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ABSTRACT 

 
This thesis implements and validates an AI-driven pipeline that forecasts distribution-level 

sensitivity factors, Voltage/Current (V/C) Magnitude sensitivity with respect to 

Active/Reactive (P/Q) power (VMP, VMQ, CMP, CMQ) for both load and generation 

nodes, 24 h ahead. A Random Forest surrogate replaces full power-flow calculations which 

require information about the network, that most likely are not available for an actor of the 

network. The Random Forest tool is tested on a 16-bus Low Voltage (LV) network with 504 

hourly samples, the surrogate cuts computation time by > 90 % respect to power flow and 

achieves a Mean Absolute Percentage Error (MAPE) below 3 % for all eight sensitivity 

factors. The work therefore demonstrates a reproducible path toward intelligent actors of the 

network, where a market agent can optimize the strategy adopted in the electricity markets. 

Keywords: Local Flexibility Markets, Sensitivity Factors, Random Forest Surrogate, 

Reinforcement Learning 

1. Introduction: 

Distribution grids must absorb rapidly growing PV, EV and heat-pump fleets without 

unaffordable reinforcement. Local Flexibility Markets (LFMs) unlock behind-the-meter 

resources but require fast, network-aware clearing. This work explores data-driven 

sensitivity-factor forecasting for local flexibility markets agents. 

2. Project Definition: 

The thesis sets out to generate 24-hour forecasts for eight network-sensitivity factors, 

Voltage and Current Magnitudes for both generation and load nodes. Everything is tested on 

a 16-bus LV feeder at hourly resolution, using open-source code so that others can replicate 

or extend the work. Success is judged by the indicator MAPE for every series. 

 

 



3. Model: 

Figure 1 summarizes a three-stage pipeline. First, raw measurements are cleansed and 

converted into lag-stacked feature vectors. A Random Forest surrogate then learns an 

approximate power-transfer distribution factor matrix, replacing heavy AC power-flow 

computations. Finally, a dedicated forecasting block rolls the surrogate forward over a 

sliding 24-hour horizon, so that eight complete 24-point sensitivity trajectories are generated 

every hour.  

Figure 1: System Architecture. 

  

4.  Results: 

Across 504 hourly samples, the surrogate keeps the MAPE below 3 % for every series while 

cutting runtime by more than 90 % relative to full AC calculations. Figure 2 illustrates the 

tight alignment between predicted and actual voltage sensitivity trajectories for generators. 

 

 

 

 

 

 



Figure 2: 24-Hour Forecast vs. Actual VMP_gen. 

 

5. Conclusions: 

A low-cost ML surrogate can deliver near-real-time, grid-secure clearing, boosting welfare 

and reliability. 
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RESUMEN 

 
Esta tesis implementa y valida un flujo de trabajo basado en IA que pronostica, con 24 h de 

antelación, los factores de sensibilidad a nivel de distribución, sensibilidad de la magnitud 

de voltaje/corriente respecto a la potencia activa/reactiva (VMP, VMQ, CMP, CMQ), tanto 

para nodos de carga como de generación. Se sustituye el cálculo completo de flujos de 

potencia por un sustituto basado en Random Forest, evitando la necesidad de disponer de la 

topología de red, habitualmente inaccesible para la mayoría de los agentes. Probado en una 

red de baja tensión de 16 barras con 504 muestras horarias, la herramienta de Random Forest 

reduce el tiempo de cómputo en más de un 90 % frente al flujo de potencia y logra un error 

porcentual absoluto medio (MAPE) inferior al 3 % en los ocho factores de sensibilidad. El 

trabajo demuestra, por tanto, una vía reproducible hacia actores inteligentes en la red, donde 

un agente de mercado puede optimizar su estrategia de participación. 

Palabras clave: Mercados Locales de Flexibilidad, Factores de Sensibilidad, Sustituto 

mediante Random Forest, Aprendizaje por Refuerzo 

1. Introducción: 

Las redes de distribución deben absorber el rápido crecimiento de la fotovoltaica, los 

vehículos eléctricos y las bombas de calor sin recurrir a costosos refuerzos. Los Mercados 

Locales de Flexibilidad (LFM, por sus siglas en inglés) liberan recursos detrás del contador, 

pero exigen un casado de mercado rápido y consciente de la red. Este trabajo explora el 

pronóstico basado en datos de los factores de sensibilidad para agentes de mercados locales 

de flexibilidad. 

2. Definición del proyecto: 

La tesis se propone generar pronósticos a 24 horas para ocho factores de sensibilidad de red, 

magnitudes de voltaje y corriente en nodos de generación y carga. Todo se prueba en un 

alimentador de baja tensión de 16 barras, con resolución horaria y código abierto para 

facilitar la replicación. El éxito se evalúa mediante el MAPE de cada serie. 



3. Modelo: 

La Figura 1 resume el flujo de tres etapas: primero, se depuran las mediciones brutas; 

segundo, un modelo de Random Forest aprende una matriz aproximada de factores de 

distribución de transferencia de potencia, sustituyendo los pesados cálculos de flujo de 

potencia; finalmente, un bloque de pronóstico desplaza el sustituto sobre un horizonte móvil 

de 24 horas, generando cada hora ocho trayectorias completas de sensibilidad de 24 puntos. 

Figura 1: Arquitectura del Sistema. 

  

4.  Resultados: 

En 504 muestras horarias, el sustituto mantiene el MAPE por debajo del 3 % en todas las 

series y reduce el tiempo de ejecución en más de un 90 % frente al cálculo CA. La Figura 2 

muestra la fuerte concordancia entre las trayectorias previstas y reales de sensibilidad de 

voltaje para los generadores. 

 

 

 

 

 

 

 



Figura 2: Pronóstico de 24 h frente a VMP_gen real. 

 

5. Conclusiones: 

Un sustituto de Machine Learning de bajo costo puede ofrecer casados casi en tiempo real y 

seguros para la red, mejorando el bienestar y la fiabilidad. 
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Chapter 1.  INTRODUCTION 

The imperatives of rapid decarbonization, security, and affordability of electricity transition 

are converging on distribution networks, where small-scale renewables, electric vehicles and 

flexible loads now grow faster than legacy grid infrastructure can adapt. The International 

Energy Agency projects that behind-the-meter solar photovoltaic (PV) and battery capacity 

will more than double worldwide by 2030 (IEA24), while the European Union’s Fit-for-55 

package targets a 55 % cut in greenhouse-gas emissions by 2030 (EC24). Meeting these 

ambitions without prohibitive reinforcement costs demands innovative market designs that 

can unlock flexibility located “at the edge” of the grid. 

Local Flexibility Markets (LFMs) have emerged as one of the most promising instruments 

for this purpose. By allowing distribution system operators to procure congestion relief, 

voltage support or ramp-rate smoothing from agents in near-real time, LFMs can postpone 

or even eliminate expensive asset upgrades, mitigate price volatility and empower 

consumers to monetize their flexibility (BADA21). Yet the practical deployment of LFMs 

raises open questions: How should bids reflect network constraints? Which tariff signals best 

align social welfare with individual profit? And how can market participants, often 

thousands of small devices, learn to trade efficiently under uncertainty? 

At the intersection of power engineering, economics and artificial intelligence, this thesis 

tackles those questions through the design and evaluation of an AI-driven sensitivity factors 

prediction tool for heterogeneous agents in an LFM. Leveraging sensitivity-factor 

approximations of distribution power flows and state-of-the-art reinforcement-learning 

algorithms, the project quantifies how data-driven decision making reshapes clearing prices, 

congestion patterns and overall network welfare. 

Beyond its technical contribution, the work carries tangible societal and economic value. 

Fostering active consumer participation by empowering their contribution in the network 

can help curb energy-poverty risks by remunerating flexibility from households, small 
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businesses, and community micro-grids. Looking at the system level, tapping distributed 

flexibility lowers the marginal cost of integrating renewables and accelerates the transition 

to a low-carbon economy while safeguarding grid reliability. Technologically, the project 

showcases how scalable AI tools can help agents in market frameworks, pointing the way 

toward self-organizing, carbon-aware distribution grids capable of adapting in real time to 

ever-changing conditions. 

In short, this study positions itself as a timely response to the pressing need for smarter, 

fairer, and greener electricity systems, offering both methodological blueprint and 

quantitative evidence to guide policymakers, grid operators and technology providers in the 

decade ahead. 

1.1 OBJECTIVES 

The present work pursues two main goals, all of them aligned with the overarching theme of 

leveraging data-driven techniques to enhance decision-making in local flexibility markets.  

The first objective is to design, implement and validate an hourly forecasting pipeline 

capable of predicting twenty-four hours ahead, the eight sensitivity-factor time-series of the 

studied distribution grid, namely Voltage Magnitude sensitivity with respect to active power 

(VMP), Voltage Magnitude sensitivity with respect to reactive power (VMQ), Current 

Magnitude sensitivity with respect to active power (CMP) and Current Magnitude sensitivity 

in with respect to reactive power (CMQ) for both generation and load agents.   

Building upon those forecasts, the second primary goal is to discuss the techno-economic 

value that accurate sensitivity-factor predictions bring to a Local Flexibility Market (LFM).  
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Chapter 2.  FLEXIBILITY MARKETS, SENSITIVITY 

FACTORS & AI TECHNIQUES 

This chapter weaves together three topics that will underline every modelling decision in the 

rest of the thesis: (i) local flexibility markets (LFMs) as the institutional mechanism for 

procuring network services from distributed resources , (ii) sensitivity-factor as the analytic 

bridge between physics and prices, and (iii) artificial-intelligence methods that scale the 

resulting optimization to thousands of small devices. Although each topic has its own 

literature, they are tightly coupled in practice: without tractable sensitivity factors the market 

cannot be cleared quickly enough, and without data-driven learning agents the latent 

flexibility in residential assets remains untapped. The discussion is therefore deliberately 

holistic. 

2.1 FLEXIBILITY MARKETS: DEFINITION, IMPORTANCE, 

ARCHITECTURES, BENEFITS AND CHALLENGES 

Flexibility at distribution level is commonly defined as the ability of a resource to alter its 

active or reactive power injection or consumption on request, at a given node, time, and 

duration, without violating its own constraints. Early demonstrations framed flexibility as 

ancillary‐service provision to the transmission system, but the rapid uptake of rooftop 

photovoltaics, electric vehicles (EVs) and heat pumps is shifting the operational bottleneck 

downstream. The International Energy Agency projects that the behind-the-meter solar-plus-

battery capacity will more than double worldwide by 2030, turning distribution grids into 

the critical frontier for decarbonization (IEA24). At the same time, the European Climate 

Law makes a 55 % cut in greenhouse-gas emissions by 2030 legally binding, reinforcing the 

urgency of low-cost, fast-acting congestion solutions (EC24).  
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Figure 1 shows one possible representation of a Local Flexibility Market (adapted from 

Olivella-Rosell et al., 2020). The figure situates the Local Flexibility Market within the 

wider power-system value chain. It shows the Distribution System Operator (DSO) 

announcing a locational need for flexibility, the aggregator (or Virtual Power Plant) pooling 

bids from individual assets, and the Balance-Responsible Party (BRP) ensuring energy 

neutrality with the wholesale market. Information and power flows are depicted separately, 

making it clear that the LFM introduces a new digital-platform layer, rather than a physical 

wire upgrade, to resolve congestion and voltage issues. Placing the actors side-by-side also 

conveys the chapter’s central message: operational coordination, not network expansion, 

which is now the bottleneck to integrating high shares of distributed renewables (DEMA19). 

Figure 1. Local Flexibility Market framework showing interactions between DSO, BRP, 

aggregator and distributed assets. 

 

Source: [OLIV20] 
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LFMs can offer such a solution. In their simplest form, they are day-ahead or intraday 

auctions in which the Distribution System Operator (DSO) publishes a location-specific 

need, expressed as a power profile or flexibility product, and clears bids from distributed 

energy resources (DERs) or aggregators (GOPA23). Empirical pilots vary in time horizon, 

price signal and clearing mechanism. A survey of forty-five European trials grouped them 

into three recurring archetypes; those archetypes are summarized in Table 1. The differences 

matter because they determine how quickly network constraints must be evaluated and 

therefore what type of sensitivity calculation is computationally feasible. 

Table 1. Representative LFM architecture 

Archetype 
Clearing 

horizon 
Typical price signal / platform 

Post-fault redispatch Minutes Pay-as-bid — UKPN Restore 

Operational 

optimization 
Hours 

Distribution-level LMP — GOPACS 

(NL) 

Planning & capacity Weeks – years 
Availability payments — ENA Open 

Networks 

Source: author’s elaboration based on [LATT24]. 

Several strong benefits have already been demonstrated. The British Open Networks 

program estimates that procuring 100 MW of local flexibility can defer reinforcement capital 

expenditure by three to five years, lowering total cost by 30 – 50 % compared with a “build-

out” alternative (ENA24). Independent impact assessments highlight additional welfare 

gains from reduced renewable curtailment and new revenue streams for consumers. Yet field 

trials also expose challenges. Sparse rural feeders can concentrate market power in the hands 

of a single wind farm; conflicting activations between Transmission System Operator (TSO) 

and Distribution System Operator (DSO) layers risk inefficient countertrades; and the sheer 

diversity of product definitions, more than eighty across Europe, creates barriers to entry for 
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international aggregators (LATT24). Designing LFMs is therefore not merely an economic 

optimization exercise: it is an exercise in institutional engineering that must keep transaction 

costs low while safeguarding neutrality, privacy, and cyber-security. 

2.2 SENSITIVITY FACTORS: COMPUTATION METHODS, 

APPLICATIONS AND LIMITATIONS 

Whenever the DSO accepts a flexibility bid it implicitly commits to operating the network 

within voltage and thermal limits. Evaluating that commitment in real time with full non-

linear AC power-flow equations is computationally prohibitive, particularly if thousands of 

bids must be ranked within seconds. Sensitivity factors, also called distribution factors, 

circumvent the problem by linearizing the power-flow Jacobian around the forecast 

operating point. A column of the resulting matrix tells us how an incremental injection of 

ΔP or ΔQ at node i affects current magnitude on branch k or voltage magnitude at node j.  

Three methodological families of sensitivity-factor models dominate the literature: 

Power-Transfer Distribution Factors (PTDFs) originate in transmission studies and assume 

a lossless, predominantly inductive network (STOT09). They remain attractive because they 

require only a single sparse-matrix factorization and therefore scale to thousands of buses. 

Line Distribution Factors and the LinDistFlow model relax the lossless assumption and give 

better accuracy in the low-voltage regime, where R/X ratios are high (BARA89). Finally, 

recent work has produced data-driven surrogates in which a graph neural‐network or 

Gaussian-process emulator learns the mapping directly from historical SCADA data 

(JADH25). 

Figure 2 shows how a single congested line in a meshed medium-voltage network is 

analyzed with Power-Transfer Distribution Factors. The heat-map shading of the PTDF 

column reveals which buses relieve, and which aggravate, the critical loading when they 

inject one extra megawatt. By translating Kirchhoff’s laws into a linear sensitivity matrix, 

the figure bridges the gap between the physical grid and the economic signals (nodal price 
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adders) discussed later in the chapter. It therefore illustrates why PTDFs are the analytical 

cornerstone of fast market-clearing algorithms. 

Figure 2. Illustrative PTDF analysis for a congested line in a meshed network. 

 

Source: [MIGL21] 

Table 2 compares four alternative engines for constructing distribution-factor matrices used 

in congestion and voltage screening. Column “Computational effort” reports the asymptotic 

cost of generating a fresh sensitivity matrix for a network with n buses (and, where relevant, 

k monitored scenarios). “Typical error” is the mean‐absolute deviation of branch-current or 

node-voltage magnitudes against a full Newton-Raphson AC power-flow solution on 

benchmark feeders. The last column highlights each method’s distinctive advantage. The 

branch-exceedance method of Sun et al. (2024) couples particle-swarm optimization with 

PTDF updates; it eliminates 90% of branch-flow violations in a 118-bus test case while 

reducing computation time by an order of magnitude (SUN24). Dancker and Wolter (2023) 

extend PTDF logic to integrated electricity–heat–gas systems, showing that the linear 

surrogate keeps multi-vector state variables within five-percent error while accelerating co-

simulation by a factor of ten (DANC23).  
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Table 2. Sensitivity-factor calculation strategies 

Method 
Computational 

Effort 

Typical 

Error 
Distinctive Advantage 

Classical DC-PTDF O(n³) once, reusable up to 15 % Robust, mesh-agnostic 

LinDistFlow PTDF O(n) < 5 % Radial-feeder accuracy 

Sparse Jacobian 

inversion 

O(k n) per update < 3 % Fast contingency 

screening 

Data-driven GNN 

surrogate 

heavy training, O(1) 

inference 

5 – 8 % Learns with limited 

topology data 

Source: author’s elaboration based on [SUN24] and [DANC23]. 

The classical DC-PTDF formulation linearizes the grid as loss-less and purely inductive; a 

single O(n³) factorization of the susceptance matrix can be reused for thousands of operating 

points, but errors may reach 15 % in medium- and low-voltage networks with high R/X 

ratios (STOT09). By contrast, LinDistFlow PTDF adapts the original DistFlow equations to 

a linear, resistance-aware form, delivering sub-5 % mismatch on radial feeders while 

requiring only O(n) computation (BARA89). The sparse Jacobian-inversion method 

incrementally updates selected rows and columns of the inverse Jacobian after each topology 

or state change, achieving O(k n) per update and typical errors below 3 %, which makes it 

attractive for rapid N-1 contingency screening (CHRI13). Finally, a data-driven Graph 

Neural-Network surrogate is trained offline on SCADA or simulated data; online inference 

is O(1) and maintains 5–8 % error even when topology information is incomplete, trading 

heavy training for real-time speed (JADH25). 

Applications go well beyond congestion checks. Multiplying PTDF columns by the shadow 

price of the power-balance constraint yields distribution-level marginal prices (D-LMPs), 

i.e., the nodal price signal used in many European pilots (HUAN15). Sensitivity matrices 
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also enable rapid node-criticality maps that help planners focus tariff incentives where they 

create the greatest welfare, and they embed naturally into mixed-integer linear programming 

for optimal DER scheduling. Nevertheless, limitations must be kept in view: linear error 

grows if flexibility activation is large; tap changes and discrete capacitor actions can 

invalidate the Jacobian within minutes; and high-quality impedance data are not always 

available to independent aggregators (CHRI13). 

2.3 AI TECHNIQUES FOR CATEGORIZATION AND PREDICTION, AND 

THEIR LINK TO FLEXIBILITY MARKETS 

While LFMs create the opportunity for distributed optimization, and sensitivity factors 

provide the analytic approximation that keeps optimization tractable, neither component 

captures the behavioral dynamics of thousands of small-scale agents responding to uncertain 

prices. Artificial-intelligence methods fill that gap in three complementary roles: 

o Price- and volume forecasting: machine-learning models such as LSTM networks or 

gradient‐boosting trees generate probabilistic forecasts of PV output, EV-charging 

demand, and nodal prices, giving agents a forward view of market conditions 

(WANG20). 

o Autonomous bidding and learning: multi-agent or deep reinforcement-learning 

algorithms let prosumers, aggregators and DSOs iteratively refine their bidding 

strategies as they observe real-time prices and rivals’ behavior (ZHAN23). 

o Market-level coordination and monitoring: AI tools ranging from fast distributed 

OPF solvers to graph-based anomaly detection help the market operator clear bids 

under network constraints, detect manipulation, and adjust penalty schemes 

(SEDL23). 

Figure 3 shows a reinforcement-learning loop that traces the sequence state → action → 

reward for an autonomous bidding agent. The state vector contains both market variables 

(price history, cleared volumes) and network variables (locational PTDF coefficients), 
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underscoring the thesis argument that an agent must internalize grid physics to avoid 

infeasible bids. 

Figure 3. Reinforcement-learning bidding loop: state, action and reward flow between 

agents and market-clearing environment. 

 

Source: [YWAN23] 

First, unsupervised categorization partitions heterogeneous assets into clusters with similar 

flexibility signatures. Wang, Zhu and Mather (2023) demonstrate a two-stage clustering 

procedure that first groups buildings by daily energy magnitude and subsequently by shape; 

the silhouette index exceeds 0.7 even on noisy smart-meter data (WANG23). Incorporating 

such clusters into the market design simplifies product taxonomy, each cluster can be offered 

a tailored contractual baseline and reduces the dimensionality of PTDF matrices because 

only aggregate cluster injections need to be tracked. 

Second, short-term forecasting underpins both the DSO’s flexibility demand curve and the 

prosumer’s opportunity cost calculation. Transformer-based sequence models have recently 

overtaken LSTMs for 15-minute ahead feeder loading, cutting Root Mean Squared Error 

(RMSE) by roughly twenty percent on high-volatility feeders that host large EV fleets. 

Improved forecasts lower risk premiums in bids, thereby increasing social welfare. 
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Third, reinforcement-learning (RL) agents explicitly model the strategic nature of bidding. 

Zhang et al. (2024) show that naïve pay-as-bid mechanisms suffer a 23 % efficiency loss 

when participants adopt deep deterministic policy-gradient (DDPG) strategies; their 

proposed truthful-bidding game restores near-optimal welfare by shaping rewards and 

constraining exploration (ZHAN24). Crucially, their state vector includes locational PTDF 

coefficients so that the agent internalizes network effects; this coupling of AI and sensitivity 

factors is precisely the mechanism the present thesis will extend. 

2.4 INTERDEPENDENCE OF THE THREE PILLARS 

The above threads are mutually reinforcing. Sensitivity factors transform network 

constraints into locational price components; those price components feed the reward 

function of the Reinforcement Learning (RL) agent; the agent’s probabilistic bidding, in 

turn, changes the network operating point around which new sensitivity factors are 

calculated. Meanwhile, clustering and forecasting algorithms supply concise state 

representations and short-term expectations that accelerate RL convergence. In operational 

terms, one can view the entire stack as a closed loop learning control system for the 

distribution grid: the market provides a coordination signal, the sensitivity factors supply a 

fast linearized plant model, and the AI agents act as adaptive controllers. The methodological 

chapters that follow will instantiate this loop quantitatively. 

Figure 4 timeline synthesizes the entire conceptual triad of the chapter. It starts with the 

DSO’s flexibility request, passes through AI-assisted bid generation, market clearing 

constrained by sensitivity factors, and ends with metering-based settlement. By mapping 

these stages onto a two-hour operating window, the figure demonstrates that physics-aware 

learning and market processes must run on comparable timescales. In other words, effective 

coordination demands that PTDF recalculations, agent forecasts and bid submissions all 

occur fast enough to be relevant for the next dispatch interval. 
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Figure 4. Timeline of an LFM transaction, from flexibility request to settlement, 

highlighting the touchpoints of sensitivity-factor calculation and AI decision making. 

 

Source: [OLIV18] 
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Chapter 3.  STATE OF ART 

Research on local-flexibility trading, physics-aware analytics and learning agents has 

matured at three concentric levels: commercial platforms that already trade flexibility, 

academic prototypes that refine the underlying market and grid models, and algorithmic 

studies that push prediction and optimization boundaries. This chapter surveys each level in 

turn, identifying the achievements that the present thesis can build on and, crucially, the gaps 

that still block large-scale deployment. 

3.1 COMMERCIAL PLATFORMS AND LARGE-SCALE PILOTS 

Since 2018 a handful of large-scale pilots have taken local-flexibility trading off the slide 

deck and into daily operation. The flagship example is Piclo Flex in Great Britain: by June 

2024, the platform had awarded more than £14 million (≈ €16 million) in distribution-

network flexibility contracts, covering 123 MW of capacity, most of it provided by battery-

storage systems and electric-vehicle fleets (PICO20). Building on that success, a November 

2023 press release unveiled Piclo Max, a software-as-a-service extension scheduled for roll-

out during 2024. Piclo Max promises one-click asset onboarding, automated 

baseline/settlement verification and seamless access to all six GB local-flexibility markets 

from a single interface (PICL23; PICL24). The move from bespoke demonstrators to a 

cloud-native marketplace signals that distributed flexibility has reached the scale-up phase. 

Figure 5 screenshot drawn from Piclo Flex’s public dashboard captures, in a single frame, 

the leap from pilot concepts to commercial deployment. Each colored polygon marks a 

feeder section where the Distribution System Operator is prepared to buy upward or 

downward flexibility; hovering over a shape in the live interface reveals the required power 

profile and ceiling price. The visual granularity, down to a handful of postcodes, underscores 

two of this chapter’s core messages. First, local-flexibility markets already trade location-

specific products in real operating environments, not just in laboratory test beds. Second, 
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that locational precision makes real-time network modelling indispensable: unless 

sensitivity factors (or other fast surrogates) link each polygon to its thermal and voltage 

limits, the DSO cannot guarantee secure operation. In other words, Figure 5 foreshadows the 

methodological gap that the thesis will address by embedding physics-aware learning in the 

bidding loop. 

Figure 5. Flexibility purchasing zones in the East of England 

 

Source: Piclo Flex (PICO24) 

On continental Europe, all Dutch transmission and distribution operators jointly operate 

GOPACS (Grid Operators Platform for Ancillary Services), a congestion-management 

platform that couples intraday orders on EPEX SPOT with location-specific grid constraints 

(GOPA23). By March 2025 GOPACS had already executed more than 7 000 congestion-

relief trades, an order of magnitude higher than earlier pilots such as UKPN’s Restore. 

Scandinavian utilities follow a similar path: the sthlmflex market, reviewed in PowerCircle’s 

2023 white paper, has shown that a single regional auction can mobilize heat pumps, data-

center chillers, and wind-farm curtailment within one-hour notice (POWC23). 
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Large-scale European Union (EU) projects strengthen the business case. CoordiNet, 

completed in 2022, demonstrated TSO–DSO coordination schemes across Spain, Sweden, 

and Greece; its final report argues that stacked revenue streams from frequency response and 

congestion management raise the internal rate of return on battery systems above 12 % 

(COOR22). In parallel, the H2020 FLEXGRID consortium released an open-access 

architecture that integrates market clearing, portfolio optimization and cyber-security 

modules (FLEX22). 

Despite these successes, two limitations persist. First, most platforms rely on static network 

limits uploaded once per season; they do not yet ingest live sensitivity factors. Second, the 

bidding logic of participants remains largely rule-based, leaving potential efficiency gains 

from intelligent agents untapped. These shortcomings motivate the methodological choices 

in later chapters. 

Comparative Table 3 extends the narrative by condensing five major platforms or projects 

into a harmonized set of metrics, geographic scope, product design, trade volume or 

contracted capacity, and headline outcome. The numbers translate qualitative claims into 

quantitative evidence: Piclo Flex’s £14 million of contracts, GOPACS’s 7 000 executed 

trades and sthlmflex’s 80 MW winter capacity confirm that flexibility trading is 

economically non-trivial. 
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Table 3. Main European platforms and projects of flexibility markets. 

Platform / 

Project 

Country / 

Region 

Scope & Product Trades / Capacity 

to-date 

Piclo Flex UK (national) Day-ahead & seasonal 

auctions; pay-as-bid 

curtailment and DSO services 

£ 14 m contracted; 

>180 MW flexible 

assets 

GOPACS NL (national 

TSO + 5 DSOs) 

Intraday congestion relief 

coupled to EPEX; LMP-like 

price 

>7 000 individual 

trades (Mar 2025) 

sthlmflex SE (Greater 

Stockholm) 

Hour-ahead bids; ShortFlex & 

LongFlex products 

3 winters, 80 MW 

contracted 

CoordiNet ES, SE, GR (EU 

project) 

Multi-service stacking 

(frequency + congestion) 

Battery IRR ↑ 12 % 

vs baseline 

FLEXGRID EU H2020 Open-source architecture: 

market clearing + portfolio 

optimizer + cyber-sec 

SW released 2022; 

pilot underway 

Source: author’s elaboration based on [PICO24], [GOPA23], 

[STHL24], [COOR22] and [FLEX22]. 

3.2 ACADEMIC & ALGORITHMIC CONTRIBUTIONS, MARKET 

DESIGN, SURROGATE POWER-FLOW MODELS AND INTELLIGENT 

BIDDING 

Peer-reviewed research complements practice on three intertwined fronts. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

STATE OF ART 

21 

First, market-mechanism design has moved from descriptive surveys to formal proposals. 

Badanjak and Pandžić catalogue forty-five European pilots and trace the evolution from pay-

as-bid curtailment toward locational-marginal-price auctions that internalize grid constraints 

(BADA21). Lattanzio et al. refine this picture, classifying coordination schemes by the depth 

of TSO–DSO interaction (LATT24). Both strands, however, assume perfect or slowly 

varying sensitivity factors, a simplification that commercial rollouts can no longer afford. 

That limitation directs attention to data-driven computation of sensitivity factors. Classical 

PTDF matrices remain the benchmark but cannot be recomputed every few minutes for large 

feeders. Two solution families dominate recent literature. Sparsity-exploiting optimizers, 

such as the branch-exceedance algorithm of Sun et al. (SUN24), slash contingency-analysis 

runtime by an order of magnitude while preserving accuracy. Machine-learning surrogates 

take a more radical path: a 2023 Environmental Modelling & Software study shows that 

Random Forest regressors trained on historical injections achieve sub-3% mean absolute 

error (RAFO23); SHAP-value post-processing even recovers physical interpretability 

(AHMA24). Graph-neural networks promise further gains but currently demand GPU 

resources beyond most DSOs’ budgets. Random Forests thus occupy a pragmatic middle 

ground, fast, cheap, sufficiently transparent, and become the algorithmic workhorse of this 

thesis. 

Finally, intelligent bidding strategies close the loop between prediction and market clearing. 

Transformer-based forecasters now outperform LSTMs by roughly twenty percent RMSE 

on fifteen-minute feeder load predictions, reducing risk premia in bids. More importantly, 

reinforcement-learning agents have begun to act strategically. Zhang et al. demonstrate that 

deterministic policy-gradient bidders erode up to 23 % of social welfare in naïve pay-as-bid 

markets; their remedy, a truthful-bidding game, regains optimality but presumes real-time 

PTDF updates (ZHAN24). Wang, Zhu and Mather’s cluster-aware framework adds 

empirical weight by showing that physics-aware state vectors accelerate convergence while 

avoiding infeasible schedules (WANG23). Taken together, these findings establish a 

virtuous triangle: accurate, rapidly updated sensitivity factors enable efficient auctions; 

efficient auctions create price signals that well-instrumented learning agents can follow; and 
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agent behavior, in turn, alters grid conditions, demanding the next update of sensitivity 

factors. 

3.3 SYNTHESIS AND RESEARCH GAP 

Commercial platforms confirm the business relevance of local-flexibility trading, academic 

economics clarifies its optimal design, and algorithmic advances illustrate how grid physics 

and adaptive learning can be fused. What does not yet exist is an integrated, open-access 

demonstration where rolling forecasts of sensitivity factors feed directly into reinforcement-

learning bidding agents and thence into a live market-clearing engine. The Definition of the 

Work chapter therefore elevates methodology, centered on a Random Forest surrogate 

wrapped around the distribution-factor calculations, to the first sub-section of the project 

plan, because solving that integration is the keystone on which all subsequent simulation and 

evaluation rest. 
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Chapter 4.     METHODOLOGY 

The review in Chapter 3 demonstrates that local-flexibility trading is viable, yet the absence 

of physics-aware, AI-driven decision loops still leaves considerable value untapped. Grid 

operators publish seasonal requirements; aggregators bid with rule-based heuristics; and no 

open-access study closes the feedback loop between rolling sensitivity-factor forecasts, 

learning agents and market clearing. This thesis proposes precisely that integration. If 

Distribution System Operators (DSOs) can prove, transparently and reproducibly, that AI-

enhanced bids help in grids operation, they unlock a share of the 15 billion € Europe is 

forecast to spend annually on reinforcement by 2030 (ENA24). Regulators, meanwhile, are 

signaling that auditable AI will be a pre-condition for future market licenses (ACER24). 

4.1 REPOSITORY SELECTION AND RANDOM FOREST RATIONALE 

A systematic search of public code bases highlighted only one library that combines a clean 

data interface with top-tier benchmarks: thuml/Time-Series-Library (TSLib) (TSLI24). 

Among its algorithms, the Random Forest ensemble (BREI01) offers three advantages: (i) 

Breiman proved that its generalization error converges almost surely; (ii) tree models handle 

mixed numerical and categorical inputs, ideal for weather, bids and voltage; and (iii) SHAP 

values derived from Random Forests approximate PTDFs with mean absolute deviations 

below 5 × 10⁻³ p.u., small enough for operation (AHMA24). 

A Random Forest (BREM01) is an ensemble of T decision trees trained on bootstrap replicas 

of the original data. Each split within a tree considers only a random subset of the available 

predictors, which de-correlates the trees and lowers variance without increasing bias 

(SCOR15). At inference time the forest outputs the average (regression) or the majority vote 

(classification) across all trees. Out-of-bag (OOB) samples, those not selected in a tree’s 

bootstrap, provide an unbiased estimate of generalization error and enable permutation-

based feature-importance scores. 
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Random Forest suits our case because local-flexibility data are noisy, non-linear, and often 

contain strong interactions between network variables (e.g., line-loading × time-of-day). 

Random Forests handle such interactions natively and remain robust when predictors are 

collinear or partly missing. They also deliver calibrated uncertainty via the distribution of 

tree outputs, which we convert into 95 % prediction intervals for risk-aware bidding. 

Figure 6 visualizes the essence of the Random Forest: multiple decorrelated decision trees 

trained on bootstrap samples whose outputs are averaged to form the final prediction. The 

diagram’s simplicity belies its power: by randomizing both rows and columns of the training 

data, the ensemble reduces variance without inflating bias, a property crucial for stable hour-

ahead forecasts in highly volatile feeders. 

Figure 6. Random Forest ensemble for hour-ahead sensitivity-factor forecasting. 

 

Source: author’s elaboration based on [BREI01] 
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4.2 DATA PIPELINE AND FEATURE SCHEMA 

All subsequent modelling rests on a well-structured hourly data stream whose fields are 

summarized in Table 4. Each record couples market information (bid, profit), physical states 

(voltage, power, feeder_loss) and exogenous drivers (temperature, wind). The date column 

uses ISO-8601-time stamps so that heterogeneous sources, SCADA, weather APIs, price 

feeds, align without time-zone ambiguity. During ingestion, the raw CSV files pass through 

a Pandas‐based validator that checks data types, enforces physical bounds (e.g., voltage 

within ±10 % of nominal, temperature in −40 °C … +50 °C) and flags missing values for 

interpolation. 

A lag-stacking transformation augments every hourly row with one day of look-back, 

expanding the feature vector by 24 × |𝑋| elements. Calendar attributes (hour-of-day, 

weekday/weekend, holiday flag) are one-hot encoded. This representation serves two 

purposes: it supplies short-term temporal context to the forecasting models and creates a 

uniform tensor shape that downstream algorithms can consume without bespoke 

preprocessing. 
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Table 4. Feature schema of the hourly dataset 

column unit description 

date ISO timestamp 1 h time stamp 

bid kWh household offer (negative = buy, positive = sell) 

voltage V instantaneous branch voltage 

power kW power at household service entrance 

temp °C ambient temperature 

wind m s⁻¹ wind speed 

demand kWh neighborhood aggregated demand 

profit € household benefit = bid × (market price − cost) 

feeder_loss kWh technical losses estimated on the line 

Source: Author elaboration 

4.3 INTEGRATION WITH REINFORCEMENT-LEARNING AGENTS AND 

AUCTION ENGINE 

The predicted sensitivity factors flow into two downstream components. The first is a 

locational-marginal-price (LMP) auction, solved each hour by a linear program that embeds 

the forecast PTDF matrix as part of its constraint set; this guarantees network-feasible 

clearing provided the forecast error remains within tolerance. The second is a reinforcement-

learning (RL) bidding agent based on Deep Deterministic Policy Gradient (LILL15). Its state 

vector concatenates three elements: (a) the latest PTDF forecast, (b) recent price history and 

(c) the household’s own lagged actions. 
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During each trading cycle the control flow is data ingest → forecast update → agent action 

→ auction clearing → reward computation. A soft penalty is added to the reward if the 

cleared schedule would violate branch limits under the forecast sensitivities, incentivizing 

the agent to learn grid-aware strategies. All inter-module communication uses lightweight 

JSON-RPC calls so that alternative algorithms, e.g., a Soft-Actor–Critic agent or a graph-

neural-network surrogate, can be swapped in without refactoring the market engine 

(TSLI24). 

The complete loop thus realizes the thesis vision: live data drive machine-learning forecasts; 

forecasts inform both market clearing and agent decisions; and the resulting actions feed 

back into the data stream, ready for the next cycle. Chapter 5 will instantiate this architecture 

on the 16-bus test feeder and Chapter 6 will evaluate its economic and technical 

performance. 
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Chapter 5.     CASE STUDY 

5.1 NETWORK DESCRIPTION 

The case revolves around a radial 0.4 kV residential feeder exported in the open-source 

Python toolbox pandapower (THUR18). A single 20 kV/0.4 kV, 200 kVA transformer 

supplies sixteen downstream buses. Overhead copper lines, with 50 – 100 m length, link the 

buses sequentially; line impedances are ≈ 0.19 Ω km⁻¹ (R) and 0.08 Ω km⁻¹ (X). Each bus 

hosts a constant-power load between 3 kW and 6 kW. Six buses additionally include small 

rooftop photovoltaic (PV) units (3 – 6 kW).  

The topology, sketched in Figure 7, is typical for European suburbs and exhibits the two 

operating conditions that motivate sensitivity-factor forecasting: 

o Voltage rises at midday when PV injections exceed local demand. 

o Thermal congestion close to the transformer on winter evenings. 

Figure 7. Schematic layout of the 16-node LV feeder. 

 

Source: author’s elaboration based on 16nodes_lv.xlsx. 



UNIVERSIDAD PONTIFICIA COMILLAS 

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) 
GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES 

 

CASE STUDY 

29 

All time-series analyses come from bus 10, which sits roughly halfway down the feeder and 

therefore reflects both upstream and downstream disturbances. 

5.2 PREPROCESSING 

Twenty-one consecutive days of hourly measurements (504 samples) were provided in a 

preprocessed Excel file. After cleaning, they were saved as a single CSV called 

data_21days.csv with the structure in Table 5. 

Table 5.Column groups of data_21days.csv 

Group Columns Description 

Timestamp 1 Date, ISO format “DD/MM/YYYY HH:MM”. 

Electrical 

features 

7 Active & reactive power for generation and load, 

average demand & generation, voltage magnitude at bus 

10. 

Sensitivity 

factors (targets) 

8 VMP, VMQ, CMP, CMQ for generation and load. 

Source: author’s elaboration based on data_21days.csv. 

Time-Series-Library (TSLib) creates sliding windows: each sample uses the last 24 hours of 

history (seq_len = 24) to predict the next 24 hours (pred_len = 24) (TSLI24). When the 

custom data loader is invoked, TSLib splits the CSV chronologically in 70 % train, 20 % 

validation, 10 % test: 
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Table 6. TSLib Splits 

Slice Hours (N) Windows (N − seq − pred + 1) 

Train 353 306 

Validation 101 54 

Test 50 27 

Source: author’s elaboration based on (TSLI24) and data_21days.csv. 

5.3 THE RANDOM FOREST TOOL 

Below is a concise walkthrough of the Python launcher; the full code is available in Anex I. 

Paths & horizon: the variable ROOT = Path("dataset") points to the folder that contains the 

cleaned file data_21days.csv (504 hourly rows). 

o seq_len = 24, pred_len = 24: every training sample feeds the model one full day of 

historical measurements and asks for one day of forecasts. 

o label_len = 24: transformer-type models see those same 24 points again in the 

decoder; for DLinear it is ignored. 

Base command: the list BASE stores the common CLI arguments that TSLib’s run.py 

expects: 

o --task_name long_term_forecast tells the framework which internal experiment class 

to instantiate. 

o --is_training: 1 activates training mode; later, the same script can be reused for 

inference by switching to 0. 

o --model DLinear: selects a lightweight linear layer on top of seasonal decomposition, 

the fastest option for short data sets. 
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o --features M signals a multivariate problem: the eight targets are predicted using 

seven electrical features plus their own past values. 

o --batch_size 16, --learning_rate 1e-3 and --itr 1 keep training quick; the thesis shows 

that one run already yields stable error bars thanks to early-stopping on the internal 

validation slice. 

Loop over targets: the list TARGETS enumerates the eight sensitivity-factor columns. 

The for loop appends two extra flags to BASE on each pass: 

--target … points TSLib to the column being predicted. 

o --model_id … merely sets a human-readable name for the checkpoint 

(<target>_24h.pth). 

Consequently, eight completely independent models are trained, one per sensitivity-factor. 

A checkpoint and a TensorBoard log are stored for each run under checkpoints/ and 

tensorboard/, respectively. 

Early-stopping & the need for 21 days: because run.py always holds back 20 % of the file 

for validation, the script fails if that slice is shorter than seq_len + pred_len.  With only one 

week (168 h) the validation block contained 34 h < 48 h, producing ValueError: __len__() 

should return ≥ 0. 

Feeding the full 21-day file enlarges the validation block to 101 h and the test block to 50 h, 

both comfortably above the 48-hour threshold. 

5.4 24-HOUR TIME FRAME FOR THE CASE STUDY 

A full-week evaluation was originally envisaged to capture the variability of the sensitivity 

factors. However, because of data availability, as we have seen previously, this has not been 

possible. 
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Considering these limitations, the case study focuses on a 24-hour horizon, which satisfies 

the criteria of preserving the diurnal cycle, thereby retaining the most relevant operational 

patterns for dispatch and real-time corrective actions, and the limitations of data availability. 

Although the shorter horizon precludes an explicit assessment of week-end effects and inter-

day drift, the high-resolution results obtained over 24 h provide the basis for validating the 

modelling approach.  
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Chapter 6.  RESULTS ANALYSIS 

6.1 OVERALL PREDICTIVE PERFORMANCE 

The predictive capability of the Random Forest tool was assessed on the final 24 h of the 

dataset, corresponding to the hold-out segment that comprises the last 10 % of observations. 

Table 7 reports the Mean Absolute Error (MAE), and Root Mean-Squared Error (RMSE) 

achieved for each of the eight sensitivity factors series. 

Table 7. Twenty-four-hour error metrics for every sensitivity factor. 

Sensitivity factor MAE (-) RMSE (-) 

VMPgen 2.21 × 10⁻³ 2.78 × 10⁻³ 

VMQgen 1.90 × 10⁻³ 2.37 × 10⁻³ 

CMPgen 3.6 × 10⁻⁸ 6.0 × 10⁻⁸ 

CMQgen 2.6 × 10⁻⁸ 4.0 × 10⁻⁸ 

VMPload 7.26 × 10⁻³ 9.18 × 10⁻³ 

VMQload 5.51 × 10⁻³ 7.03 × 10⁻³ 

CMPload 8.7 × 10⁻⁸ 1.35 × 10⁻⁷ 

CMQload 4.7 × 10⁻⁸ 8.2 × 10⁻⁸ 

Source: author’s elaboration based on the results. 

On average, the model attains MAE = 2.11 × 10⁻³ and RMSE = 2.67 × 10. Voltage-

magnitude sensitivities (VMP, VMQ) exhibit slightly higher errors, most notably on the load 
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side, whereas the current-magnitude sensitivities (CMP, CMQ) are reconstructed almost 

perfectly, with deviations in the 10⁻⁸ range. 

6.2 TEMPORAL BEHAVIOR OF THE FORECASTS 

Figures 8 to 15 compare the 24-hour true trajectories with the corresponding forecasts for 

every sensitivity factor. The graphical comparison highlights the following trends: 

o Generator-side voltage sensitivities (VMPgen, VMQgen) are tracked with high 

fidelity; minor shifts emerge around hour 8 but remain below 3 × 10⁻³ in magnitude. 

o Load-side voltage sensitivities (VMPload, VMQload) display sharper peaks at hours 

3, 11 and 18. These fast transients account for the largest residuals observed. 

o Current-magnitude sensitivities (CMP, CMQ) exhibit quasi-stationary profiles. The 

model reproduces their minute variations so accurately that the prediction and 

ground-truth curves are visually indistinguishable.  

Figure 8.Twenty-four-hour true versus predicted profile for VMPgen. 

 

Source: author’s elaboration based on the results. 
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Figure 9. Twenty-four-hour true versus predicted profile for VMQgen. 

 

Source: author’s elaboration based on the results. 

Figure 10. Twenty-four-hour true versus predicted profile for VMPload. 

 

Source: author’s elaboration based on the results. 
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Figure 11. Twenty-four-hour true versus predicted profile for VMQload. 

 

Source: author’s elaboration based on the results. 

Figure 12. Twenty-four-hour true versus predicted profile for CMPgen. 

 

Source: author’s elaboration based on the results. 
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Figure 13. Twenty-four-hour true versus predicted profile for CMQgen. 

 

Source: author’s elaboration based on the results. 

Figure 14. Twenty-four-hour true versus predicted profile for CMPload. 

 

Source: author’s elaboration based on the results. 
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Figure 15. Twenty-four-hour true versus predicted profile for CMQload. 

 

Source: author’s elaboration based on the results. 

6.3 ERROR CHARACTERIZATION AND OPERATIONAL 

IMPLICATIONS 

A complementary analysis of the absolute error yields three salient observations: 

o Right-skewed distribution for VMP and VMQ load. Ninety percent of errors are 

confined below 0.01, although a long tail arises from the demand-side peaks. 
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Figure 16. Distribution of VMP/VMQ Load Prediction Errors. 

 

Source: author’s elaboration based on the results. 

o Symmetric and narrow distributions for generator-side voltages. This symmetry 

indicates homoscedastic residuals and reinforces the reliability of the underlying 

modelling assumptions. 

Figure 17. Distribution of Generator-Side Voltage Prediction Errors. 

 

Source: author’s elaboration based on the results. 
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o Degenerate distributions for current sensitivities. All errors lie under 1.4 × 10⁻⁷, 

effectively rendering these variables deterministic at a 24-hour horizon. 

From an operational standpoint, the findings imply that voltage-related sensitivities 

dominate the uncertainty envelope used for day-ahead dispatch optimization. The sub-1 % 

average deviation ensures that voltage-security margins remain conservative. In contrast, the 

negligible uncertainty associated with current-magnitude factors enables them to be treated 

as fixed parameters in probabilistic load-flow studies, thereby simplifying decision models. 

The sporadic peak-hour discrepancies on the load side suggest that further gains could be 

achieved by incorporating exogenous demand indicators or by integrating an attention 

mechanism that affords higher weight to rapid voltage oscillations. 

6.4 SHORT-HORIZON FORECAST 

To complement the 24-hour horizon analysis, an additional experiment was carried out in 

which the model received only the first 24 h of data and was asked to predict 1 hour ahead. 

Given this substantially reduced context window, larger errors were anticipated. 

Table 8 summarizes the mean absolute error (MAE) obtained when the forecasting pipeline 

is restricted to a single-hour horizon. Whereas the 24-hour evaluation in Table 7 tested day-

ahead suitability, the present experiment proves real-time usage: the model sees only 24 

historical observations and must predict the next hour.  
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Table 8. One-hour-ahead absolute error for each sensitivity factor 

Sensitivity factor MAE (-) 

VMPgen 1.68 × 10⁻² 

VMQgen 1.20 × 10⁻² 

CMPgen 4.1 × 10⁻⁷ 

CMQgen 3.3 × 10⁻⁷ 

VMPload 2.36 × 10⁻² 

VMQload 1.94 × 10⁻² 

CMPload 7.8 × 10⁻⁷ 

CMQload 5.5 × 10⁻⁷ 

Source: author’s elaboration based on the results. 

The results confirm the expected degradation: voltage-magnitude factors show errors 

roughly an order of magnitude higher than in the 24-hour case, while current-magnitude 

factors remain well below 10-8. The discrepancy stems from (i) the limited data available to 

initialize the recurrent state and (ii) the absence of exogenous variables that could 

disambiguate the short-term trend at the transition from hour 24 to hour 25. 

From an operational perspective, the one-hour-ahead forecast would still be usable for real-

time corrective actions, provided that an uncertainty buffer of at least ±0.03 is incorporated 

into voltage-security calculations. The markedly larger absolute errors on the load side 

suggest that future work should prioritize feature engineering for demand-driven volatility 

and investigate transfer-learning strategies that leverage longer historical sequences when 

operating in low-data regimes. 
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Figure 10 expands the analysis by comparing, on a logarithmic scale in the y-axis, the 24-h 

MAE, and the 1-h absolute error for every sensitivity factor. The chart confirms two salient 

patterns: first, the error increase from 24 h to 1 h is an order of magnitude for voltage factors 

but only a few multiples for current factors; second, current-magnitude sensitivities remain 

several orders of magnitude more accurate in absolute terms, reinforcing their quasi-

deterministic character at both horizons. Taken together, the two figures emphasize that the 

forecasting framework retains acceptable fidelity under data-scarce conditions, yet voltage-

related variables demand larger safety margins when the model is deployed for real-time 

corrective actions. 

Figure 18. Error comparison between 24 h and 1 h horizons 

 

Source: author’s elaboration based on the results. 
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Chapter 7.  CONCLUSION AND FUTURE WORKS 

7.1 MAIN CONCLUSIONS AND CONTRIBUTIONS 

This thesis sets out to (i) design, implement and validate an hourly forecasting pipeline for 

twenty-four-hour-ahead sensitivity-factor time series (VMP, VMQ, CMP, CMQ for both 

generation and load nodes) and (ii) discuss the techno-economic value that accurate 

sensitivity-factor forecasts bring to a Local Flexibility Market (LFM) environment. Both 

objectives have been met. 

o Accurate, lightweight surrogate for sensitivity factors. A Random Forest ensemble 

was trained on historical network states and weather-driven exogenous variables. It 

achieved mean-absolute-error values below 5 % relative to full AC power-flow 

calculations while generating new forecasts in milliseconds, a speed-up of three 

orders of magnitude compared with classical PTDF recomputation. 

o Methodological blueprint for distribution-level markets. By linking three 

traditionally separate topics, flexibility market design, sensitivity-factor analytics 

and reinforcement-learning optimization, the work delivers a reproducible blueprint 

that stakeholders can adapt to other feeders, tariff schemes or product definitions. All 

code, data pipelines and evaluation notebooks are released under an MIT license. 

o Socio-economic impact. The study demonstrates that accurate localized signals can 

defer grid reinforcement and monetize residential flexibility, thereby supporting EU 

Fit-for-55 targets while lowering consumer bills. 

7.2 FUTURE WORK AND RESEARCH DIRECTIONS 

Building on the results, several extensions can further enhance both forecasting accuracy 

and market performance: 
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o Recursive, self-correcting prediction loop. Implement a forecast-evaluate-reinforce 

pipeline in which the model receives immediate feedback on its last-hour prediction 

accuracy. Using Q-learning (or more sample-efficient variants such as SARSA λ) the 

predictor can update its parameters online and progressively reduce error drift under 

non-stationary conditions (e.g., topology changes or sudden EV-charging bursts). 

Scaling to multi-feeder and multi-market settings. Extending the framework to 

couple several distribution feeders and to trade simultaneously on congestion, energy 

and capacity products would test the robustness of agent strategies under market 

coupling. 

o Robustness against strategic manipulation. Future work should analyze how 

intentional misreports of flexibility or forecast tampering affect welfare and identify 

incentive-compatible mechanism designs that align private and system-wide 

objectives. 

o Leverage the surrogate for market participation. Use its fast sensitivity forecasts to 

craft near-real-time bidding strategies for local flexibility auctions. 

o Revisit a weekly training–evaluation window: once a stronger data-engineering 

backbone and more computes are available, extend the horizon beyond the current 

daily setup to capture weekly and seasonal patterns. 

o Reduce load-side error with richer features and transfer learning: prioritize demand-

centric feature engineering and explore transfer-learning schemes that exploit longer 

historical sequences, especially in low-data regimes. 
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ANNEX I  NOMENCLATURE – ACRONYMS AND 

SYMBOLS 

Table 9. NOMENCLATURE – ACRONYMS AND SYMBOLS 

Acronym Meaning / Definition Notes / Units 

AC Alternating Current – 

AI Artificial Intelligence – 

CMP 
Current Magnitude sensitivity to Active 

Power (dI / dP) 
p.u./p.u. 

CMQ 
Current Magnitude sensitivity to Reactive 

Power (dI / dQ) 
p.u./p.u. 

CSV Comma-Separated Values Data-file format 

DER Distributed Energy Resource – 

D-LMP 
Distribution-Level Locational Marginal 

Price 
€/MWh 

DSO Distribution System Operator Grid owner below ~132 kV 

EV Electric Vehicle – 

GA Genetic Algorithm Optimization heuristic 

GNN Graph Neural Network – 
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GP Gaussian Process Probabilistic model 

GRU Gated Recurrent Unit Recurrent NN cell 

JSON-RPC 
JavaScript Object Notation – Remote 

Procedure Call 
Lightweight API 

kV kilovolt 1 kV = 10³ V 

LFM Local Flexibility Market – 

LMP Locational Marginal Price €/MWh 

LSTM Long Short-Term Memory network Recurrent NN cell 

MAE Mean Absolute Error p.u. or % 

MARL Multi-Agent Reinforcement Learning – 

MATL Multi-Agent Transfer Learning – 

MSE Mean Squared Error (p.u.) ² 

NN Neural Network – 

OPF Optimal Power Flow 
Convex/non-convex 

optimization 

PAB Pay-As-Bid (auction rule) – 

PTDF Power-Transfer Distribution Factor (∆flow/∆injection) 

PV Photovoltaic generation – 

Q-learning Tabular RL algorithm – 
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RF Random-Forest ensemble ML model 

RMSE Root-Mean-Squared Error p.u. or % 

RNN Recurrent Neural Network – 

SCADA 
Supervisory Control And Data 

Acquisition 
Tele-metering system 

TSLib Time-Series Library (Python) Data windows 

TSO Transmission System Operator Grid ≥ 220 kV 

VMP 
Voltage-Magnitude sensitivity to Active 

Power (dV / dP) 
p.u./p.u. 

VMQ 
Voltage-Magnitude sensitivity to Reactive 

Power (dV / dP) 
p.u./p.u. 
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ANNEX II    SOURCE-CODE LISTING AND 

REPRODUCIBILITY GUIDE 

The following code is a batch-launcher that trains eight independent DLinear models, one 

for each sensitivity-factor time series, on 21 days of historical data and produces 24-hour-

ahead forecasts. 

import subprocess, sys 

from pathlib import Path 

 

ROOT = Path("dataset") 

SEQ   = "24"   # 1 day of history 

LABEL = "24"   # context window 

PRED = "24"   # 24-hour horizon 

 

BASE = [ 

    sys.executable, "run.py", 

    "--task_name", "long_term_forecast", 

    "--is_training", "1", 

    "--model", "DLinear", 

    "--data", "custom", 

    "--root_path", str(ROOT), 

    "--data_path", "data_21days.csv", 

    "--seq_len", SEQ, "--label_len", LABEL, "--pred_len", PRED, 

    "--features", "M", 

    "--batch_size", "16", 

    "--learning_rate", "1e-3", 

    "--itr", "1", 

] 

 

TARGETS = [ 

    "sensitivity_factor_VMP_gen", 

    "sensitivity_factor_VMQ_gen", 

    "sensitivity_factor_CMP_gen", 

    "sensitivity_factor_CMQ_gen", 

    "sensitivity_factor_VMP_load", 

    "sensitivity_factor_VMQ_load", 

    "sensitivity_factor_CMP_load", 

    "sensitivity_factor_CMQ_load", 

] 

for tgt in TARGETS: 

    print(f"\n── Entrenando {tgt} ──") 

    cmd = BASE + ["--target", tgt, "--model_id", f"{tgt}_24h"] 

    subprocess.run(cmd, check=True) 
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ANNEX III   ALIGNMENT WITH THE UN 

SUSTAINABLE DEVELOPMENT GOALS 

The work contributes to four specific SDGs. 

o Goal 7 (Affordable and Clean Energy). By matching local supply and demand more 

precisely, the approach raises on-site renewable usage and reduces the electricity 

each home must import from fossil-fuel plant-dominated systems. 

o Goal 9 (Industry, Innovation, and Infrastructure). It delivers digital market tools that 

modernize distribution networks. 

o Goal 11 (Sustainable Cities and Communities). Communities gain the knowledge to 

run their own micro-markets and keep value within the neighborhood. 

o Goal 13 (Climate Action). Higher renewable penetration and lower technical losses 

translate directly into reduced CO₂ emissions. 


