

47 gen_eo = gen_eo.replace (11, "Asturias")

48 gen_eo = gen_eo.replace (8744, "Comunidad de Ceuta")

49 gen_eo = gen_eo.replace (8745, "Comunidad de Melilla")

50 gen_eo = gen_eo.replace (13, "Madrid")

51 gen_eo = gen_eo.replace (14, "Navarra")

52 gen_eo = gen_eo.replace (15, "Comunidad Valenciana")

53 gen_eo = gen_eo.replace (16, "Extremadura")

54 gen_eo = gen_eo.replace (17, "Galicia")

55 gen_eo = gen_eo.replace (8743, "Islas Baleares")

56 gen_eo = gen_eo.replace (8742, "Islas Canarias")

57 gen_eo = gen_eo.replace (20, "La Rioja")

58 gen_eo = gen_eo.replace (21, "Region de Murcia")

59

60 gen_eo['date'] = pd.to_datetime(gen_eo['date'])

61

62 dataset.rename(columns ={'Dia': 'date'}, inplace=True)

63

64 eolica = pd.merge(gen_eo , dataset , on=['date', 'ccaa'], how='inner ')

65

66 INPUTS = ['Tmax', 'Tmin', 'Tmed', 'Rmed', 'Vmax', 'Pmed_00_24 ', 'Pmed_00_06 ',

↪→ 'Pmed_06_12 ', 'Pmed_12_18 ', 'Pmed_18_24 ']

67 OUTPUT = 'gen'

68 errores = pd.DataFrame ()

69 for i in eolica.ccaa.unique ():

70 lluviosos = eolica [( eolica.ccaa == i) & (eolica.Pmed_00_24 >= 1)]

71 X = lluviosos[INPUTS]

72 y = lluviosos[OUTPUT]

73

74 # Split

75 X_train , X_test , y_train , y_test = train_test_split(X, y, test_size =0.2,

↪→ random_state =0) #seed for replication

76 ## Create dataset to store model predictions

77

78 dfTR_eval = X_train.copy()

79 dfTR_eval['gen'] = y_train

80 dfTS_eval = X_test.copy()

81 dfTS_eval['gen'] = y_test

82

83 ## Inputs of the model. Change accordingly to perform variable selection

84 INPUTS_LR_NUM =

↪→ X_train.select_dtypes(include =['int64 ','float64 ']).columns.values.tolist ()

85 INPUTS_LR_CAT =

↪→ X_train.select_dtypes(include =['category ']).columns.values.tolist ()

86 INPUTS_LR = INPUTS_LR_NUM + INPUTS_LR_CAT

87
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88 # Prepare the numeric variables by imputing by scaling

89 numeric_transformer = Pipeline(steps =[('scaler ', StandardScaler ())])

90

91 # Prepare the categorical variables by encoding the categories

92 categorical_transformer = Pipeline(steps =[('onehot ',

↪→ OneHotEncoder(handle_unknown='ignore '))])

93

94 # Create a preprocessor to perform the steps defined above

95 preprocessor = ColumnTransformer(

96 transformers =[

97 ('num', numeric_transformer , INPUTS_LR_NUM),

98 ('cat', categorical_transformer , INPUTS_LR_CAT)

99 ])

100

101 param = {}

102 pipe = Pipeline ([

103 ('preprocessor ', preprocessor),

104 ('LR_model ', LinearRegressor ())

105 ])

106 # We use Grid Search Cross Validation to find the best parameter for the

↪→ model in the grid defined

107 nFolds = 10

108 LR_fit = GridSearchCV(estimator=pipe , # Structure of the model to use

109 param_grid=param , # Defined grid to search in

110 n_jobs=-1, # Number of cores to use (parallelize)

111 scoring='neg_mean_squared_error ', # RMSE

↪→ https ://scikit -learn.org/stable/modules/model_evaluation.html

112 cv=nFolds) # Number of Folds

113 LR_fit.fit(X_train[INPUTS_LR], y_train) # Search in grid

114

115 LR_fit.best_estimator_['LR_model ']. summary(LR_fit

↪→ .best_estimator_['preprocessor ']. get_feature_names_out ()) #information

↪→ about the model trained

116 dfTR_eval['LR_pred '] = LR_fit.predict(X_train)

117 dfTS_eval['LR_pred '] = LR_fit.predict(X_test)

118

119 #Training and test MAE - Mean Absolute error

120 MAE_TR_LL = mean_absolute_error(dfTR_eval['gen'], dfTR_eval['LR_pred '])

121 MAE_TS_LL = mean_absolute_error(dfTS_eval['gen'], dfTS_eval['LR_pred '])

122 #Training and test RMSE - Root Mean Square Error

123 RMSE_TR_LL = math.sqrt(mean_squared_error(dfTR_eval['gen'],

↪→ dfTR_eval['LR_pred ']))

124 RMSE_TS_LL = math.sqrt(mean_squared_error(dfTS_eval['gen'],

↪→ dfTS_eval['LR_pred ']))

125 #Training and test r^2

126 R2_TR_LL = r2_score(dfTR_eval['gen'], dfTR_eval['LR_pred '])

127 R2_TS_LL = r2_score(dfTS_eval['gen'], dfTS_eval['LR_pred '])

128 #Training and test r^2

129 MAPE_TR_LL = mean_absolute_percentage_error(dfTR_eval['gen'],

↪→ dfTR_eval['LR_pred '])

130 MAPE_TS_LL = mean_absolute_percentage_error(dfTS_eval['gen'],

↪→ dfTS_eval['LR_pred '])

131

132

133 No_lluviosos = eolica [( eolica.ccaa == i) & (eolica.Pmed_00_24 < 1)]

134 X = No_lluviosos[INPUTS]

135 y = No_lluviosos[OUTPUT]

136

137 # Split
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138 X_train , X_test , y_train , y_test = train_test_split(X, y, test_size =0.2,

↪→ #percentage of test data

139 random_state =0) #seed for replication

140 ## Create dataset to store model predictions

141

142 dfTR_eval = X_train.copy()

143 dfTR_eval['gen'] = y_train

144 dfTS_eval = X_test.copy()

145 dfTS_eval['gen'] = y_test

146

147 ## Inputs of the model. Change accordingly to perform variable selection

148 INPUTS_LR_NUM =

↪→ X_train.select_dtypes(include =['int64 ','float64 ']).columns.values.tolist ()

149 INPUTS_LR_CAT =

↪→ X_train.select_dtypes(include =['category ']).columns.values.tolist ()

150 INPUTS_LR = INPUTS_LR_NUM + INPUTS_LR_CAT

151

152 # Prepare the numeric variables by imputing by scaling

153 numeric_transformer = Pipeline(steps =[('scaler ', StandardScaler ())])

154

155 # Prepare the categorical variables by encoding the categories

156 categorical_transformer = Pipeline(steps =[('onehot ',

↪→ OneHotEncoder(handle_unknown='ignore '))])

157

158 # Create a preprocessor to perform the steps defined above

159 preprocessor = ColumnTransformer(

160 transformers =[

161 ('num', numeric_transformer , INPUTS_LR_NUM),

162 ('cat', categorical_transformer , INPUTS_LR_CAT)

163 ])

164

165 param = {}

166 pipe = Pipeline ([

167 ('preprocessor ', preprocessor),

168 ('LR_model ', LinearRegressor ())

169 ])

170 # We use Grid Search Cross Validation to find the best parameter for the

↪→ model in the grid defined

171 nFolds = 10

172 LR_fit = GridSearchCV(estimator=pipe , # Structure of the model to use

173 param_grid=param , # Defined grid to search in

174 n_jobs=-1, # Number of cores to use (parallelize)

175 scoring='neg_mean_squared_error ', # RMSE

↪→ https ://scikit -learn.org/stable/modules/model_evaluation.html

176 cv=nFolds) # Number of Folds

177 LR_fit.fit(X_train[INPUTS_LR], y_train) # Search in grid

178

179 LR_fit.best_estimator_['LR_model ']. summary(LR_fit

↪→ .best_estimator_['preprocessor ']. get_feature_names_out ()) #information

↪→ about the model trained

180 dfTR_eval['LR_pred '] = LR_fit.predict(X_train)

181 dfTS_eval['LR_pred '] = LR_fit.predict(X_test)

182 #Training and test MAE - Mean Absolute error

183 MAE_TR_NLL = mean_absolute_error(dfTR_eval['gen'], dfTR_eval['LR_pred '])

184 MAE_TS_NLL = mean_absolute_error(dfTS_eval['gen'], dfTS_eval['LR_pred '])

185 #Training and test RMSE - Root Mean Square Error

186 RMSE_TR_NLL = math.sqrt(mean_squared_error(dfTR_eval['gen'],

↪→ dfTR_eval['LR_pred ']))
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187 RMSE_TS_NLL = math.sqrt(mean_squared_error(dfTS_eval['gen'],

↪→ dfTS_eval['LR_pred ']))

188 #Training and test r^2

189 R2_TR_NLL = r2_score(dfTR_eval['gen'], dfTR_eval['LR_pred '])

190 R2_TS_NLL = r2_score(dfTS_eval['gen'], dfTS_eval['LR_pred '])

191 #Mape

192 MAPE_TR_NLL = mean_absolute_percentage_error(dfTR_eval['gen'],

↪→ dfTR_eval['LR_pred '])

193 MAPE_TS_NLL = mean_absolute_percentage_error(dfTS_eval['gen'],

↪→ dfTS_eval['LR_pred '])

194

195 data = {

196 'Precipitación': ['SI', 'NO'],

197 'CCAA': [i, i],

198 'Mae TR': [MAE_TR_LL , MAE_TR_NLL],

199 'Mae TS': [MAE_TS_LL , MAE_TS_NLL],

200 'RMSE TR': [RMSE_TR_LL , RMSE_TR_NLL],

201 'RMSE TS': [RMSE_TS_LL , RMSE_TS_NLL],

202 'R2 TR': [R2_TR_LL , R2_TR_NLL],

203 'R2 TS': [R2_TS_LL , R2_TS_NLL],

204 'MAPE TR': [MAPE_TR_LL , MAPE_TR_NLL],

205 'MAPE TS': [MAPE_TS_LL , MAPE_TS_NLL],

206 }

207

208 # Crear el DataFrame

209 df = pd.DataFrame(data)

210

211 errores = pd.concat ([errores , df], ignore_index=True)

212

213 errores = errores.round (3)

214

215 # Configurar la figura

216 fig , ax = plt.subplots(figsize =(10, 4)) # Ajustar el tamaño de la figura según

↪→ sea necesario

217 ax.axis('tight ')

218 ax.axis('off')

219

220 # Crear la tabla

221 table = ax.table(cellText=errores.values , colLabels=errores.columns ,

↪→ cellLoc='center ', loc='center ')

222 table.auto_set_font_size(False)

223 table.set_fontsize (9)

224

225 for key , cell in table.get_celld ().items():

226 if key[0] == 0:

227 cell.set_fontsize (9) # Ajustar el tamaño de la fuente de la cabecera

228 cell.set_text_props(weight='bold')

229

230 col_idx = errores.columns.get_loc('CCAA')

231 for key , cell in table.get_celld ().items():

232 if key[1] == col_idx:

233 cell.set_width (0.18)

234

235 col_idx = errores.columns.get_loc('Precipitación')

236 for key , cell in table.get_celld ().items():

237 if key[1] == col_idx:

238 cell.set_width (0.12)

239

240 # Save the figure
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241 plt.savefig('errores.png', bbox_inches='tight ', dpi =300)

242

243 # Mostrar la figura

244 plt.show()

Listing 7.6. Linear Regression model for rainy and non-rainy days

Code 7
1 errores = errores.round (3)

2

3 # Configurar la figura

4 fig , ax = plt.subplots(figsize =(10, 4)) # Ajustar el tamaño de la figura según

↪→ sea necesario

5 ax.axis('tight ')

6 ax.axis('off')

7

8 # Crear la tabla

9 table = ax.table(cellText=errores.values , colLabels=errores.columns ,

↪→ cellLoc='center ', loc='center ')

10 table.auto_set_font_size(False)

11 table.set_fontsize (9)

12

13 for key , cell in table.get_celld ().items():

14 if key[0] == 0:

15 cell.set_fontsize (9) # Ajustar el tamaño de la fuente de la cabecera

16 cell.set_text_props(weight='bold')

17

18 col_idx = errores.columns.get_loc('CCAA')

19 for key , cell in table.get_celld ().items():

20 if key[1] == col_idx:

21 cell.set_width (0.18)

22

23 col_idx = errores.columns.get_loc('Precipitación')

24 for key , cell in table.get_celld ().items():

25 if key[1] == col_idx:

26 cell.set_width (0.12)

27

28 # Guardar la figura

29 plt.savefig('errores.png', bbox_inches='tight ', dpi =300)

30

31 # Mostrar la figura

32 plt.show()

33

34 errores_lag = errores_lag.round (3)

35

36 # Configurar la figura

37 fig , ax = plt.subplots(figsize =(10, 4)) # Ajustar el tamaño de la figura según

↪→ sea necesario

38 ax.axis('tight ')

39 ax.axis('off')

40

41 # Crear la tabla

42 table = ax.table(cellText=errores_lag.values , colLabels=errores_lag.columns ,

↪→ cellLoc='center ', loc='center ')

43 table.auto_set_font_size(False)

44 table.set_fontsize (9)

45
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46 for key , cell in table.get_celld ().items():

47 if key[0] == 0:

48 cell.set_fontsize (9) # Ajustar el tamaño de la fuente de la cabecera

49 cell.set_text_props(weight='bold')

50

51 col_idx = errores_lag.columns.get_loc('ccaa')

52 for key , cell in table.get_celld ().items():

53 if key[1] == col_idx:

54 cell.set_width (0.18)

55

56 # Ajustar el ancho de las columnas 'R2' y 'MAPE'

57 r2_idx = errores_lag.columns.get_loc('R2')

58 mape_idx = errores_lag.columns.get_loc('MAPE')

59

60 for key , cell in table.get_celld ().items():

61 if key[1] == r2_idx or key[1] == mape_idx:

62 cell.set_width (0.1) # Ajustar el ancho según sea necesario

63

64 rmse_idx = errores_lag.columns.get_loc('RMSE')

65 for key , cell in table.get_celld ().items():

66 if key[1] == rmse_idx:

67 cell.set_width (0.1)

68

69 plt.savefig('errores_lag.png', bbox_inches='tight ', dpi =300)

70

71 plt.show()

Listing 7.7. Model with lag

Code 8
1 ### Load libraries ###

2 import pandas as pd

3

4 # plotting libraries

5 import matplotlib.pyplot as plt

6

7 # Data management libraries

8 import numpy as np # linear algebra

9

10 # # Machine learning libraries

11 from sklearn.model_selection import train_test_split , GridSearchCV ,

↪→ cross_val_score

12 from sklearn.pipeline import Pipeline

13 from sklearn.preprocessing import StandardScaler , OneHotEncoder

14 from sklearn.compose import ColumnTransformer

15 from sklearn.metrics import mean_squared_error , r2_score , mean_absolute_error ,

↪→ mean_absolute_percentage_error

16

17 # others

18 from mltools.regression_tools import LinearRegressor

19 import math

20 from sklearn.cross_decomposition import PLSRegression

21

22 # Load data

23 meteo = pd.read_csv("AEMET.csv")

24

25 # Remove missing
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26 meteo.dropna(inplace=True)

27

28 ## Add day of the week

29 meteo['Dia'] = pd.to_datetime(meteo['Dia'])

30 meteo['day_of_week '] = meteo['Dia'].dt.day_name ()

31

32 ### Convert necessary variable to factor

33 meteo.day_of_week = meteo.day_of_week.astype('category ')

34

35 ## Month

36 meteo['month '] = meteo['Dia'].dt.month

37 meteo.month = meteo.month.astype('category ')

38 dataset = meteo.copy()

39 gen_eo = pd.read_csv('gen_eo_ccaa.csv')

40

41 gen_eo = gen_eo.replace(4, "Andalucia")

42 gen_eo = gen_eo.replace(5, "Aragon")

43 gen_eo = gen_eo.replace(6, "Cantabria")

44 gen_eo = gen_eo.replace(7, "Castilla la Mancha")

45 gen_eo = gen_eo.replace(8, "Castilla y Leon")

46 gen_eo = gen_eo.replace(9, "Cataluna")

47 gen_eo = gen_eo.replace (10, "Pais Vasco")

48 gen_eo = gen_eo.replace (11, "Asturias")

49 gen_eo = gen_eo.replace (8744, "Comunidad de Ceuta")

50 gen_eo = gen_eo.replace (8745, "Comunidad de Melilla")

51 gen_eo = gen_eo.replace (13, "Madrid")

52 gen_eo = gen_eo.replace (14, "Navarra")

53 gen_eo = gen_eo.replace (15, "Comunidad Valenciana")

54 gen_eo = gen_eo.replace (16, "Extremadura")

55 gen_eo = gen_eo.replace (17, "Galicia")

56 gen_eo = gen_eo.replace (8743, "Islas Baleares")

57 gen_eo = gen_eo.replace (8742, "Islas Canarias")

58 gen_eo = gen_eo.replace (20, "La Rioja")

59 gen_eo = gen_eo.replace (21, "Region de Murcia")

60

61 gen_eo['date'] = pd.to_datetime(gen_eo['date'])

62

63 dataset.rename(columns ={'Dia': 'date'}, inplace=True)

64

65 eolica = pd.merge(gen_eo , dataset , on=['date', 'ccaa'], how='inner ')

66

67 INPUTS = ['Tmax', 'Tmin', 'Tmed', 'Rmed', 'Vmax', 'Pmed_00_24 ', 'Pmed_00_06 ',

↪→ 'Pmed_06_12 ', 'Pmed_12_18 ', 'Pmed_18_24 ']

68 OUTPUT = 'gen'

69 errores = pd.DataFrame ()

70 for i in eolica.ccaa.unique ():

71 lluviosos = eolica [( eolica.ccaa == i) & (eolica.Pmed_00_24 >= 1)]

72 X = lluviosos[INPUTS]

73 y = lluviosos[OUTPUT]

74

75 # Split

76 X_train , X_test , y_train , y_test = train_test_split(X, y,

77 test_size =0.2,

↪→ #percentage of test data

78 random_state =0) #seed for

↪→ replication

79 ## Create dataset to store model predictions

80

81 dfTR_eval = X_train.copy()

58 Medium-Term Electric Production Forecasting using Probabilistic Machine Learning Algorithms
Teresa Carbo Espeja



82 dfTR_eval['gen'] = y_train

83 dfTS_eval = X_test.copy()

84 dfTS_eval['gen'] = y_test

85

86 ## Inputs of the model. Change accordingly to perform variable selection

87 INPUTS_LR_NUM =

↪→ X_train.select_dtypes(include =['int64 ','float64 ']).columns.values.tolist ()

88 INPUTS_LR_CAT =

↪→ X_train.select_dtypes(include =['category ']).columns.values.tolist ()

89 INPUTS_LR = INPUTS_LR_NUM + INPUTS_LR_CAT

90

91 # Prepare the numeric variables by imputing by scaling

92 numeric_transformer = Pipeline(steps =[('scaler ', StandardScaler ())])

93

94 # Prepare the categorical variables by encoding the categories

95 categorical_transformer = Pipeline(steps =[('onehot ',

↪→ OneHotEncoder(handle_unknown='ignore '))])

96

97 # Create a preprocessor to perform the steps defined above

98 preprocessor = ColumnTransformer(

99 transformers =[

100 ('num', numeric_transformer , INPUTS_LR_NUM),

101 ('cat', categorical_transformer , INPUTS_LR_CAT)

102 ])

103

104 param = {'PLSR_model__n_components ': [1,2,3,4,5,6,7,8]}

105 pipe = Pipeline ([

106 ('preprocessor ', preprocessor),

107 ('PLSR_model ', PLSRegression ())

108 ])

109 # We use Grid Search Cross Validation to find the best parameter for the

↪→ model in the grid defined

110 nFolds = 10

111 PLSR_fit = GridSearchCV(estimator=pipe , # Structure of the model to use

112 param_grid=param , # Defined grid to search in

113 n_jobs=-1, # Number of cores to use (parallelize)

114 scoring='neg_mean_squared_error ', # RMSE

↪→ https ://scikit -learn.org/stable/modules/model_evaluation.html

115 cv=nFolds) # Number of Folds

116 PLSR_fit.fit(X_train[INPUTS_LR], y_train) # Search in grid

117

118 # PLSR_fit.best_estimator_['PLSR_model '].summary(PLSR_fit

↪→ .best_estimator_['preprocessor ']. get_feature_names_out ()) #information

↪→ about the model trained

119 dfTR_eval['LR_pred '] = PLSR_fit.predict(X_train)

120 dfTS_eval['LR_pred '] = PLSR_fit.predict(X_test)

121

122 #Training and test MAE - Mean Absolute error

123 MAE_TR_LL = mean_absolute_error(dfTR_eval['gen'], dfTR_eval['LR_pred '])

124 MAE_TS_LL = mean_absolute_error(dfTS_eval['gen'], dfTS_eval['LR_pred '])

125 #Training and test RMSE - Root Mean Square Error

126 RMSE_TR_LL = math.sqrt(mean_squared_error(dfTR_eval['gen'],

↪→ dfTR_eval['LR_pred ']))

127 RMSE_TS_LL = math.sqrt(mean_squared_error(dfTS_eval['gen'],

↪→ dfTS_eval['LR_pred ']))

128 #Training and test r^2

129 R2_TR_LL = r2_score(dfTR_eval['gen'], dfTR_eval['LR_pred '])

130 R2_TS_LL = r2_score(dfTS_eval['gen'], dfTS_eval['LR_pred '])

131 #Training and test r^2
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132 MAPE_TR_LL = mean_absolute_percentage_error(dfTR_eval['gen'],

↪→ dfTR_eval['LR_pred '])

133 MAPE_TS_LL = mean_absolute_percentage_error(dfTS_eval['gen'],

↪→ dfTS_eval['LR_pred '])

134

135

136 No_lluviosos = eolica [( eolica.ccaa == i) & (eolica.Pmed_00_24 < 1)]

137 X = No_lluviosos[INPUTS]

138 y = No_lluviosos[OUTPUT]

139

140 # Split

141 X_train , X_test , y_train , y_test = train_test_split(X, y,

142 test_size =0.2,

↪→ #percentage of test data

143 random_state =0) #seed for

↪→ replication

144 ## Create dataset to store model predictions

145

146 dfTR_eval = X_train.copy()

147 dfTR_eval['gen'] = y_train

148 dfTS_eval = X_test.copy()

149 dfTS_eval['gen'] = y_test

150

151 ## Inputs of the model. Change accordingly to perform variable selection

152 INPUTS_LR_NUM =

↪→ X_train.select_dtypes(include =['int64 ','float64 ']).columns.values.tolist ()

153 INPUTS_LR_CAT =

↪→ X_train.select_dtypes(include =['category ']).columns.values.tolist ()

154 INPUTS_LR = INPUTS_LR_NUM + INPUTS_LR_CAT

155

156 # Prepare the numeric variables by imputing by scaling

157 numeric_transformer = Pipeline(steps =[('scaler ', StandardScaler ())])

158

159 # Prepare the categorical variables by encoding the categories

160 categorical_transformer = Pipeline(steps =[('onehot ',

↪→ OneHotEncoder(handle_unknown='ignore '))])

161

162 # Create a preprocessor to perform the steps defined above

163 preprocessor = ColumnTransformer(

164 transformers =[

165 ('num', numeric_transformer , INPUTS_LR_NUM),

166 ('cat', categorical_transformer , INPUTS_LR_CAT)

167 ])

168

169 param = {'PLSR_model__n_components ': [1,2,3,4,5,6,7,8]}

170 pipe = Pipeline ([

171 ('preprocessor ', preprocessor),

172 ('PLSR_model ', PLSRegression ())

173 ])

174 # We use Grid Search Cross Validation to find the best parameter for the

↪→ model in the grid defined

175 nFolds = 10

176 PLSR_fit = GridSearchCV(estimator=pipe , # Structure of the model to use

177 param_grid=param , # Defined grid to search in

178 n_jobs=-1, # Number of cores to use (parallelize)

179 scoring='neg_mean_squared_error ', # RMSE

↪→ https ://scikit -learn.org/stable/modules/model_evaluation.html

180 cv=nFolds) # Number of Folds

181 PLSR_fit.fit(X_train[INPUTS_LR], y_train) # Search in grid
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182

183 # PLSR_fit.best_estimator_['PLSR_model '].summary(PLSR_fit

↪→ .best_estimator_['preprocessor ']. get_feature_names_out ()) #information

↪→ about the model trained

184 dfTR_eval['LR_pred '] = PLSR_fit.predict(X_train)

185 dfTS_eval['LR_pred '] = PLSR_fit.predict(X_test)

186 #Training and test MAE - Mean Absolute error

187 MAE_TR_NLL = mean_absolute_error(dfTR_eval['gen'], dfTR_eval['LR_pred '])

188 MAE_TS_NLL = mean_absolute_error(dfTS_eval['gen'], dfTS_eval['LR_pred '])

189 #Training and test RMSE - Root Mean Square Error

190 RMSE_TR_NLL = math.sqrt(mean_squared_error(dfTR_eval['gen'],

↪→ dfTR_eval['LR_pred ']))

191 RMSE_TS_NLL = math.sqrt(mean_squared_error(dfTS_eval['gen'],

↪→ dfTS_eval['LR_pred ']))

192 #Training and test r^2

193 R2_TR_NLL = r2_score(dfTR_eval['gen'], dfTR_eval['LR_pred '])

194 R2_TS_NLL = r2_score(dfTS_eval['gen'], dfTS_eval['LR_pred '])

195 #Mape

196 MAPE_TR_NLL = mean_absolute_percentage_error(dfTR_eval['gen'],

↪→ dfTR_eval['LR_pred '])

197 MAPE_TS_NLL = mean_absolute_percentage_error(dfTS_eval['gen'],

↪→ dfTS_eval['LR_pred '])

198

199 data = {

200 'Precipitación': ['SI', 'NO'],

201 'CCAA': [i, i],

202 'Mae TR': [MAE_TR_LL , MAE_TR_NLL],

203 'Mae TS': [MAE_TS_LL , MAE_TS_NLL],

204 'RMSE TR': [RMSE_TR_LL , RMSE_TR_NLL],

205 'RMSE TS': [RMSE_TS_LL , RMSE_TS_NLL],

206 'R2 TR': [R2_TR_LL , R2_TR_NLL],

207 'R2 TS': [R2_TS_LL , R2_TS_NLL],

208 'MAPE TR': [MAPE_TR_LL , MAPE_TR_NLL],

209 'MAPE TS': [MAPE_TS_LL , MAPE_TS_NLL],

210 }

211

212 # Crear el DataFrame

213 df = pd.DataFrame(data)

214

215 errores = pd.concat ([errores , df], ignore_index=True)

216

217 errores = errores.round (3)

218

219 # Configurar la figura

220 fig , ax = plt.subplots(figsize =(10, 4)) # Ajustar el tamaño de la figura según

↪→ sea necesario

221 ax.axis('tight ')

222 ax.axis('off')

223

224 # Crear la tabla

225 table = ax.table(cellText=errores.values , colLabels=errores.columns ,

↪→ cellLoc='center ', loc='center ')

226 table.auto_set_font_size(False)

227 table.set_fontsize (9)

228

229 for key , cell in table.get_celld ().items():

230 if key[0] == 0:

231 cell.set_fontsize (9) # Ajustar el tamaño de la fuente de la cabecera

232 cell.set_text_props(weight='bold')

Medium-Term Electric Production Forecasting using Probabilistic Machine Learning Algorithms
Teresa Carbo Espeja

61



Chapter 7. List of codes

233

234 col_idx = errores.columns.get_loc('CCAA')

235 for key , cell in table.get_celld ().items():

236 if key[1] == col_idx:

237 cell.set_width (0.18)

238

239 col_idx = errores.columns.get_loc('Precipitación')

240 for key , cell in table.get_celld ().items():

241 if key[1] == col_idx:

242 cell.set_width (0.12)

243

244 # Save the figure

245 plt.savefig('errores.png', bbox_inches='tight ', dpi =300)

246

247 plt.show()

Listing 7.8. PLSR model

Code 9
1 ### Load libraries ###

2

3 # interactive plotting

4 %matplotlib inline

5 %config InlineBackend.figure_format = 'svg'

6

7 # plotting libraries

8 import seaborn as sns

9 import matplotlib as mpl

10 import matplotlib.pyplot as plt

11 import matplotlib.dates as mdates

12 sns.set()

13 plt.style.use('ggplot ')

14 plt.rcParams.update ({'figure.figsize ': (10, 7), 'figure.dpi': 120})

15

16 # Data management libraries

17 import itertools

18 import numpy as np # linear algebra

19 import pandas as pd # data processing , CSV file I/O (e.g. pd.read_csv)

20

21 # Machine learning libraries

22 from sklearn.decomposition import PCA , FastICA

23 from sklearn.preprocessing import StandardScaler

24 from sklearn.neighbors import KernelDensity

25 import sklearn.mixture as mixture

26 from scipy import linalg

27 import math

28

29 # Other

30 from mltools import unsupervised_tools as UT

31 import joblib

32

33 # Cargar modelos de PCA , GMM y scaler

34 pca = joblib.load('pca_model.pkl')

35 gmm = joblib.load('gmm_model.pkl')

36 scaler = joblib.load('scaler_model.pkl')

37 PLSR_ll = joblib.load('PLSR_fit_ll_Galicia.pkl') # Cambiar esto en el futuro en

↪→ funcion de ccaa
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38 PLSR_nll = joblib.load('PLSR_fit_nll_Galicia.pkl') # Cambiar esto en el futuro en

↪→ funcion de ccaa

39

40 # Cargar datos de prueba y nos quedamos con ccaa = Galicia , date = 2023 -01 -01

↪→ hasta 2023 -12 -31

41 data = pd.read_csv('eolica.csv', index_col =0)

42 data = data[(data['date'] >= '2023 -01 -01') & (data['date'] <= '2023 -12 -31')]

43 data = data[data['ccaa'] == 'Galicia ']

44 data = data.drop(columns =['ccaa'])

45 n_dias = data.shape [0]

46 gen = data['gen']

47

48 # Seleccionar solo las columnas que fueron usadas durante el entrenamiento

49 numeric_inputs =

↪→ ['Tmax','Tmin','Tmed','Rmed','Vmax','Pmed_00_24 ','Pmed_00_06 ','Pmed_06_12 ',

↪→ 'Pmed_12_18 ','Pmed_18_24 ']

50 data = data[numeric_inputs]

51 data = data.reset_index(drop=True)

52

53 # Obtener scores de cada gausiana del gmm en base al punto , primeramente se pasa

↪→ por el pca y el scaler

54 data_tr = scaler.transform(data)

55 data_tr = pca.transform(data_tr)

56

57 # Dado un punto:

58 # 1. Calcular las probabilidades de pertenencia para cada punto a cada componente

↪→ del GMM

59 # 1.1 Obtener la probabilidad de pertenencia de cada punto a cada componente

↪→ del GMM

60 scores_per_component = gmm.predict_proba(data_tr) * gmm.weights_

61

62 # 1.2 Escalar la probabilidad de pertenencia para que sumen 1

63 scores_per_component = scores_per_component / scores_per_component.sum(axis=1,

↪→ keepdims=True)

64

65 # 2. Generar escenarios utilizando una distribucion uniforme ponderada por las

↪→ probabilidades de pertenencia

66 # 2.1 Utilizar la funcion numpy.random.choice para seleccionar un componente

↪→ para cada escenario

67 scenario_size = 1000

68 matrix_nsmpl_comp_day = np.empty(( scenario_size , len(gmm.weights_)-1, 0))

69

70 for i in range(len(scores_per_component)): # Va iterando en cada dia

71 # 2.2 La funcion numpy.random.choice estara ponderada en base a las

↪→ probabilidades de pertenencia caluladas en el paso 1

72 selected_components = np.random.choice(len(gmm.weights_), size=scenario_size ,

↪→ p=scores_per_component[i])

73

74 generated_data = []

75 # 2.3 Generar un escenario para cada componente seleccionado

76 for component in selected_components:

77 # Media y covarianza del componente seleccionado

78 mean = gmm.means_[component]

79 cov = gmm.covariances_[component]

80

81 # Generar un punto desde la distribución gaussiana

82 sample = np.random.multivariate_normal(mean , cov)

83 generated_data.append(sample)

84
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85 # Dimensiones: 1000 x5x1

86

87 # Concatenar el vector a la matriz en la tercera dimensión

88 generated_data = np.array(generated_data)

89 generated_data = generated_data [:, :, np.newaxis]

90 matrix_nsmpl_comp_day = np.concatenate (( matrix_nsmpl_comp_day ,

↪→ generated_data), axis =2)

91

92 # 2.4 Hacer la transformacion inversa y el escalado inverso para obtener los

↪→ valores reales de los escenarios

93 numeric_inputs =

↪→ ['Tmax','Tmin','Tmed','Rmed','Vmax','Pmed_00_24 ','Pmed_00_06 ','Pmed_06_12 ',

↪→ 'Pmed_12_18 ','Pmed_18_24 ']

94

95 # Inverse transform the scenarios for each day , Duda: como hacer un dataframe de

↪→ tres dimensiones

96 predictions = np.empty((n_dias , scenario_size))

97

98 for i in range(matrix_nsmpl_comp_day.shape [2]):

99 x_scenarios = pca.inverse_transform(matrix_nsmpl_comp_day [:,:,i])

100 x_scenarios = pd.DataFrame(scaler.inverse_transform(x_scenarios),

↪→ columns=numeric_inputs)

101

102 # 3. Predecir las respuestas para los nuevos escenarios usando los modelos PLSR

103 y_pred_ll = np.empty((0, 1))

104 y_pred_nll = np.empty((0, 1))

105

106 x_escenarios_ll = x_scenarios[x_scenarios['Pmed_00_24 '] >= 1]

107 x_escenarios_nll = x_scenarios[x_scenarios['Pmed_00_24 '] < 1]

108

109 if x_escenarios_ll.shape [0] > 0:

110 y_pred_ll = PLSR_ll.predict(x_escenarios_ll)

111

112 if x_escenarios_nll.shape [0] > 0:

113 y_pred_nll = PLSR_nll.predict(x_escenarios_nll)

114

115 predictions[i] = np.concatenate ((y_pred_ll , y_pred_nll), axis =0).flatten ()

116

117 pred = np.empty(( n_dias))

118

119 for i, row in data.iterrows ():

120 x = row.to_frame ().T

121 if x['Pmed_00_24 ']. values >= 1:

122 pred[i] = PLSR_ll.predict(x)

123 else:

124 pred[i] = PLSR_nll.predict(x)

125

126 predictions = np.vstack ((pred , predictions.T)).T

Listing 7.9. Generation of scenarios
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