
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

OFFICIAL MASTER’S DEGREE IN BIG DATA

MASTER’S THESIS

DESIGN OF SMALL CNN VIA
SYNTHETIC IMAGES AND FILTER

EXTRACTION

Author: Irene España Novillo

Supervisors:
Dr. Eugenio Francisco Sánchez Úbeda

Dr. Jaime Boal Martín-Larrauri

MADRID
May 2025

Copyright © 2025 Irene España Novillo

This disertation was typeset with LATEX and compiled in TEXstudio using the TEXLive 2019
distribution. The font families used are Bitstream Charter, Utopia, Bookman and Computer
Modern. ChatGPT® was used to improve the writing. Unless otherwise noted, all figures were
created by the author using Microsoft PowerPoint® and Python®.

 Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

“Design of Small CNN via synthetic images and filter extraction”

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2024/2025 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos. El Proyecto no es

plagio de otro, ni total ni parcialmente y la información que ha sido tomada

de otros documentos está debidamente referenciada.

 Fdo.: Irene España Novillo Fecha:

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

 Fdo.: Eugenio Francisco Sánchez Úbeda Fecha:

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

 Fdo.: Jaime Boal Martín-Larrauri Fecha:

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)

OFFICIAL MASTER’S DEGREE IN BIG DATA

MASTER’S THESIS

DESIGN OF SMALL CNN VIA
SYNTHETIC IMAGES AND FILTER

EXTRACTION

Author: Irene España Novillo

Supervisors:
Dr. Eugenio Francisco Sánchez Úbeda

Dr. Jaime Boal Martín-Larrauri

MADRID
May 2025

Copyright © 2025 Irene España Novillo

This disertation was typeset with LATEX and compiled in TEXstudio using the TEXLive 2019
distribution. The font families used are Bitstream Charter, Utopia, Bookman and Computer
Modern. ChatGPT® was used to improve the writing. Unless otherwise noted, all figures were
created by the author using Microsoft PowerPoint® and Python®.

DISEÑO DE CNN COMPACTAS MEDIANTE IMÁGENES

SINTÉTICAS Y EXTRACIÓN DE FILTROS

Autora: España Novillo, Irene.

Directores: Sánchez Úbeda, Eugenio Francisco y Boal Martín-Larrauri, Jaime.

Entidad Colaboradora: ICAI – Universidad Pontificia Comillas.

RESUMEN DEL PROYECTO

A pesar de su éxito en los últimos años, las Redes Neuronales Convolucionales (CNN)

presentan importantes desafíos, entre ellos el elevado coste computacional, los largos

tiempos de entrenamiento y una fuerte dependencia de grandes conjuntos de datos. Este

proyecto presenta una metodología “bottom-up” para diseñar redes neuronales

convolucionales eficientes utilizando conjuntos de imágenes sintéticas de figuras

geométricas. Al aplicar transformaciones básicas —escalado, rotación y traslación— a un

dataset sintéticamente generado, es posible extraer filtros especializados e identificar

configuraciones clave de hiperparámetros. Este conocimiento permite una inicialización

inteligente de los modelos, reduciendo tanto el coste computacional como el tiempo de

entrenamiento, sin sacrificar precisión. El uso de técnicas de “transfer learning” aplicadas

a filtros mejora el rendimiento y la estabilidad del modelo en escenarios más complejos.

El enfoque propuesto es generalizable y especialmente adecuado para entornos con

recursos limitados, contribuyendo al desarrollo de sistemas de visión artificial más

interpretables, sostenibles y escalables.

Palabras clave: CNN, modelo mínimo, filtro, transfer learning, arquitecturas pequeñas.

1. Introducción

En los últimos años, las redes neuronales convolucionales (CNN) han transformado

las aplicaciones de visión artificial en múltiples campos, desde diagnósticos médicos

hasta control de calidad industrial. Sin embargo, su efectividad suele venir

acompañada de altos costes computacionales, extensos tiempos de entrenamiento y la

necesidad de grandes conjuntos de datos etiquetados. Además, su naturaleza opaca

tipo “caja negra” representa un reto en dominios críticos donde la interpretabilidad es

esencial. Para abordar dichas limitaciones, este trabajo propone una metodología

novedosa y ascendente para diseñar arquitecturas de CNN compactas, eficientes e

interpretables. Aprovechando conjuntos de datos sintéticos diseñados

específicamente para tareas concretas, el enfoque busca construir modelos más

transparentes y sostenibles sin comprometer el rendimiento.

2. Definición del proyecto

Este trabajo presenta el diseño e implementación de una metodología para desarrollar

arquitecturas de CNN compactas capaces de alcanzar alta precisión con un número

mínimo de parámetros. Utilizando un conjunto de datos sintéticos de figuras

geométricas simples, se entrenan modelos de baja complejidad para extraer una base

de conocimiento compuesta de órdenes de magnitud de hiperparámetros,

arquitecturas de modelos y filtros aprendidos. Este conocimiento permite la

inicialización inteligente de nuevas CNN, mejorando la eficiencia desde el inicio.

Además, se aplican técnicas de aprendizaje por transferencia para abordar nuevos

problemas de clasificación, reduciendo considerablemente el tiempo de

entrenamiento y el coste computacional en comparación con modelos inicializados

aleatoriamente. Las tareas abordadas implican la identificación de figuras geométricas

sometidas a escalado, rotación, traslación y todas las posibles combinaciones de estas

transformaciones básicas en presencia de ruido.

3. Descripción de la metodología

El diagrama de flujo seguido en el proceso se muestra en la Figura 1 y consta

principalmente de cinco fases:

• Generación del conjunto de datos. Se genera un conjunto sintético de imágenes

de figuras geométricas pertenecientes a tres clases: elipses, rectángulos y

triángulos. Se aplican transformaciones como escalado (Dataset 1.1), rotación

(1.2), traslación (1.3), o combinaciones de estas (Datasets 4.1 a 7.1). También se

añade ruido.

• Búsqueda del modelo mínimo. Se entrenan múltiples modelos con distintas

combinaciones de hiperparámetros mediante una búsqueda en malla (“grid

search”) identificando modelos de baja complejidad con alta precisión.

• Extración de filtros óptimos. A partir de los modelos mínimos seleccionados, se

construye la base de conocimiento compuesta por filtros, arquitecturas de modelos

y órdenes de magnitud de hiperparámetros óptimas.

• Transfer learning de filtros. Se reutilizan los filtros aprendidos en datasets con

combinaciones de transformaciones (4.1 a 7.1) y se comparan con modelos

entrenados desde cero.

• Conclusión. Se extraen las observaciones más relevantes de la comparación entre

ambas metodologías.

Figura 1. Diagrama de flujo de la metodología.

4. Resultados

• Los modelos mínimos seleccionados para los Datasets 1.1, 1.2 y 1.3 alcanzan un

99% de precisión en validación utilizando solo 21,000 parámetros, demostrando

la efectividad de los filtros aprendidos. El hiperparámetro más determinante es el

tamaño del pooling, fijado en 3 en todos los casos. Cada filtro extraído está

especializado en detectar una transformación geométrica concreta.

• Los modelos entrenados con “transfer learning” poseen mayor estabilidad que los

entrenados desde cero, alcanzando niveles de precisión similares con diferentes

semillas aleatorias.

• En cuanto a las combinaciones de dos transformaciones, la más sencilla de

resolver es la de escalado más traslación, con la que el modelo alcanza un 93% de

precisión utilizando solo 18,000 parámetros. La combinación de escalado y

rotación presenta una dificultad intermedia, requiriendo 51,000 parámetros para

lograr un 89% de precisión. Finalmente, la combinación de rotación y traslación

es la más compleja, ya que el modelo necesita 83,000 parámetros para alcanzar

apenas un 77% de precisión, evidenciando el mayor desafío que supone esta

transformación compuesta.

• La combinación de las tres transformaciones —escalado, rotación y traslación—

es el escenario más complejo. A pesar de tener solo 26,000 parámetros, la

precisión desciende a aproximadamente un 68%.

• La rotación parece ser la transformación más difícil de detectar para las redes.

• El entrenamiento con “transfer learning” tarda, en promedio, 3 minutos y 34

segundos más que el entrenamiento desde cero, aunque esta diferencia es mínima

en contextos de visión por computadora, donde los entrenamientos pueden durar

horas o incluso días.

5. Conclusiones

Este proyecto presenta una novedosa metodología para el diseño de redes neuronales

convolucionales ligeras, eficientes e interpretables enfocadas en tareas específicas con

transformaciones geométricas. Comenzando con modelos mínimos entrenados en

datasets sintéticos con transformaciones como escalado, rotación y traslación, se

construye una base de conocimiento con hiperparámetros y filtros óptimos.

Posteriormente, mediante aprendizaje por transferencia, se generalizan estos modelos

para enfrentar escenarios más complejos, mejorando la estabilidad y el rendimiento

al tiempo que se reducen los tiempos y costes de entrenamiento. A pesar de la mayor

dificultad que supone combinar varias transformaciones, el método propuesto ofrece

precisiones competitivas con arquitecturas mucho más pequeñas que las tradicionales.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER

EXTRACTION

Author: España Novillo, Irene.

Supervisors: Sánchez Úbeda, Eugenio Francisco and Boal Martín-Larrauri, Jaime.

Collaborating Entity: ICAI – Universidad Pontificia Comillas.

ABSTRACT

Despite their success during the last years, CNNs present significant challenges, including

high computational requirements, extensive training times and a dependency on large

datasets. This thesis presents a bottom-up methodology for designing compact and

efficient Convolutional Neural Networks (CNNs) using synthetic image datasets of

geometric shapes. By applying basic transformations—scaling, rotation and translation—

to synthetic-generated data, it becomes possible to extract specialized filters and identify

key hyperparameter configurations. This knowledge enables intelligent model

initialization, reducing both computational cost and training time while maintaining high

accuracy. The use of filter-transfer learning further improves model performance and

stability in more complex scenarios. The proposed approach is generalizable and well-

suited for resource-constrained environments, contributing to the development of more

interpretable, sustainable, and scalable computer vision systems.

Keywords: CNN, minimum model, filter, transfer learning, small architectures.

1. Introduction

In recent years, Convolutional Neural Networks (CNNs) have transformed computer

vision applications across a wide range of fields, from medical diagnostics to

industrial quality control. However, their effectiveness often comes at the cost of high

computational demands, long training times and the need for large, labeled datasets.

Moreover, their opaque “black-box” nature poses challenges in critical domains

where model interpretability is essential. To address these limitations, this thesis

proposes a novel bottom-up methodology for designing compact, efficient, and

interpretable CNN architectures. By leveraging synthetically generated image

datasets tailored to specific tasks, the approach aims to create more transparent and

sustainable models without compromising performance.

2. Project definition

This work presents the design and implementation of a methodology for developing

compact CNN architectures capable of achieving high accuracy with a minimal

number of parameters. Using a synthetically generated dataset of simple geometric

images, a series of low-complexity models are trained to extract a knowledge base

consisting of the order of magnitude of the hyperparameters, architectural structures,

and learned filters. This knowledge enables to intelligently initialize new CNNs,

improving efficiency from the outset. Transfer learning techniques are then applied

to tackle new classification problems, significantly reducing training time and

computational cost compared to randomly initialized models. The tasks addressed

involve identifying geometric shapes subjected to scaling, rotation, translation and all

possible combinations of these basic transformations in the presence of noise.

3. Methodology description

The workflow followed in the process is shown in Figure 1 and it is comprised of five

main phases:

• Dataset generation. A synthetic dataset is generated. Both training and validation

datasets contain images of geometric figures belonging to three different classes:

ellipses, rectangles and triangles. A transformation is applied to the images:

scaling (Dataset 1.1), rotation (Dataset 1.2) and translation (Dataset 1.3) or a

combination of them (Datasets 4.1 to 7.1). Noise is added to the images as well.

• Minimum model search. Once the dataset has been built, a series of architectures

are trained to address basic transformations (Dataset 1.1 to 1.3) varying the values

of the hyperparameters following a grid-search method. Models that achieve the

highest levels of accuracy with the minimum number of parameters and hence,

the lower complexity, are selected.

• Optimal filter extraction. From the minimal models previously chosen the

knowledge base of hyperparameters magnitude order, model architecture and

filters to address basic transformations is obtained.

• Filter-transfer learning. With the filters obtained from the previous stage,

transfer learning is applied to datasets containing combinations of transformations

(Datasets 4.1 to 7.1). Additionally, the same architectures are trained from scratch,

so both techniques can be compared.

• Conclusion. The most relevant aspects of the comparison between methodologies

are drawn.

Figure 1. Workflow chart of the methodology.

4. Results

• The minimum models selected for Datasets 1.1, 1.2 and 1.3 achieves a validation

accuracy of 99% with only 21,000 parameters, demonstrating the effectiveness of

the learned filters and their suitability for forming a robust knowledge base.

Among the hyperparameters, pooling size was the most influential, consistently

set to 3 across all cases. Each of the three extracted filters shows specialization in

detecting a specific geometric transformation (scaling, rotation, or translation).

• Models trained using transfer learning demonstrate greater stability than those

trained from scratch, consistently achieving similar accuracy levels across

different random seeds. This suggests improved generalization and reduced

variance in performance.

• When analyzing combinations of two transformations, the pairing of scaling and

translation is the simplest to resolve, with the model achieving 93% accuracy

using just 18,000 parameters. The combination of scaling and rotation presents

moderate complexity, requiring 51,000 parameters to reach 89% accuracy. The

most challenging two-transformation scenario is rotation and translation, which

demands 83,000 parameters to obtain a reduced accuracy of 77%

• The scenario involving all three transformations —scaling, rotation, and

translation— proves to be the most difficult one to solve. Despite the model's

relatively low parameter count (26,000), it achieves only around 68% accuracy,

indicating the increased complexity introduced by the combined transformations.

• Rotation seems to be the most challenging transformation for networks to detect.

• On average, training using transfer learning takes 3 minutes and 34 seconds longer

than training from scratch. However, this difference is acceptable in the broader

context of computer vision tasks, where training durations often extend to several

hours or even days.

5. Conclusions

This thesis presents a novel bottom-up methodology for designing lightweight,

efficient and interpretable Convolutional Neural Networks (CNNs) tailored to

specific tasks involving geometric image transformations. By starting with minimal

models trained on synthetically generated datasets featuring transformations like

scaling, rotation, and translation, the approach builds a knowledge base of optimal

hyperparameters and filters. Transfer learning is then used to extend these models to

more complex transformation scenarios, improving stability and performance while

reducing training time and computational costs. Despite the increased complexity of

combining multiple transformations, the proposed method offers competitive

accuracy with significantly smaller architectures compared to traditional approaches.

A mis abuelas Riánsares y Sagrario, por cuidarme siempre.

A mi padre, a mi madre y a mi hermano.
Por el apoyo, la comprensión y el cariño.

Somos lo que hacemos repetidamente.
La excelencia no es un acto, es un hábito.

Aristóteles (384 a.C.–322 a.C.)

Agradecimientos

La realización de este trabajo final de máster no habría sido posible sin el apoyo, la guía y el
impulso constante de mis directores, Eugenio y Jaime. Cuando os propuse de nuevo dirigirme
un TFM no lo dudasteis ni un segundo. Gracias por vuestra confianza y por apostar por este
proyecto con entusiasmo y compromiso.

A mis padres y a mi hermano, gracias por animarme a seguir formándome y brindarme
la oportunidad de hacerlo en ICAI. No puedo estar más orgullosa de tener como referentes
a personas tan generosas, tenaces y llenas de amor. A mis tíos, tías y primos, por su cariño
incondicional, por mantenernos siempre unidos y por creer firmemente en mi capacidad para
alcanzar mis metas.

A mis compañeros del departamento de GIRS, gracias por ser fuente de inspiración diaria.
Vuestra dedicación y profesionalidad han sido ejemplo y motivación constante a lo largo de este
trabajo. Bilbao y Madrid no serían lo mismo sin vosotros.

A mis amigas de toda la vida, gracias por creer en mí incluso cuando yo dudaba. Vuestra
amistad es un regalo inmenso. Y a Pablo, este trabajo te debe mucho. Yo también.

A todas las personas que, aunque no estén mencionadas directamente, han aportado su
granito de arena en este camino: ¡gracias de corazón!

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

xv

Contents

1. Introduction 1

1.1. Motivation . 2

1.2. Objective . 3

1.3. Resources . 3

1.4. Dissertation outline . 3

2. Literature Review 5

3. Synthetic dataset generation 9

3.1. Dataset generation . 9

3.1.1. Geometric shapes . 10
3.1.1.1. Ellipses . 11
3.1.1.2. Rectangles . 11
3.1.1.3. Triangles . 13

3.1.2. Geometric transformations . 14
3.1.2.1. Scaling . 15
3.1.2.2. Rotation . 15
3.1.2.3. Translation . 15

3.1.3. Noise . 15

3.1.4. Image reduction . 16

3.2. Dataset analysis . 16

3.2.1. Dataset structure . 17

3.2.2. Dataset samples . 19

4. Optimal filter selection 35

4.1. Proposed methodology . 35

4.2. Dataset 1.1: Scaling . 37

4.3. Dataset 2.1: Rotation . 40

4.4. Dataset 3.1: Translation . 43

4.5. Conclusion . 46

5. Filter-transfer learning 47

5.1. Proposed methodology . 47

5.2. Dataset 4.1: Scaling plus rotation . 50

5.3. Dataset 5.1: Scaling plus translation . 53

5.4. Dataset 6.1: Rotation plus translation . 56

5.5. Dataset 7.1: Scaling, rotation and translation . 59

5.6. Conclusion . 62

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

xvii

Contents

6. Conclusion and future work 63

6.1. Summary and conclusion . 63

6.2. Future work . 64

A. Alignment with the Sustainable Development Goals 67

Bibliography 69

xviii DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

List of Figures

Figure 3.1. Ellipse definition . 11

Figure 3.2. Rectangle definition . 12

Figure 3.3. Triangle definition . 13

Figure 3.4. Folder diagram . 18

Figure 3.5. Ellipses Dataset1.0 . 21

Figure 3.6. Rectangles Dataset1.0 . 21

Figure 3.7. Triangles Dataset1.0 . 21

Figure 3.8. Images Dataset1.1 . 22

Figure 3.9. Images Dataset1.1 . 22

Figure 3.10. Images Dataset1.1 . 22

Figure 3.11. Ellipses Dataset2.0 . 23

Figure 3.12. Rectangles Dataset2.0 . 23

Figure 3.13. Triangles Dataset2.0 . 23

Figure 3.14. Images Dataset2.1 . 24

Figure 3.15. Images Dataset2.1 . 24

Figure 3.16. Images Dataset2.1 . 24

Figure 3.17. Ellipses Dataset3.0 . 25

Figure 3.18. Rectangles Dataset3.0 . 25

Figure 3.19. Triangles Dataset3.0 . 25

Figure 3.20. Images Dataset3.1 . 26

Figure 3.21. Images Dataset3.1 . 26

Figure 3.22. Images Dataset3.1 . 26

Figure 3.23. Ellipses Dataset4.0 . 27

Figure 3.24. Rectangles Dataset4.0 . 27

Figure 3.25. Triangles Dataset4.0 . 27

Figure 3.26. Images Dataset4.1 . 28

Figure 3.27. Images Dataset4.1 . 28

Figure 3.28. Images Dataset4.1 . 28

Figure 3.29. Ellipses Dataset5.0 . 29

Figure 3.30. Rectangles Dataset5.0 . 29

Figure 3.31. Triangles Dataset5.0 . 29

Figure 3.32. Images Dataset5.1 . 30

Figure 3.33. Images Dataset5.1 . 30

Figure 3.34. Images Dataset5.1 . 30

Figure 3.35. Ellipses Dataset6.0 . 31

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

xix

List of Figures

Figure 3.36. Rectangles Dataset6.0 . 31

Figure 3.37. Triangles Dataset6.0 . 31

Figure 3.38. Images Dataset6.1 . 32

Figure 3.39. Images Dataset6.1 . 32

Figure 3.40. Images Dataset6.1 . 32

Figure 3.41. Ellipses Dataset7.0 . 33

Figure 3.42. Rectangles Dataset7.0 . 33

Figure 3.43. Triangles Dataset7.0 . 33

Figure 3.44. Images Dataset7.1 . 34

Figure 3.45. Images Dataset7.1 . 34

Figure 3.46. Images Dataset7.1 . 34

Figure 4.1. Dataset 1.1 Mistakes . 39

Figure 4.2. Dataset 1.1 Mistakes . 39

Figure 4.3. Dataset 1.1 Filter . 40

Figure 4.4. Dataset 2.1 Mistakes . 42

Figure 4.5. Dataset 2.1 Mistakes . 42

Figure 4.6. Dataset 2.1 Mistakes . 42

Figure 4.7. Dataset 2.1 Filter . 43

Figure 4.8. Dataset 3.1 Mistakes . 45

Figure 4.9. Dataset 3.1 Mistakes . 45

Figure 4.10. Dataset 3.1 Filter . 46

Figure 5.1. All filters . 49

xx DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

List of Tables

Table 2.1. Techniques used for CNN optimal architecture selection 6

Table 4.1. Results for dataset 1.1 . 38

Table 4.2. Confusion Matrix for dataset 1.1 . 39

Table 4.3. Confusion Matrix for dataset 1.1 . 39

Table 4.4. Results for dataset 2.1 . 41

Table 4.5. Confusion Matrix for dataset 2.1 . 42

Table 4.6. Confusion Matrix for dataset 2.1 . 42

Table 4.7. Results for dataset 1.1 . 44

Table 4.8. Confusion Matrix for dataset 3.1 . 45

Table 4.9. Confusion Matrix for dataset 3.1 . 45

Table 5.1. Results for dataset 4.1 . 51

Table 5.2. Results for dataset 4.1 . 52

Table 5.3. Results for dataset 5.1 . 54

Table 5.4. Results for dataset 5.1 . 55

Table 5.5. Results for dataset 6.1 . 57

Table 5.6. Results for dataset 6.1 . 58

Table 5.7. Results for dataset 7.1 . 60

Table 5.8. Results for dataset 7.1 . 61

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

xxi

1
Introduction

You only get so many firsts,
each one is a blessing.

Taylor Swift (1989–)

The first chapter outlines the rationale for this project, its primary objective and the tools
employed during its development. Additionally, it offers the reader a clear overview of
the dissertation’s structure to facilitate easier navigation and understanding.

In recent years, Big Data has become a cornerstone of technological advancement, enabling
innovation across different industry fields. Among its most impactful applications is the use of
advanced techniques applied to computer vision tasks. Industrial computer vision systems are
able to perform precise product inspections in real time on high-speed lines, correcting issues
and improving product quality at the same time that operational costs are reduced.

The most representative technique to analyze images par excellence are Convolutional Neural
Networks (CNNs), a specialized type of neural networks with a remarkable ability to detect and
interpret complex visual patterns. These models have achieved groundbreaking results in fields
such as medical imaging, where they assist in early disease detection, autonomous vehicles
that rely on real-time object recognition, and even creative applications like generating art or
enhancing image resolution.

However, despite their enormous potential, CNNs have certain limitations. One of the most
critical challenges lies in their reliance on vast amounts of labeled data for training. Acquiring
and annotating such datasets can be expensive and time-consuming, particularly in specialized
fields like medicine or satellite imaging. Additionally, CNNs are computationally intensive,
requiring powerful hardware like GPUs to train effectively.

Another major drawback is the time required for training. As the complexity of the network
grows due to deeper architectures or larger datasets, training times can stretch from hours to
weeks. Even after deployment, CNNs can struggle with scalability in real-world applications
where new data is continuously introduced and retraining or fine-tuning is needed. Furthermore,
these models lack interpretability; their “black-box” nature makes it difficult to understand or

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

1

Chapter 1. Introduction

explain why a particular prediction was made, posing challenges in high-stakes applications
such as those in healthcare, pharmaceuticals, food or legal industries, where decisions can have
a direct impact on human life. In order to address these limitations, the field continues to
innovate with well-known techniques such as transfer learning and model compression.

There is growing interest in developing small, lightweight CNN models that are easier to
interpret. Unlike large-scale CNNs, which require vast computational resources and extensive
datasets, smaller models are designed to be lightweight and efficient, making them ideal
for deployment on edge devices like smartphones, IoT devices and embedded systems. This
trend reflects a shift towards resource-constrained environments where energy efficiency, faster
inference times and reduced computational resource requirements are critical while maintaining
high accuracy rates.

Moreover, the rise of edge computing has further amplified the need for compact CNN
architectures. As more devices operate outside traditional data centers, the ability to process
data locally without relying on cloud-based resources has become crucial. This not only reduces
latency but also enhances privacy and security by minimizing data transmission. Lightweight
CNNs enable these devices to handle complex tasks, such as image recognition or object
detection, autonomously, paving the way for innovations in fields like smart cities, wearable
technology and autonomous drones.

Another critical consideration is sustainability. The environmental impact of training
and deploying large-scale machine learning models has come under scrutiny, as the energy
consumption associated with these processes is significant. Lightweight CNNs align with the
broader movement toward green AI [1], aiming to create models that deliver strong performance
while minimizing their ecological footprint. This balance between efficiency and effectiveness
represents a vital step in ensuring that the benefits of artificial intelligence can be achieved
without aggravating environmental challenges.

The present dissertation introduces a methodology to design small CNN architectures tailored
to specific problems, aiming to develop more explainable and sustainable models. By addressing
the challenges of resource constraints, interpretability and sustainability, this work seeks to
contribute to the evolution of computer vision systems that are not only powerful but also
practical and ethically aligned with the needs of modern society.

1.1. Motivation
There has been a tendency over the last decade towards building increasingly large and complex
CNNs, mainly driven by the pursuit of beating state-of-the-art performance in challenging tasks
such as image recognition. These models, exemplified by architectures like ResNet or GoogleNet,
contain deep layers and millions of parameters. As part of the the industrial change presented
by the Industry 4.0, the demand for lightweight and more efficient CNNs is increasing. In order
to meet this demand, the approach usually employed is a top-down one where, starting from
these large architectures, their complexity is reduced with techniques like pruning. This results
in networks that are still large and inefficient, where high rates of accuracy are achieved but
also at a very high computational and time cost.

Building smaller architectures from a known and controlled point, following a bottom-up
methodology, seems to be a valid and different approach to address the problem presented.
This process enables to progressively add complexity to the model at succesive stages until the

2 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

1.2. Objective

desired accuracy is reached, resulting in a model with only the necessary parameters to perform
the task addressed.

1.2. Objective
This thesis presents a methodology for designing CNN architectures of small size that are able
to reach high levels of accuracy with fewer parameters. The solution is based on builiding
the model that is capable of solving the classification problem with the minimum number of
parameters. A synthetic image dataset of geometric shapes is generated specifically for this task,
so that the study is carried on in a controlled environment, easing the interpretation of the
CNN learning process and without dealing with an enourmous amount of images. The basic
geometric transformations (scaling, rotation and traslation) are applied to the shapes, so a filter
database can be obtained from the models trained, associating each filter to a specific geometric
transformation.

The aim is, therefore, to obtain a knowledge base of the order of magnitude of the
hyperparameters, model structure and filters; that enables to intelligently initialize a CNN
architecture, reducing time and computational costs compared to an architecture randomly
initialized.

In this way, when a new problem presents the same geometric transformations or a
combination of them, a baseline is established for building the initial architecture and its
complexity can be increased with the sucessive training until the desired level of accuracy is
reached.

1.3. Resources
The research is primarily conducted using Python 3 [2], a programming language widely
adopted for Machine Learning applications due to its extensive library support and user-friendly
nature. Python facilitates rapid prototyping as well as seamless application deployment. For
deep learning tasks, the Keras API is utilized with TensorFlow 2 as the backend [3], leveraging
the tf.keras module.

The experiments are implemented on a computer equipped with GPUs, significantly
accelerating the training process of Convolutional Neural Networks (CNNs). To gain deeper
insights into the experimental results, tools like GIMP are used to analyze the network’s behavior
at the pixel level on input images.

1.4. Dissertation outline
The dissertation is structured into six chapters. This first chapter introduces the research
problem and outlines the context of the project. Chapter 2 presents the literature review,
covering key approaches related to the optimization of CNN models. Chapter 3 provides
a detailed explanation of the synthetic dataset generation process, including its main
characteristics. Chapter 4 describes the methodology used to extract a knowledge base consisting
of hyperparameter magnitude orders, model architectures, and, most notably, optimal filters
derived from minimal models. Chapter 5 builds upon this knowledge base, using the extracted
filters to initialize new models that aim to improve both training efficiency and performance.
Chapter 6 concludes the dissertation by summarizing the main findings and proposing future

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3

Chapter 1. Introduction

directions for enhancing the presented approach. Additionally, Appendix A outlines the project’s
contributions to the Sustainable Development Goals (SDGs).

4 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

2
Literature Review

If I have seen further,
it is by standing on the shoulders of giants.

Isaac Newton (1643–1727)

Selecting the optimal CNN architecture for a given problem has raised attention among
researchers in recent years. This chapter provides a comprehensive review of related
work in this area, analyzing the various techniques employed and highlighting their
differences from the approach proposed in this thesis.

This section offers an overview of the current state of the art regarding existing related work
on CNN optimal architecture selection. Table 2.1 summarises the techniques used by each one
of the articles referenced in this section and it can be observed which techniques are the most
popular.

There are several techniques that have been applied in order to find the optimal CNN
architecture when addressing classification problems. [4] presents a small CNN architecture
trained with the CIFAR-10 dataset that reaches high levels of accuracy with fewer parameters.
Two techniques are used: the growing approach and pruning. For the first one, the process
starts with a minimal architecture and new layers are inserted as needed while evaluating the
performance of the architecture. For the second one, a big complex network is proposed and
pruning is performed to obtain a smaller and more efficient network. Pruning is also used by
[5].

Another set of approaches to optimize CNN architectures rely on the Gradient-Based
methodology, such as the ones used on [5] and [6]. [5] introduces a novel framework to
efficiently search for optimal CNN architectures called Greedy and Progressive Architecture
Search (GPAS) which uses a gradient-based bilevel optimization technique to search for optimal
architectures in a continuous space.

Genetic algorithms are also found among the popular techniques to design optimal CNN
architectures. [7] develops a new genetic algorithm to design CNN architectures automatically,
without the need of expertise neither on CNNs nor on the problem domain. [8] uses GA as well
to design CNN architectures automatically.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

5

Chapter 2. Literature Review

Table 2.1. Techniques used for CNN optimal architecture selection. appr. is the abbreviation for approach
and arch. is the abbreviation for architecture.

REFERENCES

TECHNIQUES

G
ro

w
in

g
ap

pr
.

Pr
un

in
g

G
ra

di
en

t-
ba

se
d

G
en

et
ic

al
go

ri
th

m
s

W
el

l-k
no

w
n

ar
ch

.

N
ew

ar
ch

.

Sm
al

ld
at

a

Springenberg et al, 2015 [9] X
Keshari et al, 2018 [10] X
Ferreyra-Ramirez et al, 2019 [11] X
Xu et al, 2019 [12] X
Liu et al, 2019 [6] X
Sun et al, Apr. 2020 [7] X X
Sun et al, Sep. 2020 [8] X
Dhouibi et al, 2021 [4] X X
Peng et al, 2021 [5] X X
Foroughi et al, 2021 [13] X
Savinov et al, 2022 [14] X
Ang et al, 2022 [15] X
Berdos et al, 2022 [16] X
Faris Al Hakim et al, 2023 [17] X
Mesárošová et al, 2024 [18] X
TOTAL 1 2 2 2 3 3 5

Another technique for designing optimal architectures focuses on taking a well-known CNN
model as base architecture. The algorithm desing by [7] uses ResNet and DenseNet blocks as
building elements for the CNN architecture and introduces a variable-length encoding scheme
genetic algorithm to optimize CNN depth. Once the architectures are represented through
ResNet Blocks (RBU), DenseNet Blocks (DBU) and pooling layers, genetic operators as crossover
and mutation are applied and the fitness is evaluated based on accuracy on validation data after
training. [14] uses the Bayesian optimization method to select the optimal model parameters
to achieve maximum accuracy. Once the hyperparameters (kernels number, size and step for
the pooling layers) are selected, they are applied to a well-known CNN architecture, based on
the EGGNet model. [16] trains different well-known architectures in order to identify the most
effective one for Speech Emotion Recognition (SER) problem. The 2D CNN model outperformed
the others, using between 40 and 30 epochs per dataset evaluated.

Instead of using well-known architectures, several references propose search methods to
achieve optimal architectures when building from scratch. [15] proposes a new technique based
on Teaching-Learning-Based Optimization (TLBO) to obtain an optimal CNN architecture design
automatically, defining a specific encoding to represent the CNN network architecture, which
will be the “learners". The optimal network architectures consist of a single fully connected
layer, indicating that, in some cases, a one-layer architecture may produce better results than
architectures with multiple fully connected layers. In addition, for certain image datasets it is
not always necessary to instert a pooling layer between two convolutional layers. [11] builds
a new CNN architecture called ACEnet with the aim of improving CNN performance while
addressing overfitting. Its performance is compared against AlexNet architecture, increasing
the accuracy by 5.11%. The key points of this architecture are: small kernels (reduces the
number of training parameters), pooling with overlap (preserves spatial information), dropout
layers (minimizes overfitting) and ReLU activation. [9] proposes a new CNN architecture called

6 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

“all-convolutional" that replaces max-pooling layers by convolutional layers with increased
stride and fully connected layers by 1x1 convolutional layers combined with global averaging,
enabling dimensionality reduction without performance loss. Small convolutional layers (e.g.,
3x3) stacked in depth are sufficient to achieve high accuracy on small images. This network
manages to either match or outperform state-of-the-art results on CIFAR-10, CIFAR-100 and
ImageNet datasets.

The common ground to all the methodologies previously presented is their focus on finding
solutions to classification problems with big datasets, (for example, CIFAR-10 dataset consists
of 60000 colour images of size 32x32, 50000 of them are training images and 10000 are test
images). This fact makes CNN resulting architectures complex by nature.

Over the last few years, several works have studied the possibility of applying CNN to small
datasets in order to build robust models when there is not enough input data and also with the
aim to gain control over the architectural-design of the CNN as well as the training process.
The "Small Data" approach manages also to obtain optimized models that contain the minimal
number of parameters.

A new architecture called SSF-CNN (Structure and Strenght filtered CNN), it is proposed
in [10], which optimizes CNN filters specifically for small datasets. In order to do that,
initializes filters using a dictionary-based learning algorithm to encode representative features
and afterwards, learns a scalar parameter for each filter to adjust their influence, reducing the
number of learnable parameters and mitigating overfitting.

In 2021, [13] introduce a novel loss function to improve the generalization capability of
CNNs trained on small datasets based on cross-entropy loss. For a dataset containing 534 images,
proposes a shallow CNN architecture with four convolutional layers, three max-pooling layers
and two fully connected layers with a softmax for the classification part. This kind of architecture
is also chosen by [17], which presents two architectures both with four convolutional plus
pooling layers, one flatten layer and a dense output layer, over a dataset containing 765 images.
Both of the references use data augmentation techniques, as well as [12], which introduces a
semi-supervised data augmentation (SSDA) method to extend the dataset in a more efficient
and controlled way.

Finally, [18] manages to solve a classification problem with a CNN that only contains
1700 learnable parameters (a much smaller architecture compared to the 391491 parameter
architecture presented by [17]) composed by only two convolutional layers with hyperbolic
tangent plus a max pooling layer and a fully connected layer with softmax function for the
classification part.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

7

3
Synthetic dataset generation

Without data,
you’re just another person with an opinion.

William Edwards Deming (1900–1993)

This chapter provides a detailed description of the dataset synthetically generated to
achieve the objective of this project. It includes both the process followed to create the
images and an analysis of the resulting samples.

The basis to create any Machine Learning model is the data, as the algorithm is fed with
it and learns from its patterns and features. The quality of the data is critical because noisy,
inconsistent, or incomplete data can lead to inaccurate predictions and poor model performance.
Clean data ensures that the algorithm focuses on meaningful information rather than irrelevant
noise, which significantly impacts the accuracy and reliability of the model. Moreover, properly
labeled and representative datasets are essential to avoid bias and generalize well to unseen
scenarios. In essence, high-quality data is the foundation for building robust and effective
machine learning models.

The complexity of the tasks performed by the model and, consequently, the complexity of
the model itself, depends on the data characteristics mentioned earlier: quality, accuracy,
completeness, etc. To address the problem presented in this thesis, a dataset has been
synthetically generated, allowing its complexity—and therefore the learning process—to be
controlled. The following sections describe the dataset generation process and present a series
of sample images to help the reader visualize the data used to train the models.

3.1. Dataset generation
The dataset contains labelled images belonging to one out of three classes, depending on the
geometric shape that is depicted in each one of them: ellipse, triangle or rectangle. Moreover, a
geometric transformation (or a combination of them) is applied to the shapes: scaling, rotation
or translation.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

9

Chapter 3. Synthetic dataset generation

Images are generated using Python [2] as being one of the most-widely used language
programming for image processing, mainly due to its extensive open-source libraries. The
complete set of libraries used to generate the dataset is:

• os: Provides a way to interact with the operating system, including file and directory
manipulation, environment variable access and execution of system commands [19].

• random: Used for generating random numbers, selecting random items from lists, and
performing other randomization tasks such as shuffling [20].

• math: Offers a variety of mathematical functions like trigonometric, logarithmic and
exponential functions, as well as constants like π and e [21].

• operator: Contains efficient functions for standard operations (e.g. addition, subtraction
and comparison) that can be used to improve readability and performance in certain
cases [22].

• NumPy: A powerful library for numerical computations, supporting multi-dimensional ar-
rays, mathematical operations, linear algebra, Fourier transforms and more mathematical
operations. It is widely used in scientific computing and machine learning [23].

• cv2: Part of the OpenCV library, it is used for computer vision tasks like image and video
processing, feature detection or object recognition [24].

• Matplotlib: A popular library for data visualization, enabling the creation of static,
interactive and animated plots, such as line graphs, bar charts, scatter plots and
heatmaps[25].

3.1.1. Geometric shapes

Images that make up the dataset contain a single geometric shape, either an ellipse, a rectangle
or a triangle. The process followed for building each type of figure is detailed below but there
are certain features that are common to all figures, no matter of what kind.

First of all, the base size of all figures depends on a parameter called proportion, so it can be
controlled independently of its geometric shape. This means that one of the dimensions of the
figure will defined as the other one multiplied by the proportion parameter. It takes a value in
the range (0,1]. In the case of the dataset generated for this project, its value has been set to
0.6.

In addition, all shapes are defined in terms of the circumference that circumscribes them, so
the process for building them is also standarized. To build the three kinds of geometric shapes
the basic parameters are: center (of the circumference that circumscribes the figure), radius (of
the circumference that circumscribes the figure) and proportion.

Regarding the color, all images are in grayscale. For each class, half of the images contain a
white shape over a black background and the other half, a black shape over a white background.
The color in RGB scale is considered extra information that only adds complexity to the problem;
hence it has not been considered.

10 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3.1. Dataset generation

3.1.1.1. Ellipses

According to the common points previously explained, Figure 3.1 shows how the ellipses are
represented geometrically, where their mathematical expression will be defined as expressed in
equations (3.1) and (3.2), being p the value assigned by the user to the proportion.

The function mpatches.Ellipse [26] from matplotlib library is used for creating the ellipses.
This function takes as input the coordinates of the ellipse centre in format (x, y), the width (w);
total length of horizontal axis or diameter as stated in (3.1), the height (h); total length of
vertical axis as stated in (3.2) and the angle of rotation in degrees anti-clockwise. It is important
to highlight that in the case of ellipses, the dimensions width and height are interchangeable to
generate either vertical or horizontal ellipses.

Figure 3.1. Ellipse geometrical definition.

w = 2×R (3.1)

h = p× w (3.2)

3.1.1.2. Rectangles

Taking as input the same basic parameters: center, radius and proportion, Figure 3.2 depicts
how the rectangles are represented geometrically based on the common parameters. The
mathematical definition of height and width is expressed in equations (3.3) and (3.7)
respectively. Equations from (3.4) to (3.6) show the application of the Pythagorean Theorem to
represent the rectangle width based on the mentioned parameters.

The function mpatches.Polygon [27] from matplotlib library is used for creating the
rectangles. With this function any polygon can be generated. It takes as input an array
with the coordinates of the geometric shape vertexes in format (x, y). Having the mathematical
representation for both width and height, the coordinates of each one of the four vertexes can
be calculated as stated in equations from (3.8) to (3.11).

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

11

Chapter 3. Synthetic dataset generation

Figure 3.2. Rectangle geometrical definition based on the Pythagorean Theorem.

h = p× w (3.3)

d2 = w2 + h2 (3.4)

(2R)2 = w2 + (p× w)2 (3.5)

(2R)2 = (1 + p2)× w2 (3.6)

w =
2R√
1 + p2

(3.7)

v1 = (centre[0]− w

2
, centre[1] +

h

2
) (3.8)

v2 = (centre[0] +
w

2
, centre[1] +

h

2
) (3.9)

v3 = (centre[0]− w

2
, centre[1]− h

2
) (3.10)

v4 = (centre[0] +
w

2
, centre[1]− h

2
) (3.11)

12 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3.1. Dataset generation

3.1.1.3. Triangles

The process followed to build triangles is similar to the one stated before for both ellipses and
rectagles. Figure 3.3 shows the geometrical definition of the triangles. The base of the triangle
is represented in equation (3.12) as a function of the proportion and the height of the figure.
Then, applying the Pythagorean Theorem, the height is represented as a function of the radius
and proportion as equations from (3.13) to (3.18) show. Figure 3.3 shows the geometrical
representation of triangles based on the common basic parameters.

Figure 3.3. Triangle geometrical definition based on the Pythagorean Theorem.

base = p× h (3.12)

(h−R)2 = R2 − (
1

2
base)2 (3.13)

h2 +R2 − 2hR = R2 − 1

4
base2 (3.14)

1

4
base2 = 2hR− h2 (3.15)

p2h2 = 8hR− 4h2 (3.16)

p2h2 + 4h2 − 8hR = 0 (3.17)

(4 + p2)h2 − 8hR = 0 (3.18)

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

13

Chapter 3. Synthetic dataset generation

The solutions to the equation resulting in (3.18) can be either zero as stated in (3.19),
which is not a valid solution, or the solution stated in (3.20), which represents the height of
the triangle based on the radius of the circumference that circumscribes it and the proportion
parameter.

���h = 0 (3.19)

h =
8R

4 + p2
(3.20)

This way, the three vertexes of the triangle can be calculated as a function of the basic
parameters: center, radius and proportion as it is stated in equations from (3.21) to (3.23).
The function mpatches.Polygon [27] from matplotlib library is also used for generating the
rectangles, so the coordinates of the vertexes are needed as input for the function.

v1 = (centre[0], centre[1] +R) (3.21)

v2 = (centre[0]− base

2
, centre[1]− [h−R]) (3.22)

v2 = (centre[0] +
base

2
, centre[1]− [h−R]) (3.23)

3.1.2. Geometric transformations
A geometric transformation is an operation that moves or changes a shape in a geometric
space while preserving certain properties. These transformations can be applied to points, lines
and entire figures to alter their position, size or orientation. Once the three different kinds of
geometric shapes have been generated, a single geometric transformation or a combination of
them is applied to each one of the figures.

In the case of the dataset presented on this thesis, three different types of geometric
transformations can be found: scaling, rotation and translation. As previously mentioned, the
basic parameters to build any figure are center, radius and proportion. Additionaly, to apply
each one of this transformations, some of these parameters are transformed and other ones are
added as it is explained in the following sections.

It is important to highlight that, since the basic parameters have to change its value in order
to perform the geometric transformations, a seed must be set before generating the figures.
The seed enables to “freeze" the state of the random operation so the process can be repeated
as many times as wanted obtaining the same result. Thus, each time the code is executed, the
same figure is generated. It the seed is changed, the figures and transformations generated will
change as well.

3.1.2.1. Scaling

Scaling is a transformation that changes the size of a geometric object. It is performed by
multiplying the coordinates of the object by a scaling factor. If the scaling factor is greater
than 1, the object enlarges; if it is between 0 and 1, the object shrinks.

14 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3.1. Dataset generation

In order to scale the figures, the basic parameter radius is replaced by two parameters:
maximum radius and minimum radius. When both maximum and minimum radius have the
same value, the shape does not change its size. However, if they are different, the size changes,
resulting in a scaling transformation.

For the specific dataset generated in this thesis the scaling transformation takes 0.45 as
maximum radius value and 0.20 as minimum radius value. The center coordinates, in this case
are set to (0.5,0.5) so that the figures are placed on the center of the image. In the same way,
the rotation angle is set to zero, so that the figure does not rotate.

3.1.2.2. Rotation

Rotation is a transformation that turns a geometric object around a fixed point, called the center
of rotation. It is defined by an angle of rotation and a direction (clockwise or counterclockwise).
The shape and size of the object remain unchanged, but its orientation changes.

In this case, the center is also set to (0.5,0.5) so the geometric shapes are centered and both
the maximum radius and minimum radius take the same value, so that the size of the figures
do not change. In addition, two more parameters are defined: maximum rotation angle and
minimum rotation angle. When both parameters are equal to the same value, the figure does
not rotate and when they have different values, the figure rotates around its center.

To apply this transformation in the present dataset, the maximum rotation angle is set to
360° and the minimum rotation angle is set to 0°. Therefore, the figures can perform a complete
rotation over its center.

3.1.2.3. Translation

Translation is a transformation that moves every point of an object by the same distance in
a specified direction. It does not alter the shape, size, or orientation of the object, only its
position.

A new parameter called delta is defined to perform this transformation. Delta determines
the distance that a figure can be moved from the center along both horizontal and vertical axis.
In the case of this dataset the maximum value that delta can achieve is the center coordinate
(in this case, 0.5) minus the radius minus 0.05 because there is a margin of this size so that
figures do not exceed the margins of the image.

Once delta is calculated, using the random seed as well, it is applied to both coordinates of
the figure center.

3.1.3. Noise
Adding noise to a dataset of synthetically generated images is crucial for training robust CNN
models. Synthetic images often lack the natural imperfections found in real-world data, making
models trained on them prone to poor generalization when exposed to real images. Introducing
noise helps overcome this problem by simulating defects that can appear on images derivated
from movement of sensor sensibility as well as lighting. This enhances the model’s ability to
handle diverse inputs, improving its resilience to distortions and preventing overfitting to overly
clean synthetic patterns, making more adaptable CNN models in real-world applications.

For all the images presented in this dataset, two versions of each one of them is generated:
with and without noise. A new fuction named add_noise_ to_figures generates Gaussian noise

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

15

Chapter 3. Synthetic dataset generation

and adds it to the images. The noise is generated with a normal distribution centered at 0 and
with a standard deviation equal to the value of the parameter noise level which, in this case, is
set to 100.

Gaussian noise is widely used in image processing and machine learning because it closely
models real-world noise sources. In this case, the standard deviation is set to 100 (taking
into account that luminance values go from 0 to 255 in 8 bits) as it has been considered
as a break-even value, adding distortion to the image but not so much that the figures are
unidentifiable.

3.1.4. Image reduction
Images are originally generated with a size of 224x224 since this is a standard size commonly
used by popular architectures like ResNet [28] or VGG [29] because they were pre-trained on
ImageNet, which uses this resolution [30]. Once the images are generated and noise has been
added, their size is reduced to 28x28 pixels.

Images are reduced from 224x224 to 28x28 for two main reasons. First, this transformation
better reflects real-world scenarios where images captured by cameras in industrial environ-
ments often have lower resolutions. By downsizing them, we simulate this use case while still
preserving the essential details that were present when the images were originally created at
224x224. Second, generating realistic images at 28x28 is easier due to the smoothing effect of
compression, which helps soften pixel values naturally making the images appear more coherent
and visually plausible.

In order to reduce image size, the function cv.resize from OpenCV library which enables
image resizing using bicubic interpolation cv.INTER_CUBIC which calculates new pixel values
based on cubic interpolation of neighbour pixels. This generally produces smoother and more
detailed images compared to other methods like linear interpolation (cv.INTER_LINEAR).

To sum up, the objective of image resizing is reducing the image size while preserving
details.

3.2. Dataset analysis
As stated previously, each one of the images that make up the dataset contain a single geometric
shape. The class with which the images are labelled corresponds to the geometric shape
represented in it: ellipse, rectangle or triangle. Additionally, a geometric transformation is
applied to these shapes. Due to this reason, the image dataset, in fact, is not only one but a
group of datasets, each one of them containing all three kinds of shapes to which a particular
transformation or a combination of them has been applied.

The following sections present an exhaustive analysis of the dataset synthetically generated,
going into detail of how the dataset images have been organized as well as presenting a
set of examples of images for all possible combination of figures, transformations and color
combinations.

3.2.1. Dataset structure
The dataset presented in this thesis is a synthetic dataset of labeled images created to train
small CNN models in a controlled environment. It was generated using the pipeline described
in Section 3.1.

16 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3.2. Dataset analysis

datasets

dataset1.0

dataset1.1

training

n00

n100

ellipse

dataset1.1#training#n100#ellipse#color#ID.png

rectangle

dataset1.1#training#n100#rectangle#color#ID.png

triangle

dataset1.1#training#n100#triangle#color#ID.png

validation

dataset2.0

dataset2.1

dataset3.0

dataset3.1

dataset4.0

dataset4.1

dataset5.0

dataset5.1

dataset6.0

dataset6.1

dataset7.0

dataset7.1

Figure 3.4. Dataset folder diagram. Parameters color and ID highlighted in blue since they change for
each sample, color can take values “kw" or “wk" and ID is an integer.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

17

Chapter 3. Synthetic dataset generation

The general dataset consists of 63k samples and is divided into seven datasets depending on
the transformation applied to the images. Each one these datasets consist of 9k samples. Figure
3.4 shows the folder structure in which the dataset images are organized.

Each one of the datasets has its own folder and, since all have the same subfolder structure,
Figure 3.4 only depicts the complete directory tree for dataset 1.1. Datasets 1.0, 2.0, 3.0, 4.0,
5.0, 6.0 and 7.0 are the ones containing images with the original size (224x224 pixels) whereas
datasets 1.1, 2.1, 3.1, 4.1, 5.1, 6.1 and 7.1 contain the same samples but with the reduced
size (28x28 pixels). Looking at the directory structure, it can be seen that first of all, samples
are divided in into training set (with a total of 3k images) and validation set (consisting of
6k images. For both training and validation sets, same samples are generated with different
levels of noise. In this way, folders n00 (without noise) and n100 (level 100 of noise) are found.
Finally, the images are divided into separated directories according to the geometric figure they
depict: ellipses (1k samples), rectangles (1k samples) and triangles (1k samples). For each
class, half of the figures have the parameter color equal to “kw" which means that the image has
a white figure over a black background or “wk" which means that the image has a black figure
over a white backrground. The ID parameter is a sequential integer that identifies univocally
the image inside its folder.

3.2.2. Dataset samples

This section presents a selection of images from each of the synthetically generated datasets, as
previously described in Section 3.1 and organized according to the structure outlined in Section
3.2.1. This allows for an easy visual comparison across datasets. To provide a general overview,
the following summary is included:

• Dataset 1.0: Contains images of size 224x224 with noise level 100 and scaling
transformation applied. Sample images can be seen in Figures 3.5, 3.6 and 3.7.

• Dataset 1.1: Contains images resized to 28x28 with noise level 100 and scaling
transformation applied. These images correspond to the same set used in Dataset 1.0, but
at a reduced resolution. Sample images can be seen in Figures 3.8, 3.9, and 3.10.

• Dataset 2.0: Contains images of size 224x224 with noise level 100 and rotation
transformation applied. Sample images can be seen in Figures 3.11, 3.12 and 3.13.

• Dataset 2.1: Contains images resized to 28x28 with noise level 100 and rotation
transformation applied. These images correspond to the same set used in Dataset 2.0, but
at a reduced resolution. Sample images can be seen in Figures 3.14, 3.15, and 3.16.

• Dataset 3.0: Contains images of size 224x224 with noise level 100 and translation
transformation applied. Sample images can be seen in Figures 3.17, 3.18 and 3.19.

• Dataset 3.1: Contains images resized to 28x28 with noise level 100 and translation
transformation applied. These images correspond to the same set used in Dataset 3.0, but
at a reduced resolution. Sample images can be seen in Figures 3.20, 3.21, and 3.22.

• Dataset 4.0: Contains images of size 224x224 with noise level 100 and scaling plus
rotation transformation applied. Sample images can be seen in Figures 3.23, 3.24 and
3.25.

• Dataset 4.1: Contains images resized to 28x28 with noise level 100 and scaling plus
rotation transformation applied. These images correspond to the same set used in Dataset

18 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3.2. Dataset analysis

4.0, but at a reduced resolution. Sample images can be seen in Figures 3.26, 3.27, and
3.28.

• Dataset 5.0: Contains images of size 224x224 with noise level 100 and scaling plus
translation transformation applied. Sample images can be seen in Figures 3.29, 3.30 and
3.31.

• Dataset 5.1: Contains images resized to 28x28 with noise level 100 and scaling plus
translation transformation applied. These images correspond to the same set used in
Dataset 5.0, but at a reduced resolution. Sample images can be seen in Figures 3.32, 3.33,
and 3.34.

• Dataset 6.0: Contains images of size 224x224 with noise level 100 and rotation plus
translation transformation applied. Sample images can be seen in Figures 3.35, 3.36 and
3.37.

• Dataset 6.1: Contains images resized to 28x28 with noise level 100 and rotation plus
translation transformation applied. These images correspond to the same set used in
Dataset 6.0, but at a reduced resolution. Sample images can be seen in Figures 3.38, 3.39,
and 3.40.

• Dataset 7.0: Contains images of size 224x224 with noise level 100 and scaling plus
rotation plus translation transformation applied. Sample images can be seen in Figures
3.41, 3.42 and 3.43.

• Dataset 7.1: Contains images resized to 28x28 with noise level 100 and scaling plus
rotation plus translation transformation applied. These images correspond to the same
set used in Dataset 7.0, but at a reduced resolution. Sample images can be seen in Figures
3.44, 3.45, and 3.46.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

19

Chapter 3. Synthetic dataset generation

Figure 3.5. Several ellipse samples from dataset 1.0. Best viewed in electronic form.

Figure 3.6. Several rectangle samples from dataset 1.0. Best viewed in electronic form.

Figure 3.7. Several triangle samples from dataset 1.0. Best viewed in electronic form.

20 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3.2. Dataset analysis

Figure 3.8. Several ellipse samples from dataset 1.1. Best viewed in electronic form.

Figure 3.9. Several rectangle samples from dataset 1.1. Best viewed in electronic form.

Figure 3.10. Several triangle samples from dataset 1.1. Best viewed in electronic form.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

21

Chapter 3. Synthetic dataset generation

Figure 3.11. Several ellipse samples from dataset 2.0. Best viewed in electronic form.

Figure 3.12. Several rectangle samples from dataset 2.0. Best viewed in electronic form.

Figure 3.13. Several triangle samples from dataset 2.0. Best viewed in electronic form.

22 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3.2. Dataset analysis

Figure 3.14. Several ellipse samples from dataset 2.1. Best viewed in electronic form.

Figure 3.15. Several rectangle samples from dataset 2.1. Best viewed in electronic form.

Figure 3.16. Several triangle samples from dataset 2.1. Best viewed in electronic form.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

23

Chapter 3. Synthetic dataset generation

Figure 3.17. Several ellipse samples from dataset 3.0. Best viewed in electronic form.

Figure 3.18. Several rectangle samples from dataset 3.0. Best viewed in electronic form.

Figure 3.19. Several triangle samples from dataset 3.0. Best viewed in electronic form.

24 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3.2. Dataset analysis

Figure 3.20. Several ellipse samples from dataset 3.1. Best viewed in electronic form.

Figure 3.21. Several rectangle samples from dataset 3.1. Best viewed in electronic form.

Figure 3.22. Several triangle samples from dataset 3.1. Best viewed in electronic form.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

25

Chapter 3. Synthetic dataset generation

Figure 3.23. Several ellipse samples from dataset 4.0. Best viewed in electronic form.

Figure 3.24. Several rectangle samples from dataset 4.0. Best viewed in electronic form.

Figure 3.25. Several triangle samples from dataset 4.0. Best viewed in electronic form.

26 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3.2. Dataset analysis

Figure 3.26. Several ellipse samples from dataset 4.1. Best viewed in electronic form.

Figure 3.27. Several rectangle samples from dataset 4.1. Best viewed in electronic form.

Figure 3.28. Several triangle samples from dataset 4.1. Best viewed in electronic form.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

27

Chapter 3. Synthetic dataset generation

Figure 3.29. Several ellipse samples from dataset 5.0. Best viewed in electronic form.

Figure 3.30. Several rectangle samples from dataset 5.0. Best viewed in electronic form.

Figure 3.31. Several triangle samples from dataset 5.0. Best viewed in electronic form.

28 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3.2. Dataset analysis

Figure 3.32. Several ellipse samples from dataset 5.1. Best viewed in electronic form.

Figure 3.33. Several rectangle samples from dataset 5.1. Best viewed in electronic form.

Figure 3.34. Several triangle samples from dataset 5.1. Best viewed in electronic form.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

29

Chapter 3. Synthetic dataset generation

Figure 3.35. Several ellipse samples from dataset 6.0. Best viewed in electronic form.

Figure 3.36. Several rectangle samples from dataset 6.0. Best viewed in electronic form.

Figure 3.37. Several triangle samples from dataset 6.0. Best viewed in electronic form.

30 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3.2. Dataset analysis

Figure 3.38. Several ellipse samples from dataset 6.1. Best viewed in electronic form.

Figure 3.39. Several rectangle samples from dataset 6.1. Best viewed in electronic form.

Figure 3.40. Several triangle samples from dataset 6.1. Best viewed in electronic form.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

31

Chapter 3. Synthetic dataset generation

Figure 3.41. Several ellipse samples from dataset 7.0. Best viewed in electronic form.

Figure 3.42. Several rectangle samples from dataset 7.0. Best viewed in electronic form.

Figure 3.43. Several triangle samples from dataset 7.0. Best viewed in electronic form.

32 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

3.2. Dataset analysis

Figure 3.44. Several ellipse samples from dataset 7.1. Best viewed in electronic form.

Figure 3.45. Several rectangle samples from dataset 7.1. Best viewed in electronic form.

Figure 3.46. Several triangle samples from dataset 7.1. Best viewed in electronic form.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

33

4
Optimal filter selection

In the end, we are our choices.

Jeff Bezos (1964–)

This chapter introduces a methodology to determine the minimum CNN architecture
required to solve a problem with the fewest parameters. It aims to build a knowledge
base for intelligently initializing new models, focused on extracting the filters learnt
by the models. The methodology is applied to three datasets and key insights are
summarized to support later chapters.

To address the first part of the thesis objective, “to obtain a knowledge base of the order
of magnitude of the hyperparameters, model structure and filter that enables to intelligently
initialize a CNN architecture", a dedicated methodology has been developed. The goal of this
methodology is to identify the minimum model architecture, understood as the model capable of
solving the given problem using the fewest possible parameters.

The chapter is organized into five sections. Section 4.1 outlines the methodology used to
derive the minimum model architectures and, consequently, the knowledge base that supports
smart initialization and training of new models from scratch. Sections 4.2, 4.3 and 4.4 detail the
application of this methodology to Datasets 1.1, 2.1, and 3.1, respectively. Finally, Section 4.5
summarizes the key findings of this chapter, which are foundational for the work presented in
the subsequent chapters.

4.1. Proposed methodology
The methodology is based on training a set of CNN architectures using the grid technique,
where the value of several hyperparameters is changed over different trainings, so that the
combinations give as a result different models that explore a wide space of possible solutions to
a specific problem. All the models trained have the same architecture, that is composed by the
following layers by order:

1. One input layer of size 28x28, the same as the dataset images.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

35

Chapter 4. Optimal filter selection

2. One convolutional layer to extract features from the image by applying filters or kernels.

3. One pooling layer performing the operation of Max Pooling, extracting the maximum
value for patches of the feature map resulting from the previous layer.

4. One flatten layer to convert the resultant bidimensional arrays into a single continuous
linear vector.

5. One dense layer or a fully-connected layer of neurons to perform the classification
operation taking as input the features extracted from the image.

6. One final dense layer as output layer of size 3, since this is the number of possible classes
that can result from the classification problem.

The convolutional part of the CNN consists of three layers as well as the classification part.
The hyperparameters selected for the grid and their possible values are shown below:

• Seed: it is used to initialized the random number generator with an specific value,
ensuring reproducibility across experiments. Several seeds are used since they
initialization plays a key role when finding the optimal architecture. When exploring the
space in search of a solution to the classification problem, depending on the initial point
from which the CNN starts its search, it will find a better solution to the problem or not. If
for different seeds the model is able to find a valid solution, it will mean that it has been
properly adjusted. The seeds used are: 4, 10, 550 and 1234.

• Number of filters, also referred to as nfilters_1st: the total amount of filters used in the
first (and only) convolutional layer. Each filter focuses con identifying a certain feature.
This parameter is set to 1 for all the models trained in this chapter.

• Kernel size, also referred to as ksize_1st: size of the filters used in the first convolutional
layer. In this case, the kernel size is set to 3, which means that filters have a size of
3x3. There are several reasons behind this choice. First of all, smaller filters enable local
feature detection focusing on local patterns like edges or corners (which, in this case, are
the main features to distinguish one figure from another). In addition, small filters mean
fewer parameters, which helps avoid overfitting and speeds up training while reducing
complexity.

• Pooling size, also referred to as poolsize_1st: size of the window that slides across the
image to perform the pooling operation. The bigger the window, the lesser number of
resulting features. For the grid presented in thistThesis, this parameter takes the values: 6
(16 features), 5 (25 features) , 4 (49 features), 3 (81 features), 2 (196 features).

• Number of neurons in the hidden layer, also referred to as hlneurons: number of
neurons used for the classification part of the network. Note that the classifier needs to be
complex enough to derive classes from all the features extracted. This way, the accuracy
of the model depends entirely on the performance of the filters learnt. The parameter can
take the values 250 or 500.

• Number of epochs, also referred to as nepochs: this parameter is not strictly fixed for the
training but derived from the training process itself. Hence, a sufficiently high number of
epochs, 5000, is set but the Early Stopping is enabled. This means that the training is stop
when a monitored metric (in this case, the validation loss) has stopped improving (that is,

36 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

4.2. Dataset 1.1: Scaling

it has stopped decreasing) so, in the end, the number of epochs varies from one model to
another, depending on how well the training has been.

Once all different models resulting from the grid have been trained, another set of parameters
is used to compare them and chose which ones achieve the best results with the less complex
architecture.

• Number of parameters, also referred to as number_params: total amount of parameters
the architecture contains. The number of parameters depends on the combination of
hyperparameters selected in the grid. There is a direct correlation between the number of
parameters and the training time. The more parameters, the longer it will take for the
model to complete the training, hence, the complexity increases.

• Training accuracy: the percentage of correct predictions the CNN makes on the data it
was trained on. It tells how well the model is learning to recognize patterns in the training
set.

• Validation accuracy: the percentage of correct predictions the CNN makes on unseen
data, called the validation set, which is not used during training. It tells how well
the model is generalizing to new, unseen data. It is a better indicator of real-world
performance than training accuracy.

This methodology can be extrapolated to any dataset but, in this case, it is applied exclusively
to Datasets 1.1, 2.1 and 3.1, which correspond to the fundamental geometric transformations:
scaling, rotation and translation. The objective is to develop filters specialized in recognizing the
type of geometric figure under each transformation. These three transformations were selected
because they are considered classical and foundational, commonly encountered in industrial
applications involving object localization and identification. This way, the combination of filters
obtained for each one of the transformations can address more complex problems, thereby
broadening the scope of the analysis. It is important to highlight that the models are only
trained with the datasets that contain noise, in order to avoid possible biases and to simulate
more real use cases. The noise level chosen is 100, as it is considered to be high enough to
avoid bias, but low enough not to pose a problem for the dataset being analysed.

4.2. Dataset 1.1: Scaling
The first problem addressed is the scaling. Table 4.1 shows all the models trained for Dataset
1.1 using the methodology presented in Section 4.1. In general, good results for both training
and validation sets are obtained, some of the models even reach the 100% of success in training
and 99% in validation, which could be an indicator of the capability of the architecture to find
a solution to the problem.

Ordering models by validation accuracy, training accuracy and number of parameters,
enables to look for a minimum complexity with the maximum amount of correct answers. In
this way, the model chosen is 20250202T191455_dataset1.1n100_1L_nf1_1_ks1_3_ps1_3_s_550
which uses one filter of size 3x3 for the convolutional layer, a pooling size of 3x3, a classifier
with 250 neurons in the hidden layer and the seed 550. This model is able to reach a validation
accuracy level of 0.9915 while reaching a training accuracy level of 0.99967 with 21k parameters
approximately. The reason behind choosing this model is the trade-off between accuracy and
complexity. There are another three models that are able to reach higher levels of precision but
for that they use the double amount of parameters (nearly 43k).

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

37

Chapter 4. Optimal filter selection

Table 4.1. Model hyperparameters and results obtained after applying the proposed methodology for
obtaining the minimum model to Dataset 1.1 with noise level 100. Ordered by validation accuracy
from higher to lower. Model timestamp is the date and hour when the model was created (used as an
identifier) with the format: <year><month><day>T<hour><minute><second>, seed is the seed
used for fixing randomness in the model, nepochs stands for “number of epochs”, nfilters_1st stands for
“number of filters in the first convolutional layer”, ksize_1st stands for “kernel size of the first layer”,
poolsize_1st stands for “pooling size of the first layer”, hlneurons stands for “number of neurons in the
hidden layer for the classification part of the model” number_param stands for “number of parameters
of the model”, tr_acc stands for “training accuracy” and val_acc stands for ”validation accuracy”,
both values are represented with five decimals. Model names follow the structure: <model times-
tamp>_dataset1.1n100_1L_nf1_<nfilters_1st>_ks1_<ksize_1st>_ps1_<poolsize_1st>_s_<seed>. The
model selected as the minimum model is highlighted in gray.

Model timestamp se
ed

n
ep

oc
hs

n
fi

lt
er

s_
1s

t

ks
iz

e_
1s

t

po
ol

si
ze

_1
st

hl
n

eu
ro

n
s

n
u

m
be

r_
pa

ra
m

s

tr
ai

n
in

g_
ac

c

va
l_

ac
c

↓
20250202T200620 550 94 1 3 3 500 42513 0.99967 0.99550
20250202T195322 10 112 1 3 3 500 42513 1.00000 0.99467
20250202T193835 1234 128 1 3 3 500 42513 1.00000 0.99234
20250202T191455 550 120 1 3 3 250 21263 0.99967 0.99150
20250202T185948 10 130 1 3 3 250 21263 0.99834 0.99134
20250202T184010 1234 170 1 3 3 250 21263 1.00000 0.99084
20250202T175511 1234 113 1 3 4 500 26513 1.00000 0.98900
20250202T170248 1234 136 1 3 4 250 13263 099967 0.98717
20250202T181754 550 99 1 3 4 500 26513 0.99867 0.98500
20250202T173053 550 106 1 3 4 250 13263 0.99767 0.98250
20250202T180818 10 82 1 3 4 500 26513 0.99000 0.98050
20250202T192854 4 83 1 3 3 500 42513 1.00000 0.98034
20250202T152620 10 165 1 3 5 250 7263 0.99234 0.97884
20250202T162654 10 116 1 3 5 500 14513 0.99534 0.97800
20250202T150728 1234 163 1 3 5 250 7263 0.99300 0.97767
20250202T154526 550 179 1 3 5 250 7263 0.99034 0.97717
20250202T182924 4 92 1 3 3 250 21263 1.00000 0.97634
20250202T171832 10 106 1 3 4 250 13263 0.98567 0.97450
20250202T164025 550 71 1 3 5 500 14513 0.98367 0.97157
20250202T174311 4 103 1 3 4 500 26513 1.00000 0.96984
20250202T161548 1234 95 1 3 5 500 14513 0.99034 0.96967
20250202T144520 550 69 1 3 6 500 10013 0.98634 0.96684
20250202T164846 4 121 1 3 4 250 13263 1.00000 0.96500
20250202T135421 550 98 1 3 6 250 5013 0.97934 0.96317
20250202T160606 4 83 1 3 5 500 14513 0.99734 0.96167
20250202T145327 4 121 1 3 5 250 7263 0.99667 0.96000
20250202T132847 1234 118 1 3 6 250 5013 0.97734 0.95467
20250202T142120 1234 89 1 3 6 500 10013 0.97934 0.95317
20250202T143144 10 117 1 3 6 500 10013 0.96667 0.95117
20250202T130855 4 171 1 3 6 250 5013 0.98734 0.94967
20250202T134228 10 102 1 3 6 250 5013 0.96200 0.94967
20250202T140548 4 134 1 3 6 500 10013 0.99034 0.94550

Focusing the analysis on the images that are wrongly classified. Tables 4.2 and 4.3 show
both training and validation confusion matrix. For the training, it is important to highlight that
it only makes a mistake when trying to classify a rectangle because it is interpreted as an ellipse.
Looking at Figure 4.1 it can be seen that the image does not have nothing special, the figure

38 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

4.2. Dataset 1.1: Scaling

can be perfectly distinguished from an ellipse so it is not clear the reason behind this mistake.
It could be that in the dataset there are not enough examples of figures with this size but this
would require a more exhaustive analysis.

For the validation images, it misclassifies some ellipses that are interpreted as rectangles and
some rectangles that are interpreted as ellipses. The triangles are distinguished perfectly. In
both cases, it finds problems to classify those images in which the figures have a smaller size.
Figure 4.2 shows an example of the images wrongly classified.

Table 4.2. Confusion matrix for the training set in Dataset 1.1.

KNOWN/PREDICTED ellipse rectangle triangle
ellipse 1000 0 0
rectangle 1 999 0
triangle 0 0 1000

Table 4.3. Confusion matrix for the validation set in Dataset 1.1.

KNOWN/PREDICTED ellipse rectangle triangle
ellipse 1964 36 0
rectangle 15 1985 0
triangle 0 0 2000

Figure 4.1. Training set images wrongly classified by the chosen model for Dataset 1.1 (interpreted as
ellipse).

Figure 4.2. Validation set images wrongly classified by the chosen model for Dataset 1.1 (interpreted as
ellipses or rectangles).

To conclude this section, it is important to review the filter learnt by the network, as it
will form part of the knowledge base extracted for the scaling problem and will be used in
the next chapter to analyse more complex problems. Figure 4.3 shows the filter luminance
representation as well as the exact luminance values. It seems that is detecting diagonal borders
from the upper left corner to the bottom right corner, since these are the values that multiply
positively in the convolution operation but from this representation it is difficult to deduce with
precision what exact features of the image it is extracting.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

39

Chapter 4. Optimal filter selection

Figure 4.3. Filter learnt by the minimum model selected for Dataset 1.1, addressing the scaling problem.
Luminance representation on the left and the exact luminance values on the left.

4.3. Dataset 2.1: Rotation

The second problem addressed is the rotation. Table 4.4 shows all the models trained for
Dataset 2.1 using the methodology presented in Section 4.1. As it happened with Dataset 1.1,
good results for both training and validation sets are obtained with this architectures. Some of
the more complex models reach the 100% of success in training and 99% in validation.

Nevertheless, there are some models that are wrongly adjusted, since very different results
are obtained from using the same architecture but different seeds. As an example, for models
with pooling size equal to six, the initialization point has a clear impact on the performance of
the model. In addition, it seems that the more complex the problem is, the more difficult is to
find the correct hyperparameters that really decrease the mistakes.

In this case, the rotation problem seems to be more difficult than the scaling problem, due
to the fact that the models, in general, are not able to reach levels of accuracy as high as in the
scaling problem. Moreover, the rotation models have a higher overfitting than the scaling ones,
another indicator that the task is harder to solve for the same architecture.

To identify the most efficient model, candidates were compared based on validation accuracy,
training accuracy and the total number of parameters, aiming for minimal complexity with high
predictive performance. 20250203T021541_dataset2.1n100_1L_nf1_1_ks1_3_ps1_3_s_1234 is
the chosen model, which features a single 3×3 convolutional filter, a 3×3 pooling layer and a
classifier with 250 hidden neurons, initialized with seed 550. It achieves a validation accuracy
of 0.9915 and a training accuracy of 0.99967, while maintaining a relatively low parameter
count of approximately 21k. This model represents a favorable balance between accuracy and
computational efficiency. Although three alternative models attain slightly higher precision, they
do so at the cost of nearly doubling the number of parameters (approximately 43k), reducing
their overall efficiency.

Focusing the analysis on the images that are wrongly classified. Tables 4.5 and 4.6 show
both training and validation confusion matrix. For the training, it is important to highlight that
it only makes a mistake when trying to classify an ellipse because it is interpreted as a rectangle.
Looking at Figure 4.4 it can be seen that the image does not have nothing special, it is just an
ellipse rotated at an angle of 45°, the figure can be perfectly distinguished from a rectangle, so it
is not clear the reason behind this mistake. It could be that in the dataset there are not enough
examples of figures rotated at this angle but this would require a more exhaustive analysis of
the dataset generated.

40 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

4.3. Dataset 2.1: Rotation

Table 4.4. Model hyperparameters and results obtained after applying the proposed methodology for
obtaining the minimum model to Dataset 2.1 with noise level 100. Ordered by validation accuracy
from higher to lower. Model timestamp is the date and hour when the model was created (used as an
identifier) with the format: <year><month><day>T<hour><minute><second>, seed is the seed
used for fixing randomness in the model, nepochs stands for “number of epochs”, nfilters_1st stands for
“number of filters in the first convolutional layer”, ksize_1st stands for “kernel size of the first layer”,
poolsize_1st stands for “pooling size of the first layer”, hlneurons stands for “number of neurons in the
hidden layer for the classification part of the model” number_param stands for “number of parameters
of the model”, tr_acc stands for “training accuracy” and val_acc stands for ”validation accuracy”,
both values are represented with five decimals. Model names follow the structure: <model times-
tamp>_dataset2.1n100_1L_nf1_<nfilters_1st>_ks1_<ksize_1st>_ps1_<poolsize_1st>_s_<seed>. The
model selected as the minimum model is highlighted in gray.

Model timestamp se
ed

n
ep

oc
hs

n
fi

lt
er

s_
1s

t

ks
iz

e_
1s

t

po
ol

si
ze

_1
st

hl
n

eu
ro

n
s

n
u

m
be

r_
pa

ra
m

s

tr
ai

n
in

g_
ac

c

va
l_

ac
c

↓
20250203T033925 550 95 1 3 3 500 42513 0.99833 0.99083
20250203T031841 1234 83 1 3 3 500 42513 1.00000 0.99050
20250203T021541 1234 149 1 3 3 250 21263 0.99967 0.98683
20250203T032822 10 95 1 3 3 500 42513 0.99600 0.98567
20250203T002645 1234 142 1 3 4 250 13263 0.99633 0.98433
20250203T012939 1234 87 1 3 4 500 26513 0.99633 0.98250
20250203T023254 10 116 1 3 3 250 21263 0.99133 0.98233
20250203T004308 10 150 1 3 4 250 13263 0.99033 0.97600
20250203T024621 550 154 1 3 3 250 21263 0.99667 0.97567
20250203T013948 10 73 1 3 4 500 26513 0.99067 0.97567
20250203T014818 550 103 1 3 4 500 26513 0.99367 0.97400
20250203T010027 550 161 1 3 4 250 13263 0.99300 0.97067
20250202T222944 1234 193 1 3 5 250 7263 0.96867 0.95300
20250202T234813 10 82 1 3 5 500 14513 0.96167 0.94033
20250202T225153 10 126 1 3 5 250 7263 0.96000 0.93283
20250203T030408 4 126 1 3 3 500 42513 1.00000 0.92833
20250202T235746 550 115 1 3 5 500 14513 0.97167 0.92300
20250202T233441 1234 117 1 3 5 500 14513 0.95433 0.92067
20250202T230628 550 161 1 3 5 250 7263 0.95000 0.91467
20250203T020015 4 135 1 3 3 250 21263 1.00000 0.90000
20250202T215115 10 76 1 3 6 500 10013 0.93533 0.89933
20250202T205520 10 116 1 3 6 250 5013 0.92833 0.89767
20250202T232502 4 83 1 3 5 500 14513 0.98833 0.88350
20250202T220008 550 95 1 3 6 500 10013 0.92667 0.87633
20250202T210850 550 164 1 3 6 250 5013 0.91967 0.87150
20250202T221110 4 161 1 3 5 250 7263 0.99367 0.86983
20250202T212750 4 118 1 3 6 500 10013 0.96767 0.86700
20250202T203654 1234 159 1 3 6 250 5013 0.92933 0.86383
20250202T214126 1234 84 1 3 6 500 10013 0.91533 0.86267
20250203T011858 4 92 1 3 4 500 26513 1.00000 0.85750
20250202T201719 4 169 1 3 6 250 5013 0.95100 0.84717
20250203T001104 4 136 1 3 4 250 13263 0.99933 0.82000

For the validation images, it misclassifies some rectangles that are interpreted as ellipses and
in four cases, as triangles. It does not seem to exist a correlation between the mistakes and the
angle of rotation. Figure 4.5 shows an example of the images wrongly classified for rectangles
and ellipses. In addition, it also finds it difficult to classify some ellipses correctly, they mistakes

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

41

Chapter 4. Optimal filter selection

it for rectangles. Figure 4.6 shows some examples of these mistakes, it seems as the majority of
samples mistaken for triangles are rectangles placed in horizontal position.

Table 4.5. Confusion matrix for the training set in Dataset 2.1.

KNOWN/PREDICTED ellipse rectangle triangle
ellipse 999 1 0
rectangle 0 1000 0
triangle 0 0 1000

Table 4.6. Confusion matrix for the validation set in Dataset 2.1.

KNOWN/PREDICTED ellipse rectangle triangle
ellipse 1966 34 0
rectangle 41 1955 4
triangle 0 0 2000

Figure 4.4. Training set images wrongly classified by the chosen model for Dataset 2.1 (interpreted as a
rectangle).

Figure 4.5. Validation set images wrongly classified by the chosen model for Dataset 2.1 (interpreted as
ellipses or rectangles).

Figure 4.6. Validation set images wrongly classified by the chosen model for Dataset 2.1 (interpreted as
triangles).

In order to complete this section, it is important to review the filter learnt by the network,
as it will form part of the knowledge base extracted for the scaling problem and will be used

42 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

4.4. Dataset 3.1: Translation

in the next chapter to analyse more complex problems. Figure 4.7 shows the filter luminance
representation as well as the exact luminance values. It seems that is detecting vertical borders,
since these are the values that multiply positively in the convolution operation but from this
representation it is difficult to deduce with precision what exact features of the image it is
extracting.

Figure 4.7. Filter learnt by the minimum model selected for Dataset 2.1, addressing the rotation problem.
Luminance representation on the left and the exact luminance values on the left.

4.4. Dataset 3.1: Translation
The third problem addressed is the translation. Table 4.7 shows all the models trained for
Dataset 3.1 using the methodology presented in Section 4.1. As it happened with Datasets 1.1
and 2.1, good results for both training and validation sets are obtained with this architectures.
Some of the more complex models manage to reach the 100% of success in training and 99% in
validation.

As it happened for Dataset 2.1, there are some models that are not correctly adjusted, since
very different results are obtained from using the same architecture but different seeds. As an
example, for models with pooling size equal to six, the initialization point has a clear impact on
the performance of the model.

In this case, the translation problem seems to be more difficult than the scaling problem but
easier than the rotation problem, due to the fact that the models, in general, are able to reach
levels of accuracy higher than for the rotation problem but lower that the scaling problem. The
translation models have a lower overfitting than the rotation ones.

Models are ranked based on validation accuracy, training accuracy and number of parameters
to identify the lowest-complexity model that maintains high performance. According to these
criteria, the selected model is 20250203T103824_dataset3.1n100_1L_nf1_1_ks1_3_ps1_3_s_10.
This model utilizes a single 3×3 convolutional filter, a 3×3 pooling size and a classifier with
250 neurons in the hidden layer, with seed 10. It achieves a validation accuracy of 0.99033 and
a training accuracy of 0.95857, using approximately 21k parameters. The selection is based
on its favorable trade-off between accuracy and complexity. While three other models achieve
slightly higher accuracy, they require nearly twice the number of parameters (around 43k),
making them less efficient.

Focusing the analysis on the images that are wrongly classified. Tables 4.8 and 4.9 show
both training and validation confusion matrix. For the training, it is important to highlight
that the triangles are differentiated perfectly whereas it finds some difficulties in distinguishing
ellipses from rectangles and vice-versa. Looking at Figure 4.8 it can be seen that the images

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

43

Chapter 4. Optimal filter selection

Table 4.7. Model hyperparameters and results obtained after applying the proposed methodology for
obtaining the minimum model to Dataset 3.1 with noise level 100. Ordered by validation accuracy
from higher to lower. Model timestamp is the date and hour when the model was created (used as an
identifier) with the format: <year><month><day>T<hour><minute><second>, seed is the seed
used for fixing randomness in the model, nepochs stands for “number of epochs”, nfilters_1st stands for
“number of filters in the first convolutional layer”, ksize_1st stands for “kernel size of the first layer”,
poolsize_1st stands for “pooling size of the first layer”, hlneurons stands for “number of neurons in the
hidden layer for the classification part of the model” number_param stands for “number of parameters
of the model”, tr_acc stands for “training accuracy” and val_acc stands for ”validation accuracy”,
both values are represented with five decimals. Model names follow the structure: <model times-
tamp>_dataset3.1n100_1L_nf1_<nfilters_1st>_ks1_<ksize_1st>_ps1_<poolsize_1st>_s_<seed>. The
model selected as the minimum model is highlighted in gray.

Model timestamp se
ed

n
ep

oc
hs

n
fi

lt
er

s_
1s

t

ks
iz

e_
1s

t

po
ol

si
ze

_1
st

hl
n

eu
ro

n
s

n
u

m
be

r_
pa

ra
m

s

tr
ai

n
in

g_
ac

c

va
l_

ac
c

↓
20250203T115750 550 121 1 3 3 500 42513 0.99933 0.97067
20250203T114719 10 90 1 3 3 500 42513 0.99567 0.96700
20250203T113101 1234 141 1 3 3 500 42513 1.00000 0.96383
20250203T103824 10 173 1 3 3 250 21263 0.99033 0.95850
20250203T095150 550 94 1 3 4 500 26513 0.99333 0.95833
20250203T093451 10 147 1 3 4 500 26513 0.99700 0.95483
20250203T073853 550 142 1 3 5 500 14513 0.99133 0.95417
20250203T105823 550 172 1 3 3 250 21263 0.99333 0.95267
20250203T101940 1234 162 1 3 3 250 21263 0.99967 0.95100
20250203T091947 1234 130 1 3 4 500 26513 0.99967 0.95033
20250203T111814 4 110 1 3 3 500 42513 1.00000 0.94150
20250203T063651 550 201 1 3 5 250 7263 0.99133 0.93750
20250203T052805 550 131 1 3 6 500 10013 0.98033 0.93567
20250203T083030 10 181 1 3 4 250 13263 0.98567 0.93433
20250203T081124 1234 166 1 3 4 250 13263 0.99367 0.93333
20250203T085114 550 148 1 3 4 250 13263 0.99033 0.93117
20250203T100248 4 146 1 3 3 250 21263 1.00000 0.92683
20250203T065957 4 116 1 3 5 500 14513 0.99967 0.92500
20250203T071322 1234 103 1 3 5 500 14513 0.97800 0.92350
20250203T090821 4 98 1 3 4 500 26513 1.00000 0.92200
20250203T043710 550 163 1 3 6 250 5013 0.96500 0.92067
20250203T055945 1234 162 1 3 5 250 7263 0.96867 0.91633
20250203T072519 10 117 1 3 5 500 14513 0.96433 0.91350
20250203T075516 4 140 1 3 4 250 13263 1.00000 0.91233
20250203T054314 4 143 1 3 5 250 7263 0.99633 0.90267
20250203T050509 1234 78 1 3 6 500 10013 0.94967 0.90250
20250203T040447 1234 118 1 3 6 250 5013 0.94767 0.89833
20250203T061825 10 160 1 3 5 250 7263 0.95400 0.89267
20250203T035028 4 123 1 3 6 250 5013 0.96033 0.89050
20250203T045557 4 79 1 3 6 500 10013 0.96400 0.88800
20250203T051417 10 119 1 3 6 500 10013 0.94967 0.87217
20250203T041825 10 163 1 3 6 250 5013 0.92700 0.85600

do not have nothing special, they are just ellipse translated from either sides of the image, the
figure can be perfectly distinguished from a rectangle, so it is not clear the reason behind this
mistake. It could be that in the dataset there are not enough examples of figures in this position
of the image, but this would require a more exhaustive analysis of the dataset generated.

In the validation images, the model struggle most with distinguishing ellipses from rectangles
and, to a lesser extent, rectangles from ellipses. There are also images where both ellipses and

44 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

4.4. Dataset 3.1: Translation

rectangles are misclassified as triangles. A pattern appears to emerge among the misclassified
images, as they are predominantly located in the bottom-left corner. Further analysis of the
dataset could help confirm whether this spatial bias is significant. Figures 4.9 shows some
example of images wrongly classified in the validation dataset.

Table 4.8. Confusion matrix for the training set in Dataset 3.1.

KNOWN/PREDICTED ellipse rectangle triangle
ellipse 980 20 0
rectangle 9 991 0
triangle 0 0 1000

Table 4.9. Confusion matrix for the validation set in Dataset 3.1.

KNOWN/PREDICTED ellipse rectangle triangle
ellipse 1848 151 1
rectangle 96 1903 1
triangle 0 0 2000

Figure 4.8. Training set images wrongly classified by the chosen model for Dataset 3.1 (interpreted as a
rectangle).

Figure 4.9. Validation set images wrongly classified by the chosen model for Dataset 3.1 (interpreted as
ellipses or rectangles).

To finish this section, it is essential to examine the filter learned by the network, as it
contributes to the knowledge base for the scaling problem and will be referenced in the next
chapter when analysing more complex scenarios. Figure 4.10 presents both the luminance
representation of the filter and its exact luminance values. The filter appears to detect corners
in the upper-right region of the images, as all values are positive except for the first two pixels
along the lower horizontal axis. However, based on this representation alone, it is challenging
to precisely determine the specific features being extracted from the images.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

45

Chapter 4. Optimal filter selection

Figure 4.10. Filter learnt by the minimum model selected for Dataset 3.1, addressing the translation
problem. Luminance representation on the left and the exact luminance values on the left.

4.5. Conclusion
Applying the proposed methodology to each dataset containing basic geometric transformations
(scaling, rotation, and translation) has led to several general conclusions:

• The selected minimal models share the same hyperparameter values. Specifically, the
most decisive hyperparameter in model selection was the pooling size, which is set to 3 in
all three cases.

• In terms of computational resources, all models contain approximately 21,000 parameters.
This is considered relatively low for CNN architectures, which typically contain millions of
parameters.

• Regarding training time, the models completed their training in 120, 149, and 171 epochs
for scaling, rotation and translation problems respectively. These durations are reasonable,
especially considering that the input dataset consists of 3,000 images.

• All models achieved 99% validation accuracy, indicating that the learned filters are
effective and suitable for forming the knowledge base used in the next chapter. Each
of the three extracted filters appears to specialize in detecting a specific type of basic
geometric transformation.

• Based on validation and training accuracy, the complexity of transformations could be
ranked from simplest to most complex as follows: scaling, translation, and rotation —
with rotation being the most challenging, as the models found it more difficult to learn.

• The most frequently confused shapes are ellipses and rectangles. This is expected, given
their visual similarity. Triangles, on the other hand, have more distinct shapes and are
less often misclassified.

Considering all of the above, the first part of the thesis objective — “to obtain a knowledge
base of hyperparameter magnitudes, model structure, and learned filters that enables intelligent
initialization of a CNN architecture” — has been successfully achieved. The work can now
progress to the next chapters. Additionally, the proposed methodology is generalizable and can
be applied to any dataset to extract a more targeted knowledge base suited to a specific use
case.

46 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

5
Filter-transfer learning

Knowledge has to be improved,
challenged and increased constantly,

or it vanishes.
Peter Drucker (1909–2005)

This chapter introduces a methodology for smart CNN initialization using a previously
built knowledge base. By applying transfer learning with pre-selected filters and
leveraging known hyperparameter and model structure patterns, the approach aims to
reduce training cost and time. It is tested across four datasets and compared against
models trained from scratch. Results highlight the benefits of guided initialization in
both performance and efficiency.

To address the second part of the thesis objective, “intelligently initialize a CNN architecture,
reducing time and computational costs compared to an architecture randomly initialized", a
dedicated methodology has been developed. This approach tackles composite problems that
combine those explored in Chapter 4, leveraging transfer learning with the filters extracted from
that chapter. Additionally, it incorporates the knowledge base of hyperparameter magnitude
orders and model structures to guide the design of new architectures. Once trained, these new
models are compared to models trained from scratch, evaluating performance in terms of both
accuracy and efficiency.

This chapter is organized into six sections. Section 5.1 describes the methodology for smart
initialization, based primarily on the filters extracted in Chapter 4. Sections 5.2, 5.3, 5.4 and 5.5
present the application of this method to Datasets 4.1 through 7.1, respectively. These sections
also include a comparative analysis between the proposed approach and traditional training
from scratch. Finally, Section 5.6 summarizes the key insights of this chapter.

5.1. Proposed methodology
The methodology presented in this chapter is based on training a set of CNN architectures using
a filter-based transfer learning approach. Unlike traditional transfer learning —which typically

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

47

Chapter 5. Filter-transfer learning

involves using a pre-trained model as a base, freezing its initial layers and adding new layers on
top for fine-tuning— this method extracts the filters learned by the initial models, combines
them and integrates them into new architectures. The convolutional layers containing these
transferred filters are then frozen and only the classification layers are trained, enabling more
efficient learning while preserving the valuable representations captured in earlier stages.

All the new models trained using the filter-based transfer learning have the same architecture,
that is composed by the following layers by order:

1. One input layer of size 28x28, the same as the dataset images.

2. One convolutional layer to extract features from the image by applying filters or kernels.

3. One pooling layer performing the operation of Max Pooling, extracting the maximum
value for patches of the feature map resulting from the previous layer.

4. One flatten layer to convert the resultant bidimensional arrays into a single continuous
linear vector.

5. One dense layer or a fully-connected layer of neurons to perform the classification
operation taking as input the features extracted from the image.

6. One final dense layer as output layer of size 3, since this is the number of possible classes
that can result from the classification problem.

A grid of hyperparameters is also constructed for addressing the problems presented in
this chapter. The hpyerparameters selected for the grid and their possible values are shown
below:

• Seed: it is used to initialized the random number generator with an specific value,
ensuring reproducibility across experiments. In addition, several seeds are used since they
initialization plays a key role when finding the optimal architecture. When exploring the
space in search of a solution to the classification problem, depending on the initial point
from which the CNN starts its search, it will find a better solution to the problem or not. If
for different seeds the model is able to find a valid solution, it will mean that it has been
properly adjusted. The seeds used are: 4, 1234, 10 and 550.

• Number of filters, also referred to as nfilters_1st: this refers to the total number of filters
used in the first (and only) convolutional layer. Each filter is responsible for identifying
specific features within the input data. For the models trained on Datasets 4.1, 5.1 and
6.1, this parameter is set to 2. For the models trained on Dataset 7.1, it is set to 3.

• Kernel size, also referred to as ksize_1st: size of the filters used in the first convolutional
layer. In this case, the kernel size is set to 3 since the filters extracted have the dimension
3x3.

• Pooling size, also referred to as poolsize_1st: size of the window that slides across the
image to perform the pooling operation. The bigger the window, the lesser number of
resulting features. For the grid presented in this Thesis, this parameter takes the values: 6
(16 features), 5 (25 features) , 4 (49 features), 3 (81 features), 2 (196 features).

• Number of neurons in the hidden layer, also referred to as hlneurons: number of
neurons used for the classification part of the network. Note that the classifier needs to be
complex enough to derive classes from all the features extracted. In this way, the accuracy

48 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

5.1. Proposed methodology

of the model depends entirely on the performance of the filters learnt. In this case, the
parameter can take the values 250 or 500.

• Number of epochs, also referred to as nepochs: this parameter is not strictly fixed for the
training but derived from the training itself. This means that a sufficiently high number of
epochs, 5000, is set but the Early Stopping is enabled. This means that the training is stop
when a monitored metric (in this case, the validation loss) has stopped improving (that is,
it has stopped decreasing) so, in the end, the number of epochs varies from one model to
another, depending on how well the training has been.

The convolutional component of the CNN architecture consists of three layers, as does the
classification part. While the overall architecture mirrors the one introduced in Chapter 4, there
are two key differences.

First, during training, the convolutional layers are frozen to preserve the filters transferred
from the knowledge base, ensuring they remain unchanged. Figure 5.1 shows representation of
the filters extracted from each model together with the basic transformation they detect.

Second, the values of certain hyperparameters —particularly the number of filters in the first
convolutional layer— have been adjusted. In this chapter, the first convolutional layer contains
either two or three filters, compared to just one in the previous chapter. This change reflects
the increased complexity of the current problems, which involve combinations of geometric
transformations. Specifically, Datasets 4.1 through 7.1 correspond to combinations of scaling
plus rotation, scaling plus translation, rotation plus translation and all three transformations
together, respectively. By using multiple filters, each targeting a specific transformation, the
combined model is better equipped to handle more complex scenarios.

Figure 5.1. All three filters learnt by the minimum models selected for Datasets 1.1, 2.1 and 3.1,
addressing the scaling, rotation and translation problems. Luminance representation on the top and the
exact luminance values on the bottom.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

49

Chapter 5. Filter-transfer learning

Once all different models resulting from the grid have been trained, another set of parameters
is used to compare them and chose which ones achieve the best results with the less complex
architecture.

• Number of parameters, also referred to as number_params: this refers to the total
number of parameters in the architecture, which varies depending on the specific
combination of hyperparameters selected during the grid search. There is a direct
relationship between the number of parameters and the training time: as the number of
parameters increases, so does the training duration, indicating greater model complexity.
A central objective of this thesis is to identify models that achieve optimal performance
while maintaining a minimal number of parameters.

• Training accuracy: the percentage of correct predictions the CNN makes on the data it
was trained on. It tells how well the model is learning to recognize patterns in the training
set.

• Validation accuracy: the percentage of correct predictions the CNN makes on unseen
data, called the validation set, which is not used during training. It tells how well
the model is generalizing to new, unseen data. It is a better indicator of real-world
performance than training accuracy.

As it happened in Chapter 4 the models are trained exclusively on the datasets containing
noise. This decision is made to minimize potential biases and to better reflect real-world
scenarios. A noise level of 100 is selected, as it is deemed sufficiently high to prevent bias while
remaining low enough to avoid compromising the integrity of the dataset under analysis.

In conclusion, it is important to note that, in the following sections, models trained using the
proposed transfer learning methodology are evaluated alongside models trained from scratch
using the same hyperparameter grid. This allows for a fair comparison of performance metrics,
particularly in terms of accuracy and training time. Regarding training times on a GPU model
NVIDA GeForce GTX1070.

5.2. Dataset 4.1: Scaling plus rotation

The first problem addressed involves the combination of scaling and rotation transformations.
Table 5.1 presents all models trained on Dataset 4.1 using the transfer learning approach
described in Section 5.1. In contrast, Table 5.2 displays the same set of models trained from
scratch. The primary objective is to compare the performance of models developed using both
methodologies.

Transfer learning proves to be a more effective approach in this context. While training
a model from scratch can occasionally yield better results, doing so typically demands a
significantly larger dataset, as well as greater computational time and resources. In this
particular problem, the number of parameters to estimate is disproportionately high relative to
the available data, making transfer learning a more practical and reliable option. This scenario
closely mirrors typical use cases of transfer learning, where a large pre-trained network is
adapted to a more specific task with limited data.

50 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

5.2. Dataset 4.1: Scaling plus rotation

Table 5.1. Model hyperparameters and results obtained after applying transfer learning for filters
to train models for dataset 4.1 with noise level 100. Ordered by timestamp from earlier to later.
Model timestamp is the date and hour when the model was created (used as an identifier) with
the format: <year><month><day>T<hour><minute><second>, seed is the seed used for fixing
randomness in the model, nepochs stands for “number of epochs”, nfilters_1st stands for “number of
filters in the first convolutional layer”, ksize_1st stands for “kernel size of the first layer”, poolsize_1st
stands for “pooling size of the first layer”, hlneurons stands for “number of neurons in the hidden
layer for the classification part of the model” number_param stands for “number of parameters
of the model”, tr_acc stands for “training accuracy” and val_acc stands for ”validation accuracy”,
both values are represented with five decimals. Model names follow the structure: <model times-
tamp>_dataset4.1n100_1L_nf1_<nfilters_1st>_ks1_<ksize_1st>_ps1_<poolsize_1st>_s_<seed>.
Groups of models with the same pooling size are separated from each other with double horizontal bars.
The model selected as the best model is the one in bold.

Model timestamp ↓ se
ed

n
ep

oc
hs

n
fi

lt
er

s_
1s

t

ks
iz

e_
1s

t

po
ol

si
ze

_1
st

hl
n

eu
ro

n
s

n
u

m
be

r_
pa

ra
m

s

tr
ai

n
in

g_
ac

c

va
l_

ac
c

20250309T175950 4 151 2 3 6 250 9021 0.91767 0.82550
20250309T181736 1234 110 2 3 6 250 9021 0.88833 0.80033
20250309T183036 10 134 2 3 6 250 9021 0.91700 0.82233
20250309T184624 550 141 2 3 6 250 9021 0.90800 0.80300
20250309T190257 4 154 2 3 6 500 18021 0.96767 0.87383
20250309T192044 1234 119 2 3 6 500 18021 0.94867 0.85233
20250309T193434 10 157 2 3 6 500 18021 0.96533 0.86367
20250309T195244 550 146 2 3 6 500 18021 0.95533 0.86417

20250309T200937 4 195 2 3 5 250 13521 0.96467 0.85517
20250309T203207 1234 203 2 3 5 250 13521 0.96533 0.84900
20250309T205530 10 193 2 3 5 250 13521 0.95800 0.84933
20250309T211744 550 163 2 3 5 250 13521 0.95500 0.84367
20250309T213637 4 163 2 3 5 500 27021 0.98267 0.88533
20250309T215520 1234 128 2 3 5 500 27021 0.98133 0.89000
20250309T221010 10 119 2 3 5 500 27021 0.97367 0.88283
20250309T222357 550 109 2 3 5 500 27021 0.97300 0.87617

20250309T223638 4 146 2 3 4 250 25521 0.96367 0.86200
20250309T225335 1234 159 2 3 4 250 25521 0.95400 0.85367
20250309T231159 10 129 2 3 4 250 25521 0.94600 0.84867
20250309T232659 550 159 2 3 4 250 25521 0.95167 0.85650
20250309T234521 4 141 2 3 4 500 51021 0.97967 0.89767
20250310T000145 1234 103 2 3 4 500 51021 0.96033 0.87250
20250310T001346 10 113 2 3 4 500 51021 0.97133 0.87583
20250310T002654 550 133 2 3 4 500 51021 0.97533 0.89017

20250310T004220 4 119 2 3 3 250 41521 0.94900 0.84600
20250310T005610 1234 123 2 3 3 250 41521 0.95633 0.84967
20250310T011030 10 118 2 3 3 250 41521 0.95433 0.85267
20250310T012413 550 118 2 3 3 250 41521 0.94933 0.85150
20250310T013757 4 109 2 3 3 500 83021 0.96867 0.88433
20250310T015039 1234 98 2 3 3 500 83021 0.96333 0.88183
20250310T020205 10 99 2 3 3 500 83021 0.96333 0.88467
20250310T021339 550 125 2 3 3 500 83021 0.96767 0.87283

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

51

Chapter 5. Filter-transfer learning

Table 5.2. Model hyperparameters and results obtained after training models from scratch for dataset
4.1 with noise level 100. Model timestamp is the date and hour when the model was created (used as an
identifier) with the format: <year><month><day>T<hour><minute><second>, seed is the seed
used for fixing randomness in the model, nepochs stands for “number of epochs”, nfilters_1st stands for
“number of filters in the first convolutional layer”, ksize_1st stands for “kernel size of the first layer”,
poolsize_1st stands for “pooling size of the first layer”, hlneurons stands for “number of neurons in the
hidden layer for the classification part of the model” number_param stands for “number of parameters
of the model”, tr_acc stands for “training accuracy” and val_acc stands for ”validation accuracy”,
both values are represented with five decimals. Model names follow the structure: <model times-
tamp>_dataset4.1n100_1L_nf1_<nfilters_1st>_ks1_<ksize_1st>_ps1_<poolsize_1st>_s_<seed>.
Groups of models with the same pooling size are separated from each other with double horizontal bars.
The model selected as the best model is the one in bold.

Model timestamp ↓ se
ed

n
ep

oc
hs

n
fi

lt
er

s_
1s

t

ks
iz

e_
1s

t

po
ol

si
ze

_1
st

hl
n

eu
ro

n
s

n
u

m
be

r_
pa

ra
m

s

tr
ai

n
in

g_
ac

c

va
l_

ac
c

20250209T121225 4 149 2 3 6 250 9023 0.98267 0.78400
20250209T122941 1234 190 2 3 6 250 9023 0.94133 0.84583
20250209T125136 10 192 2 3 6 250 9023 0.98433 0.84833
20250209T131347 550 140 2 3 6 250 9023 0.86633 0.77550
20250209T133000 4 111 2 3 6 500 18023 0.99967 0.81100
20250209T134253 1234 135 2 3 6 500 18023 0.97000 0.87967
20250209T135831 10 113 2 3 6 500 18023 0.98967 0.86767
20250209T141141 550 149 2 3 6 500 18023 0.92233 0.81867

20250209T142857 4 136 2 3 5 250 13523 0.99700 0.76533
20250209T144445 1234 203 2 3 5 250 13523 0.97133 0.88050
20250209T150814 10 209 2 3 5 250 13523 0.99733 0.86150
20250209T153225 550 185 2 3 5 250 13523 0.93967 0.76083
20250209T155351 4 108 2 3 5 500 27023 1.00000 0.81983
20250209T160627 1234 127 2 3 5 500 27023 0.97833 0.90617
20250209T162114 10 102 2 3 5 500 27023 0.99500 0.87600
20250209T163306 550 144 2 3 5 500 27023 0.97233 0.81467

20250209T164947 4 102 2 3 4 250 25523 0.99967 0.73517
20250209T170139 1234 162 2 3 4 250 25523 0.97733 0.87267
20250209T172022 10 132 2 3 4 250 25523 0.99267 0.82933
20250209T173538 550 149 2 3 4 250 25523 0.93533 0.77283
20250209T175253 4 82 2 3 4 500 51023 1.00000 0.77733
20250209T180228 1234 114 2 3 4 500 51023 0.97367 0.89533
20250209T181543 10 117 2 3 4 500 51023 1.00000 0.88033
20250209T182919 550 118 2 3 4 500 51023 0.98567 0.80100

20250209T184300 4 88 2 3 3 250 41523 1.00000 0.74683
20250209T185317 1234 110 2 3 3 250 41523 0.96633 0.85967
20250209T190604 10 143 2 3 3 250 41523 0.99967 0.83633
20250209T192237 550 125 2 3 3 250 41523 0.98633 0.80333
20250209T193707 4 80 2 3 3 500 83023 1.00000 0.78883
20250209T194629 1234 91 2 3 3 500 83023 0.98433 0.90700
20250209T195709 10 116 2 3 3 500 83023 1.00000 0.87050
20250209T201038 550 104 2 3 3 500 83023 0.99500 0.82850

Among the models trained, the best-performing model is the one with 51k parameters. With
a pool size of 4, the resulting feature map is 7×7 pixels (i.e., 49 features). The effectiveness of
this configuration stems from two main factors. First, since 4 is a divisor of 28 (the image size),
the pooling operation produces feature maps where all values represent meaningful regions

52 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

5.3. Dataset 5.1: Scaling plus translation

of the image, eliminating the need for padding. Second, the pooling size is small enough to
capture detailed local features, yet not so small that it sacrifices the network’s ability to learn
more general, global characteristics, such as the position of the object within the image.

In the 83k-parameter model, transfer learning consistently produces models with similar
accuracy across different random seeds, indicating greater stability during training, obtaining a
standard deviation of the accuracy of 0.012 in the case of transfer learning compared to 0.058
in the case of training from scratch. In contrast, training from scratch shows more pronounced
overfitting and higher variability depending on the seed used. A similar trend is observed
in the 51k-parameter model, where transfer learning also demonstrates better generalization
capabilities.

Furthermore, models with less complex classifiers (250 neurons, resulting in 25k and 41k
parameters) perform worse than the version with 500 neurons. This highlights the importance
of having sufficient classifier capacity to fully exploit the rich feature representations provided
by the convolutional layers.

To conclude this section, there is not a great difference in the number of epochs to complete
the training with transfer learning (141 epochs) in comparison with the one trained from
scratch (114 epochs). In terms of time (executing on NVIDA GeForce GTX1070), the first one
takes 16 minutes and 32 seconds to train whereas the second one takes 13 minutes and 15
seconds. This fact seems a bit counterintuitive but it could be due to the fact that transfer
learning often uses lower learning rates to avoid destroying pretrained weights, which can lead
to slower convergence. From-scratch models can often be trained more aggressively and, in this
case, the seed selected for training from scratch seems to converge quicker to the solution. All
in all, the difference in training time is not remarkably high.

5.3. Dataset 5.1: Scaling plus translation
As it happened in the previous case, generally transfer learning proves to be the superior
approach for this problem. While it is possible to achieve good results from scratch, doing so
requires significantly more data, time and computational resources—conditions that are not
met in our scenario. The number of parameters to estimate is simply too high relative to the
available sample size. This is a common challenge when adapting a large pre-trained network
to a specific task for which limited data is available.

The best-performing model under transfer learning had just 18,000 parameters, contrary
to the 83,000 parameters in the best model trained from scratch. This smaller model benefits
greatly from a pooling size of 6, which produces a 5x5 feature map; that is, 25 features. The
improved performance can be attributed to the larger pooling window capturing more global
features, an essential quality when addressing translation problems, where identifying the
location of an object within an image is a prerequisite to analyzing its geometric form.

Moreover, the 18k-parameter model consistently achieves similar accuracy across different
random seeds, obtaining a standard deviation of the accuracy of 0.006 in the case of transfer
learning compared to 0.019 in the case of training from scratch. This fact highlights the stability
of the training process when using transfer learning. In contrast, training from scratch not
only led to higher levels of overfitting but also greater variability in performance depending
on the initialization. Simpler classifier architectures —specifically those using 250 neurons
and comprising 9k and 13k parameters— performed noticeably worse than the more complex

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

53

Chapter 5. Filter-transfer learning

500-neuron version. This clearly indicates that it is necessary a certain level of model complexity
in the classifier part of the architecture to effectively exploit the extracted features.

Table 5.3. Model hyperparameters and results obtained after applying transfer learning for filters to train
models for dataset 5.1 with noise level 100. Model timestamp is the date and hour when the model was
created (used as an identifier) with the format: <year><month><day>T<hour><minute><second>,
seed is the seed used for fixing randomness in the model, nepochs stands for “number of
epochs”, nfilters_1st stands for “number of filters in the first convolutional layer”, ksize_1st
stands for “kernel size of the first layer”, poolsize_1st stands for “pooling size of the first
layer”, hlneurons stands for “number of neurons in the hidden layer for the classification
part of the model” number_param stands for “number of parameters of the model”, tr_acc
stands for “training accuracy” and val_acc stands for ”validation accuracy”, both values
are represented with five decimals. Model names follow the structure: <model times-
tamp>_dataset5.1n100_1L_nf1_<nfilters_1st>_ks1_<ksize_1st>_ps1_<poolsize_1st>_s_<seed>.Groups
of models with the same pooling size are separated from each other with double horizontal bars. The
model selected as the best model is the one in bold.

Model timestamp ↓ se
ed

n
ep

oc
hs

n
fi

lt
er

s_
1s

t

ks
iz

e_
1s

t

po
ol

si
ze

_1
st

hl
n

eu
ro

n
s

n
u

m
be

r_
pa

ra
m

s

tr
ai

n
in

g_
ac

c

va
l_

ac
c

20250329T105123 4 175 2 3 6 250 9021 0.97300 0.90450
20250329T111154 1234 200 2 3 6 250 9021 0.98100 0.90167
20250329T113511 10 194 2 3 6 250 9021 0.97533 0.90717
20250329T115745 550 128 2 3 6 250 9021 0.95067 0.88700
20250329T121244 4 135 2 3 6 500 18021 0.98833 0.91850
20250329T122836 1234 152 2 3 6 500 18021 0.99033 0.93117
20250329T124624 10 137 2 3 6 500 18021 0.98400 0.92117
20250329T130223 550 149 2 3 6 500 18021 0.98967 0.92167
20250329T131950 4 162 2 3 5 250 13521 0.98600 0.90883
20250329T133844 1234 144 2 3 5 250 13521 0.97000 0.89933
20250329T135537 10 89 2 3 5 250 13521 0.95367 0.88350
20250329T140610 550 136 2 3 5 250 13521 0.97300 0.89500
20250329T142210 4 95 2 3 5 500 27021 0.98733 0.91650
20250329T143326 1234 143 2 3 5 500 27021 0.99133 0.92133
20250329T145010 10 82 2 3 5 500 27021 0.98200 0.90733
20250329T145953 550 118 2 3 5 500 27021 0.99300 0.92267
20250329T151348 4 116 2 3 4 250 25521 0.95100 0.87767
20250329T152726 1234 119 2 3 4 250 25521 0.95967 0.88667
20250329T154126 10 114 2 3 4 250 25521 0.94633 0.88517
20250329T155449 550 92 2 3 4 250 25521 0.93867 0.86817
20250329T160541 4 75 2 3 4 500 51021 0.95867 0.89300
20250329T161434 1234 65 2 3 4 500 51021 0.95267 0.89333
20250329T162219 10 87 2 3 4 500 51021 0.96400 0.89433
20250329T163236 550 78 2 3 4 500 51021 0.96067 0.89750
20250329T164149 4 98 2 3 3 250 41521 0.95033 0.87433
20250329T165321 1234 131 2 3 3 250 41521 0.95767 0.87950
20250329T170843 10 106 2 3 3 250 41521 0.94400 0.87733
20250329T172113 550 99 2 3 3 250 41521 0.95067 0.88333
20250329T173253 4 66 2 3 3 500 83021 0.94867 0.88400
20250329T174044 1234 57 2 3 3 500 83021 0.95533 0.89133
20250329T180132 10 67 2 3 3 500 83021 0.95233 0.88283
20250329T180931 550 98 2 3 3 500 83021 0.96633 0.89867

54 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

5.3. Dataset 5.1: Scaling plus translation

Table 5.4. Model hyperparameters and results obtained after training models from scratch for dataset
5.1 with noise level 100. Model timestamp is the date and hour when the model was created (used as an
identifier) with the format: <year><month><day>T<hour><minute><second>, seed is the seed
used for fixing randomness in the model, nepochs stands for “number of epochs”, nfilters_1st stands for
“number of filters in the first convolutional layer”, ksize_1st stands for “kernel size of the first layer”,
poolsize_1st stands for “pooling size of the first layer”, hlneurons stands for “number of neurons in the
hidden layer for the classification part of the model” number_param stands for “number of parameters
of the model”, tr_acc stands for “training accuracy” and val_acc stands for ”validation accuracy”,
both values are represented with five decimals. Model names follow the structure: <model times-
tamp>_dataset5.1n100_1L_nf1_<nfilters_1st>_ks1_<ksize_1st>_ps1_<poolsize_1st>_s_<seed>.Groups
of models with the same pooling size are separated from each other with double horizontal bars. The
model selected as the best model is the one in bold.

Model timestamp ↓ se
ed

n
ep

oc
hs

n
fi

lt
er

s_
1s

t

ks
iz

e_
1s

t

po
ol

si
ze

_1
st

hl
n

eu
ro

n
s

n
u

m
be

r_
pa

ra
m

s

tr
ai

n
in

g_
ac

c

va
l_

ac
c

20250209T221541 4 129 2 3 6 250 9023 0.99900 0.89567
20250209T223036 1234 177 2 3 6 250 9023 0.95333 0.87450
20250209T225058 10 136 2 3 6 250 9023 0.99100 0.89800
20250209T230639 550 162 2 3 6 250 9023 0.97067 0.88117
20250209T232520 4 95 2 3 6 500 18023 1.00000 0.90283
20250209T233624 1234 136 2 3 6 500 18023 0.98033 0.91300
20250209T235206 10 108 2 3 6 500 18023 0.99800 0.91400
20250210T000436 550 129 2 3 6 500 18023 0.99100 0.89750
20250210T001932 4 108 2 3 5 250 13523 0.99967 0.89633
20250210T003203 1234 147 2 3 5 250 13523 0.97000 0.88133
20250210T004901 10 148 2 3 5 250 13523 0.99900 0.90317
20250210T010605 550 158 2 3 5 250 13523 0.98467 0.87367
20250210T012416 4 72 2 3 5 500 27023 1.00000 0.89967
20250210T013241 1234 129 2 3 5 500 27023 0.98733 0.90250
20250210T014734 10 72 2 3 5 500 27023 0.99767 0.90150
20250210T015600 550 116 2 3 5 500 27023 0.99700 0.89400
20250210T020925 4 93 2 3 4 250 25523 1.00000 0.87433
20250210T022003 1234 111 2 3 4 250 25523 0.98300 0.87800
20250210T023255 10 147 2 3 4 250 25523 1.00000 0.90267
20250210T024951 550 148 2 3 4 250 25523 0.99200 0.86550
20250210T030655 4 76 2 3 4 500 51023 1.00000 0.89450
20250210T031548 1234 91 2 3 4 500 51023 0.99100 0.90267
20250210T032624 10 95 2 3 4 500 51023 1.00000 0.91583
20250210T033727 550 97 2 3 4 500 51023 0.99867 0.89033
20250210T034844 4 70 2 3 3 250 41523 0.99967 0.86717
20250210T035657 1234 101 2 3 3 250 41523 0.97067 0.87550
20250210T040842 10 141 2 3 3 250 41523 1.00000 0.90500
20250210T042459 550 97 2 3 3 250 41523 0.99067 0.85850
20250210T043616 4 56 2 3 3 500 83023 1.00000 0.87950
20250210T044253 1234 78 2 3 3 500 83023 0.98100 0.89450
20250210T045201 10 97 2 3 3 500 83023 1.00000 0.92167
20250210T050318 550 99 2 3 3 500 83023 1.00000 0.88567

Ultimately, there is a clear difference in the number of epochs required to complete training:
the transfer learning model needed 152 epochs, while the model trained from scratch required
only 95. In terms of training time (executing on NVIDA GeForce GTX1070), the transfer learning
model took 17 minutes and 48 seconds, compared to 11 minutes and 17 seconds for the

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

55

Chapter 5. Filter-transfer learning

from-scratch model. Although the difference in training time is not particularly large, it can
be attributed to the fact that transfer learning often uses lower learning rates to protect the
pretrained weights, which slows down convergence. In contrast, models trained from scratch
typically allow for more aggressive optimization, and in this case, the selected random seed
likely contributed to the model reaching a solution more quickly.

5.4. Dataset 6.1: Rotation plus translation
Transfer learning proves to be the better approach. As in previous cases, better performance
can sometimes be achieved when training from scratch, but only if there is a significantly larger
dataset available, along with sufficient time and computational resources. That is not the case
here — there are too many parameters to estimate with a relatively small sample size. This
is a common challenge when applying transfer learning from a large pretrained network to a
specific task where data is limited.

In this case, the best-performing model has 83k parameters. Interestingly, the top model
using transfer learning share the same number of parameters as the one trained from scratch.
With a pooling size of 3, the resulting feature map is 9x9 pixels, giving 81 features in total.
This configuration leads to better results for two main reasons. First, 3 is not a divisor of 28
(the original image size), so the output is a 9x9 matrix without applying padding. As a result,
the last row and column of pixels are not included. However, this doesn’t significantly impact
performance because the generated figures are positioned with a margin between the image
border and the enclosing circle. Therefore, the features extracted after pooling are still highly
representative of the image. Second, a pooling size of 3 is small enough to capture local features
with high detail about the shape of the figure, while still being large enough to retain some
global context, such as the figure’s position in the image. This pooling size is also very close to
4, which yielded good results in the scaling-plus-rotation scenario (Dataset 4.1).

When using the 83k-parameter model with transfer learning, the different seeds tested
produce very similar accuracy scores, indicating greater stability during the training process.
In contrast, training from scratch showed greater overfitting and higher variability in the final
results depending on the random seed, obtaining a standard deviation of the accuracy of 0.015
in the case of transfer learning compared to 0.087 in the case of training from scratch.

Overall, in the transfer learning approach, models with the same number of parameters tend
to produce more consistent results across different seeds — that is, they generalize better than
those trained from scratch. This is clearly observed in models with 41k parameters.

Models with less complex classifiers (25k and 41k parameters) perform worse than the
500-neuron version, providing clear evidence that higher model complexity for the classification
part of the CNN is necessary to fully exploit the features extracted.

Ultimately, there is a clear difference in the number of epochs required to complete training:
the transfer learning model needed 93 epochs, while the model trained from scratch required
only 69. In terms of training time (executing on NVIDA GeForce GTX1070), the transfer learning
model took 10 minutes and 53 seconds, compared to 8 minutes and 6 seconds for the from-
scratch model. Although the difference in training time is not particularly large, it can be
attributed to the fact that transfer learning often uses lower learning rates to protect the
pretrained weights, which slows down convergence. In contrast, models trained from scratch
typically allow for more aggressive optimization, and in this case, the selected random seed
likely contributed to the model reaching a solution more quickly.

56 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

5.4. Dataset 6.1: Rotation plus translation

Table 5.5. Model hyperparameters and results obtained after applying transfer learning for filters to train
models for dataset 6.1 with noise level 100. Model timestamp is the date and hour when the model was
created (used as an identifier) with the format: <year><month><day>T<hour><minute><second>,
seed is the seed used for fixing randomness in the model, nepochs stands for “number of
epochs”, nfilters_1st stands for “number of filters in the first convolutional layer”, ksize_1st
stands for “kernel size of the first layer”, poolsize_1st stands for “pooling size of the first
layer”, textithlneurons stands for “number of neurons in the hidden layer for the classification
part of the model” number_param stands for “number of parameters of the model”, tr_acc
stands for “training accuracy” and val_acc stands for ”validation accuracy”, both values
are represented with five decimals. Model names follow the structure: <model times-
tamp>_dataset6.1n100_1L_nf1_<nfilters_1st>_ks1_<ksize_1st>_ps1_<poolsize_1st>_s_<seed>.
Groups of models with the same pooling size are separated from each other with double horizontal bars.
The model selected as the best model is the one in bold.

Model timestamp ↓ se
ed

n
ep

oc
hs

n
fi

lt
er

s_
1s

t

ks
iz

e_
1s

t

po
ol

si
ze

_1
st

hl
n

eu
ro

n
s

n
u

m
be

r_
pa

ra
m

s

tr
ai

n
in

g_
ac

c

va
l_

ac
c

20250310T231624 4 170 2 3 6 250 9021 0.82233 0.66617
20250310T233605 1234 133 2 3 6 250 9021 0.80533 0.65400
20250310T235129 10 171 2 3 6 250 9021 0.83367 0.67533
20250311T001114 550 182 2 3 6 250 9021 0.82600 0.66617
20250311T003223 4 105 2 3 6 500 18021 0.86600 0.69867
20250311T004439 1234 165 2 3 6 500 18021 0.8900 0.70367
20250311T010346 10 119 2 3 6 500 18021 0.84733 0.69700
20250311T011738 550 114 2 3 6 500 18021 0.87633 0.69817

20250311T013059 4 107 2 3 5 250 13521 0.84867 0.68467
20250311T014328 1234 133 2 3 5 250 13521 0.87433 0.71267
20250311T015854 10 153 2 3 5 250 13521 0.87100 0.70683
20250311T021641 550 172 2 3 5 250 13521 0.88833 0.72250
20250311T023643 4 107 2 3 5 500 27021 0.92133 0.73683
20250311T024920 1234 121 2 3 5 500 27021 0.93067 0.74533
20250311T030326 10 134 2 3 5 500 27021 0.93333 0.76100
20250311T031900 550 116 2 3 5 500 27021 0.92867 0.75167

20250311T033231 4 145 2 3 4 250 25521 0.88233 0.70683
20250311T034920 1234 137 2 3 4 250 25521 0.87433 0.71250
20250311T040513 10 123 2 3 4 250 25521 0.87767 0.71083
20250311T041931 550 116 2 3 4 250 25521 0.85200 0.69733
20250311T043302 4 104 2 3 4 500 51021 0.91033 0.76633
20250311T044511 1234 100 2 3 4 500 51021 0.90700 0.75167
20250311T045657 10 79 2 3 4 500 51021 0.89733 0.73817
20250311T050617 550 65 2 3 4 500 51021 0.88733 0.73467

20250311T051359 4 98 2 3 3 250 41521 0.85900 0.72500
20250311T052527 1234 99 2 3 3 250 41521 0.83133 0.6895
20250311T053702 10 122 2 3 3 250 41521 0.88300 0.72217
20250311T055114 550 128 2 3 3 250 41521 0.88533 0.72967
20250311T060608 4 93 2 3 3 500 83021 0.91767 0.77117
20250311T061701 1234 91 2 3 3 500 83021 0.89667 0.76033
20250311T062740 10 64 2 3 3 500 83021 0.88233 0.73600
20250311T063515 550 83 2 3 3 500 83021 0.90033 0.75300

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

57

Chapter 5. Filter-transfer learning

Table 5.6. Model hyperparameters and results obtained after training models from scratch for dataset
6.1 with noise level 100. Model timestamp is the date and hour when the model was created (used as an
identifier) with the format: <year><month><day>T<hour><minute><second>, seed is the seed
used for fixing randomness in the model, nepochs stands for “number of epochs”, nfilters_1st stands for
“number of filters in the first convolutional layer”, ksize_1st stands for “kernel size of the first layer”,
poolsize_1st stands for “pooling size of the first layer”, hlneurons stands for “number of neurons in the
hidden layer for the classification part of the model” number_param stands for “number of parameters
of the model”, tr_acc stands for “training accuracy” and val_acc stands for ”validation accuracy”,
both values are represented with five decimals. Model names follow the structure: <model times-
tamp>_dataset6.1n100_1L_nf1_<nfilters_1st>_ks1_<ksize_1st>_ps1_<poolsize_1st>_s_<seed>.
Groups of models with the same pooling size are separated from each other with double horizontal bars.
The model selected as the best model is the one in bold.

Model timestamp ↓ se
ed

n
ep

oc
hs

n
fi

lt
er

s_
1s

t

ks
iz

e_
1s

t

po
ol

si
ze

_1
st

hl
n

eu
ro

n
s

n
u

m
be

r_
pa

ra
m

s

tr
ai

n
in

g_
ac

c

va
l_

ac
c

20250210T065701 4 107 2 3 6 250 9023 0.94567 0.64450
20250210T070923 1234 111 2 3 6 250 9023 0.79300 0.67017
20250210T072213 10 142 2 3 6 250 9023 0.92100 0.65317
20250210T073834 550 157 2 3 6 250 9023 0.80467 0.64700
20250210T075639 4 84 2 3 6 500 18023 0.98867 0.67950
20250210T080628 1234 71 2 3 6 500 18023 0.83267 0.69600
20250210T081446 10 100 2 3 6 500 18023 0.95333 0.68383
20250210T082621 550 106 2 3 6 500 18023 0.84667 0.67667

20250210T083838 4 108 2 3 5 250 13523 0.98667 0.65450
20250210T085107 1234 130 2 3 5 250 13523 0.91433 0.73833
20250210T090606 10 141 2 3 5 250 13523 0.97233 0.71400
20250210T092221 550 141 2 3 5 250 13523 0.88333 0.67600
20250210T093835 4 82 2 3 5 500 27023 1.00000 0.68850
20250210T094809 1234 92 2 3 5 500 27023 0.93667 0.75617
20250210T095850 10 100 2 3 5 500 27023 0.99267 0.72417
20250210T101026 550 95 2 3 5 500 27023 0.90667 0.70283

20250210T102129 4 64 2 3 4 250 25523 0.98667 0.56650
20250210T102859 1234 116 2 3 4 250 25523 0.92667 0.74933
20250210T104226 10 108 2 3 4 250 25523 0.9660 0.62833
20250210T105456 550 118 2 3 4 250 25523 0.92667 0.70200
20250210T110834 4 64 2 3 4 500 51023 1.00000 0.62600
20250210T111604 1234 94 2 3 4 500 51023 0.96900 0.77767
20250210T112659 10 89 2 3 4 500 51023 0.99933 0.70183
20250210T113721 550 83 2 3 4 500 51023 0.94667 0.72917

20250210T114701 4 52 2 3 3 250 41523 0.99633 0.54650
20250210T115309 1234 95 2 3 3 250 41523 0.93800 0.74950
20250210T120412 10 101 2 3 3 250 41523 0.99000 0.63617
20250210T121555 550 95 2 3 3 250 41523 0.96467 0.71750
20250210T122656 4 43 2 3 3 500 83023 1.00000 0.58733
20250210T123204 1234 69 2 3 3 500 83023 0.94833 0.78083
20250210T124010 10 68 2 3 3 500 83023 0.99967 0.64583
20250210T124755 550 73 2 3 3 500 83023 0.99200 0.73383

58 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

5.5. Dataset 7.1: Scaling, rotation and translation

5.5. Dataset 7.1: Scaling, rotation and translation
Neither of the two model types achieves high levels of accuracy in this scenario. Nevertheless,
transfer learning performs better overall. As it happened with the previous cases, while
it is theoretically possible to achieve better results from scratch, doing so would require a
significantly larger dataset, along with the necessary time and computational resources —
which is not the case here. With such a small sample size relative to the number of parameters,
it becomes difficult to estimate the model properly. This is a common issue when applying
transfer learning from a large pretrained network to a specific task where data is limited.

The best-performing model in this case has 26k parameters. With a pooling size of 6, the
resulting feature map is 5x5 pixels — that is, 25 features. One possible explanation for this
result is that a larger pooling size leads to more global features, which aligns well with the
challenge of handling translation. In such tasks, it is important for the model to first determine
the location of the figure within the image before analyzing its geometric shape. However, given
the model’s relatively low precision, its logic may be questionable. This suggests the model
likely requires more complexity to solve the problem effectively.

With the 26k-parameter model, transfer learning yields very consistent accuracy across
different seeds, indicating greater stability during training. In contrast, the from-scratch
approach shows more overfitting and greater variability depending on the random seed used,
obtaining a standard deviation of the accuracy of 0.007 in the case of transfer learning compared
to 0.017 in the case of training from scratch.

Models with less complex classifiers (such as the 25k and 41k versions) perform worse than
those with 500 neurons, clearly demonstrating that higher model complexity is necessary to
fully leverage the extracted features.

To end this section, there is a slightly difference in the number of epochs required to complete
training: the transfer learning model needed 125 epochs, while the model trained from scratch
required 108. In terms of training time (executing on NVIDA GeForce GTX1070), the transfer
learning model took 14 minutes and 39 seconds, compared to 12 minutes and 49 seconds for
the from-scratch model. Although the difference in training time is not particularly large, it can
be attributed to the fact that transfer learning often uses lower learning rates to protect the
pretrained weights, which slows down convergence. In contrast, models trained from scratch
typically allow for more aggressive optimization, and in this case, the selected random seed
likely contributed to the model reaching a solution more quickly.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

59

Chapter 5. Filter-transfer learning

Table 5.7. Model hyperparameters and results obtained after applying transfer learning for filters to train
models for dataset 7.1 with noise level 100. Model timestamp is the date and hour when the model was
created (used as an identifier) with the format: <year><month><day>T<hour><minute><second>,
seed is the seed used for fixing randomness in the model, nepochs stands for “number of
epochs”, nfilters_1st stands for “number of filters in the first convolutional layer”, ksize_1st
stands for “kernel size of the first layer”, poolsize_1st stands for “pooling size of the first
layer”, hlneurons stands for “number of neurons in the hidden layer for the classification
part of the model” number_param stands for “number of parameters of the model”, tr_acc
stands for “training accuracy” and val_acc stands for ”validation accuracy”, both values
are represented with five decimals. Model names follow the structure: <model times-
tamp>_dataset6.1n100_1L_nf1_<nfilters_1st>_ks1_<ksize_1st>_ps1_<poolsize_1st>_s_<seed>.
Groups of models with the same pooling size are separated from each other with double horizontal bars.
The model selected as the best model is the one in bold.

Model timestamp ↓ se
ed

n
ep

oc
hs

n
fi

lt
er

s_
1s

t

ks
iz

e_
1s

t

po
ol

si
ze

_1
st

hl
n

eu
ro

n
s

n
u

m
be

r_
pa

ra
m

s

tr
ai

n
in

g_
ac

c

va
l_

ac
c

20250329T182104 4 152 3 3 6 250 13030 0.83700 0.62650
20250329T183851 1234 130 3 3 6 250 13030 0.81367 0.61417
20250329T185406 10 85 3 3 6 250 13030 0.76300 0.59767
20250329T190410 550 116 3 3 6 250 13030 0.78967 0.60783
20250329T191747 4 109 3 3 6 500 26030 0.86367 0.66133
20250329T193037 1234 102 3 3 6 500 26030 0.88333 0.66450
20250329T194237 10 95 3 3 6 500 26030 0.86067 0.66483
20250329T195350 550 125 3 3 6 500 26030 0.89933 0.67817

20250329T200829 4 84 3 3 5 250 19780 0.76300 0.60083
20250329T201825 1234 100 3 3 5 250 19780 0.79033 0.61967
20250329T203009 10 67 3 3 5 250 19780 0.73167 0.57083
20250329T203806 550 116 3 3 5 250 19780 0.80867 0.60383
20250329T205144 4 116 3 3 5 500 39530 0.90333 0.67750
20250329T210519 1234 80 3 3 5 500 39530 0.85667 0.63733
20250329T211445 10 100 3 3 5 500 39530 0.88100 0.66883
20250329T212631 550 75 3 3 5 500 39530 0.83933 0.63383

20250329T213524 4 82 3 3 4 250 37780 0.72933 0.59167
20250329T214506 1234 88 3 3 4 250 37780 0.73167 0.59983
20250329T215531 10 51 3 3 4 250 37780 0.67300 0.54750
20250329T220138 550 86 3 3 4 250 37780 0.74167 0.5820
20250329T221149 4 66 3 3 4 500 75530 0.77567 0.59817
20250329T221941 1234 53 3 3 4 500 75530 0.76333 0.60400
20250329T222603 10 70 3 3 4 500 75530 0.78033 0.61067
20250329T223423 550 55 3 3 4 500 75530 0.75533 0.59133
20250329T224059 4 75 3 3 3 250 61780 0.72300 0.56167
20250329T224954 1234 46 3 3 3 250 61780 0.66200 0.53633

20250329T225523 10 74 3 3 3 250 61780 0.71400 0.57083
20250329T230403 550 51 3 3 3 250 61780 0.65900 0.55083
20250329T231006 4 61 3 3 3 500 123530 0.76433 0.59017
20250329T231721 1234 77 3 3 3 500 123530 0.77500 0.60917
20250329T232614 10 34 3 3 3 500 123530 0.67533 0.55817
20250329T233016 550 79 3 3 3 500 123530 0.7700 0.59650

60 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

5.5. Dataset 7.1: Scaling, rotation and translation

Table 5.8. Model hyperparameters and results obtained after training models from scratch for dataset
7.1 with noise level 100. Model timestamp is the date and hour when the model was created (used as an
identifier) with the format: <year><month><day>T<hour><minute><second>, seed is the seed
used for fixing randomness in the model, nepochs stands for “number of epochs”, nfilters_1st stands for
“number of filters in the first convolutional layer”, ksize_1st stands for “kernel size of the first layer”,
poolsize_1st stands for “pooling size of the first layer”, textithlneurons stands for “number of neurons in
the hidden layer for the classification part of the model” number_param stands for “number of parameters
of the model”, tr_acc stands for “training accuracy” and val_acc stands for ”validation accuracy”,
both values are represented with five decimals. Model names follow the structure: <model times-
tamp>_dataset7.1n100_1L_nf1_<nfilters_1st>_ks1_<ksize_1st>_ps1_<poolsize_1st>_s_<seed>.
Groups of models with the same pooling size are separated from each other with double horizontal bars.
The model selected as the best model is the one in bold.

Model timestamp ↓ se
ed

n
ep

oc
hs

n
fi

lt
er

s_
1s

t

ks
iz

e_
1s

t

po
ol

si
ze

_1
st

hl
n

eu
ro

n
s

n
u

m
be

r_
pa

ra
m

s

tr
ai

n
in

g_
ac

c

va
l_

ac
c

20250330T082542 4 121 3 3 6 250 13033 0.86900 0.60500
20250330T083956 1234 154 3 3 6 250 13033 0.79700 0.59383
20250330T085756 10 101 3 3 6 250 13033 0.83033 0.60400
20250330T090951 550 109 3 3 6 250 13033 0.77133 0.59217
20250330T092240 4 108 3 3 6 500 26033 0.97567 0.65750
20250330T093526 1234 99 3 3 6 500 26033 0.81100 0.61850
20250330T094708 10 85 3 3 6 500 26033 0.94400 0.64383
20250330T095712 550 102 3 3 6 500 26033 0.86400 0.636500

20250330T100910 4 109 3 3 5 250 19783 0.88667 0.62400
20250330T102201 1234 119 3 3 5 250 19783 0.80067 0.59733
20250330T103600 10 113 3 3 5 250 19783 0.89467 0.61217
20250330T104917 550 139 3 3 5 250 19783 0.85067 0.62417
20250330T110536 4 95 3 3 5 500 39533 0.98167 0.65667
20250330T111652 1234 91 3 3 5 500 39533 0.88467 0.63183
20250330T112745 10 85 3 3 5 500 39533 0.97300 0.65533
20250330T113754 550 108 3 3 5 500 39533 0.91100 0.67367

20250330T115043 4 70 3 3 4 250 37783 0.90833 0.57700
20250330T115908 1234 91 3 3 4 250 37783 0.78033 0.56717
20250330T120956 10 94 3 3 4 250 37783 0.94100 0.61150
20250330T122106 550 91 3 3 4 250 37783 0.79633 0.58833
20250330T123152 4 68 3 3 4 500 75533 0.98233 0.61900
20250330T124002 1234 90 3 3 4 500 75533 0.86633 0.62117
20250330T125045 10 72 3 3 4 500 75533 0.98667 0.65533
20250330T125920 550 87 3 3 4 500 75533 0.86167 0.61750

20250330T130941 4 66 3 3 3 250 61783 0.93400 0.57800
20250330T131738 1234 102 3 3 3 250 61783 0.82267 0.59200
20250330T132947 10 63 3 3 3 250 61783 0.94100 0.59717
20250330T133722 550 56 3 3 3 250 61783 0.76933 0.55617
20250330T134409 4 52 3 3 3 500 123533 0.98900 0.61900
20250330T135027 1234 78 3 3 3 500 123533 0.83567 0.62133
20250330T135952 10 65 3 3 3 500 123533 0.99467 0.64967
20250330T140745 550 68 3 3 3 500 123533 0.87500 0.62433

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

61

Chapter 5. Filter-transfer learning

5.6. Conclusion
By applying the methodology described in the first section of this chapter to datasets with
combinations of transformations, the following conclusions were drawn:

• The filter-transfer learning technique enables the resolution of more complex problems
with high accuracy. This goal is achieved this by combining filters specialized in detecting
basic transformations, reducing computational costs while keeping training times within
reasonable limits.

• Models trained using transfer learning exhibit greater stability compared to those trained
from scratch, as they tend to achieve similar accuracy levels across different random
seeds.

• When using filter-based transfer learning, it is essential to use a CNN architecture with
a sufficiently complex classifier. This ensures that the network can fully leverage the
information extracted by the filters.

• Regarding the level of complexity for combinations of two transformations, scaling plus
translation is the easiest problem to solve. The network requires fewer parameters (18k) to
achieve a performance of 93% in this setting. The combination of transformations scaling
plus rotation represents a problem of intermediate difficulty, as the network requires a
moderate number of parameters (51k) to get a 89% of accuracy. Lastly, rotation and
translation turns out to be the most difficult scenario to solve, as the network requires
more parameters (83k) to achive a 77% of accuracy.

• In general, rotation appears to be the most challenging transformation for networks to
detect. Models tend to require a higher number of parameters to correctly identify the
geometric shapes when rotation is involved.

• The combination of all three transformations (scaling, rotation and translation) represents
by far the most challenging problem among all scenarios. Even with a parameter count
not so high (26k) the resulting accuracy is significantly lower, of 68% approximately.

• Models with transfer learning take as average 14 minutes and 56 seconds to complete
training whereas models trained from scratch take an average of 11 minutes and 22
seconds. Therefore, the average time difference between the two training approaches
(transfer learning vs. from scratch) is 3 minutes and 34 seconds, with transfer learning
taking longer. However, this is not significant in the context of image recognition models,
which can often take hours or even days to train.

• The training time difference is largely due to the fact that transfer learning typically uses
lower learning rates to preserve pretrained weights, which slows convergence. In contrast,
models trained from scratch can use more aggressive optimization strategies, and in this
case, the random seed used may have helped the model converge faster. Nevertheless, the
time trade-off is acceptable given the improvements in both accuracy and model stability
that transfer learning provides.

Taking all these factors into account, the second objective of this thesis — "intelligently
initializing a CNN architecture to reduce time and computational costs compared to random
initialization" — has been successfully achieved. Furthermore, the proposed methodology is
generalizable, and the filter-transfer learning approach can be applied to any dataset involving
images with basic transformations.

62 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

6
Conclusion and future work

Learning never exhausts the mind.

Leonardo da Vinci (1452–1519)

The last chapter summarizes the most relevant aspects of this thesis. In addition, the
conclusions drawn from the different experiments carried out are set forth. Finally,
possible future research lines as well as potential improvements of the existing
methodology are discussed.

6.1. Summary and conclusion
Convolutional Neural Networks (CNNs) have become a central tool in computer vision, enabling
real-time and high-precision tasks across industries such as manufacturing, healthcare, and
autonomous systems. Traditional CNNs, while powerful, suffer from drawbacks including high
computational demands, long training times, low interpretability and dependency on large
labeled datasets. These issues hinder their scalability and practical deployment, particularly in
resource-constrained environments like the industrial ones.

Due to this fact, there is a clear trend toward developing smaller, more efficient CNN
architectures. These lightweight models are especially suited for edge computing and embedded
devices, where power, speed and explainability are critical factors. Additionally, reducing the
ecological footprint of AI systems has become increasingly important. Lightweight CNNs not
only improve deployment efficiency but also align with sustainable AI practices by minimizing
energy consumption.

This thesis introduces a bottom-up approach to CNN architecture design, starting from
minimal complexity and adding parameters only as needed. This contrasts with traditional
top-down methods that trim large models post hoc, often inefficiently. Furthermore, the use of
synthetic datasets with basic geometric transformations (scaling, rotation and translation)
applied to classical geometric figures as ellipses, rectangles and triangles, is the key to
successfully constructing a knowledge base of optimal hyperparameters, architecture structures
and transformation-specific filters.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

63

Chapter 6. Conclusion and future work

The models designed to address a single specific transformation achieved up to 99% accuracy
with only 21k parameters approximately, validating the effectiveness of the proposed method for
simpler transformations. In relation to these models, rotation is consistently the most difficult
transformation for CNNs to learn, requiring more parameters and training time. Ellipses and
rectangles are the most commonly confused shapes due to their visual similarity whereas
triangles are normally distinguished easily.

The use of filter-transfer learning allows for tackling more complex transformation
combinations with improved stability and accuracy compared to training from scratch. It
also helps generalize the methodology across different problems. The knowledge base built
previously from the training of minimal models proves to be effective for smart initializating
CNN architectures. It is important to highglight the impact of having a classifier complex
enough on the CNN architecture, so all the information contained in the features is properly
extracted.

For both methodologies, the use of different seeds ensures the robustness of the model
architecture, as it allows for the evaluation of the model’s stability and consistency across
multiple training runs. This approach helps verify that the observed performance is not the
result of a favorable initialization but rather a reflection of the architecture’s true capability.
Consistent results across various seeds indicate that the model generalizes well and is less
sensitive to random variations during training.

Regarding the complexity level of transformation combinations:

• Scaling plus Translation is the easiest to solve. A network with just 18k parameters can
reach 93% accuracy in this setting.

• Scaling plus Rotation presents an intermediate level of difficulty, requiring 51k parameters
to reach 89% accuracy.

• Rotation plus Translation is the most difficult of the two-transformation combinations,
requiring 83k parameters to achieve only 77% accuracy.

The combination of all three transformations—scaling, rotation, and translation—represents
the most challenging scenario. Despite the model having a moderate parameter count of 26k,
the accuracy drops considerably, reaching only about 68%.

Although transfer learning slightly increases training time, the benefits in accuracy and
stability make it a worthwhile trade-off, especially in high-performance image recognition
tasks.

All in all, both the optimal filter extraction from minimal models and filter-transfer learning
strategies are generalizable and can be applied to new datasets and real-world problems
involving geometric image transformations to obtain small CNN models, increasing accuracy
and stability while reducing time and operational costs.

6.2. Future work
A more comprehensive analysis of the dataset could be conducted to further understand
model behavior and performance. Since the dataset is generated synthetically, all underlying
parameters and features that define the images are available by design. This offers a valuable
opportunity to create a secondary dataset containing metadata derived from the original one.

64 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

6.2. Future work

Such metadata could include attributes like the number of white and black pixels, rotation
angles, scaling and translation deltas and other geometric descriptors. Basic representations
such as luminance histograms can be plotted for images as well.

This enriched metadata dataset can be instrumental in identifying potential biases in the
training data. By extracting and analyzing features such as scaling factors, rotation angles,
translation vectors and figure positioning, it becomes possible to explore patterns in model
errors. For instance, one could investigate whether misclassifications are correlated with certain
transformations or figure positions, such as images where the object is located near the edges of
the frame. This kind of exploratory analysis could help uncover systematic error patterns or
repetitive conditions that challenge the model’s generalization.

Such insights would allow for a deeper examination of whether the model is biased toward
—or against— specific types of inputs, potentially due to imbalanced representation in the
training data. If such biases are found, targeted data augmentation could be implemented to
improve model fairness and performance.

Moreover, it is important to note that the models trained on Dataset 7.1, which involves
the combination of all three geometric transformations (scaling, rotation and translation), did
not achieve high accuracy levels. This suggests that, in this complex scenario, the classification
task becomes non-linear and exceeds the capacity of the current architecture. To address
this challenge, new strategies could be explored. For example, one promising approach
involves freezing the first convolutional layer —composed of filters specialized in detecting
basic transformations— and introducing an additional convolutional layer after the pooling
stage. This new layer could then be trained from scratch to better capture higher-order features
necessary for accurate classification in more complex scenarios.

Finally, it would be valuable to apply the proposed filter-transfer learning methodology,
along with the knowledge base of optimal hyperparameter scales and architectural structures,
to real-world image datasets. A relevant example could be a dataset of emoji images, commonly
used in daily messaging, which share similar geometric properties and could be applied in tasks
like sentiment analysis. Additionally, the methodology could be adapted for industrial use cases
involving object or part recognition in manufacturing processes—environments where speed,
reliability and interpretability are essential.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

65

A
Alignment with the Sustainable

Development Goals
The greatest threat to our planet

is the belief that someone else will save it.

Robert Swan (1956–)

This appendix provides a reflection on how the project aligns with the Sustainable
Development Goals (SDGs). It identifies the specific goals most closely connected to the
project and offers a detailed explanation of its contribution to each of them.

The Sustainable Development Goals (SDGs) provide a shared framework to create a more
sustainable and equitable world by 2030, addressing critical global challenges such as poverty,
inequality, climate change, and peace [31]. Adopted by all United Nations Member States in
2015, the SDGs consist of 17 distinct goals, each targeting a key area of society that requires
global transformation.

To achieve these goals, projects developed within countries that support the SDGs must
demonstrate how their objectives align with them. In this context, this thesis primarily supports
two SDGs directly and one additional goal indirectly. The direct focus is on Goals 9 and 12,
while Goal 10 is supported in a more indirect manner.

Goal 9, Build resilient infrastructure, promote sustainable industrialization and foster
innovation, encompasses industries, innovation, and infrastructure to drive economic growth
by creating employment opportunities and new income sources through the responsible use
of resources [31]. Artificial Intelligence (AI) is undeniably central to modernizing industries,
commonly referred to as Industry 4.0. Effectively implementing Machine Learning (ML)
algorithms in both supply chains and end products requires a comprehensive understanding
of these "black box" systems to control and optimize them safely. By automating basic tasks
optimally, human labor can be redirected to more meaningful, value-added activities within
companies.

Goal 12, Ensure sustainable consumption and production patterns, aims to challenge current
consumer behaviors rooted in linear economies (buy-use-dispose). The technology industry is

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

67

Appendix A. Alignment with the Sustainable Development Goals

known to be a major contributor to pollution, accounting for up to 3.5% of global emissions
[32] and generating 50 million tonnes of electronic waste annually [33]. Gaining a deeper
understanding of how algorithms learn is critical for improving their training efficiency,
which can reduce the tech industry’s energy consumption and minimize its environmental
footprint.

Finally, this thesis indirectly contributes to Goal 10: Reduce inequality within and among
countries, which seeks to ensure equal opportunities across all communities. With its capacity
to emulate human behavior and assist businesses in decision-making, AI is increasingly being
integrated into numerous processes that significantly impact people’s lives. This underscores the
importance of understanding how algorithms learn and being vigilant about potential biases.
For example, if a neural network is used in hiring processes within a company, there is a risk
that characteristics such as gender, race, or religious orientation may inadvertently influence
outcomes, potentially leading to social injustices.

68 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

Bibliography

[1] CIDAI: Green AI. [Online]. Available: https://cidai.eu/en/green- ai/ (visited on
01/04/2025).

[2] Python. [Online]. Available: https://www.python.org/ (visited on 05/05/2025).

[3] TensorFlow Guide. [Online]. Available: https://www.tensorflow.org/guide (visited on
05/05/2025).

[4] M. Dhouibi, A. K. B. Salem, and S. B. Saoud, “Optimization of CNN model for image classification”,
3rd IEEE International Conference on Design and Test of Integrated Micro and Nano-Systems, DTS
2021, pp. 1–6, 2021.

[5] C. Peng, Y. Li, L. Jiao, and R. Shang, “Efficient Convolutional Neural Architecture Search for
Remote Sensing Image Scene Classification”, IEEE Transactions on Geoscience and Remote Sensing,
vol. 59, no. 7, pp. 6092–6105, 2021.

[6] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture search”, 7th International
Conference on Learning Representations, ICLR 2019, pp. 1–13, 2019. arXiv: 1806.09055.

[7] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Completely Automated CNN Architecture Design
Based on Blocks”, IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 4,
pp. 1242–1254, 2020.

[8] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically Designing CNN Architectures Using
the Genetic Algorithm for Image Classification”, IEEE Transactions on Cybernetics, vol. 50, no. 9,
pp. 3840–3854, 2020. arXiv: 1808.03818.

[9] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all
convolutional net”, 3rd International Conference on Learning Representations, ICLR 2015 - Workshop
Track Proceedings, pp. 1–14, 2015. arXiv: 1412.6806.

[10] R. Keshari, M. Vatsa, R. Singh, and A. Noore, “Learning Structure and Strength of CNN Filters for
Small Sample Size Training”, Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 9349–9358, 2018. arXiv: 1803.11405.

[11] A. Ferreyra-Ramirez, C. Aviles-Cruz, E. Rodriguez-Martinez, J. Villegas-Cortez, and A. Zuñiga-
Lopez, “An Improved Convolutional Neural Network Architecture for Image Classification”, Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 11524 LNCS, pp. 89–101, 2019.

[12] X. Xu, H. Zheng, Z. Guo, X. Wu, and Z. Zheng, “SDD-CNN: Small data-driven convolution neural
networks for subtle roller defect inspection”, Applied Sciences (Switzerland), vol. 9, no. 7, 2019.

[13] F. Foroughi, Z. Chen, and J. Wang, “A CNN-based system for mobile robot navigation in indoor
environments via visual localization with a small dataset”, World Electric Vehicle Journal, vol. 12,
no. 3, 2021.

[14] V. Savinov, V. Sapunov, N. Shusharina, S. Botman, and G. Kamyshov, “Research and selection
of the optimal neural network architecture and parameters for depression classification
using harmonized datasets”, Proceedings - 4th International Conference "Neurotechnologies and
Neurointerfaces", CNN 2022, pp. 132–135, 2022.

DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

69

https://cidai.eu/en/green-ai/
https://www.python.org/
https://www.tensorflow.org/guide
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1808.03818
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1803.11405

Bibliography

[15] K. M. Ang, E. S. M. El-Kenawy, A. A. Abdelhamid, A. Ibrahim, A. H. Alharbi, D. S. Khafaga,
S. S. Tiang, and W. H. Lim, “Optimal Design of Convolutional Neural Network Architectures Using
Teaching–Learning-Based Optimization for Image Classification”, Symmetry, vol. 14, no. 11, 2022.

[16] P. J. B. Berdos, J. O. Saligumba, K. P. Deveza, and J. E. Estrada, “Discovering the Optimal Setup for
Speech Emotion Recognition Model Incorporating Different CNN Architectures”, 2022 IEEE 14th
International Conference on Humanoid, Nanotechnology, Information Technology, Communication
and Control, Environment, and Management, HNICEM 2022, pp. 1–5, 2022.

[17] M. Faris Al Hakim, B. Prasetiyo, Jumanto, and M. A. Muslim, “CNN Model for the Small Data in
Vehicle Miniature Classification”, 2023 1st International Conference on Advanced Engineering and
Technologies, ICONNIC 2023 - Proceeding, pp. 368–372, 2023.

[18] M. Mesárošová, O. Mihálik, and M. Jirgl, “CNN Architecture for Posture Classification on Small
Data”, IFAC-PapersOnLine, vol. 58, no. 9, pp. 299–304, 2024.

[19] Python documentation: os — Miscellaneous operating system interfaces. [Online]. Available: https:
//docs.python.org/3/library/os.html (visited on 01/05/2025).

[20] Python documentation: random — Generate pseudo-random numbers. [Online]. Available: https:
//docs.python.org/3/library/random.html# (visited on 01/05/2025).

[21] Python documentation: math — Mathematical functions. [Online]. Available: https://docs.
python.org/3/library/math.html (visited on 01/05/2025).

[22] Python documentation: operator — Standard operators as functions. [Online]. Available: https:
//docs.python.org/3/library/operator.html (visited on 01/05/2025).

[23] “Numpy Documentation”, [Online]. Available: https://numpy.org/doc/.

[24] OpenCV. [Online]. Available: https://docs.opencv.org/4.x/ (visited on 01/05/2025).

[25] Matplotlib. [Online]. Available: https://matplotlib.org/ (visited on 01/05/2025).

[26] Matplotlib: matplotlib.patches.Ellipse. [Online]. Available: https : / / matplotlib . org /

stable/api/_as_gen/matplotlib.patches.Ellipse.html (visited on 01/06/2025).

[27] Matplotlib: matplotlib.patches.Polygon. [Online]. Available: https://matplotlib.org/
stable/api/_as_gen/matplotlib.patches.Polygon.html (visited on 02/02/2025).

[28] Detailed Guide to Understand and Implement ResNets. [Online]. Available: https://cv-tricks.
com/keras/understand-implement-resnets/ (visited on 03/04/2025).

[29] Keras: VGG16 and VGG19. [Online]. Available: https://keras.io/api/applications/
vgg/ (visited on 03/04/2025).

[30] ImageNet: VGGNet, ResNet, Inception, and Xception with Keras. [Online]. Available: https:
/ / pyimagesearch . com / 2017 / 03 / 20 / imagenet - vggnet - resnet - inception -

xception-keras/ (visited on 03/04/2025).

[31] SDG: Take Action for the Sustainable Development Goals. [Online]. Available: https://www.
un.org/sustainabledevelopment/sustainable-development-goals/ (visited on
05/05/2025).

[32] Top 7 Most Polluting Industries. [Online]. Available: https://www.theecoexperts.co.
uk / blog / top - 7 - most - polluting - industries # link - technology (visited on
05/05/2025).

[33] World Economic Forum: The world’s e-waste is a huge problem. It’s also a golden opportunity.
[Online]. Available: https : / / www . weforum . org / agenda / 2019 / 01 / how - a -

circular-approach-can-turn-e-waste-into-a-golden-opportunity/ (visited
on 05/05/2025).

70 DESIGN OF SMALL CNN VIA SYNTHETIC IMAGES AND FILTER EXTRACTION
Irene España Novillo

https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/random.html#
https://docs.python.org/3/library/random.html#
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/operator.html
https://docs.python.org/3/library/operator.html
https://numpy.org/doc/
https://docs.opencv.org/4.x/
https://matplotlib.org/
https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Ellipse.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Ellipse.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Polygon.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Polygon.html
https://cv-tricks.com/keras/understand-implement-resnets/
https://cv-tricks.com/keras/understand-implement-resnets/
https://keras.io/api/applications/vgg/
https://keras.io/api/applications/vgg/
https://pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/
https://pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/
https://pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.theecoexperts.co.uk/blog/top-7-most-polluting-industries#link-technology
https://www.theecoexperts.co.uk/blog/top-7-most-polluting-industries#link-technology
https://www.weforum.org/agenda/2019/01/how-a-circular-approach-can-turn-e-waste-into-a-golden-opportunity/
https://www.weforum.org/agenda/2019/01/how-a-circular-approach-can-turn-e-waste-into-a-golden-opportunity/

	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Resources
	1.4 Dissertation outline

	2 Literature Review
	3 Synthetic dataset generation
	3.1 Dataset generation
	3.1.1 Geometric shapes
	3.1.2 Geometric transformations
	3.1.3 Noise
	3.1.4 Image reduction

	3.2 Dataset analysis
	3.2.1 Dataset structure
	3.2.2 Dataset samples

	4 Optimal filter selection
	4.1 Proposed methodology
	4.2 Dataset 1.1: Scaling
	4.3 Dataset 2.1: Rotation
	4.4 Dataset 3.1: Translation
	4.5 Conclusion

	5 Filter-transfer learning
	5.1 Proposed methodology
	5.2 Dataset 4.1: Scaling plus rotation
	5.3 Dataset 5.1: Scaling plus translation
	5.4 Dataset 6.1: Rotation plus translation
	5.5 Dataset 7.1: Scaling, rotation and translation
	5.6 Conclusion

	6 Conclusion and future work
	6.1 Summary and conclusion
	6.2 Future work

	A Alignment with the Sustainable Development Goals
	Bibliography

		2025-05-06T12:32:49+0200
	ESPAÑA NOVILLO IRENE - 06287687Q

		2025-05-06T09:45:47+0200
	BOAL MARTIN LARRAURI JAIME - 05304600H

		2025-05-06T10:06:57+0200
	Eugenio Francisco Sánchez Úbeda

