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Abstract: Air pollution caused by fine particles known as PM2.5 is a significant health
concern worldwide, contributing to illnesses like asthma, heart disease, and lung cancer.
To address this issue, this study focused on improving air purification systems using
negative ions, which can attach to these harmful particles and help remove them from
the air. This paper developed a novel mathematical model based on linear differential
equations to study how PM2.5 particles interact with negative ions, making it easier to
design more effective purification systems. The proposed model was validated in a small,
controlled space, using common urban pollutants such as cigarette smoke, incense, coal,
and gasoline. These tests were conducted at different temperatures and under two levels
of ion generation. The results showed that the system could remove over 99% of PM2.5
particles in five minutes when temperatures were low or moderate. However, at higher
temperatures, the system’s performance dropped significantly. This research goes beyond
earlier studies by examining how temperature affects the process, which had not been
fully explored before. Furthermore, this approach aligns with global sustainability goals by
promoting public health, reducing healthcare costs, and providing scalable solutions for
sustainable urban living.

Keywords: negative ions; PM2.5; air purification; environmental sustainability; air quality;
environmental impacts; dynamic modeling; electrostatic recombination; mass conservation;
deterministic modeling; ionization efficiency; temperature variation

1. Introduction
Air pollution, particularly from fine particulate matter like PM2.5, has escalated

into a global health crisis. According to the World Health Organization (WHO) [1],
PM2.5 pollution leads to over 4 million premature deaths yearly due to respiratory and
cardiovascular diseases, making it one of the leading environmental risk factors worldwide.
Recent studies emphasize the critical impact of PM2.5 pollution on global health and
economies. In urban areas, PM2.5 concentrations frequently exceed 35 µg/m3, well above
the WHO’s [2] recommended limit of 5 µg/m3 [1]. These elevated levels are linked to a 25%
increase in cardiovascular disease risk and a 30% rise in respiratory illnesses [3]. Moreover,

Sustainability 2025, 17, 70 https://doi.org/10.3390/su17010070

https://doi.org/10.3390/su17010070
https://doi.org/10.3390/su17010070
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-1454-9697
https://orcid.org/0009-0002-0071-2123
https://orcid.org/0000-0001-8292-7229
https://orcid.org/0000-0002-1196-2227
https://doi.org/10.3390/su17010070
https://www.mdpi.com/article/10.3390/su17010070?type=check_update&version=1


Sustainability 2025, 17, 70 2 of 18

the economic burden of PM2.5 pollution is staggering, with healthcare expenditures and
productivity losses surpassing USD 5 trillion [3]. Cities such as Delhi and Beijing, often
reporting concentrations above 100 µg/m3, face recurring public health emergencies,
further underscoring the need for effective intervention strategies [4].

These fine particles, characterized by their extremely small size, with a diameter of
2.5 micrometers or less [5], are capable of penetrating deep into the lungs and even entering
the bloodstream, causing inflammation, exacerbating asthma, and increasing the risk of
conditions like lung cancer and heart disease [6]. In densely populated urban areas, PM2.5
levels can soar far above recommended limits due to traffic, industrial activities, and other
emissions, often exceeding safe levels by up to five times [7].

In response to the growing threat of air pollution, particularly fine particulate matter
(PM2.5), air purification systems capable of effectively reducing these concentrations have
become vital for safeguarding public health and enhancing the quality of life [8,9]. Among
the emerging technologies, negative air ion (NAI) systems have demonstrated remarkable
potential, with research showing that NAIs can reduce airborne particulate matter by
up to 99% in controlled environments [6]. NAI systems can be broadly classified into
two categories: unipolar and bipolar [10]. Unipolar systems, which generate only negatively
charged ions, are known for their simplicity and cost-effectiveness. However, their
performance can be hindered by uneven ion distribution and the potential for electrostatic
imbalance over time, which may reduce efficiency. In contrast, bipolar systems produce
both negative and positive ions, enabling a balanced ion concentration that is more effective
for comprehensive air purification [10]. These systems are particularly adept at neutralizing
bacteria, viruses, and volatile organic compounds (VOCs). However, bipolar systems are
more complex, expensive, and energy-intensive than their unipolar counterparts.

Despite these challenges, NAI systems represent an innovative and sustainable
solution to air pollution, especially in environments where clean air is critical, such as
high-traffic areas, schools, hospitals, and workplaces. As PM2.5 pollution continues to pose
significant health risks and economic burdens, the urgency for advanced air purification
technologies cannot be overstated. According to the World Health Organization [11],
addressing PM2.5 is essential to mitigating its far-reaching societal impacts. Investing
in effective air purification systems, particularly in urban areas, is not merely an
environmental responsibility but a pressing public health priority. By improving air
quality, these systems contribute directly to the achievement of Sustainable Development
Goals (SDGs), including SDG 3 (Good Health and Well-Being) and SDG 11 (Sustainable
Cities and Communities) [3,12]. In an increasingly urbanized world, such innovations are
indispensable for protecting human health and ensuring a higher quality of life for all.

Modeling the interaction between PM2.5 and negative ions is crucial for advancing the
efficiency of negative ion-based air purification systems. PM2.5 particles, due to their small
size and chemical composition, can remain suspended in the air, posing significant health
risks when inhaled. By accurately modeling how these particles interact with negative
ions, researchers can better understand the mechanisms through which ions attach to or
neutralize harmful particles, ultimately facilitating their removal from the air. Extensive
research on PM2.5 particulate matter purification using NAIs has led to the development
of various modeling approaches to better understand this interaction [13].

In modeling the interaction between PM2.5 and NAIs, studies such as [14] used
first-order differential equations and neural networks to capture the relationship between
particulate matter concentration and small ions in controlled environments. This approach
improved prediction accuracy through accessible measurements but lacked adjustments
for environmental variations, limiting its applicability in dynamic, real-world settings.
Similarly, Ref. [10] presented a methodology grounded in experimental tests with unipolar
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and bipolar ionizers, measuring particle concentration and ozone generation. The study
provided experimental support for enhanced filtration and ozone control, although
bipolar ionizers demonstrated limited effectiveness in certain controlled environments.
Additionally, environmental variability can impact the results, indicating a need for
improved robustness across scenarios. In another study, Ref. [13] introduced an
experimental method for air purification using negative oxygen ions generated at low
voltages with nanometric carbon fibers. Utilizing an exponential model, the device achieved
a 96.5% PM2.5 reduction in five minutes, reaching 99.09% in 30 min within a closed space.
However, the rapid ion dispersion affected clean air delivery rates, necessitating multiple
devices or adjustments to cover larger areas, increasing system complexity and cost. On
the other hand, Ref. [15] evaluated the performance of commercial indoor air purification
systems for PM2.5 through a linear dynamic model based on mass conservation. The
study achieved a 97.9% PM2.5 reduction in 30 min. However, it did not incorporate PM2.5
interactions with other elements or temperature variations, which could impact accuracy
and efficacy in real settings.

In a different approach, Ref. [16] proposed a data-based model to examine the
relationships between negative ions and environmental factors like humidity, radiation,
and temperature in urban parks. While informative, this study was limited to exploring
these relationships without a focus on particulate matter reduction, thus reducing its
relevance to air purification. Further, Ref. [17] examined the interaction between airborne
particles and ions in urban areas with varying vehicular pollution in Brisbane, Australia.
Although the empirical methodology differentiated between clean and polluted areas,
it faced challenges in generalizing results and balancing measurements of positive and
negative ions, complicating broader urban applications. In [18], data-driven models were
used to explore the interaction between negative ions and environmental factors, such as
particulate matter, humidity, and temperature. Despite handling multiple variables, the
study was limited by potential overfitting and dependency on site-specific data, reducing
generalizability. In [19], the authors proposed combining variational mode decomposition
and gated recurrent neural networks to achieve high precision and adaptability in capturing
nonlinear data patterns in air pollution modeling with a focus on particulate matter.
However, they did not specifically analyze interactions with negative ions, and the approach
required significant computational resources, limiting its practical use. In [20], the authors
studied volatile organic compounds (VOCs) adsorption on PM2.5 using mass spectrometry
and gas chromatography, showing effective VOC reduction in negative ion-enriched
environments. However, the method was limited to specific VOCs and involved high
computational costs, reducing its scalability for larger applications. Finally, Ref. [21]
used numerical simulation to study particle deposition in air purifier filters through
adsorption, assessing dust removal effectiveness. This mass-balance model considered
factors like ventilation, chemical transformation, and suspension from human activity.
While adsorption filters were effective for larger particles (PM10), they were less effective
for ultrafine particles (PM2.5 and smaller), which could pass through or remain suspended,
limiting their efficiency in removing the most harmful particles to health.

While various methods exist to model and predict PM2.5 behavior and its interaction
with negative ions, many exhibit substantial limitations, such as insufficient consideration
of environmental variability, high computational costs, and challenges in generalizing
results. These issues underscore the need for more comprehensive and efficient models that
address these gaps to enhance the effectiveness of air purification systems using negative
ions. This paper presents a linear parametric dynamic approach grounded in the law of
mass conservation to model the interaction between PM2.5 particles and negative ions in
air purification. We aim to build on the work of [13,15] by jointly addressing the interaction
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between PM2.5 and ions. For this purpose, a controlled cubic chamber with dimensions of
40 cm per side was used to study the interaction between negative ions and PM2.5, testing
four common urban pollutants (cigarette smoke, incense, coal, and gasoline [22,23]) across
two voltage levels (7.5 kV and 30 kV) and three temperature ranges (14–17 °C, 23–27 °C,
and 39–51 °C). A total of 36,000 samples were collected by testing each combination of
voltage, temperature, and pollutant five times, with measurements recorded every second
over 300 s. High-precision devices monitored negative ion and PM2.5 concentrations, as
well as temperature, humidity, formaldehyde, and TVOC levels. Through this experimental
procedure and the proposed model, the optimal parameters for each experimental condition
were estimated. From the optimal modeling performed under controlled conditions, it
was found that the proposed model effectively captures both the evolution of particulate
matter and the dynamics of negative ions. Experimental results indicate that the proposed
study achieves over 99% efficiency within five minutes at low and medium temperatures;
however, efficiency declines to 32.66% at high temperatures with 7.5 kV. Additionally, the
results show that the model is suitable for changes in the environment, such as temperature.
To summarize, the main features and contributions of this study are as follows:

• A novel linear parametric dynamic model, rooted in the law of mass conservation, is
introduced to effectively capture and model the interaction dynamics between PM2.5
particles and negative ions.

• A controlled chamber is proposed to study the interactions between negative ions and
PM2.5 with various urban pollutants.

• An experimental procedure under controlled conditions, considering temperature
variations and two ionization voltages, is proposed.

• Over 99% efficiency is achieved within five minutes at low and medium temperatures
in this study.

2. Deterministic Dynamic Modeling vs. Data-Driven Modeling
Modeling the interaction between PM2.5 particles and negative ions is crucial for

designing effective air purification systems. Two common approaches, deterministic
methods [15,24–26] and data-driven techniques [18,27–29], offer distinct advantages
and limitations. Deterministic models, grounded in principles like mass conservation,
provide a clear and interpretable framework for understanding the underlying processes,
making them ideal when data are limited or expensive to obtain. In contrast, data-driven
models rely on extensive, high-quality datasets and often focus on correlations rather
than causation, which can obscure the physical mechanisms at play. Given this study’s
focus on understanding PM2.5 and negative ion interactions under controlled conditions, a
deterministic approach was selected. This method enables precise estimation of interaction
coefficients and environmental effects, such as temperature variations, while maintaining
interpretability and reliability [30]. By addressing gaps in existing research, such as
the impact of environmental variability, the deterministic model offers a scalable and
cost-effective foundation for developing sustainable air purification systems.

3. Dynamic Approximation of PM2.5 and Negative Ion Interactions
In modeling the interaction between NAIs and PM2.5, we assume a closed and

homogeneous system where species are concentrated under controlled conditions. The
evolution of PM2.5 and NAIs follows the law of mass conservation [13,15], which maintains
that the total mass within the system remains constant [31]. This principle dates back to the
17th-century observations by Dr. Jean Rey, who noted that the weight of matter remains
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constant regardless of its form or volume. Building on this foundation, the general mass
balance equation for such a system is represented as follows [32]:

dC
dt

= Generation − Elimination − Interaction, (1)

where dC
dt represents the rate of change in the concentration of a species C in a system over

time, accounting for three main factors: the generation of the species within the system,
its removal, and its interaction with other species present in the system [33]. This mass
balance equation is widely used in dynamic system simulations, enabling the modeling of
concentration changes over time [15,33]. Applications include quantifying human PM2.5
exposure in various environments [34] and predicting contaminant levels in controlled
ventilation systems [35], making it a suitable approach for the proposed system model.

Expanding upon the approach presented in [15], this paper models the interaction
between PM2.5 and negative ion concentrations through a linear parametric dynamic
approach based on (1). Our mass balance-based model assumes that the temporal dynamics
of these interactions in a controlled environment align with the behavior outlined in
Equation (1). Accordingly, the rate of change in PM2.5 and ion concentrations is captured
by the following equations:

dCPM2.5

dt
= GPM2.5 − EPM2.5 · CPM2.5 − k1 · CPM2.5 · Cions, (2)

dCions

dt
= Gions − Eions · Cions − k2 · CPM2.5 · Cions, (3)

where GPM2.5 and Gions denote the generation rates of PM2.5 and ions, respectively, which
are influenced by external factors such as pollutant sources and ionizer performance.
Similarly, EPM2.5 · CPM2.5 and Eions · Cions describe the natural removal rates of each species,
accounting for processes like sedimentation or dispersion. Interaction coefficients (i.e.,
k1 and k2) quantify the recombination dynamics between PM2.5 and ions, represented
mathematically by k1 · CPM2.5 · Cions and k2 · CPM2.5 · Cions, which model the reductions in
their concentrations. These coefficients are pivotal in capturing the efficiency of particulate
removal under varying conditions. The interaction coefficients are particularly sensitive to
environmental factors such as temperature and humidity. Elevated temperatures increase
the kinetic energy of particles and ions, enhancing collision frequencies and improving
recombination rates. Conversely, higher humidity promotes particle growth by increasing
the size and mass of PM2.5 particles, which enhances their likelihood of colliding with
ions [36]. From Equations (2) and (3), the reaction terms can be defined as follows:

RPM2.5 = k1CionsCPM2.5, Rions = k2CionsCPM2.5. (4)

By simplifying (2) and (3), we obtain the following equations:

dCPM2.5

dt
= GPM2.5 − EPM2.5 − RPM2.5, (5)

dCions

dt
= Gions − Eions − Rions. (6)

From the above, we denote the constants as follows:

A = GPM2.5 − EPM2.5, B = Gions − Eions.
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Under the assumption of proportionality, we can assume that k1 = k2 = k and A = B.
This simplifies (5) and (6) to

dCPM2.5

dt
= A − kCPM2.5Cions, (7)

dCions

dt
= A − kCPM2.5Cions. (8)

Since (7) and (8) are equivalent under the proportionality assumption, we have

CPM2.5 − Cions = c, (9)

where c is a constant. Substituting Cions = CPM2.5 − c into (7), we obtain the Riccati equation
for CPM2.5:

dCPM2.5

dt
+ kC2

PM2.5 − kcCPM2.5 = A. (10)

By solving Equation (10), we obtain the general solution for CPM2.5(t):

CPM2.5(t) = Cp +
1

kβ
+ De−βt, (11)

where Cp, β, and D are constants determined by the initial conditions. Finally, the solution
for Cions(t) is given by

Cions(t) = CPM2.5(t)− c. (12)

Equations (11) and (12) provide a solution under the assumption of proportionality
between the reaction terms, allowing for a representation of the temporal evolution of
PM2.5 particles and ion concentrations. This model is an approximation of the interaction
between PM2.5 and negative ions across various environmental conditions, capturing the
dynamic reduction of particulate matter through ion generation. It serves as a practical
tool for both experimental and theoretical applications, improving the understanding of
air purification mechanisms in controlled settings. However, the model’s assumption of
a homogeneous system excludes certain factors, such as spatial and temporal variations;
meteorological conditions like wind speed, temperature, and humidity [37]; and equipment
limitations affecting measurement accuracy [38,39]. Furthermore, the model does not
incorporate the effects of humidity and temperature on ionization efficiency, which may
influence the recombination process with PM2.5 particles [40,41]. Including these factors,
as well as other pollutants and environmental fluctuations, would enhance the model’s
applicability to real-world conditions.

4. Experimental Setup
The experiments took place from March to August 2024 in a controlled cubic chamber

(see figure 1) with dimensions of 40 cm per side to evaluate the interaction between
negative ions and particulate matter (PM2.5) in Medellín, Colombia [42]. Four common
urban pollutants were used (cigarette smoke, incense, coal, and gasoline [22,23]) under two
voltage levels (7500 V and 30,000 V) and three temperature ranges: low (14–17 °C), medium
(23–27 °C), and high (39–51 °C). The voltage level of 30 kV refers to a modular setup of
four devices, each with a 7.5 kV booster, combining to achieve 30 kV for ion generation and
optimizing air purification efficiency in the experiment.

The initial PM2.5 concentration was defined at 1000 µg/m³ due to the measurement
range and capabilities of the DM306 portable air quality monitor. This concentration
was achieved by introducing a controlled amount of pollutants into the test chamber.
Once introduced, the pollutants were allowed to disperse naturally, ensuring uniform
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distribution throughout the chamber. To confirm the accuracy and consistency of the PM2.5
concentration, multiple measurements were taken and cross-verified using a secondary air
quality monitor DT-9881, which features a broader measurement range of up to 2000 µg/m³.
This validation ensured the reliability of the experimental setup. Elevated concentrations of
pollutants were selected to generate a representative response curve, allowing for a robust
evaluation of the interaction between negative ions and particulate matter under controlled
conditions [42]. Following the procedure described above, a preliminary set of experiments
was conducted without activating the negative ion generation system, as illustrated in
Figure 2. The figure demonstrates that, in the absence of ionization, PM2.5 concentrations
exhibit minimal fluctuations around an average value, with no discernible trend toward
reduction. This approach establishes a baseline and provides a better understanding of the
natural behavior of particles within the chamber.

(a) The controlled test cabinet. (b) Measurement equipment.

Figure 1. Experimental conditions.

(a) Ion-free cigarette testing (b) Ion-free incense testing

(c) Ion-free coal testing (d) Ion-free gasoline testing

Figure 2. PM2.5 behavior in ion-free environments.

Each combination of voltage, temperature, and pollutant was repeated five times,
resulting in a total of 36,000 samples. Measurements were taken every second for 300 s,
recording data on PM2.5 reduction under various conditions. The negative ion generation
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system used a high-voltage circuit, with ion concentrations measured by the KT-401 aerosol
ion tester, which operates by detecting the electrical charge of ions present in the chamber air.
PM2.5, temperature, relative humidity, formaldehyde, and total volatile organic compounds
(TVOCs) were monitored by the DM306. From the experimental data, precise measurements
of negative ion and PM2.5 concentrations over time were obtained. Figures 3 and 4
display the results for the selected pollutants, reflecting the concentration trends across
different temperatures and voltages. The data are available in the open science framework
repository [42]. In Figure 3, three experimental tests are depicted, showing the behavior of
particulate matter as it interacts with negative ions in the test chamber. Three temperature
ranges were analyzed, with varying quantities of negative ions introduced to examine their
impact on particle sedimentation via electrostatic recombination. Notably, a rapid decline
in ion concentration was observed within the first seconds of the experiments, driven by
high recombination rates between ions and PM2.5 particles. This immediate interaction,
triggered by the activation of the ion generation system, resulted in swift recombination as
the ions bonded with the particulate matter. Figure 3 reveals a clear trend, indicating that
increasing the ion generation voltage beyond 30,000 V has the potential to further enhance
the rate of particulate matter removal. However, practical considerations, such as ozone
generation and energy consumption, must be addressed. Additionally, the combined effects
of high humidity and elevated voltage could enhance particle growth, further promoting
sedimentation. These findings underscore the importance of optimizing both voltage and
environmental parameters to ensure the model’s applicability across diverse real-world
scenarios [42]. Conversely, reducing ionization voltage below 7.5 kV may significantly
extend the time required to purify the air. Lower ion production and weaker electric fields
decrease the frequency of ion–particle collisions, thereby slowing recombination rates and
particle sedimentation [13].

(a) Cigarette smoke with ion
generation at 7500 V.

(b) Cigarette smoke with ion
generation at 30,000 V.

(c) Incense smoke with ion
generation at 30,000 V.

Figure 3. Behavior of PM2.5 concentrations under different ion generation voltages and three
temperature levels.

(a) Ion concentration at 7500 V
with cigarette smoke.

(b) Ion concentration at 30,000
V with cigarette smoke.

(c) Ion concentration at 30,000 V
with incense smoke.

Figure 4. Behavior of negative ions when interacting with pollutants under three temperature levels.

Figure 4 presents three experimental tests illustrating the behavior of negative ions in
the experimental space as they interact with particulate matter. The quantity of negative



Sustainability 2025, 17, 70 9 of 18

ions was adjusted to analyze how they influence the distribution and dispersion of particles
in the environment.

5. Proposed Modeling Framework
Following the presentation of the experimental data collected under controlled

conditions, as outlined in Section 4, and the formulation of the deterministic model based
on the solutions of (11) and (12), it becomes essential to estimate the parameter values
associated with these equations. This estimation aims to align the model’s response with the
observed experimental results. Parameter estimation for the proposed model was achieved
by solving an optimization problem aimed at minimizing the discrepancy between the
model’s response and the actual observed interactions between PM2.5 and negative ions,
as described in [43]. The optimization problem is given as follows:

min
θ

f (θ) (13)

subject to
θmin ≤ θ ≤ θmax, θ ∈ R, (14)

where θ = [GPM2.5, EPM2.5, Gions, Eions, k1, k2]
⊤, θmin y θmax corresponds to the set of

minimum and maximum values that the parameters can reach within the search space,
respectively. On the other hand, f (θ) is defined as the Root Mean Square Error (RMSE)
between the model responses based on (2) and (3) and the experimental results for the
concentrations of PM2.5 and negative ions. This objective function is calculated as follows:

f (θ) =
1
n

n

∑
i=1

(
C̃PM2.5i (θ)− CPM2.5i (θ)

)2
+

1
n

n

∑
i=1

(
C̃ionsi (θ)− Cionsi (θ)

)2, (15)

where C̃PM2.5(i) and C̃ions(i) are the predicted concentrations for PM2.5 and negative ions
over time i, CPM2.5(i)obs and Cions(i)obs are the experimentally observed concentrations,
and n is the total number of experimental data points. To solve the optimization problem
outlined in (13), the differential evolution method, detailed in (16), was employed to
estimate the model’s optimal parameters. Ultimately, the objective function was designed
to minimize the RMSE, as described in (15). This solution method operates by generating
multiple candidate vectors θ or possible solutions, mutating them, and selecting the best
parameter combinations in each iteration [44]. Differential evolution is represented by the
following expression:

θnew = θbest + α(θrand1 − θrand2) (16)

where θnew is the new parameter vector solution, θbest is the current best parameter
vector solution, θrand1 and θrand2 are two randomly selected vectors from the population,
and α is the scale factor that controls the magnitude of the mutation. Differential
evolution is commonly applied in particulate matter research for its effectiveness in
navigating nonlinear, non-differentiable solution spaces [44]. Studies by Teng et al. [45] and
Rubal and Kumar [46] highlight its role in enhancing predictive accuracy for air particle
concentrations and atmospheric pollutants by optimizing solution parameters. Throughout
the optimization, the parameters that best aligned the model with the experimental data
were selected. This proposed modeling framework is summarized in Figure 5.
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Start

Experimental Database

Data Pre-processing

Define Dynamic Model

Parameter Optimization

End

Figure 5. Flowchart for the proposed modeling framework for the dynamic approximation of
interactions between PM2.5 and negative ions.

Validation Metrics

To quantitatively assess the performance of the air purification system, the efficiency
was calculated following the method described by [13], which is given by

Efficiency =
C(i)PM2.5 − C( f )PM2.5

C(i)PM2.5
× 100, (17)

where C(i)PM2.5 is the initial concentration of PM2.5 and C( f )PM2.5 is the final concentration
at the end of the experiment. The efficiency after 5 min and the time to reach 95%
were determined by measuring the initial and final PM2.5 concentrations in each
experiment, following the method in (17). The time was only recorded when 95% efficiency
was achieved.

Additionally, the Pearson correlation coefficient was calculated to evaluate the
relationship between the optimal system parameters obtained by the optimization
algorithm. This matrix was obtained using the general formula for correlation between two
variables X and Y:

rX,Y =
1
n ∑n

i=1
(
Xi − X

)(
Yi − Y

)√
1
n ∑n

i=1
(
Xi − X

)2
√

1
n ∑n

i=1
(
Yi − Y

)2
, (18)

where X and Y represent any pair of experimental parameters, such as GPM2.5 and EPM2.5, or
Gions and Eions. Xi and Yi are the individual values of X and Y in each observation, while X
and Y are the means of X and Y, respectively. Finally, n is the total number of observations.

6. Results and Discussion
After discussing the proposed methodology to model the interaction between

PM2.5 and negative ions, the air purification system’s performance was assessed using
Equation (17), with the results presented in Table 1. This table presents the efficiency
metrics of the air purification system under varying temperature ranges and ion generation
voltage levels. Two primary efficiency indicators were assessed: the total system efficiency
at the end of the experiment and the time taken to reach a 95% efficiency level.
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Table 1. Comparison of the efficiency achieved at the end of the experiment (5 min) and the time
required to reach 95% system efficiency across different temperature ranges.

Ion Generation Temperature Range Efficiency at 5 min. Time to 95%
Efficiency

7.5 kV Low 99.08 % 3.5 min.

7.5 kV Medium 99.78 % 3.1 min.

7.5 kV High 32.66 % -

30 kV Low 98.29 % 3.0 min.

30 kV Medium 99.64 % 2.1 min.

30 kV High 82.83 % -

In contrast to the findings by [13], where a 2.16 kV negative oxygen ion source
with nanometer-scale carbon fibers achieved 96.5% efficiency in five minutes and 99.09%
in 30 min within a closed environment, our air purification system operated at higher
ionization voltages under controlled temperature conditions. At 7.5 kV, the system achieved
an average total efficiency of 99.08% under low temperatures, reaching 95% efficiency in
3.5 min. Under medium temperature conditions, the total efficiency increased to 99.78%,
with 95% reached in 3.1 min. However, at high temperatures, the system’s efficiency
averaged 32.66%, failing to reach 95%. At 30 kV, the system demonstrated a total efficiency
of 98.29% at low temperatures, reaching 95% efficiency in 3.0 min. Medium temperature
conditions further improved the total efficiency to 99.64%, achieving 95% within 2.1 min.
At high temperatures, the system’s efficiency averaged 82.83%, also without reaching
95%. These results reveal significant variability in purification efficiency as a function of
temperature and ionization voltage.

The effectiveness of ionic air purification systems is influenced by several environmental
and operational factors [47]. Freestream air velocity (FAV) plays a significant role, as lower
FAV improves the deposition of smaller particles, consistent with the temperature-dependent
findings. Relative humidity also enhances particle aggregation and recombination efficiency
by increasing particle size and weight [48,49]. Additionally, the physical properties of
surrounding surfaces, such as roughness, dielectric constant, and electrical resistivity,
affect airflow and particle deposition rates [50]. Turbulence intensity further influences
these outcomes, with lower turbulence promoting ion stability and improving deposition
efficiency [51]. To maximize the performance of ionic air purifiers, it is essential to optimize
these environmental and operational conditions.

Once the performance of the air purifier was discussed, the optimal parameters of the
proposed model were obtained for each of the realizations of the experiment explained
in Section 4. For this purpose, θmin and θmax were defined. For GPM2.5, a range between
0 and 2 was set, reflecting the maximum observed PM2.5 generation rate. The PM2.5
elimination parameter was limited to a range between 0 and 0.04. For the ion generation
rate Gions, a range of 0 to 25 was defined. k1 and k2 were limited to ranges between 0
and 0.01 and 0 and 0.01, respectively. Based on the above analysis and by solving the
optimization problem defined by expressions (13) and (14), Table 2 presents the optimal
parameter values obtained from the experimental data analysis for some contaminants and
environmental conditions.
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Table 2. Optimized parameters and RMSE values for different pollutants under varying conditions.
The units of measurement are given as follows: Temp. (◦C); Volt. (kV); GPM2.5, EPM2.5 (µg/m3s);
Gions, Eions (ions/cm3s); k1 (sm3/ions); k2 (sm3/µg); RMSEPM2.5 (µg/m3); and RMSEions (ions/cm3).

Pollutant Temp. Volt. GPM2.5 EPM2.5 Gions Eions k1 k2 RMSEPM2.5 RMSEions

Cigarette Smoke Low 7.5 0.0176 0.0082 49.85 0.8835 3.025× 10−4 1.000× 10−2 31.65 78.46
Coal Mid 7.5 0.0015 0.0184 9.082 0.2941 3.006× 10−6 1.433× 10−6 24.87 45.26

Gasoline High 7.5 10 0.0117 0.1731 0.6965 9.343× 10−5 2.190× 10−3 13.89 97.72
Cigarette Smoke Low 30 0.0011 0.0067 48.32 0.6626 2.397× 10−4 9.668× 10−3 82.41 152.41

Coal Mid 30 0.2622 0.0185 4.9900 0.2142 1.763× 10−5 1.092× 10−5 22.29 68.74
Incense Smoke High 30 2.298 0.0029 11.79 0.6704 4.721× 10−5 3.557× 10−3 4.68 114.38

Table 2 reveals that under high-temperature conditions, the interaction constants
k1 and k2 were elevated, suggesting increased recombination rates between PM2.5 and
ions. This increase aligns with the theoretical model, as higher temperatures boost particle
kinetic energy, reducing sedimentation and enhancing suspension [52]. Furthermore,
the generation rate of ions, Gions, consistently surpassed GPM2.5, reflecting the system’s
active ion production to ensure sufficient recombination with PM2.5. Meanwhile, GPM2.5

remained low, fitting its role as a pollutant. On the other hand, the elimination rate
Eions was also notably higher than EPM2.5, indicating rapid ion turnover and the need for
constant ion generation, while EPM2.5 was lower, reflecting a reliance on ion interaction
for removal. Finally, this table also shows that the RMSE value for PM2.5 was lower than
that for ions, suggesting a closer fit of the model to the experimental data for PM2.5
concentrations than for ion concentrations. This discrepancy is attributed to greater
variability in ion dynamics, which are more sensitive to environmental factors such as
voltage fluctuations and temperature changes. The model demonstrated varying accuracies
under different environmental conditions, as reflected in the RMSE values for the PM2.5 and
ion concentrations. At low temperatures and 7.5 kV, the RMSE for PM2.5 was 31.65 µg/m³,
and for ions, it was 78.46 ions/cm³. These values indicate reasonable precision for PM2.5.
At high temperatures and 30 kV, the RMSE for PM2.5 decreased to 4.68 µg/m³, showing
improved precision for particle concentration predictions. In contrast, the RMSE for ions
increased to 114.38 ions/cm³, reflecting reduced precision in predicting ion dynamics. This
divergence highlights the model’s sensitivity to specific factors. PM2.5 predictions benefit
from more stable particle behavior at high temperatures. However, ion predictions are
affected by greater variability due to environmental and operational conditions. Using the
data in Table 2, the behavior of the PM2.5 and negative ion concentrations was derived, as
shown in Figure 6.

Figure 6 displays six comparative graphs that illustrate the temporal behavior of the
negative ion and PM2.5 concentrations predicted by the proposed model alongside the
experimental data, with variations between contaminants, temperature ranges, and voltage
levels. Figure 6a–c show the temporal evolution of the PM2.5 concentration, highlighting
the close alignment between the experimental observations and model predictions. These
subplots confirm that Equation (11), which describes the temporal behavior of CPM2.5(t),
effectively captures the progressive decrease in the particle concentration over time. This
trend is consistent with the exponential decay model proposed by [13]. In contrast,
Figure 6d–f show the response of the negative ion concentration, whose decreasing behavior
follows a pattern similar to that of PM2.5. This analysis reveals a direct dependence between
the two concentrations, enabling a comparison between the experimentally measured and
model-predicted negative ions. The model effectively predicted the initial decrease in
the negative ion concentration, consistent with ion–ion recombination, where oppositely
charged particles neutralize quickly. However, the experimental data show oscillations
not captured by the model, likely due to turbulence or particle re-entries affecting PM2.5
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dispersion. These fluctuations may also be the result of variations in pollutant composition,
agglomeration, and environmental conditions, such as temperature and humidity [53,54],
which influence particle settling and electrostatic recombination. These findings underscore
the need to extend the model to address real-world complexities. Experimental conditions
provide a foundation for understanding PM2.5 and negative ion interactions. However, real
scenarios involve multifactorial influences, such as fluctuating temperatures and humidity,
external pollutant sources, and variable airflow. Integrating probabilistic approaches to
account for environmental variability is essential.

(a) PM2.5 for cigarette smoke at
7.5 kV (low range)

(b) PM2.5 for coal at 7.5 kV
(mid-range)

(c) PM2.5 for incense smoke at 30
kV (high range)

(d) Ions over 300 s (main graph)
and the first 20 s (detail) for
cigarette smoke at 7.5 kV.

(e) Ions over 300 s (main graph)
and the first 20 s (detail) for coal
at 7.5 kV.

(f) Ions over 300 s (main graph)
and the first 20 s (detail) for
incense smoke at 30 kV.

Figure 6. Comparison of experimental data and model results for PM2.5 and negative ion interactions.

Global Sensitivity Analysis Using Sobol Indices

The previous section, particularly Figure 6, underscores the effectiveness of the
proposed model in capturing the exponential decay of PM2.5 concentrations over time.
However, discrepancies such as fluctuations in negative ion concentrations, likely influenced
by environmental factors such as turbulence and contaminant composition [53,54], reveal
areas for refinement of the proposed model. These observations highlight the importance
of sensitivity analysis in identifying the parameters that most influence the dynamics of
the system, as described below. The global sensitivity analysis was conducted using Sobol
indices to evaluate the relative importance of the parameters involved in the system’s
dynamics [55]. This approach allowed for the identification of the factors influencing the
concentrations of PM2.5 and negative ions over time, as defined in Equations (2) and (3).

The sensitivity analysis categorized parameters based on their Sobol sensitivity indices,
following the criteria outlined by Garcia et al. [56]. Parameters with indices above 0.8 were
classified as highly relevant, as they significantly influence the system’s output variability.
Those with indices between 0.5 and 0.8 were considered relevant, indicating secondary
but still significant effects. Parameters with indices between 0.3 and 0.5 were deemed
marginally relevant, contributing only minimally to the overall variability. To ensure
comprehensive coverage of possible parameter values, the Saltelli method was employed
for sampling the parameter space [57]. This method used 1000 samples, enabling the
estimation of both first-order and second-order interactions between parameters. The
bounds for these parameters were derived from the experimental data to reflect realistic
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variability. These results were used to calculate both first-order (S1) and total-order (ST)
Sobol indices.

Figure 7 shows that the elimination terms for the PM2.5 (EPM2.5) and ion (Eions)
concentrations are highly relevant within the model presented in Equations (2) and (3). These
terms consistently exhibit the highest first-order and total-order variances, underscoring
their critical influence on system dynamics. Additionally, the generation rate of ions
(Gions) is also identified as a significant parameter, as highlighted in the bar plots. The
use of Sobol indices enabled a detailed assessment of the relative importance of these
parameters in influencing the dynamics of PM2.5 and ion concentrations over time. This
sensitivity analysis provides actionable insights for optimizing the air purification system.
The results highlight the dominant influence of elimination rates, particularly EPM2.5 and
Eions, which exhibit the highest sensitivity indices. Precise control over these parameters
could significantly enhance system stability under diverse environmental conditions.

(a) First-order Sobol indices for PM2.5 and ions at
teval = 300 s.

(b) Total-order Sobol indices for PM2.5 and ions at
teval = 300 s.

Figure 7. First- and total-order Sobol sensitivity indices for PM2.5 and ion concentrations at
teval = 300 s.

After analyzing the most relevant parameters in modeling the interaction between
PM2.5 and negative ions, we proceeded with a more detailed analysis of these parameters
over the course of the experiment. For this analysis, scatter plots between parameters and
individual histograms were employed, allowing us to observe each parameter’s probability
distribution and their interrelations. Figure 8 presents these graphs in matrix form, where
the diagonal plots display a histogram for each parameter, while the off-diagonal elements
show a scatter plot for each pair of parameters.

In the scatter plots in Figure 8, each subfigure includes a regression line that helps
identify the general trend of the relationship between the two variables analyzed [58]. These
lines were obtained using Pearson’s correlation coefficient, as shown in Equation (18), with
the corresponding values presented in Table 3. In Figure 8, the histograms on the diagonal
show the operating ranges of each parameter for each of the experiments. The patterns
observed in these histograms align with the parameter behaviors presented earlier in Table 2.
Next, for each of the histograms, different probability distributions were tested to find the
best distribution that fits the behavior of the parameters, represented by the red lines above
the histograms. The best-fitting distributions are as follows: EPM2.5, which follows a beta
distribution; Gions and Eions, which follow a log-normal distribution; and GPM2.5, k1, and
k2, which follow a Weibull distribution, with values concentrated in lower ranges.

Table 3 shows correlations ranging from weak to moderate between variables. For
instance, GPM2.5 and k2 exhibit a moderate positive correlation of 0.384, while EPM2.5 and
k2 exhibit a negative correlation of −0.441, suggesting an inverse association between these
parameters. Most of the Pearson correlations are weak. On the other hand, k1 and k2

exhibit a positive correlation of 0.474, showing a moderate relationship. Finally, an inverse
relationship is observed between particulate matter PM2.5 and negative ions. This behavior
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aligns with the theoretical model, where the generation of negative ions contributes to the
removal of particulate matter through electrostatic recombination [29].

Figure 8. Scatter plots, regression lines and histograms for GPM2.5, EPM2.5, Gions, Eions, k1, and k2.
The red lines are regression lines that help identify the general trend of the relationship between the
two variables analyzed. The dots represent the relationship between two variables.

Table 3. Pearson correlation coefficients for GPM2.5, EPM2.5, Gions, Eions, k1, and k2.

GPM2.5 EPM2.5 Gions Eions k1 k2

GPM2.5 1.000 −0.257 −0.212 0.183 0.377 0.384
EPM2.5 −0.257 1.000 −0.049 0.022 −0.398 −0.441
Gions −0.212 −0.049 1.000 0.218 −0.121 0.178
Eions 0.183 0.022 0.218 1.000 0.204 0.232

k1 0.377 −0.398 −0.121 0.204 1.000 0.474
k2 0.384 −0.441 0.178 0.232 0.474 1.000

7. Conclusions
This paper introduced a linear parametric dynamic approach grounded in the law

of mass conservation to model the interactions between particulate matter and negative
ions, offering a fast, low-cost alternative when experimental data are limited, costly, or
time-consuming, and ensuring reproducible results in stable, controlled environments.
The optimal parameters were identified to reduce discrepancies between the model
and experimental data, revealing that these parameters follow log-normal, beta, and
Weibull distributions. This enables uncertainty capture and simulations that enhance
system behavior representation under varying conditions. Finally, the proposed air
purification system achieved over 99% efficiency within 5 min at low to medium
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temperatures using negative ions, outperforming other methods. However, efficiency
dropped significantly at higher temperatures, reaching only 32.66% at 7.5 kV. While the
experimental conditions provide a robust foundation for understanding the system’s
behavior, additional adjustments may be required to extend the model’s applicability to
dynamic, real-world scenarios. These scenarios often involve multifactorial influences, such
as the combined effects of fluctuating temperatures and humidity, interactions with external
pollutant sources, and varying airflow dynamics. Future work will focus on probabilistic
studies that account for environmental variations to predict system performance in
various scenarios and recommend experiments at temperatures below 16 °C to assess
how reduced particle kinetic energy and increased fluid viscosity affect sedimentation
and efficiency. Additionally, it is suggested that effects such as airflow losses, chemical
interactions, and experimental validation in heterogeneous environments be incorporated
to address real-world complexities. Stochastic approaches could further enhance the
model’s robustness by quantifying the impact of diverse environmental factors. More
complex models are suggested to analyze ion interactions with particulate matter in
uncontrolled environments for a more realistic understanding of system effects.
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